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A spin strongly driven by two harmonic incommensurate drives can pump energy from one drive to the
other at a quantized average rate, in close analogy with the quantum Hall effect. The pumping rate is a
nonzero integer in the topological regime, while the trivial regime does not pump. The dynamical transition
between the regimes is sharp in the zero-frequency limit and is characterized by a Dirac point in a synthetic
band structure. We show that the pumping rate is half-integer quantized at the transition and present
universal Kibble-Zurek scaling functions for energy transfer processes. Our results adapt ideas from
quantum phase transitions, quantum information, and topological band theory to nonequilibrium dynamics,
and identify qubit experiments to observe the universal linear and nonlinear response of a Dirac point in

synthetic dimensions.
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Introduction.—A wide variety of classical and quantum
systems undergo second-order phase transitions in
equilibrium [1-6]. Near such transitions, a universal
coarse-grained description emerges; this predicts, for
example, the same fluctuations for the fluid density near
the liquid-gas critical point as the magnetization near
the Ising paramagnet-ferromagnet transition. Far from
equilibrium, the description of phase transitions is
more complicated. Although a number of dynamical
transitions have been observed in driven dissipative sys-
tems [7-20], comparatively little is known about their
general theory.

Here we consider a dynamical phase transition in
probably the simplest possible setting: a spin—% driven by
two drives with incommensurate frequencies. The drives
may be produced by two optical cavities prepared in
coherent states [Fig. 1(a)]. The driving increases the rich-
ness of the problem by introducing two “synthetic dimen-
sions,” which correspond to the photon numbers in the two
cavities [21-25]. More precisely, the stationary states of the
two-tone driven spin—% are given by the stationary states of a
two-dimensional synthetic tight-binding model in the
presence of an electric field which is equal to the vector
of drive frequencies (w;,w,) [21-30].

For a range of parameters, the tight-binding model in
synthetic dimensions exhibits the quantum Hall effect
[24,25,30,31]. Reference [24] first identified the corre-
sponding response in the driven qubit system: an average
integer quantized energy current between the two drives in
a direction set by the polarization of the qubit [Figs. 1(a)—
1(c)]. Reference [25] further identified other quantized
responses in generic two-tone driven qudits and the integer
topological invariant controlling these effects.
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In this Letter, we show that the dynamical transition
between the topological (pumping) and the trivial (non-
pumping) regimes exhibits a half-integer quantized energy
pumping rate [Figs. 1(b)-1(c)]. The transition is sharp in
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FIG. 1. (a) A spin driven by two incommensurate drives can

transfer energy AE,; from one drive to the other. (b) The mean
rate of energy transfer (power) is topologically quantized up to
the unlock time ¢,. (¢) For t < t,, the mean power jumps from
Pq = (wyw,/2m) in the topologically nontrivial regime (5 < 0)
to zero in the trivial regime (6 > 0). At the transition (6 = 0), the
mean power is Pg/2. (d) The instantaneous energies of the
Hamiltonian [Eq. (2)] organized into a band structure as a
function of #,. At the transition, the band structure contains a
Dirac point that controls the universal low-frequency response.
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the zero-frequency limit. At the transition, the band
structure of the synthetic model in the absence of the
electric field has a Dirac point [Fig. 1(d)]. The half-integer
quantization follows from the integrated Berry curvature of
one of the bands excluding the Dirac point.

To observe the quantized energy current the spin’s
evolution must be nearly adiabatic and “locked” in an
instantaneous eigenstate. Away from the zero-frequency
limit, the pumping is thus a prethermal effect. Using
Kibble-Zurek (KZ) arguments [32—44], we show the time
t, when the spin unlocks to diverge as

Ly~ By/w?, (1)

where By is the typical amplitude of the instantaneous field,
and w = /ww, is the typical frequency of the drives. On
the timescales larger than ¢,, the spin’s direction is
effectively decoupled from the external drives, leading to
zero average pumping rate [Fig. 1(b)].

Near the transition, we show that the pump power is
universal when measured in units of the diverging timescale
t,. The pump power has two universal contributions: one of
topological origins that is quantized to either an integer or a
half-integer as #/t, — 0, and another nonquantized con-
tribution due to spin excitation. Drawing intuition from the
action of time reversal on Hall insulators, we isolate the
two contributions and their associated universal Kibble-
Zurek scaling functions using time evolution with the
Hamiltonian and its complex conjugate. Experimentally,
complex conjugation corresponds to reversing the circular
polarization of one drive. Incommensurately driven few-
level quantum systems thus offer a unique window into the
universal properties of the topological phase transitions of
band insulators.

