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Slow thermalization of exact quantum many-body scar states under perturbations
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Quantum many-body scar states are exceptional finite energy density eigenstates in an otherwise thermalizing
system that do not satisfy the eigenstate thermalization hypothesis. We investigate the fate of exact many-body
scar states under perturbations. At small system sizes, deformed scar states described by perturbation theory
survive. However, we argue for their eventual thermalization in the thermodynamic limit from the finite-size
scaling of the off-diagonal matrix elements. Nevertheless, we show numerically and analytically that the
nonthermal properties of the scars survive for a parametrically long time in quench experiments. We present
a rigorous argument that lower bounds the thermalization time for any scar state as t∗ ∼ O(λ−1/(1+d ) ), where d
is the spatial dimension of the system and λ is the perturbation strength.
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I. INTRODUCTION

Wigner pioneered the application of random matrix theory
to describe quantum chaos [1]. Nowadays, it has even become
a definition of quantum chaos: the applicability of the random
matrix theory description to the statistical properties of the
spectrum and wave functions of a quantum mechanical sys-
tem, in both single-particle and many-body quantum systems.
Based on the random matrix theory description, Srednicki
and Deutch proposed the eigenstate thermalization hypothesis
(ETH), bridging the concept of quantum chaos and the va-
lidity of statistical mechanics in closed quantum many-body
systems [2,3]. Essentially, the ETH implies that the reduced
density matrix of a single eigenstate is equal to that of the
microcanonical/canonical ensemble, and it is how statistical
mechanics emerges in closed quantum systems.

The strong version of the ETH proposes that every eigen-
state satisfies the above property [4–7]. However, there can
be some exceptional states at a finite energy density that do
not satisfy the ETH, while the other states do. Such states are
dubbed quantum many-body scar states, in analogy with the
single-particle scar states [8]. Recently, there has been a surge
in interest of finding and understanding quantum many-body
scar states due to the observation of anomalous dynamics
in a Rydberg atom experiment [9]. Known systems that
host quantum many-body scar states include the PXP model
describing the Rydberg-blockaded atom chain [10–17], the
Affleck-Kennedy-Lieb-Tasaki model [18–20], and the spin-1
XY model [21]. References [22,23] developed a systematic
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construction to embed nonthermal states in the spectrum.
Many other systems or models have also been discovered or
constructed to have scars or scarlike physics [24–35].

Current analytical understanding about quantum many-
body scars relies on the identification of certain exact eigen-
states. Moreover, the Hamiltonians with exact scar states are
at some special point in some parameter space or have the em-
bedded Hamiltonian structure. An immediate question arises:
how robust are the exact quantum many-body scar states under
generic perturbations? Are the exact scar states discovered and
constructed in several models useful to understand the physics
once we add perturbations?

In this paper we address the above questions by studying
the fate of the exact scar states under perturbations. While we
use the perturbed PXP model as our main showcasing exam-
ple, our arguments are in fact general and apply to any model
with exact scars that is subjected to generic perturbations. For
some analysis we also study the perturbed spin-1 XY model
to further support our arguments.

We first show that, in the finite-size ED data, there is
some apparent robustness in the nonthermal signatures of
the exact scar states upon perturbation. The perturbed eigen-
states in finite sizes can indeed be understood using standard
perturbation theory. However, the finite-size scaling of the
matrix elements between the scar states and other eigenstates
suggests the eventual thermalization of the scar states at larger
system sizes. In both studied models, the scaling of the matrix
elements between the scar and thermal states is well de-
scribed using the random-matrix theory picture of the thermal
states. This predicts that such matrix elements scale as D−1/2,
where D is the many-body Hilbert space dimension (of the
relevant symmetry sector) and grows exponentially with the
system volume. The D−1/2 dependence follows solely from
the property of the thermal states, while only the numerical
amplitude depends on details of the scar states. Since the
many-body level spacing decreases much faster as D−1, this
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very general mixing argument suggests an eventual demise
of exact scar eigenstates in any system that is subjected to
generic perturbations.

Despite the eventual thermalization of the scar states, the
thermalization rate of observables is parametrically slow in
the strength of the perturbation. In particular, we consider the
quench dynamics starting from the exact scar states evolving
under the perturbed Hamiltonian. We rigorously lower bound
the timescale for the expectation value of any local observable
to thermalize by t∗ ∼ O(λ− 1

1+d ), where λ is the strength of
the perturbation and d is the spatial dimension of the system.
The long protection of the nonthermal property is due to
the locality of the Hamiltonian. Roughly, in the Heisenberg
picture, the time derivative of the expectation value of a local
observable is given by the expectation value of the com-
mutator of the perturbed Hamiltonian and the time-evolved
observable. Writing the perturbation as a sum of local terms,
the contributions from the locations outside of the “light
cone” relative to the observable location are controlled by the
Lieb-Robinson bound, while each contribution from inside
the light cone is bounded by an O(λ) number. This gives
that the expectation value in time can only deviate from its
initial nonthermal value by no greater than λ(c0t d + c1t1+d ),
leading to the above lower bound on the thermalization time.
The bound also applies to the survival time of any anomalous
dynamics such as persistent oscillations in some models with
a tower of equally spaced scar states [19,21,28]. While this
bound is likely not optimal (e.g., our numerical study in the
perturbed PXP model suggests that t∗ diverges at least as
strongly as 1/λ; while the numerical study in the perturbed
spin-1 XY model suggests t∗ ∼ 1/λ2), it is completely rig-
orous and general. A consequence of our results is that the
exact scar states discovered or constructed in different special
models can be used to understand the persisting dynamical
signatures under perturbations up to some parametrically large
timescale and in the thermodynamic limit.

Our results suggest some analogy between weakly per-
turbed scarred systems and weakly perturbed integrable sys-
tems. In the latter case, the eigenstates in finite sizes can be
understood as perturbed from the special integrable Hamil-
tonian. Analogously, the deformed scar states in finite sizes
are perturbatively related to the exact scar states of the cor-
responding special Hamiltonian. Moreover, in the thermo-
dynamic limit, a weakly perturbed integrable Hamiltonian
prethermalizes to a generalized Gibbs ensemble that per-
sists for a parametrically long timescale [36–38], believed to
diverge as O(λ−2). Similarly, the nonthermal properties of
the exact scar states can also survive in quench experiments
under perturbations to some parametrically long time even in
the thermodynamic limit, which we also expect to diverge
as power law in λ in generic cases. We therefore propose
that there is a similarity at this level between “completely
solvable” (integrable) Hamiltonians and “partially solvable”
scar Hamiltonians. We note that by the latter term we mean
that only some special eigenstates are known analytically,
while the other eigenstates are not known analytically and are
in overwhelming numbers thermal. Correspondingly, it is only
these special eigenstates or the corresponding special initial
states that produce observable scar signatures either in small

system sizes or quench dynamics. This aspect is different from
the integrable systems where all eigenstates are special and
essentially any initial state will show prethermalization. We
finally remark that our rigorous bound on the thermalization
time does not use Fermi golden rule type arguments that give
O(λ−2) prethermalization time for nearly integrable systems
or when a conservation law is weakly broken [36–38]. It is an
open question whether such arguments can be extended to the
scar thermalization problem.

The paper is organized as follows. In Sec. II we introduce
the PXP model and its properties, and also motivate the
specific type of perturbation in our consideration. In Sec. III
we study the signatures of the scars under the perturbation in
finite size systems, demonstrating their apparent robustness.
In Sec. III A we apply standard perturbation theory to describe
the deformed scar states at small perturbation strength and
numerically accessible system sizes. However, in Sec. III B
we argue that the deformed scar states eventually hybridize
with the ETH-satisfying states at nearby energies by studying
the finite-size scaling of the matrix elements connecting the
scar states to other states. Thus, the deformed scar states lose
their nonthermal character as L → ∞ and eventually satisfy
the ETH. Despite their eventual thermalization, in Sec. IV A
we numerically show that the thermalization is slow under
global quenches, and prove a rigorous lower bound on the
thermalization timescale in Sec. IV B. In Sec. IV C we discuss
possible scenarios where the bound on the thermalization time
can be stronger. We conclude and discuss our work in Sec. V.
Appendixes A–D contain more details of the perturbed PXP
model study (including general discussion of some properties
of the distribution of matrix elements dictated by the locality
of the Hamiltonian), while Appendix E presents both the
matrix element and quench dynamics study of the perturbed
spin-1 XY scar model.

II. MODEL

As a specific example for the numerical study, we consider
the one-dimensional (1D) PXP model with perturbation. (An
additional numerical study on the perturbed spin-1 XY model
is organized in Appendix E.) The PXP model is the effective
constrained model describing the dynamics of the Rydberg
atom chain in the regime of the nearest-neighbor blockade.
More specifically, we consider a 1D atom chain with size
L and open boundary conditions. There are two degrees of
freedom at each site: |0〉 (atomic ground state) and |1〉 (atomic
excitation). The blockade condition excludes all configura-
tions | . . . 11 . . . 〉 with adjacent atomic excitations from the
Hilbert space. Despite the nontensor product structure, one
can still have the concept of the ETH in the constrained
Hilbert space [39]. The dimension of the Hilbert space grows
as DL ∼ φL, where φ = (1 + √

5)/2 is the golden ratio.
The perturbed PXP model has the following Hamiltonian:

Ĥ = Ĥ0 + λV̂ , (1)

where

Ĥ0 = X1P2 +
L−1∑
j=2

Pj−1XjPj+1 + PL−1XL. (2)
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Here P ≡ |0〉〈0| and X ≡ |0〉〈1| + |1〉〈0|. Before specifying
V̂ , we summarize some properties of Ĥ0 in order to moti-
vate the specific perturbation we will consider later. These
properties of the PXP model have been discussed in detail in
Refs. [10–14].

First, Ĥ0 has the inversion symmetry Î : j → L − j + 1.
It also has the property that if we define the particle-hole
transformation

Ĉ =
∏

j

Z j, (3)

where Z ≡ |1〉〈1| − |0〉〈0|, then ĈĤ0Ĉ = −Ĥ0. This implies
that, for any eigenstate |E〉 of Ĥ0 with energy E 
= 0, Ĉ|E〉 is
also an eigenstate with energy (−E ).

The combination of Î and Ĉ guarantees the exponential
degeneracy of E = 0 states in Ĥ0. This is due to the difference
between the number of states with C = 1 and C = −1 in
each inversion symmetry sector I . As a result, in the E = 0
manifold, the eigenstates with a particular inversion symmetry
quantum number I = ±1 will also have a definite particle-
hole quantum number given by C = I .

A. Signatures of the exact scar states

In Ref. [14], four exact scar states were discovered in
Ĥ0 for even system sizes L, labeled as |�αβ〉, where α, β ∈
{1, 2}. Here we assume that the states are normalized. For
the readers’ convenience we summarize the wave functions
and some essential properties of these states in Appendix A.
In particular, |�11〉 and |�22〉 have energies E = 0; the states
|�12〉 and |�21〉 have energies E = √

2 and E = −√
2, respec-

tively.
Despite being in the middle of the spectrum at energy

density corresponding to infinite temperature, the states |�αβ〉
have constant bipartite entanglement entropy scaling with the
subsystem length (“area law”), instead of the volume law
scaling required by the ETH. Moreover, the expectation values
of some local observables in these states do not agree with
the thermal ensemble values at infinite temperature, therefore
violating the ETH. One intriguing feature is their valence
bond solid (VBS) order, which is also used to identify their
translation symmetry breaking. The order parameter is defined
as

M̂ ≡ 1

L − 1

L−1∑
j=1

(−1) j D̂ j, j+1, (4)

where

D̂ j, j+1 ≡ |01〉〈10| + H.c. (5)

detects the dimer (bond) strength. In the thermodynamic limit,
in the bulk 〈�αβ |D̂ j, j+1|�αβ〉 = 0 if j is odd and −2/9 if j
is even. On the other hand, an infinite temperature thermal
ensemble would give the thermal value 1

DL
Tr[D̂ j, j+1] = 0 for

all j, where DL is the dimension of the Hilbert space of system
size L.

B. Particle-hole odd perturbation

We are interested in the fate of the above scar states and
their signatures under perturbation. Moreover, we also want to

examine if the E = 0 degenerate manifold has any relevance
to the robustness of the scar states. Thus, we examine the
states |�21〉 and |�I〉 ≡ (|�11〉 − |�22〉)/

√
N , where N = 2 −

4
3L/2+(−1)L/2 is the normalization factor (see Appendix A). Both

states have inversion quantum number I = −(−1)L/2, and
|�I〉 additionally has the particle-hole quantum number C =
−(−1)L/2. To compare their behavior against some thermal or
chaotic state, we will also examine the state |�th〉, which is
picked as the eigenstate with eigenindex three more than the
index of |�21〉 in the I = −(−1)L/2 symmetry sector.

The simplest inversion-symmetric perturbation that has the
property ĈV̂ Ĉ = −V̂ is

V̂ = X1P2Z3 +
L−2∑
j=2

Pj−1XjPj+1Zj+2

+
L−1∑
j=3

Zj−2Pj−1XjPj+1 + ZL−2PL−1XL. (6)

This perturbation was first studied in Ref. [12]. It was identi-
fied that at λ ≈ −0.02, Ĥ is close to some unknown integrable
point. Moreover, in the periodic boundary condition version
of Ĥ , at λ ≈ −0.053, a set of nearly perfect scar states was
numerically found to lead to nearly perfect revivals [28,40].

III. SIGNATURES OF THE SCAR STATES UNDER
PERTURBATION

To see how robust the scar states are under the perturbation
Eq. (6), we first examine the loss of the fidelity as we increase
λ in an open chain of length L = 20. In Fig. 1 we examine
the overlaps of exact eigenstates of the perturbed Hamiltonian
with the unperturbed states |〈En(λ)|�〉|2, where |En(λ)〉 runs
over eigenstates of Ĥ = Ĥ0 + λV̂ , while |�〉 is |�21〉, |�I〉,
or |�th〉 in Fig. 1(a), 1(b) or 1(c), respectively. In Fig. 2 we
examine the bipartite entanglement entropy of |En(λ)〉 and the
VBS order parameter 〈En(λ)|M̂|En(λ)〉 (associated with the
unperturbed scar state |�21〉) measured in the exact eigenstates
of the perturbed Hamiltonian as a function of the perturbation
strength.

In Fig. 1(a), |〈En(λ)|�21〉|2 clearly shows some apparent
robustness under the perturbation [the numerical values can
be seen in Fig. 4(a)]. In the region λ > 0, there is a single
perturbed eigenstate which can be traced back to |�21〉, de-
spite multiple avoided level crossings when the perturbation
strength is increased. On the other hand, on the λ < 0 side,
|�21〉 has significant overlap with several states near the
approximate integrable point λ ≈ −0.02 [12]. The spread in
overlap makes it difficult to identify a single perturbed state
associated with the unperturbed state |�21〉. As a comparison,
in Fig. 1(c) we show the fidelity loss of |�th〉. We can see that
the overlaps of |�th〉 spread over multiple states at a smaller
value of λ as compared to those of |�21〉. This suggests that
|�th〉 hybridizes more strongly with the other states in the
spectrum upon perturbation.

In Fig. 1(b) |�I〉 appears to be even more robust under
the perturbation than |�21〉. Here the overlaps between the
|En(λ) = 0〉 states and |�I〉 are summed up and displayed in
the figure. That is, we show the weight of |�I〉 projected into
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FIG. 1. Intensity plot of the squared overlaps of the exact eigenstates of the perturbed Hamiltonian at size L = 20 and symmetry sector
I = −1 with: (a) and (b) the unperturbed scar states |〈En(λ)|�21〉|2 and |〈En(λ)|�I〉|2, respectively, and (c) the unperturbed (presumably)
thermal state |〈En(λ)|�th〉|2. The horizontal axis is the perturbation strength λ while the vertical axis shows eigenstate energies. It appears that
the scar states |�21〉 and |�I〉 hybridize with other states relatively weaker compared to the thermal state |�th〉, and exhibit some robustness in
the finite-size ED spectrum. Note that for this system size when going from λ = 0 to λ = 0.01, the scar state |�21〉 crosses roughly 40 states
while still maintaining its fidelity. At λ ≈ −0.02, the system is near some approximate integrability point.

the perturbed E = 0 manifold. The numerical values can be
seen more easily in Fig. 4(b).

In Figs. 2(a) and 2(b) we examine the bipartite entan-
glement entropy and the VBS order of the exact perturbed
eigenstates near the unperturbed scar state |�21〉 under the per-
turbation. Again, on the λ > 0 side, the perturbed eigenstates
corresponding to the highest overlap with |�21〉 also shows
low entanglement entropy and significant VBS order. Note
that at λ ≈ −0.02, the entire spectrum shows features of low
entanglement, which is again a manifestation of the proximity
to some integrable point [12].

A. Perturbation theory

Here we show that the eigenstates which have high
overlaps with the unperturbed states |�21〉 or |�I〉 are a
perturbed version of |�21〉 or |�I〉. The fact that such a
perturbation theory is controlled for our system sizes is
a manifestation of the effective weakness of the perturba-
tion as far as the scar states are concerned, which we will
further quantify below. However, we expect this perturba-
tion theory to fail for large enough L for any λ 
= 0 (see
Sec. III B).

The standard nondegenerate perturbation theory to N th
order gives the perturbative corrections to the unperturbed

energy E (0)
� of the state |�〉 as E [N]

pert. = E (0)
� + ∑N

m=1 λmE (m)
� .

Up to third order, we have

E (1)
� = 〈�|V̂ |�〉,

E (2)
� =

∑
n 
=�

|〈n(0)|V̂ |�〉|2
E (0)

� − E (0)
n

,

E (3)
� =

∑
n 
=�

∑
m 
=�

〈�|V̂ |n(0)〉〈n(0)|V̂ |m(0)〉〈m(0)|V̂ |�〉(
E (0)

� − E (0)
n

)(
E (0)

� − E (0)
m

)
− 〈�|V̂ |�〉

∑
n 
=�

|〈n(0)|V̂ |�〉|2(
E (0)

� − E (0)
n

)2 . (7)

For |�21〉, we numerically calculate the perturbed energies
E [N]

pert., N = 1, 2, and 3 and compare them to the ED energy
Eexact as shown in Fig. 3. The ED energy Eexact is the energy of
the eigenstate that has the maximum overlap with |�21〉. From
the figure we see that the perturbed result agrees very well
with the ED result for small perturbation strength λ. Note that
as mentioned previously, the weight of |�21〉 is spread over
several states on the λ < 0 side, making it hard to single out
a particular eigenstate for the energy comparison, resulting in
some nonsmoothness in Eexact.

FIG. 2. Apparent robustness of the scar signatures under the perturbation in the same system as in Fig. 1. The exact scar state |�21〉 has
small (area-law) bipartite entanglement entropy and finite VBS order defined in Eq. (4). We therefore monitor these two signatures in (a) and
(b), respectively. The descendant of the |�21〉 state is clearly visible in the range −0.02 � λ � 0.05—compare with Fig. 1(a).
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FIG. 3. The energy difference between the perturbation theory
Epert. (first to third order) and the ED result Eexact, where Eexact is
the energy of the eigenstate with the maximum overlap with |�21〉.
The perturbation theory gives accurate predictions of the energy of
the perturbed eigenstate in the range of small perturbation strength λ.
Inset: The energies obtained from ED compared to the perturbation
theory predictions up to third order. The dominant shift in the
energy is already captured by the first order, i.e., the “diagonal”
part of V , which also suggests relative weakness of the off-diagonal
matrix elements. See text for the discussion of the accuracy of the
perturbation theory and also Appendix C for an improved treatment
incorporating the diagonal part of V in the unperturbed part.

For |�I〉 we need to use degenerate perturbation theory
since |�I〉 resides in the E = 0 degenerate manifold. However,
if we choose the eigenbasis with definite inversion quantum
number, then this basis is already appropriate for nondegen-
erate perturbation theory. Indeed, an important corollary of
the inversion symmetry of V̂ and of the property ĈV̂ Ĉ = −V̂
is that 〈En = 0|V̂ |Em = 0〉 = 0 for any eigenstates n and m
in the zero-energy manifold. The reason is that V̂ changes
the particle-hole quantum number but preserves the inversion
symmetry. As discussed in Sec. II, the E = 0 states have
definite pairs of particle-hole and inversion quantum number.
This also implies that, to first order, the E = 0 states are not
hybridizing with each other. Furthermore, using this property,
we can prove that the perturbed wave function |�(n)

I 〉 will have
definite particle-hole quantum number C and hence E (n)

�I
= 0

to any order. We present the proof in Appendix. B. However,
we emphasize that the proof does not imply the convergence
of the perturbation theory in the thermodynamic limit.

Having established good agreement between the perturbed
energy and the ED energy, we further show that the perturbed
wave function is a good description for the ED wave function.
The (unnormalized) perturbed wave function to first order is
given as

|�pert.〉 = |�〉 + λ
∑

n:E (0)
n 
=E (0)

�

|n(0)〉 〈n(0)|V̂ |�〉
E (0)

� − E (0)
n

. (8)

We use this wave function to provide quantitative under-
standing of the fidelity loss obtained in ED. Specifically, we

FIG. 4. Comparison of the ED and the first-order perturbation
theory results for the overlap between the descendant states and
the unperturbed scar states, for (a) |�21〉 and (b) |�I〉 (in ED, the
descendants are the eigenstates with the largest such overlaps) at
L = 20. The sudden drops in (a) on the λ > 0 side in the overlap
in ED are caused by accidental hybridization that occurs very close
to the avoided level crossings. On the λ < 0, the weight of |�21〉 is
spread over several states, resulting in low overlap. The perturbation
theory provides a good understanding for the eigenstate at small λ.

calculate

Fpert.(λ; �) ≡ |〈�|�pert.〉|2
〈�pert.|�pert.〉

=
⎛
⎝1 + λ2

∑
n:E (0)

n 
=E (0)
�

|〈n(0)|V̂ |�〉|2
(E (0)

n − E (0)
� )2

⎞
⎠

−1

, (9)

and compare this with the ED result Fexact(λ; �) ≡
|〈En(λ)|�〉|2 (where the ED state is selected by maximizing
the overlap).