Model.—For concreteness, we work with the same
model as Refs. [24,25,30] in which a spin % is driven by
two circularly polarized magnetic fields:

B, -3,

Ny

1
H( t):_i

B(0,) = By(sinf,;,sin 6,2 + 6 —cos 0,y —cosb), (2)

where ét = (6,1,0,,) is the vector of drive phases,
0, = w;t + 0y;, and the ratio of the drive frequencies
@,/ is an irrational number. We assume that the ratio
of drive frequencies is order 1, so that = /@, is the
single frequency scale on which H varies. The spin
operator is a vector of Pauli matrices, 6 = (o,,0,,0,);
the spin is initialized in the instantaneous ground state.
Instantaneous band eructure.—At each 0, the instanta-
neous eigenstates of H(0) are either aligned or antialigned
with the instantaneous magnetic field B(6), with eigen-
values F |B(6)|/2, respectively. We organize these instan-
taneous eigenstates into a band structure on the torus

6 € [0,27)%. The instantaneous band structure describes
the qubit dynamics for # < ¢, when the spin’s evolution
remains adiabatic.

The Hamiltonian in Eq. (2) is engineered so that the
instantaneous band structure is topologically nontrivial.
Specifically, the instantaneous band structure is identical to
the momentum-space band structure of a simple model of a
quantum Hall insulator, the so-called half-BHZ model
[31,45,46]. Consequently, the instantaneous ground state
band (corresponding to the eigenvalue —|B(#)|/2) has a
nonzero Chern number C, = 1 for -2 <6 <0, and C, =
0 for 6 > 0.

In the vicinity of the transition at § =0, there is
a massive Dirac point in the band structure at |6] =0
[Fig. 1(d)]:

N B IR
H() = —70(91% + 6,0, + 80.) + O(10]).  (3)

Figure 2 is a density plot of the Berry curvature of the
ground state band in the topological regime, close to the
transition. The Berry curvature has two contributions: a
piece that is smooth in 6 and € and integrates to z; and a
singular piece that concentrates into a delta function at 6 =
0 and integrates to —sgn(8)z [31,45].

_. The drive phases follow trajectories of constant slope in
0 space (shown in blue in Fig. 2). Consider ¢ < ¢,. Away
from the Dirac point, the Berry curvature is small, and the
spin state along the trajectory approximately follows the
instantaneous ground state [47]. In the low frequency limit
and with @, /w; irrational, the trajectory uniformly samples
this Berry curvature over time.
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FIG. 2. Contour plot of the Berry curvature of the instantaneous
ground state band near the transition (§ = —1/3). Blue lines
depict the trajectory of the drive phases. The integrated Berry
curvature sets the (average) energy pumping rate until the spin
enters the excitation region |0,| < 6* (dashed circle) for the first
time (red point).
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We show below [Eq. (9)] that the average power is set by
the integrated Berry curvature of the instantaneous ground
state band before unlock. Sufficiently far away from the
transition, the trajectory thus samples the entire Berry
curvature. At the transition, however, the spin unlocks
before sampling the singular component associated with
the Dirac point. Thus, the integrated Berry curvature that
sets the average power is given by

1 6<0
C,= % 6=0 (4)
0 §>0.

Pump power.—The instantaneous rate of energy transfer
from drive 1 is given by [24]

P = {0y, H), (5)

with a corresponding expression for P,. As the spin cannot
absorb energy indefinitely, the net energy flux into the
system time averages to zero, [Py, = [Pi], + [P2], = 0.
Throughout, [-], denotes averaging with respect to variable x.

In the low frequency limit, P, is a sum of two terms, one
analytic and one nonanalytic in w. The analytic term is
completely determined by the instantaneous values of 6,
while the nonanalytic terms depend on the entire history of
the trajectory. As in the Landau-Zener problem, the analytic
terms describe the perturbative “dressing” of the spin state
over the instantaneous ground state [47-49]. The non-
analytic terms capture the nonadiabatic excitation processes
between the dressed states. Below we refer to the leading
order analytic term as Pz, as it is of topological origin, and
the nonanalytic term as P;g, which is due to excitations.

Topological contribution to pumping for t < 1,—Let
|5(6,)) be the spin state dressed to order w above the
instantaneous ground state. Thus,

49 ) + 0(w?)

= H|g) = iw|0y,7) + i1|0p,3) + O(0?). (6)

where we have suppressed the time dependence of 6 for
brevity. Using the product rule and Eq. (6), we obtain

Pir= 0’1<§‘891H|§>
= (0, (91H|7) — (00, 9H|9) — (9|1H|Dp,7)]

= 0,0y, (|H|7) + ©,0,2;(0). (7)
where Qq(é) = 2Im(0y, §|0p,7) is the Berry curvature of
the dressed spin state.