In Figs. 4(a) and 4(b) we compare the perturbation the-
ory with the ED results, for |�21〉 and |�I〉, respectively. In
Fig. 4(a) the ED result has some sudden jumps in the overlap
on the λ > 0 side due to accidental events of (avoided) “level
crossings.” When there is another eigenstate which happens to
be very close in energy, the weight of |�21〉 will be spread over
these states—known as accidental hybridization. However,
once the level crosses, the overlap recovers. In fact, this
phenomenon stems from the fact that 〈�21|V̂ |�21〉 behaves
differently from the nearby states 〈n(0)|V̂ |n(0)〉. This is also
only possible when there are scar states present, since the
ETH would predict 〈n(0)|V̂ |n(0)〉 to have the same value (up to
some finite size correction) for |n(0)〉’s with the same energy
density. On the other hand, for λ < 0, the weight of |�21〉 is
almost always spread over several states. It is therefore less
justified to single out a particular special state for the overlap
comparison.

Turning to Fig. 4(b), since there is no level crossing
through the E = 0 manifold, the ED result of the overlap
to |�I〉 is smooth in λ. We therefore see that, up to the
accidental hybridization, the perturbation theory provides a
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good understanding for the perturbed ED scar states in this
system size for both |�21〉 and |�I〉.

We note that technically, the Rayleigh-Schrodinger per-
turbation theory is not applicable when | 〈n(0)|V̂ |�〉

E (0)
n −E (0)

�

| ≈ 1. It is

already expected to be not valid when there are (avoided) level
crossings, as observed in the case of |�21〉. The good agree-
ment between the eigenenergy Eexact and the perturbation the-
ory Epert. given the multiple level crossings is therefore indeed
remarkable. It reflects the smallness of the off-diagonal matrix
elements while the crossing levels are “pushed through” (as a
function of λ) by the differing diagonal matrix elements. To
better explain the relative accuracy of the perturbation theory
for this system size, we present a slightly modified version in
Appendix C.

B. Finite-size scaling and eventual thermalization

Despite the success of the perturbation theory in describing
L = 20 ED results, here we study the finite-size scaling of
the off-diagonal matrix elements and argue that the exact scar
states will hybridize with the other ETH-satisfying states and
thermalize eventually. First, we examine the distribution of the
amplitudes of the off-diagonal matrix elements |〈n(0)|V̂ |�〉|
for each of the three states |�〉 = |�21〉, |�I〉, and |�th〉. This
is plotted on the left side of Fig. 5 with the zoomed-in
scale shown on the right side. (Since 〈E (0)

n =0|V̂ |�I〉 = 0,
we omit these data.) This figure gives us the idea about how
the perturbation V hybridizes the eigenstates of H0, and how
the overall magnitude of the matrix elements changes with the
system size. (For clarity, only sizes L = 12 and L = 22 are
shown.)

In the left panels we see that for |〈n(0)|V̂ |�21〉| and
〈n(0)|V̂ |�th〉 there is a state in each case with zero over-
lap (showing up at numerical error threshold ∼10−14) with
V̂ |�21〉 or V̂ |�th〉, respectively. These states are just Ĉ|�21〉
and Ĉ|�th〉, respectively. One can easily see that 〈�|ĈV̂ |�〉 =
−〈�|V̂ Ĉ|�〉 = −〈�|ĈV̂ |�〉∗ = 0, where in the last equal-
ity we used time-reversal-like symmetry, or the fact that
〈�|V̂ Ĉ|�〉 is a real number. On the other hand, for |�I〉, we see
two states with zero matrix elements 〈n(0)|V̂ |�I〉. These states
are in fact |�21〉 and |�12〉. However, these matrix elements
are zero due to the special structure of the states, instead of
some symmetry reasoning. Also note that this is not reflected
in the plot of |〈n(0)|V̂ |�21〉|, because the |E (0)

n = 0〉 states
are obtained through numerical diagonalization, and |�I〉 is
a superposition of these states.

For |�th〉 we see that the distribution of |〈n(0)|V̂ |�th〉| is
fairly uniform and does not have any features within the
energy window |E (0)

n − E (0)
�th

| � 1. On the other hand, we
see that for |�21〉 and |�I〉 there is some horn structure at
|E (0)

n − E (0)
� | ≈ 2.6. This is due to the strong connection be-

tween the exact scars and other quasiparticlelike excitation
states on top of the exact scar states. (See Refs. [14,16] for
such a “quasiparticle picture” of the other nonexact scar states
in the PXP model in the spirit of single mode approximation
and its multimode generalization.) In all three cases, there is
a rapid drop-off of the matrix elements for |E (0)

n − E (0)
�th

| � 5,
which reflects the locality of the Hamiltonian—see Appendix
D for details.

FIG. 5. The distribution of the matrix elements |〈n(0)|V̂ |�〉|, with
|�〉 chosen as |�21〉, |�I〉, and |�th〉, shown for system sizes L = 12
and L = 22. In all cases, there is a rapid falloff outside some energy
window because of the locality of Ĥ0 and V̂ . In the case of the
scar states, we see strong “horns” at |E (0)

n − E (0)
� | ≈ ±2.6 (attributed

to matrix elements to other scars in the spectrum) and also some
suppression for small |E (0)

n − E (0)
� |, while in the thermal state case

the distribution is more uniform. Nevertheless, the typical values of
the matrix elements decrease with L comparably for the scar and
thermal states. In the right panels we zoom in to show more detailed
features of the distribution.

We can see some suppression in the amplitudes of the ma-
trix elements |〈n(0)|V̂ |�21〉| and |〈n(0)|V̂ |�I〉| near zero |E (0)

n −
E (0)

� |. We think that for these system sizes, this suppression
in the off-diagonal matrix element amplitudes further assists
the validity of the perturbation theory description in Fig. 4
discussed earlier. However, by examining the distributions in
more narrow energy windows, we find that this only affects
the connection to the thermal states quantitatively and not
qualitatively.

We further use the statistics of |〈n(0)|V̂ |�〉| to argue for
the eventual thermalization of the original unperturbed eigen-
states. For an ETH system under a perturbation V̂ , within
some energy window |E (0)

n − E (0)
m | < C, one expects the off-

diagonal matrix elements 〈n(0)|V̂ |m(0)〉 to scale as D−1/2
L ,

033044-6



SLOW THERMALIZATION OF EXACT QUANTUM … PHYSICAL REVIEW RESEARCH 2, 033044 (2020)

where DL is the dimension of the Hilbert space for the chain
of length L (DL ∼ φL for the Rydberg-blockaded chain).
The reason is that if |n(0)〉 is thermal or chaotic, then |n(0)〉
behaves essentially like a random vector in the Hilbert space
when considering off-diagonal matrix elements. We can view
V̂ |m(0)〉 as some fixed “direction” in the Hilbert space, and
the overlap between a random vector and a vector in some
direction will be of order D−1/2

L . Note that we needed only the
state |n(0)〉 to be “thermal” (i.e., essentially “random”) while
the other state |m(0)〉 can be either thermal or nonthermal as
long as V̂ |m(0)〉 is not somehow special, e.g., |m(0)〉 does not
happen to be an exact eigenstate of V̂ . On the other hand, the
density of states at energy density corresponding to infinite
temperature grows as ∼DL. Therefore the ratio between the
typical off-diagonal matrix elements and the level spacing
will grow as D1/2

L , which signals the strong hybridization or
thermalization.

A well known counterexample which circumvents thermal-
ization is many-body localization [41–48]. In such systems,
the off-diagonal matrix element for nearby states scales as
e−L/ξ , where ξ is some localization length. In a crude esti-
mate, if ξ < L/ lnDL, the ratio between typical off-diagonal
matrix element and level spacing will in fact decrease with
L [49]. The eigenstates of many-body-localized systems are
thus perturbatively accessible at any L.

Returning to our setting of following the fate of the scar
states under the perturbation, we have already observed that
they generically have nonzero matrix elements to all eigen-
states with the same quantum numbers, and that they appear
to lose fidelity upon increasing the perturbation strength or the
system size. We also expect that the scar states are exceptions
in the unperturbed PXP model while most of the eigenstates
are ETH satisfying. The above scaling of the matrix element
between a scar state and an ETH state with L should therefore
hold. Nevertheless, we would like to check this explicitly and
examine more detailed quantitative features of such connec-
tions. Accordingly, we next study the finite-size scaling of the
off-diagonal matrix elements.

In Figs. 6(a) and 6(b) we show the statistics of the
off-diagonal matrix elements. In Fig. 6(a) we averaged
|〈n(0)|V̂ |�〉| in the energy window |E (0)

n − E (0)
� | < 1, but

excluding |E (0)
n = 0〉 states in the |�I〉 case. Not surpris-

ingly, |〈n(0)|V̂ |�th〉| shows the φ−L/2 scaling predicted by
the random matrix theory description. Importantly, we also
see the same scaling for the scar states |〈n(0)|V̂ |�21〉| and
|〈n(0)|V̂ |�I〉|, but with smaller amplitude than for the thermal
state. To avoid the arbitrariness of specifying the energy win-
dow for averaging, in Fig. 5(b) we take 400 matrix elements
corresponding to 400 states with the smallest |E (0)

n − E (0)
� |.

(We do not show L = 12 and L = 14 data because 400 states
are larger than the Hilbert space dimension for L = 12 and
larger than half of the Hilbert space dimension for L = 14.)
For both averaging protocols we see that the off-diagonal
matrix element scaling of the thermal |�th〉 and scar states
|�21〉 and |�I〉 all satisfy the random matrix theory prediction,
while the overall amplitudes for the scar states are smaller.
This also explains the apparent weaker hybridization observed
in Fig. 1: the apparent robustness of the scars compared to
the thermal state is due to the smaller amplitude of the off-
diagonal matrix elements.

FIG. 6. Finite-size scaling of the matrix elements |〈n(0)|V̂ |�〉|
with |�〉 being |�21〉, |�I〉, or |�th〉. (a) Average of |〈n(0)|V̂ |�〉| over
n such that the energy is within the window |E (0)

n − E (0)
� | < 1. Inset:

The scaling of the standard deviation of |〈n(0)|V |�〉| over n within
energy window |E (0)

n − E (0)
� | < 1. (b) Average of |〈n(0)|V̂ |�〉| over

n such that the energy difference |E (0)
n − E (0)

� | is among the smallest
400. For all states—thermal or scar—the behavior of the off-diagonal
matrix elements satisfy the scaling predicted by the random matrix
theory.

The relevant quantitative difference is even stronger than
suggested by the averages in Fig. 6 because the number of
states being averaged covers a wider window than the “dip”
close to zero |E (0)

n − E (0)
� | seen in Fig. 5, while the states

inside this dip play a larger role in the perturbed wave function
at these sizes. As mentioned earlier, looking more closely
at the matrix elements inside the dip (e.g., averaging over
smaller number of states, all the way down to just few closest
states), we do not see any faster decay with L than expected in
the random matrix theory.

To conclude, from the above scaling argument comparing
the off-diagonal matrix elements and the level spacing, we
expect the scar states will eventually thermalize in the ther-
modynamic limit. In fact, in Appendix E we perform a similar
analysis in the spin-1 XY model [21], and find similar finite-
size scaling behavior. Finally, we also note that comparison
between the |�21〉 and |�I〉 cases suggests that the degenerate
E = 0 manifold (to which the latter state belongs) is in fact
irrelevant to the hybridization of the scar states.

IV. SLOW THERMALIZATION OF LOCAL OBSERVABLES

Despite the eventual thermalization of the scar states under
perturbations, in the following we show numerically and
analytically that the signatures of the scars can survive up to
some long time set by the perturbation strength even in the
thermodynamic limit. This slow thermalization is analogous
to that in systems that are weakly perturbed from integrability
[36,37] or that have weak breaking of some conservation laws
[38,50]. Specifically, we consider the following general global
quench setting: we consider the initial state as an exact scar
state |�〉 of some Hamiltonian Ĥ0, and let it evolve under
the perturbed Hamiltonian Ĥ = Ĥ0 + λV̂ . Since |�〉 is a scar
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FIG. 7. Relaxation of the VBS order parameter measured in the middle of the chain, m̂ = D̂L/2,L/2+1 − D̂L/2+1,L/2+2, for system size L = 48.
(a) and (b) Initial state |�21〉 with parameters λ > 0 and λ < 0, respectively. (c) and (d) Initial state |�I〉 with parameters λ > 0 and λ < 0,
respectively. From the dynamical data, there is no qualitative difference in the time evolution of the observable m̂(t ) between the initial
states |�21〉 and |�I〉. We therefore conclude that the E = 0 degenerate manifold does not influence qualitatively the thermalization behavior
of the scar state |�I〉 from this manifold. (e) We empirically estimate the relaxation rate Wλ of the VBS order by fitting |〈�(t )|m̂|�(t )〉| =
m0 − Wλt using data in the time interval t ∈ [1, 30] and plot Wλ vs the perturbation strength λ. (f) Snapshots of the dimer strength pattern
〈�21(t )|D̂ j, j+1|�21(t )〉 for several λ > 0, taken at the largest time (or even larger) shown in (a). These show that measuring the VBS amplitude
in the middle m̂ is representative of the VBS order across the chain.

state, there is some local observable m̂ which is nonthermal.
We then examine how quickly such an observable behaves at
late times, and if it reaches its thermal value.

A. Slow decay of VBS order in numerics

First, we numerically show the slow thermalization using
time-evolved block decimation (TEBD) method [51,52]. We
choose the initial state as |�21〉 or |�I〉 and evolve it under
Ĥ = Ĥ0 + λV̂ , where Ĥ0 and V̂ are given in Eqs. (2) and
(6), respectively. We measure the VBS order parameter in the
middle of the system,

m̂ = D̂L/2,L/2+1 − D̂L/2+1,L/2+2. (10)

Figures 7(a) to 7(d) show the time evolution of this observable
for the two initial states and different perturbation strengths λ.

At short times, the VBS order deviates from the initial
value as t2. This can be easily understood from the time-
reversal-like symmetry. Considering the Taylor series

〈�(t )|m̂|�(t )〉 =
∞∑

n=0

1

n!

[
dn

dtn
〈�(t )|m̂|�(t )〉|t=0

]
t n, (11)

the coefficient of t1 is given by

d

dt
〈�(t )|m̂|�(t )〉

∣∣∣
t=0

= i〈�|[Ĥ, m̂]|�〉. (12)

Now, 〈�(t )|m̂|�(t )〉 is a real number by the Hermiticity of the
observable m̂, while 〈�|[Ĥ , m̂]|�〉 is a real number because

the operators Ĥ and m̂ have real-valued matrix elements
in the Rydberg atom basis, and the wave function |�〉 has
real-valued amplitudes in this basis. Hence, we conclude that
d
dt 〈�(t )|m̂|�(t )〉|t=0 = 0. The coefficient of the t2 growth is

d2

dt2
〈�(t )|m̂|�(t )〉

∣∣∣
t=0

= −〈�|[Ĥ , [Ĥ , m̂]]|�〉; (13)

this is generically not zero, and its sign determines if
〈�(t )|m̂|�(t )〉 curves up or down initially.

The initial t2 behavior stops at around t ≈ 1, and beyond
this time the VBS order appears to relax almost linearly. (The
oscillations that are clearly visible on top of the overall decay
are roughly at frequency ω ≈ 3 and can be traced to the horn
features in the distribution of the matrix elements discussed
in Fig. 5.) At small λ = 0.02, the VBS order has an almost
negligible relaxation rate. As λ increases, the relaxation of the
VBS order becomes visible within the time window shown in
the figure. Note that in Figs. 1 and 2 we study the perturbation
strength |λ| � 0.05. Here we also study larger perturbation
strengths to have noticeable VBS order relaxation.

Given the almost linear relaxation behavior of the VBS
order, we empirically extract the relaxation rate by fitting the
data via the least-squares method to

〈�(t )|m̂|�(t )〉 = m0 − Wλt, (14)

in the time interval t ∈ [1, 30]. Figure 7(e) plots the relaxation
rate Wλ. The relaxation rate appears to vanish faster than
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FIG. 8. The decay of the VBS order m̂ = D̂L/2,L/2+1 −
D̂L/2+1,L/2+2 with time for several perturbation strengths and
different system sizes. The data for sizes L = 30 and L = 48 are
calculated by TEBD method with bond dimension χ = 500 and
Trotter step dt = 0.02. The data for L = 18 are calculated via ED.

linearly at small λ, which corresponds to a relaxation time that
diverges faster than λ−1. However, since the slope obtained
from the linear fit at the smallest |λ| � 0.05 are numerically
very small and may not be very reliable, we cannot extract the
precise functional form.

In Fig. 7(f) we show the snapshots of the dimer strength
pattern 〈�21(t )|D̂ j, j+1|�21(t )〉. It clearly shows that the dimer
strength pattern is uniform on even/odd sites, so m̂ is indeed
representative of the VBS order.

To understand the effects of finite size, in Fig. 8 we show
the VBS order decay 〈�21(t )|m̂|�21(t )〉 for different system
sizes. We can see that the traces of the small system sizes
L = 18 and L = 30 are converging to the trace of L = 48 up
to the time of about 10 or slightly larger. We think that this
time is what is often referred to as “recurrence” time in ED
studies of quantum many-body dynamics, which is roughly
the time it takes for information to propagate across the entire
system [53,54]. In this picture, the L = 48 data up to such time
t 
 10 are already representative of the thermodynamic limit.
We therefore think that the almost linear relaxation behavior
observed up to this time is already representative of the ther-
modynamic limit. The relaxation is clearly visible for λ � 0.1,
and we expect eventual thermalization for such perturbation
strengths; the relaxation is not visible for the smaller λ = 0.02
and 0.05. Although we do not expect any qualitative changes
as we vary λ, the characteristic relaxation timescale can grow
as λ approaches zero. We therefore argue that our exact scar
states eventually thermalize for any nonzero λ.

It is interesting to note that all sizes in Fig. 8 show
qualitatively similar relaxation behavior that continues well
beyond the above estimated recurrence times for these sizes.
(For the largest perturbation strength |λ| = 0.2, the systematic
relaxation for the smallest size L = 18 stops around t 
 50,
beyond which time the trace wanders nonsystematically.) At
present, we do not have a good understanding of this obser-
vation. Nevertheless, it suggests that the presented time range

in Figs. 7 and 8 may be representative of the thermodynamic
limit behavior beyond the recurrence time t 
 10.

Finally, we note that the dynamical signature of the VBS
order is essentially the same starting from either |�21〉 or |�I〉
for large enough system sizes. This is therefore another piece
of evidence suggesting that the E = 0 manifold does not have
significant effects on the observable dynamical signatures of
the scar states.

B. Rigorous bound on the thermalization time

We have shown numerically that small perturbation
strength indeed gives slow thermalization of the VBS order.
However, as in most numerical calculations, the results may
be strongly affected by finite-size effects, and one may worry
that the slow thermalization may not be a true phenomenon
in the thermodynamic limit. Remarkably, in the following we
give a rigorous lower bound on the thermalization time for
the scar states, even in the thermodynamic limit, that diverges
when the perturbation strength goes to zero. The following
theorem in fact is valid in any dimension, though we will
specialize it to one dimension first.

Recall that we consider the global quench setting as

Ĥ = Ĥ0 + λV̂ , |�(t )〉 = e−iĤt |�〉. (15)

We also further assume that both Ĥ0 and V̂ are local Hamilto-
nians, i.e., lattice sums of local terms, e.g., V̂ = ∑

j v̂ j , where
v̂ j acts only on degrees of freedom near site j.

Consider a local observable m̂, which we assume to be
localized near the origin j = 0 (at the middle of the chain),
and its expectation value 〈�(t )|m̂|�(t )〉. Consider the time
derivative

d

dt
〈�(t )|m̂|�(t )〉 = i〈�(t )|[Ĥ, m̂]|�(t )〉 (16)

= i〈�|[Ĥ, eiĤt m̂e−iĤt ]|�〉 (17)

= i〈�|[λV̂ , eiĤt m̂e−iĤt ]|�〉, (18)

where in the last line we used that |�〉 is an eigenstate of Ĥ0.
For t = 0, the right-hand side is given by the expectation

value of [λV̂ , m̂] in the initial state |�〉. Since this is a local
operator, the expectation value is λ times an O(1) number,
and the initial rate of change of the observable is thus of
order λ. (In the specific quench setting considered in the
previous subsection, this term is actually zero because of
the time reversal invariance of Ĥ , but we will not use this in
the developments below.) The small parameter λ is present as
a factor in Eq. (18) at any time t , but we have to consider the
possibility that it multiplies a function of t that grows with
time.

A conservative bound can be obtained by noting that
the time-evolved operator eiĤt m̂e−iĤt is significantly spread
only over region | j| � vLR t , where vLR is the Lieb-Robinson
velocity for the Hamiltonian H [55–57]. Therefore, this time-
evolved operator can have a significant commutator only
with local terms in V that are inside this region, i.e., v̂ j

with | j| � vLR t . Now, for any j, the norm of the operator
[λv̂ j, eiĤt m̂e−iĤt ] is bounded by 2‖λv̂ j‖‖m̂‖, which is λ times
an O(1) number. Hence, the total contribution to Eq. (18)
from | j| � vLR t is bounded by λ(c′

0 + c1t ), where c′
0 and c1
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are fixed O(1) numbers (and for concreteness we take the
spatial dimension to be d = 1). On the other hand, using the
Lieb-Robinson bounds ‖[v̂ j, m̂(t )]‖ � c exp[−a( j − vLR t )],
the total contribution from | j| > vLR t can be bounded by λc′′

0,
where c′′

0 is also a fixed O(1) number. Thus we have

|〈�|[λV̂ , eiĤt m̂e−iĤt ]|�〉| � λ(c0 + c1t ). (19)

A minor point: The Lieb-Robinson bounds are used
here with respect to the full Hamiltonian Ĥ = Ĥ0 + λV̂ ,
which depends on the parameter λ. However, typically used
estimates—effectively, upper bounds—of the Lieb-Robinson
velocity use operator norms of local terms in the Hamiltonian
and will depend smoothly on λ, which will only introduce
a smooth λ dependence in the parameters c0 and c1. Hence,
the leading λ dependence of the above bound is essentially
unchanged. One can provide a slightly different argument
using the Duhamel formula [58] where this minor point does
not arise at all.