The instantaneous power varies with the initial phase
vector 6. Universal results about the spin dynamics at each
t follow upon initial phase averaging

[Pirlg, = 06, G1H|D)7 + 0102[Q5(0)]z. (8)

The first term vanishes as it is a total derivative. The second
term is the integrated Berry curvature of the dressed band
prior to unlock (and thus excludes the Dirac point). As the
integrated Berry curvature of the dressed and instantaneous
bands are identical, we obtain

w1 Wy

[Pirlg = CPq=C, TP 9)

with C, given by Eq. (4). Formally Eq. (9) holds at fixed 6
as w — 0,t/t, - 0.

Kibble-Zurek estimate for t,.—The probability to tran-
sition to the dressed instantaneous excited state follows
from the Landau-Zener result [49-52]

ﬂ|§(ér>|2>
exe ~ Mmaxexp | ————=— . 10
poc = maxenp (=717 (10)

Deep in the topological or trivial regimes, the spin’s
evolution thus remains adiabatic for an exponentially long
timescale ~exp (By/®).

Equation (10) predicts that the spin unlocks from the
field when the instantaneous gap squared becomes
comparable or smaller than the rate of change of the field
[32-36,38,41-43]. At the transition, the spin thus unlocks
when

16,| < 0° == \/w/B,. (11)

This relation defines the “excitation region” within the
dashed circle in Fig. 2(a). A typical spin trajectory enters
the excitation region for the first time after 27/0* periods.
We thus obtain the scaling of the unlock time ¢, ~
(w0*)~" ~ \/By/w® previously stated in Eq. (1).
Topological contribution to pumping for t > t,—At
times much longer than the unlock time, nonadiabatic
processes heat the spin. In the initial phase ensemble, the
populations in the (dressed) instantaneous ground and
excited states thus become equal. As the Chern numbers
of the ground and excited state bands sum to zero, the
ensemble averaged power [Py7]; — 0 as /1, — 0.
Excitation contribution to pumping.—The nonadiabatic
excitation of the spin results in a distinct contribution to the
power [P ] . As the spin absorbs order B, energy from the
drives over a timescale 7,
[Pna]go ~ By/t, x @2, 131y (12)
Unlike the topological contribution, the power due to
excitation is nonanalytic in @. The total pumped power
is the sum of the topological and excitation contributions.
A constant rate of excitation results in a linear increase of
the excited state population in the initial phase ensemble at
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small ¢/¢,. At late times, the populations become equal, and
statistically the spin ceases to absorb energy from the
drives. Thus, [Pg]; — 0 as t/1, — co.

Kibble-Zurek scalzng functions.—Within the Kibble-
Zurek (KZ) scaling limit, the nonequilibrium dynamics
of the spin becomes universal even beyond the unlock time.
The KZ scaling limit involves taking @, 6 — 0 together
while measuring time in units of the diverging unlock time
t,, and the drive frequency in units of the vanishing scale
o* ~ Byd® [34,37,39-43]. The KZ scaling limit accesses
the “critical fan” around the @ = 0, § = O transition, while
Eq. (9) applies deep within each “dynamical phase” (at
fixed 6) as w — 0.

In the KZ scaling limit, the radius of the excitation region
6" becomes small and the Hamiltonian of the massive Dirac
cone [Eq. (3)] controls the excitation of the spin, and hence
the decay of the topological component of the power. The
topological and excitation components of the power then
take the following scaling forms:

[P]E(t; , 5)]50 ~ 0)3/2P15(ta)3/2;5a)_1/2),

‘s
[Pir(t; @, 5)]50 N;)_ﬂplT(tw3/2;5w_l/2)- (13)

Above, Pig and Pyp are scaling functions determined
solely by the universality class of the transition in the
instantaneous band structure. They capture the universal
crossover from the prethermal regime to the late-time
infinite-temperature regime.

Scaling functions for the Dirac transition.—We now
numerically extract the scaling forms Pg, P;r for the
Dirac transition in the half-BHZ model by comparing
the trajectories generated by H (9) and the complex-
conjugated Hamiltonian H’ (9) = [H(0,)]*. Physically,
H' is implemented by flipping the chirality of one of the
circularly polarized drives. As this flips the sign of [PIT]
alone, we can separate the topological and excitation
contributions to the pumped power:

Pielg, = 5 (Pilg, + P15
Prcl, =5 (P15, ~ [Pl (14)

Here, P = a),(l//,|89]H’( )|w;) is the instantaneous
rate of energy transfer from drive 1 in the conjugated
system i0,|w;) = H'(0 ,)|1//,> when it is initialized in its
instantaneous ground-state band |yj) = (Jyo))*. In the
Supplemental Material [53], we obtain the same scaling
functions for a different microscopic model with a Dirac
transition, demonstrating universality.