The analysis so far is completely general and applies to
any Ĥ0 and any initial eigenstate |�〉. Let us now see how we
can use it to lower bound the persistence time of nonthermal
properties when |�〉 is a scar eigenstate of Ĥ0. In this case,
〈�|m̂|�〉 differs by a finite amount from the expectation
value of m̂ in the nearby “thermal” eigenstates, which we
will denote as mth.; Ĥ0, E0=〈�|Ĥ0|�〉. We assume that |�(t )〉 will
eventually “thermalize” with respect to Ĥ = Ĥ0 + λV̂ . (This
is the “worst case” scenario, as suggested by the finite-size
scaling analysis in Sec. III B. Otherwise, the nonthermal
persistence time is infinite.) The eventual expectation value
is then

lim
t→∞〈�(t )|m̂|�(t )〉 = mth.; Ĥ , E=〈�|Ĥ |�〉. (20)

By perturbation theory in equilibrium quantum statistical
mechanics, barring the unlikely situation where Ĥ0 happens
to have a first-order transition at the temperature correspond-
ing to average energy E0, we expect that mth.; Ĥ , E=〈�|Ĥ |�〉
is close to mth.; Ĥ0, E0=〈�|Ĥ0|�〉 in smallness in λ. Hence, we
expect that limt→∞〈�(t )|m̂|�(t )〉 is a finite amount away from
〈�|m̂|�〉. Given the bound in Eq. (18) on the time derivative,
we have∣∣〈�(t )|m̂|�(t )〉 − 〈�|m̂|�〉∣∣ � λ(c0t + c1t2/2). (21)

Hence, at least until time t
(λ) ∼ λ−1/2 the observable will
still be a finite amount away from the thermal value.

Some remarks are in order here. First and most importantly,
while the bound Eq. (19) on the derivative of the observable is
valid for any initial eigenstate, if |�〉 were a thermal state (i.e.,
satisfying the ETH with respect to Ĥ0), the above argument
would not give us a divergent relaxation time for small λ

since in this case 〈�|m̂|�〉 = mth.; Ĥ0, E0=〈�|Ĥ0|�〉 and is close
to limt→∞〈�(t )|m̂|�(t )〉 = mth.; Ĥ , E=〈�|Ĥ |�〉. Thus, to obtain
the divergent t
(λ), it was crucial to use the nonthermal
property of the scar states, namely that local observables have
expectation values different from the thermal ones at the same
energy density.

Second, we can relax the condition that the initial state
|�〉 is an eigenstate of Ĥ0 and only require that it produces
nonthermalizing time evolution of the local observable under
the unperturbed Ĥ0. For example, this pertains to the persistent

oscillations in some unperturbed models Ĥ0 starting with
some special initial state |�〉 [19,21,28].

Indeed, using the following identity (which is a variant of
Duhamel formula)

eiĤt m̂e−iĤt − eiĤ0t m̂e−iĤ0t

= i
∫ t

0
ds eiĤ (t−s)[λV̂ , eiĤ0sm̂e−iĤ0s]e−iĤ (t−s), (22)

we can bound

|〈�|eiĤt m̂e−iĤt |�〉 − 〈�|eiĤ0t m̂e−iĤ0t |�〉|

�
∫ t

0
ds ‖[λV̂ , eiĤ0sm̂e−iĤ0s]‖ � λ(c0t + c1t2/2). (23)

The integrand in the second line is bounded precisely as in
Eq. (19) and leads to the final result. Note that the above holds
for any initial state |�〉. We are interested in situations when
|�〉 is still a special initial state such that 〈�|eiĤ0t m̂e−iĤ0t |�〉
shows nonthermalizing time evolution, e.g., the persistent
oscillations in the unperturbed model as happens in models
with towers of exact scar states [19,21,28]. In this case, such
nonthermal behavior will also be seen in the perturbed model
at least until time of order λ−1/2. To further support our
arguments, in Appendix E we show numerical results of the
effect of perturbation on perfect oscillation in the spin-1 XY
model.

Third, the above arguments generalized to d dimensions
would replace the bound Eq. (19) on the derivative of the ob-
servable by c0t d−1 + c1t d , which would yield thermalization
time at least as long as t
(λ) ∼ λ−1/(d+1).

C. Possibility of stronger bounds on the thermalization time

We now ask if we can obtain stronger bounds on the
thermalization time than the above t
(λ) ∼ λ−1/2 in d = 1.
The bound we obtained is indeed very general and used almost
no information about Ĥ0 and V̂ . The only assumptions we
made were the locality of Ĥ0 and V̂ and that |�〉 violates the
ETH.

On the other hand, we suspect that in the problem of
the PXP scar states, the thermalization time diverges with a
stronger power law, perhaps even as λ−1 in our specific model.
Such a suspicion can already be supported from Fig. 7, where
we see that |〈�(t )|m̂|�(t )〉 − 〈�|m̂|�〉| grows almost linearly
in t instead of the quadratic growth that appeared in the upper
bound in Eq. (21). Equivalently, examination of the derivative
d〈�(t )|m̂|�(t )〉/dt of the measured observable in Fig. 7 shows
that the derivative remains bounded at least up to the time
that the numerical calculation is reliable. Namely, there is
no evidence of the linear in time growth that appears in the
rigorous upper bound in Eq. (19), which suggests significant
overestimation in the bound.

More generally, the reason for this suspicion is as follows.
Consider the step in the argument in Sec. IV B where for | j| �
vLR t we used the bound ‖[v̂ j, eiĤt m̂e−iĤt ]‖ � 2‖v̂ j‖‖m̂‖.
While this is probably the best bound for the operator norm
of the commutator, we are actually interested in the expec-
tation value of the commutator evaluated in the initial state
|�〉. This expectation value is essentially a retarded Green’s
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function between the local operators m̂ and v̂ j , where the time
dynamics is determined by Ĥ and the initial ensemble is given
by the pure state |�〉. The retarded Green’s function in turn can
be related to a dynamical time-ordered correlation function
between the operators at space-time points (0, t ) and ( j, 0)
(we take t > 0 throughout),

−i〈�|[eiĤt m̂e−iĤt , v̂ j]|�〉 = 2Im(〈�|eiĤt m̂e−iĤt v̂ j |�〉),

where we have used Hermiticity of m̂ and v̂ j . It is likely to be
very crude to use the operator norm to bound this expectation
value.

Instead, we suspect that the above retarded Green’s func-
tion decays both in space and in time, and the sum over
| j| � vLR t can be bounded by a slower t dependence than
t1 in Eq. (19), perhaps even by a t-independent number in
many cases. This suspicion is based on the physical intuition
that correlation functions decay at large spatial or temporal
separation (note that 〈�|eiĤt m̂e−iĤt |�〉 and 〈�|v̂ j |�〉 are both
real numbers, so the above expression equals the imaginary
part of the connected correlation function). While for | j| >

vLR t this expectation is formalized by the Lieb-Robinson
bounds, here we need the regime t > | j|/vLR, i.e., inside the
“light cone.”

If |�〉 were a thermal state and Ĥ a thermalizing Hamil-
tonian, it would be natural to expect exponential decay of
such correlations in time also inside the light cone. This would
completely suppress the t1 piece in Eq. (19).

As a less favorable example, suppose we know that the
above correlation function is bounded by ∼t−p for all | j| �
vLR t . Then in Eq. (19) we would be able to replace the
right-hand side bound by λ(c0 + c1t1−p) and in Eq. (21) the
right-hand-side bound by λ[c0t + c1t2−p/(2 − p)]. If p � 1,
then we could argue that the observable would still be a
finite amount away from the thermal value at least until
time t
(λ) ∼ λ−1, while if p < 1 we would only be able to
argue that t
(λ) ∼ λ−1/(2−p). These conclusions would hold
also if the retarded correlation function is bounded inside
the light cone by |GR(x, t )| � A/(v2

LRt2 − x2)p/2, which is the
form encountered at zero-temperature quantum critical points
described by conformal field theories (strictly speaking, we
also need p < 2 for the spatial integral over |x| < vLR t to be
convergent, where for concreteness we specialized to d = 1).

From the above discussion we see that if we allow arbitrary
Ĥ and |�〉, we probably cannot improve the bound in Eq. (19)
just on general grounds: the details of the system at hand are
important. However, for many systems it is likely that this
bound significantly overestimates the actual rate of change of
the observable, and the thermalization time will actually be
significantly longer than suggested by the rigorous argument.
Our direct numerical study suggests that this is the case for
the exact PXP scar states under the PXPZ perturbations.

V. CONCLUSIONS

A. Thermalization of exact scar states

In this paper we examine the fate of exact quantum many-
body scar states under perturbations. In particular, we consider
the PXP model with two exact scar states at energies E =
±√

2, and two exact scars that are in the E = 0 degenerate

manifold. We consider the perturbation V̂ in Eq. (6) that
preserves the particle-hole property, the inversion symmetry,
and hence the E = 0 manifold (but not the exact scars), to
investigate the effects of the perturbation on the exact scar
states. We also compare the scar states to some thermal states
under the perturbation.

In finite sizes we find robust signatures of deformed scars
in the perturbed Hamiltonian. In particular, the smallness
of the bipartite entanglement entropy and the presence of
the VBS order seem to survive to some degree under the
perturbation. The hybridization of the scar states to other
states also seems to be weaker compared to the hybridiza-
tion of the thermal states, which is seen in the loss of
fidelity relative to the unperturbed states. Furthermore, we
use Rayleigh-Schrödinger perturbation theory to construct
perturbed scar states and find good agreement with the ED
states.

Nevertheless, by examining the finite-size scaling of the
off-diagonal matrix elements connecting the scar and thermal
states, we conclude that the aforementioned robustness will be
lost in the thermodynamic limit. In particular, we find that the
off-diagonal matrix elements between the scar states and the
nearby thermal states scale as D−1/2

L ∼ φ−L/2, in agreement
with the ETH picture of the thermal states. Although these
matrix elements have relatively smaller amplitudes compared
to the off-diagonal matrix elements between thermal states,
the difference appears to be quantitative and not qualitative.
Such a scaling of the matrix elements is not enough to beat
the exponential decrease of the level spacing going as D−1

L ∼
φ−L, and accordingly we expect the eventual thermalization
of the scar states. We found similar results in our study
of the perturbed spin-1 XY scar model in Appendix E. In
addition, while not presented in this work explicitly, we also
performed similar finite-size scaling analysis on the embed-
ded Hamiltonian constructed in Ref. [29], and reached the
same conclusions. Accordingly, we expect that the eventual
thermalization of the exact scar states under perturbations
holds more generally.

On the other hand, despite the eventual thermalization, we
show that the nonthermal properties of the exact scar states
can survive for some parametrically long time even in the
thermodynamic limit. Specifically, we show numerically that
the VBS order in the exact scar states in the PXP model
can survive for a long time after a quench to the perturbed
Hamiltonian. We also present a general theory that rigorously
lower bounds the thermalization time as t∗ ∼ O(λ−1/(1+d ) ),
where d is the dimension of the system. In practice, depending
on the details of the system, the thermalization timescale can
even be longer. By comparing the actual time evolution of the
derivative of the observable in the numerical simulation with
the bounds used in the rigorous argument, we propose that
in the specific perturbed PXP model the thermalization time
diverges at least as λ−1.

Our work provides an important foundation for under-
standing stability of the exact scar states found and con-
structed in various special models, and possible relevance of
such exact scar states for understanding apparent “scarness”
of nearby models where exact scars are not known. We are
considering the worst case scenario, where an exact scar
state in the spectrum is surrounded by chaotic states. In this
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case, the random matrix theory description of the scaling of
the off-diagonal matrix elements is perhaps unavoidable and
leads to eventual thermalization. However, the thermalization
time can be large as long as the perturbation is small. This
means that in experiments, some nonthermal signatures in
dynamics can indeed be understood from some special Ĥ0

and its exact scar states. Furthermore, Ref. [22] proposed
an “embedded Hamiltonian” formalism as a way to engineer
Hamiltonians which have nonthermal states inside the spec-
trum. Our general lower bound on the thermalization time
suggests that the nonthermal signatures of these states can
survive for some long time even when perturbations break the
exact embedded structure. This also establishes the possibility
of engineering embedded Hamiltonians to protect quantum
information.

B. Speculations on the origin of the numerical
scars in the PXP model

We conclude with some speculations about the PXP model
itself, in light of our scenario of thermalization of scar states
under generic perturbations. Original ED studies [10,11]
found a band of prominent scar states in the model, while
Ref. [14] found two exact scar states in periodic chains
and four in open chains. From our systematic study of the
Schmidt numbers of all PXP eigenstates, we conjecture that
only the latter can be expressed analytically for any system
size, while the other numerically observed scars do not have
exact analytic expressions. One possible explanation is that
the PXP model is proximate to some model that has a larger
number of exact scars; and under the perturbation that takes
this unknown model to the PXP model, only few of the
original exact scars remain as exact eigenstates, while the rest
do not. If the perturbation is “generic enough” with respect
to the states that do not remain exact, one could speculate
based on the scar thermalization scenario that these scars will
eventually thermalize, while their strong presence in ED is
due to the relative weakness of the perturbation and limited
system sizes. It would certainly be interesting to look for such
a tractable “mother model” that could explain all scars that are
very prominent in the PXP model.

However, some caution is in order about such specula-
tion. In the PXP model, Ref. [14] constructed single-mode
approximation (SMA) and multimode approximation (MMA)
states on top of the exact scar states that provide competitive
approximations to the ED band of scars for the available
system sizes L. Although the SMA/MMA states are not close
to the eigenstates as L → ∞, our Appendix F shows that
their thermalization time diverges with L. This surprising
breakdown of the ETH for states that are orthogonal to the
exact scar states suggests that some subtle nonthermalness
survives in the spectrum excluding the exact scar states even
in the thermodynamic limit. For large sizes, this nonthermal
property is likely spread over many eigenstates, since the
SMA/MMA states can be expanded over eigenstates in a
small energy window and this expansion should “know” about
the divergent thermalization time of the trial states. Finding
precise diagnostics for such subtle nonthermalness at the level
of eigenstates could be very challenging.

One may ask if the remaining subtle nonthermalness de-
scribed above can be reconciled with our main story that scars
thermalize under generic perturbations. A possible explana-
tion is that the perturbation envisioned here that takes one
from the mother model to the PXP model is not the most
general one since it has to retain the known exact scars whose
presence is crucial to the above argument.
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APPENDIX A: SUMMARY OF THE EXACT SCAR STATES
AND THEIR PROPERTIES IN THE PXP MODEL

Reference [14] discovered four exact scar states in the PXP
model Ĥ0, Eq. (2), with open boundary conditions. We denote
the states as |�αβ〉, where α, β ∈ {1, 2}. The wave functions
for |�αβ〉 are most economically expressed as matrix product
states.

Defining the boundary vectors v1 = (1, 1)T and v2 =
(1,−1)T and 2 × 3 and 3 × 2 matrices

B0 =
(

1 0 0
0 1 0

)
, B1 =

√
2

(
0 0 0
1 0 1

)
, (A1)

C0 =
⎛
⎝0 −1

1 0
0 0

⎞
⎠, C1 =

√
2

⎛
⎝ 1 0

0 0
−1 0

⎞
⎠, (A2)

we can express the scar states as

|�αβ〉= 1√
Nαβ

∑
{σ }

vT
α Bσ1Cσ2 · · · BσL−1CσL vβ |σ1 · · · σL〉, (A3)

where Nαβ = 2[3L/2 + (−1)L/2+α+β ] is the normalization
factor.

The states |�11〉 and |�22〉 are not orthogonal but have
overlap

〈�11|�22〉 = 2

3
L
2 + (−1)

L
2

. (A4)

The normalization factor of |�I〉 = 1√
N

(|�11〉 − |�22〉) is
therefore

N = 2 − 4

3
L
2 + (−1)

L
2

, (A5)

as stated in the main text.
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These scar states have the following symmetry properties.
For the inversion we have

I|�12〉 = −(−1)L/2|�12〉, (A6)

I|�21〉 = −(−1)L/2|�21〉, (A7)

I|�11〉 = (−1)L/2|�22〉, (A8)

I|�22〉 = (−1)L/2|�11〉. (A9)

Hence I|�I〉 = −(−1)L/2|�I〉, i.e., |�I〉 has the same inversion
quantum number as |�21〉. For the particle-hole transformation
we have

C|�12〉 = (−1)L/2|�21〉, (A10)

C|�11〉 = (−1)L/2|�22〉. (A11)

APPENDIX B: PROOF OF THE PERTURBATION
ENERGY E (n)

�I
= 0 TO ALL ORDERS

In this Appendix we prove that the perturbation energy
for |�I〉 ≡ |�(0)

I 〉 gives E (n)
�I

= 0 to all orders. The proof is
obtained via mathematical induction, by showing that the
perturbative wave function |�(n)

I 〉 is an eigenstate of the
particle-hole transformation with eigenvalue C = −(−1)L/2 to
any order. (We caution, however, that this does not imply that
the perturbation theory converges.)

First, we briefly review the formal development of the
Rayleigh-Schrödinger perturbation expansion. We closely fol-
low the notations and settings in Ref. [59]. In the perturbation
theory we are trying to solve the eigenvalue equation(

E (0)
�I

− H0
)|�I (λ)〉 = [λV − ��I (λ)]|�I (λ)〉, (B1)

where ��I (λ) = E�I (λ) − E (0)
�I

is the energy shift. Note that

we can immediately see 〈�(0)
I |(λV − ��I )|�I (λ)〉 = 0, or

��I (λ) = 〈
�

(0)
I

∣∣λV |�I (λ)〉. (B2)

Assuming we have chosen the basis such that 〈E (0)
n =

0|V |E (0)
m =0〉 = 0 for m 
= n in the E = 0 degenerate man-

ifold, by defining φ�I = I − ∑
k:E (0)

k =0 |k(0)〉〈k(0)|, we have a
formal solution for Eq. (B1):

|�I (λ)〉 = |�(0)〉 + φ�I

E (0)
�I

− H0

[λV − ��I (λ)]|�I (λ)〉. (B3)

We further assume the (formal) series expansion of
|�I (λ)〉 = ∑∞

n=0 λn|�(n)
I 〉 and ��I (λ) = ∑∞

m=1 λm�
(m)
�I

. From
Eq. (B2) and plugging in the series expansion of ��I (λ),
equating the same order of λ, we have, at N th order

�
(N )
�I

= 〈
�

(0)
I

∣∣V ∣∣�(N−1)
I

〉
. (B4)

Moreover, from Eq. (B3) and plugging in the series expansion
of |�I (λ)〉, equating the same order of λ, we have, at N th order

∣∣�(N )
I

〉 = φ�I

E (0)
�I

− H0

V
∣∣�(N−1)

I

〉 − φ�I

E (0)
�I

− H0

N−1∑
n=0

�
(N−n)
�I

∣∣�(n)
I

〉
.

(B5)

Equations (B4) and (B5) are recursive: the former requires
only |�(N−1)

I 〉 while the latter requires |�(m)
I 〉 with m =

0, . . . , N − 1 and �
(n)
�I

with n = 1, . . . , N (where n = N was
just calculated).

Now we have the essential ingredients for mathematical in-
duction. Recall that we are interested in the type of the pertur-
bation V having the property CV̂ = −V̂C, and also C|�(0)

I 〉 =
−(−1)L/2|�(0)

I 〉 hence E (0)
�I

= 0. Assume |�(m)
I 〉, where m =

0 · · · N − 1 all have the particle-hole quantum number C =
−(−1)L/2. We can immediately see from Eq. (B4) that �

(n)
�I

=
0 for n = 1 · · · N . Accordingly, we have the perturbed wave
function at N th order as

∣∣�(N )
I

〉 = φ�I

E (0)
�I

− H0

V
∣∣�(N−1)

I

〉 =
∑

k:E (0)
k >0

(
−|k(0)〉〈k(0)|V ∣∣�(N−1)

I

〉
E (0)

k

+ C|k(0)〉〈k(0)|CV
∣∣�(N−1)

I

〉
E (0)

k

)

=
∑

k:E (0)
k >0

(
−|k(0)〉〈k(0)|V ∣∣�(N−1)

I

〉
E (0)

k

+ (−1)L/2 C|k(0)〉〈k(0)|V ∣∣�(N−1)
I

〉
E (0)

k

)
. (B6)

Therefore, C|�(N )
I 〉 = −(−1)L/2|�(N )

I 〉. By mathematical
induction we have C|�(n)

I 〉 = −(−1)L/2|�(n)
I 〉 to any order.

This indeed also implies �
(n)
�I

= 0 for any order n.

APPENDIX C: DIAGONALLY IMPROVED
PERTURBATION THEORY

To further elaborate on the use of the perturbation theory
in finite sizes in Sec. III A when there are avoided level cross-
ings, particularly for the scar state |�21〉, we modify the per-
turbation theory in the following way. We include in the “un-
perturbed” Hamiltonian the diagonal part of V̂ , and treat the
off-diagonal part of V̂ as perturbation. More specifically, in
the eigenbasis of Ĥ0, namely |n(0)〉, the matrix element of the
diagonal part of V̂ is [V̂diag.]nm = 〈n(0)|V̂ |n(0)〉δnm and the off-

diagonal part is V̂off-diag. = V̂ − V̂diag.. The unperturbed Hamil-
tonian is now Ĥ ′

0 = Ĥ0 + λV̂diag. and the perturbation is λV̂ ′ =
V̂off-diag.. Clearly the unperturbed eigenstates are still |n(0)〉.

Based on this regrouping, we can use the standard pertur-
bation theory Eqs. (7) and (9) with the replacements

E (0)
n → E (0)

n + λ 〈n(0)|V̂diag.|n(0)〉,
V̂ → V̂off-diag..

In Figs. 9(a) and 9(b) we show the comparison between the
diagonally improved perturbation theory and the ED results
for the state |�21〉, similar to Figs. 3 and 4. Note that on
the λ < 0 side, the perturbation theory also shows a drop of
the overlap around λ ≈ −0.02, though the recovery at λ ≈
−0.04 is spurious. On the λ > 0 side, the diagonally improved
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FIG. 9. (a) Comparison of the diagonally improved perturbation
energy and the ED energy of the perturbed |�21〉. (b) Comparison of
the fidelity obtained in the diagonally improved perturbation theory
and the ED result. The perturbation theory now also accounts for the
phenomenon of accidental hybridization.

perturbation theory also shows the accidental hybridization
phenomenon. It happens when E (0)

n + λ〈n(0)|V̂ |n(0)〉 − E (0)
�21

−
λ〈�21|V̂ |�21〉 happens to be small compared to the matrix
element 〈n(0)|V̂ |�21〉.