In more detail, Eq. (14) is obtained as follows. As the
probability of excitation in Eq. (10) is invariant under
complex conjugation, the ensemble populations of the
instantaneous eigenstates are the same at each /¢, for

time evolution under H and H’. Thus, [P’IE] [PIE}
The topological piece, however, changes s1gn [PIT]

[PIT]~0 as the Berry curvature changes sign under com-
plex conjugation.

Figure 3 shows the scaling functions across the transition
for both contributions for small 7/¢,. The excitation scaling
function is proportional to excitation probability for r < ¢,.
AS peye ~exp(—=8°By/w), Fig. 3(a) is thus well fit by a
Gaussian centered at the transition (black-white dashed
line).

Figure 3(b) shows [P1]/Pq to obey a single-parameter
scaling function at fixed #/¢,, with the [P 1]/ Pq — 1(0) as
8 — —oo(o0) [Eq. (4)]. The intermediate value at § = 0 is
close to %, and becomes exactly % as t/t, - 0. For
Sw~'/? = O(1), the component of the Berry curvature that
is singular at the transition has a width comparable to that
of the excitation region #*. Consequently, this component is
partially sampled by spin trajectories before unlock
and leads to the smooth universal function observed in
Fig. 3(b). Note that Eq. (9) is contained within the scaling
function in Eq. (13) on taking @ — 0 at fixed 0.

A technical comment: the data in Fig. 3 is time averaged
over tw*? € [0,1.72] (in addition 6, averaging). This
reduces fluctuations due to the finite sampling of 6, and

Pr=(P1-P)/2
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FIG. 3. The phase and time averaged excitation (top) and

topological (bottom) scaling functions of the power averaged up
to time /% = 1.72 (t/t, = 0.3). AS peye < Pg, the top panel is
fit well by a Gaussian. The topological scaling function in the
bottom panel decreases from one deep in the topological phase
5 < —w'/?, to approximately one-half at the transition at § = 0
and to zero in the trivial phase. As § is measured in units of /2,
the scaling function reproduces the step function in Eq. (9) in the
limit @ — 0 at fixed §. Parameters: By = 1, w,/w; is the golden
ratio and 20 values of w € [0.0025,0.1].
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tw¥?

FIG. 4. The topological scaling function at the transition with
(main) and without time averaging (inset). Both plots show that
the scaling function approaches 1/2 as t@w*? — 0, and zero as
tw3/? = 0. The vertical line is a proxy for ¢, (definition in text).
See the Supplemental Material [53] for the excitation scaling
function at the transition.

quasiperiodic micromotion, and slightly modifies the value
of the scaling function near 6 = 0. Scaling functions
without time averaging are discussed in the
Supplemental Material [53].

We now turn to the dependence of the scaling functions
on f/t,. Fig. 4 (inset) shows Pr~ [P1T]§0/PQ at the
transition, while the main figure shows the power with
additional averaging over the time interval [0, 7]. The gray
vertical line is a proxy for 7, and identifies the mean time up
to which |9,B| < |BJ2. Both plots show that, as #/1, — 0,
Pyt approaches the quantized value of

1

1
’PIT(OQ 0) = E (Cg|5>0 + Cg|5<o) = Cg|5=0 = E (15)

Next, for 0 < 7/t, < 1, Pyt linearly decreases. This linear
decrease follows from the constant excitation rate in
Eq. (12) and the opposite sign of the pumping by the
excited population. Finally, despite the negative turn at
tw>/? ~ 10 in the inset, we find that 7,1 approaches zero
for t/1, > 1, consistent with the main figure.

Discussion—We have demonstrated that a simple
quasiperiodically driven spin—% exhibits universal scaling
behaviors characteristic of extended classical or quantum
equilibrium systems in the vicinity of continuous phase
transitions [57,58]. Our results serve as a new example of
the tantalizing correspondence emerging between
equilibrium systems and systems subject to periodic or
quasiperiodic driving [21-25,28-30,59-90].

The KZ scaling functions also provide the universal
nonlinear response of a clean Dirac material in an electric
field [91]. Fourier transforming the @ coordinates maps the
model in Eq. (2) on to the real-space model of a Hall
insulator (the half-BHZ model) with an additional electric
field (@, ®,). In this transformation, @ maps on to the

magnitude of the electric field, the topological component
of the power maps on to the Hall current, and the excitation
component measures the population in the excited band due
to dielectric breakdown when the insulator is initially at
zero temperature.

Driven few-level systems can access other topological
phase transitions in static systems using different driving
protocols. Moreover, the KZ scaling theory can be
extended to include the effects of dissipation [30], or
counterdiabatic driving [25]. Both effects increase the
unlock time ?,, and may simplify experimental access to
the half-quantized response in solid-state and quantum
optical platforms that host qubits [92—-106].
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