We can now appreciate the improvement provided by this
perturbation theory but also its eventual failure. For an iso-
lated level crossing driven by increasing λ and the difference
between λ〈n(0)|V̂ |n(0)〉 and λ〈�21|V̂ |�21〉, this perturbation
theory is accurate both well before the crossing and well
after the crossing, which is why we see improvement in the
second-order estimate of the energy in Fig. 9(a) compared
to Fig. 3, particularly on the λ > 0 side. However, once the
separation between successive energy level crossings (set by
the density of states) becomes smaller than the duration of
the avoided level crossings (set by the off-diagonal matrix
elements), the improved perturbation theory also fails. Upon
increasing the system size, the density of states and hence the
frequency of level crossings increases very fast and cannot
be compensated by the decrease of the typical off-diagonal
matrix elements, as discussed in Sec. III B. Hence the failure
of the perturbation theory and the eventual thermalization of

the scar states appear inevitable in the thermodynamic limit.
In the perturbed PXP model here, for the perturbation strength
λ 
 0.05, our largest ED system sizes are just reaching the
regime where this starts to happen.

APPENDIX D: SOME PROPERTIES OF THE
DISTRIBUTION OF THE MATRIX ELEMENTS 〈n(0)|V̂ |�〉

AS DICTATED BY THE LOCALITY OF Ĥ0 AND V̂

Here we collect some observations about the distribu-
tion of the matrix elements 〈n(0)|V̂ |�〉. As a simple ap-
plication we then demonstrate how the naive second-order
time-independent and time-dependent perturbation theory ap-
proaches fail in the thermodynamic limit for any fixed λ 
= 0.

First, we note that∑
n 
=�

|〈n(0)|V̂ |�〉|2 = 〈�|V̂ 2|�〉 − 〈�|V̂ |�〉2 ≡ var(V̂ ; �),

(D1)

where all states are assumed normalized (here and below, we
use the same notation as in Sec. III A). This allows us to think
about the squared amplitudes of the matrix elements between
the |�〉 and other states |n(0)〉 as some “weights,” where the
total weight is given by the variance of the perturbation V̂ in
the state |�〉. Since V̂ is a local Hamiltonian, V̂ = ∑

j v̂ j , the
variance of V̂ grows linearly with the system size L:

var(V̂ ; �) =
∑
j, j′

[〈�|v̂ j v̂ j′ |�〉 − 〈�|v̂ j |�〉〈�|v̂ j′ |�〉]

=
∑

j

∑
j′

Gvv;� ( j − j′) ≈ αL. (D2)

Here we have assumed translational invariance and that con-
nected correlation functions of local observables are short
range, which is true for our exact scar states with the finite
bond dimension. We expect this to be true also for short-
range-correlated thermal states (e.g., away from any finite-
temperature critical point or critical phase), in particular for
the thermal states used in the main text.

Figure 10 shows measured variance of V̂ in the scar and
thermal states used in the main text as a function of L and

FIG. 10. System size scaling of the variance of V̂ in eigenstates
|�21〉, |�I〉, and |�th〉. Since the thermal state |�th〉 is inherently
random, its system size dependence is “noisy.”
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confirms the expected linear in size scaling. The plot for
the thermal state has noisy L dependence, which is expected
since the thermal states are inherently “random,” so even our
“deterministic” procedure of picking the thermal state whose
index is given by the index of the exact scar state plus three,
when going from one size to the next has effective randomness
in it. On the other hand, the plots for the scar states use the
same MPS but for different systems sizes, and there is no
randomness in this.

We next observe that the mixing weights |〈n(0)|V̂ |�〉|2
are significant only for states with |E (0)

n − E (0)
� | � O(1). The

reason is again locality of V̂ : Each v̂ j when acting on |�〉
can “add” or “remove” only O(1) energy as measured by Ĥ0,
so v̂ j |�〉 expanded over the eigenstates of Ĥ0 is concentrated
on |n(0)〉 with |E (0)

n − E (0)
� | � O(1). This observation can be

formalized as follows. Consider∑
n 
=�

(
E (0)

n − E (0)
�

)2|〈n(0)|V̂ |�〉|2

=
∑
n 
=�

|〈n(0)|[Ĥ0, V̂ ]|�〉|2

= 〈�|Ŵ 2|�〉 − 〈�|Ŵ |�〉2 ≡ var(Ŵ ; �). (D3)

Here

Ŵ ≡ i[Ĥ0, V̂ ] =
∑

j

i[Ĥ0, v̂ j] =
∑

j

ŵ j (D4)

is an operator which is a sum of local terms ŵ j (the factor
of i = √−1 makes Ŵ Hermitian to simplify expressions).
Hence, similarly to Eq. (D2), the variance of Ŵ in the state
� grows linearly with the system size,

var(Ŵ ; �) =
∑

j

∑
j′

Gww;� ( j − j′) ≈ βL. (D5)

We then conclude that for large L∑
n 
=�

(
E (0)

n − E (0)
�

)2|〈n(0)|V̂ |�〉|2∑
n 
=� |〈n(0)|V̂ |�〉|2 ≈ β

α
. (D6)

The left-hand side can be interpreted as an average of

(E (0)
n − E (0)

� )
2

over the distribution of n’s with weights pro-
portional to |〈n(0)|V̂ |�〉|2, and we see that this average is an
L-independent number, as claimed.

Figure 5 in the main text indeed shows that the matrix
elements |〈n(0)|V̂ |�〉| become very small once |E (0)

n − E (0)
� |

exceeds some characteristic energy scale. This is true for both
the scar and thermal states |�〉 studied.

1. Simple-minded application to the time-independent
second-order perturbation theory and the large L limit

As an application, consider the formal second-order per-
turbation theory expression for the ratio of the probability of
being in any state other than � to the probability of remaining
in the state � [cf. Eq. (9) in the main text]:

R ≡
∑
n 
=�

|〈n(0)|λV̂ |�〉|2(
E (0)

n − E (0)
�

)2 . (D7)

We can bound this as follows:

R � λ2

�2

∑
n 
=�, |E (0)

n −E (0)
� |��

|〈n(0)|V̂ |�〉|2

= λ2

�2

⎡
⎣var(V̂ ; �) −

∑
n, |E (0)

n −E (0)
� |>�

|〈n(0)|V̂ |�〉|2
⎤
⎦.

Here we used Eq. (D1) and introduced some fixed energy
scale �, which will be chosen below. We can now use
Eq. (D3) to bound the second term in the square brackets as
follows:

var(Ŵ ; �) �
∑

n, |E (0)
n −E (0)

� |>�

(
E (0)

n − E (0)
�

)2|〈n(0)|V̂ |�〉|2

� �2
∑

n, |E (0)
n −E (0)

� |>�

|〈n(0)|V̂ |�〉|2. (D8)

We finally obtain

R � λ2

�2

[
var(V̂ ; �) − 1

�2
var(Ŵ ; �)

]

≈ λ2

�2

[
α − β

�2

]
L = λ2α2

4β
L, for

1

�2
= α

2β
, (D9)

where in the very last equation we picked � to make this lower
bound as large as possible.

Thus, we see that the probability for the perturbed eigen-
state to remain in the initial state |�〉 decreases to zero with
L, at least in this formal treatment. Of course it is known that
the fidelity of a many-body state under a generic perturbation
goes to zero in the thermodynamic limit, and the above is not
intended as any serious proof but only as a simple illustration
of thinking about the distribution of the matrix elements.
Note that the bound does not use any information about this
distribution except the variance; in particular, it applies also,
e.g., for a gapped ground state that is separated from the rest
of the states by a gap—the fidelity under perturbation still
goes to zero. In the case of states at finite energy density
that are surrounded by many thermal states, for very large L
the above lower bound is actually a gross underestimate of
how poorly the formal static second-order perturbation theory
performs: With the level spacing decreasing as ∼D−1

L (where
DL is the dimension of the total Hilbert space which grows
exponentially with L), and the matrix elements decreasing
as ∼D−1/2

L , the individual terms |〈n(0)|λV̂ |�〉|2
(E (0)

n −E (0)
� )

2 associated with

levels that are next to the |�〉 level increase as ∼DL, which is
much faster than the linear in L lower bound in Eq. (D9).

2. Application to the time-dependent second-order perturbation
theory for fidelity after a quench

As another application, consider the following quantity:

P(t ) ≡
∑
n 
=�

4|〈n(0)|λV̂ |�〉|2(
E (0)

n − E (0)
�

)2 sin2

(
E (0)

n − E (0)
�

)
t

2
, (D10)

which arises when we apply the time-dependent second-order
perturbation theory to the quench setting described in Sec. IV.
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Specifically, the system starts in the state |�〉 at time t = 0
and evolves under the perturbed Hamiltonian Ĥ = Ĥ0 + λV̂ .
The above P(t ) is the perturbative result for the probability
of being in any state other than � at time t ; hence, the
probability of remaining in the state �, or fidelity at time t
after the quench, is 1 − P(t ). Clearly P(t ) also lower bounds
the quantity R in Eq. (D7) that arises in the time-independent
second-order perturbation theory. However, the dynamical
quench setting is more interesting in that the stated results
are potentially more accurate and useful on reasonable time
or length scales because of the effective control over the

denominators provided by the sin2 (E (0)
n −E (0)

� )t
2 factors.

For very small t such that for all significantly participating
n the quantity (E (0)

n − E (0)
� )t is small, we have

P(t ) ≈ t2λ2 var(V̂ ; �) ≈ t2λ2αL . (D11)

We know from the preceding discussion that the weights
|〈n(0)|V̂ |�〉|2 are significant only if |E (0)

n − E (0)
� | � O(1), so

we actually expect the above formula to be an accurate
description of the formal perturbation theory result up to t ∼
O(1). In particular, this formula is valid for t ∼ 1/

√
λ2αL, be-

yond which the perturbation theory would give the probability
P(t ) exceeding unity. Beyond this time we clearly cannot
apply such a formulation of the perturbation theory, but until a
somewhat smaller time of the same order such an application
actually appears sensible.

More precisely, let us pick a number y ∈ (0, π ) and set
fy = sin2(y)/y2. We have the following bounds:

P(t ) � λ2t2 fy

∑
n 
=�, |E (0)

n −E (0)
� |�2y/t

|〈n(0)|V̂ |�〉|2

= λ2t2 fy

[ ∑
n 
=�

|〈n(0)|V̂ |�〉|2 −
∑

n, |E (0)
n −E (0)

� |>2y/t

|〈n(0)|V̂ |�〉|2
]

� λ2t2 fy

[
var(V̂ ; �) − t2

4y2
var(Ŵ ; �)

]

≈ λ2t2 fyL

[
α − t2

4y2
β

]
, (D12)

where in the third line we used Eqs. (D1) and (D8), while in
the last line we used Eqs. (D2) and (D5). For simplicity let us
keep O(1) number y and hence fy fixed, i.e., we do not try to
further optimize this degree of freedom. We see that, e.g., for
t < y

√
α/β and t > 1/

√
3λ2 fyLα/4, which can be satisfied

simultaneously for large enough L, we have P(t ) > 1. Hence,
the second-order perturbation theory already fails beyond a
time that scales as L−1/2, as claimed earlier.

To summarize, the above analysis suggests that the
timescale for the fidelity loss goes to zero for large L but only
as a power law L−1/2. We remark that the above arguments
are true for both scar and thermal states, and the difference in
such short-time fidelity loss is only quantitative. Nevertheless,
the above analysis helps, e.g., when we want to understand
ED results for the fidelity loss in the quench setting of
Sec. IV. We did not present such fidelity results as they do
not allow defining slow thermalization in the thermodynamic
limit. Instead, as presented in the main text, measuring local
observables shows that the nonthermal signatures of the scar

in the initial state persist to nonzero time even when L →
∞, and this thermodynamic-limit time diverges when the
perturbation strength goes to zero.

APPENDIX E: EFFECT OF PERTURBATIONS ON SCAR
STATES IN THE SPIN-1 XY MODEL

In addition to the PXP model, in this Appendix we also
study effects of a perturbation on the scar states in the spin-1
XY model. We first briefly review the scar states in this model.
In Ref. [21], Schecter and Iadecola studied the spin-1 XY
model:

Ĥ0 = J
L∑

r=1

(
Sx

r Sx
r+1 + Sy

r Sy
r+1

) + h
L∑

r=1

Sz
r + D

L∑
r=1

(
Sz

r

)2

+ J3

L∑
r=1

(
Sx

r Sx
r+3 + Sy

r Sy
r+3

)
. (E1)

Here we specifically consider a 1D chain with periodic bound-
ary condition. We denote the local states as |+〉, |0〉, or |−〉,
corresponding to the Sz eigenvalue 1, 0, or −1. This model has
the conserved quantity Sz

tot = ∑L
r=1 Sz

r and has the nonthermal
eigenstates |Sm〉 ≡ N (m)(J+)m|�〉, where |�〉 = ⊗

r |−〉r ,
the raising operator is J+ = 1

2

∑
r eiπr (S+

r )2, and the normal-

ization factor is N (m) =
√

(L−m)!
m!L! . These scar states have

energy E|Sm〉 = h(2m − L) + DL and Sz
tot = 2m − L. We use

the same parameters (J, h, D, J3) = (1, 1, 0.1, 0.1) in Ĥ0 that
were used to demonstrate the above scar states in Ref. [21],
see their Fig. 2.

We consider the following natural perturbation:

V̂ =
L∑

r=1

Sz
rSz

r+1. (E2)

Therefore, the total Hamiltonian of the perturbed spin-1 XY
model is Ĥ = Ĥ0 + λV̂ .

First, similar to the analysis in Sec. III B, we examine
the averaged off-diagonal matrix element 〈n(0)|V̂ |�〉, where
|n(0)〉 is an eigenstate of H0 and |�〉 is a scar state |Sm〉 or a
thermal state |�th〉. Here we focus on the scar states |Sm〉 with
m near L/4 corresponding to the sector Sz

tot near −L/2. The
thermal state is chosen as the state with eigenindex equal to
the eigenindex of |Sm〉 plus 3 (we checked that several other
choices gave essentially identical results). In Fig. 11(a) we
can see that the averaged off-diagonal matrix element indeed
scales as ∼1/

√
D for both the scar state and the thermal state,

consistent with the finding in the PXP model in Sec. III B.
This also suggest that the scar states |Sm〉 will eventually
thermalize under the perturbation V̂ for arbitrary nonzero λ.

We also examine the effects of the perturbation on the
perfect oscillation observed in the XY model for special initial
states. Following Ref. [21], we consider the quench dynamics
from the initial state |ψ0〉 = ⊗

r
1√
2
(|+〉r + (−1)r |−〉r ) and

the observable Ô = 1
2 [(S+

1 )2 + (S−
1 )2] under the Hamiltonian

Ĥ . At λ = 0, the dynamics is expected to have perfect os-
cillation persisting indefinitely. However, as we increase the
perturbation strength λ, the oscillation starts to dampen, as
shown in Fig. 11(b). The deviation from the perfect oscillation
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FIG. 11. (a) Finite-size scaling of the averaged off-diagonal ma-
trix element |〈n(0)|V̂ |�〉| within the energy window |E (0)

n − E (0)
� | < 3,

where |�〉 is chosen as either the scar state |Sm〉 or a thermal state
|�th〉. We take m near L/4 [more precisely, m = L/4 + 1, (L − 1)/4,
L/4, (L − 1)/4 for L = 12, 14, 16, 18, respectively, putting the scar
state into the Sz

tot sectors as marked]. The thermal state is the state
with eigenindex equal to the eigenindex of |Sm〉 plus 3. (b) The
quench dynamics of the state |ψ0〉 = ⊗

r
1√
2
(|+〉+(−1)r |−〉) un-

der the perturbed spin-1 XY Hamiltonian Ĥ = Ĥ0 + λV̂ , with the
observable Ô = 1

2 [(S+
1 )2 + (S−

1 )2] in chain of length L = 8. Inset:
We extract the decay time by fitting the data to the function y(t ) =
Ae−t/τ cos(ωt ), where A, τ , and ω are the fitting parameters.

can be rigorously bounded by our theorem Eq. (23). We
further attempt to extract the thermalization time by fitting the
data to y(t ) = Ae−t/τ cos(ωt ), with the fitting parameters A,
τ , and ω. In the inset of Fig. 11(b) we show the dependence
of τ−1 on λ. It appears that at small λ, we have τ−1 ∼ λ2

(consistent with the rigorous bound but more reminiscent of
the Fermi’s golden rule).

APPENDIX F: A SINGLE EXACT SCAR STATE IMPLIES
NONTHERMAL SIGNATURES IN SOME OTHER STATES

In this Appendix we show that the presence of a single
exact scar state actually implies some nonthermalness of some

other states nearby in energy. The argument is inspired by
considerations in Sec. V in Ref. [23]. As an explicit example,
we can take the exact scar states in the PXP model Ĥ0 and
consider single-mode approximation (SMA)/multimode ap-
proximation (MMA) construction of additional approximate
scar states in Ref. [14]. However, the argument below is
more general and assumes only that correlations of local
observables in the scar state are short ranged.

Let |�〉 be an exact scar state of Ĥ0 with eigenenergy E�

(the Hamiltonian will remain fixed throughout). Consider an
“SMA trial state” of the form

|�〉 =
∑

j

ξ̂ j |�〉, (F1)

where ξ̂ j is a local operator near site j. By subtracting a
constant, we can choose ξ̂ j to have zero expectation value in
the state |�〉, which guarantees that 〈�|�〉 = 0; we assume
this choice throughout.

We now show that the variance of Ĥ0 in the state |�〉 is
finite. Indeed, we can write

(Ĥ0 − E� )|�〉 =
∑

j

[Ĥ0, ξ̂ j]|�〉, (F2)

(Ĥ0 − E� )2|�〉 =
∑

j

[Ĥ0, [Ĥ0, ξ̂ j]]|�〉. (F3)

Since Ĥ0 is a sum of local terms, ζ̂ j ≡ [Ĥ0, ξ̂ j] is a local
operator near j, and so is η̂ j ≡ [Ĥ0, [Ĥ0, ξ̂ j]]. To calculate the
energy variance we need

〈�|�〉 =
∑
j, j′

〈�|ξ̂ †
j ξ̂ j′ |�〉 =

∑
j, j′

Gξξ ;� ( j, j′),

〈�|(Ĥ0 − E� )|�〉 =
∑
j, j′

〈�|ξ̂ †
j ζ̂ j′ |�〉 =

∑
j, j′

Gξζ ;� ( j, j′),

〈�|(Ĥ0 − E� )2|�〉 =
∑
j, j′

〈�|ξ̂ †
j η̂ j′ |�〉 =

∑
j, j′

Gξη;� ( j, j′).

Remembering our choice 〈�|ξ̂ j |�〉 = 0 and noticing also that
〈�|ζ̂ j |�〉 = 〈�|η̂ j |�〉 = 0, the above Gξξ ;� ( j, j′), Gξζ ;� ( j, j′),
Gξη;� ( j, j′) are connected correlation functions of the cor-
responding local operators in the state |�〉. Using the as-
sumption that |�〉 has short-ranged correlations, the right-
hand side in each of the above equations is proportional to
the system size L. Hence, the variance of Ĥ0 in the state
|�〉 is an L-independent number in the limit of large L. As
an example, Ref. [14] quoted finite variances of the PXP
Hamiltonian in the SMA states approximating E ≈ ±1.33
and ±2.66 scars; these variances were already representative
of the thermodynamic limit.

The finite variance of Ĥ0 in the state |�〉 immediately
implies that this state has a nonzero lifetime under the Ĥ0

dynamics even in the thermodynamic limit. Note that this is
different from a generic trial state whose energy variance in
general scales with the system size. The difference here is
that our trial state is actually connected to the exact eigenstate
by the action of the sum of local operators. Since |�〉 is
orthogonal to |�〉, it is a new nonthermalizing state, as we
further argue below.
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The above prediction of the finite lifetime describes the loss
of fidelity upon time evolving under Ĥ0 from |�〉 as the initial
state. However, it does not fully capture slow thermalization
of observables under such time evolution under the local
Hamiltonian. In fact, we expect the nonthermal properties of
the state |�〉 to persist to times that diverge with the system
size.

Let us first consider a “local defect” wave function |x j〉 ≡
ξ̂ j |�〉. It is easy to see that the expectation value of a local
observable at j′ far from j in this state is essentially equal to
that in the state |�〉, where we again use that |�〉 is short-range
correlated. Since |�〉 is a scar state, this initial expectation
value is nonthermal. By the Lieb-Robinson bound, the ex-
pectation value of this local observable in the time-evolved
exp(−iĤ0t )|x j〉 will remain essentially unchanged until time
of order | j − j′|/vLR, where vLR is the Lieb-Robinson veloc-
ity. We then conclude that, e.g., until time L/(4vLR), half of
the sites j′ in the system will still have essentially the initial
nonthermal value of the local observable.

We can generalize this argument to the state |�〉, which is
a coherent superposition of L such local defects |x j〉 placed at
different sites on the lattice. The time-evolved |�〉 is then a
coherent superposition of the time-evolved local defects, and
we can apply the above Lieb-Robinson reasoning to each such
term. We then conclude that at a given observation location,
e.g., until time L/(4vLR), the Lieb-Robinson cone emanating
from the defects in half of the terms in the superposition
has not reached the observation location. In this situation we
expect that the local observable at the observation location is
still nonthermal.

We also note that the above reasoning applies also to
MMA-type trial states—i.e., multiple applications of the

SMA—as long the number of applications is finite. Together
with the possibility of constructing distinct SMA states by
using different local defect operators ξ̂ j , we thus see that a
single scar state indeed implies existence of many additional
nonthermalizing low-entanglement trial states nearby in en-
ergy. Note that these trial states have finite energy variance
instead of scaling as O(

√
L) but they are not eigenstates. It is

an interesting open question how the existence of such non-
thermalizing trial states is reflected in the actual eigenstates of
the Hamiltonian.

Finally, we note that in the context of the PXP model,
such SMA/MMA construction [14] on top of the analytically
known scar states produced competitive approximations to
the band of prominent scars found in ED [10,11]. One may
ask if something like this could happen in other models.
Such SMA/MMA variational states can be constructed in any
model with exact scars and should approximate finite-size
eigenstates when their energy variance is smaller than the
energy level spacing squared. As the operator used to build
“defects” atop the exact scar states in this construction can
be optimized to minimize the energy variance, it seems likely
that at least for small sizes the energy spectrum of a model
with exact scar states contains approximate SMA/MMA scar
states, even if the model is not proximate to a mother model
where the SMA/MMA states become exact scar states. For
larger sizes we suspect that the nonthermal aspects of such
trial states should still be somehow encoded in the eigen-
states over which the trial states can be expanded; how-
ever, detecting this nonthermalness in ED could be much
more challenging. It would certainly be useful to test and
explore more such ideas in different models with analytic scar
states.
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Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[11] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
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