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Dynamic polarization protocols aim to hyperpolarize a spin bath by transferring spin polarization from a well-
controlled qubit such as a quantum dot or a color defect. Building on techniques from shortcuts to adiabaticity, we
design fast and efficient dynamic polarization protocols in central spin models that apply to dipolarly interacting
systems. The protocols maximize the transfer of polarization via bright states at a nearby integrable point, exploit
the integrability-breaking terms to reduce the statistical weight on dark states that do not transfer polarization, and
realize experimentally accessible local counterdiabatic driving through Floquet engineering. A master equation
treatment suggests that the protocol duration scales linearly with the number of bath spins with a prefactor that
can be orders of magnitude smaller than that of unassisted protocols. This work opens pathways to cool spin
baths and extend qubit coherence times for applications in quantum information processing and metrology.
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I. INTRODUCTION

A prevalent goal in several fields of physics and chemistry
is to efficiently polarize an ensemble of spin particles. In nu-
clear magnetic resonance spectroscopy (NMR) and magnetic
resonance imaging (MRI), polarizing nuclear spins enhances
sensitivity and resolution [1-4]. In applications to quantum
information processing, hyperpolarization schemes can be
used to initialize large-scale quantum simulators [5] or to
extend qubit coherence times by cooling the surrounding
spin bath [6,7]. Where costly or difficult to polarize the spin
ensemble directly, dynamic polarization protocols have been
developed to repeatedly transfer polarization from readily po-
larized control spins [1,8—14]. In simple experimental setups,
a spin bath is polarized by controlling a single qubit, such
as a nitrogen vacancy (NV) center in diamond [15-17] or a
quantum dot [18-20], whose polarization can be repeatedly
reset, effectively generating a zero temperature reservoir for
the bath [21]. A key goal of this paper is to introduce a fast
and efficient scheme for dynamic polarization in central spin
models.

Polarization transfer relies on the spin-flip interactions be-
tween a control spin and the spin ensemble to be polarized.
The Hamiltonian can be schematically represented as

H = Q(t)SZ +Hspin-ﬂip ’ (1)

consisting of an electromagnetic field €2(7) acting on the
control spin along the z direction and spin-flip interac-
tions between control spin and spin bath. Given an initially
polarized control spin, €2(¢) can be tuned to transfer polar-
ization [22-24]. Specifically, dynamic polarization protocols
can be separated into two classes: (i) sudden protocols in
which the control field ©(¢) is quenched to resonance with the
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spin-flip interactions to induce polarization transfer and (ii)
adiabatic protocols in which polarization transfer is induced
by slowly driving €2(z) across resonances [25]. Adiabatic
protocols offer an advantage over sudden protocols as they
do not require precise resonance tuning and pulse timing.
They also can cover a broader range of bath spin resonances,
enabling robust transfer in the presence of field and inter-
action inhomogeneities [26-28]. Their main disadvantage is
the requirement of slow speeds, which can be inefficient or
unfeasible in experiments limited by spin diffusion in the bath
and decoherence of the control spins [29,30].

Apart from the limitations on control speeds, the achiev-
able polarization is also limited by the presence of dark states,
making it seldom possible to completely polarize the bath
even at slow speeds [21,31-34]. Dark states are many-body
qubit-bath eigenstates in which the qubit is effectively decou-
pled from the bath. Since such states have a fixed control spin
polarization and cannot be depopulated through changes in
the qubit control field, any initial nonzero population of dark
states will limit hyperpolarization. Experiments in different
material systems have found maximum saturation at about
60% full polarization [35-37].

Several schemes have been proposed to enhance hyper-
polarization by depopulating dark states effectively [20], for
example by modulating the electron wave function of the
qubit in quantum dots [21,31] or by alternating resonant
drives which reduce quantum correlations in the bath [38].
While studies so far mainly focused spin systems where
the central spin interacts with its environment through fully
isotropic (XXX) interactions, arising in, e.g., quantum dots
in semiconductors, we consider a model where the inter-
actions are anisotropic (XX), as in resonant dipolar spin
systems [17,19,23,24,38—40].

Overcoming the requirement of slow speeds in adiabatic
protocols is the aim of the field of shortcuts to adia-
baticity [41,42]. Shortcut methods such as counterdiabatic
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driving (CD) suppress diabatic transitions between the eigen-
states of a driven Hamiltonian H(¢) by evolving the system
with a Hamiltonian Hcp(f) containing additional counter
terms [43-49]. CD preserves the system’s adiabatic path
through state space even during ultrafast protocols. CD proto-
cols typically require engineering operators which are highly
complex and many-body, making them difficult to implement
in practice [49]. Recent progress has focused on reducing
the complexity of CD Hamiltonians, for example by mapping
them to simpler unitary equivalents [50-53] or by approxi-
mating them with local (few-body) operators [54-56]. The
required local operators can be realized through, e.g., Floquet-
engineering techniques, using high-frequency oscillations to
realize the CD Hamiltonian as an effective high-frequency
Hamiltonian using only controls present in the original adi-
abatic protocol [55,57-60]. Local counterdiabatic driving
has recently been realized experimentally in synthetic tight-
binding lattices [61], in IBM’s superconducting quantum
computer [62], and in a liquid-state NMR system for a non-
integrable spin chain [63]. Such methods have also gained
attention in the context of quantum thermodynamics, where
(approximate) CD can be used to speed up underlying adi-
abatic processes and increase the performance of quantum
engines [58,64-71].

We develop a dynamic polarization scheme which imple-
ments approximate counterdiabatic driving (CD) to quickly
and efficiently polarize a spin bath using a tunable qubit while
simultaneously depopulating dark states. In the absence of
inhomogeneous bath fields, the model Hamiltonian is inte-
grable [34]. We first exploit the integrability of this model
to design a CD protocol explicitly targeting all polarization-
transferring bright (i.e., not dark) states. Within all protocols
the bright states arise in pairs acting as independent two-
level Landau-Zener systems, for which CD protocols can
be straightforwardly designed. While the exact CD protocol
targets all bright states and gives rise to a highly involved
control Hamiltonian, we show how the CD protocol can be
well approximated using local (few-body) operators and ex-
perimentally implemented using Floquet engineering (FE). In
the presence of inhomogeneous bath fields the system is no
longer integrable. However, the proposed protocols still lead
to a remarkable increase in transfer efficiency. Furthermore,
the local counterdiabatic (LCD) protocol dynamically couples
dark states to bright states, such that dark states can be de-
populated. Not only are such LCD protocols much easier to
implement than the exact CD ones, we find that they outper-
form CD protocols and lead to a complete hyperpolarization
of the spin bath.

The FE protocols also lead to natural quantum speed limits:
There exists a lower bound for the protocol durations below
which the FE protocol can no longer accurately mimic the
LCD protocol. The emergence of speed limits is ubiquitous
in shortcut protocols and control theory [42,49,52,71-78].
Interestingly, our work now suggests that speed limits are also
intrinsic in approximate local counterdiabatic protocols.

This paper is organized as follows. In Sec. II, we
present the qubit-bath model system and the hyperpolarization
scheme used throughout this work. In Sec. III, we construct
and detail the CD and LCD protocols and compare their
efficiency with unassisted (UA) protocols which do not use

shortcut methods. In Sec. IV, we show how our shortcut
protocols can be applied to fully polarize a spin bath. A master
equation for the hyperpolarization is introduced in Sec. V,
which is used to analyze the protocols at large system sizes
and show that all protocol durations scale linearly with the
number of bath spins. In Sec. VI, we show how to realize LCD
with FE and discuss the emergence of a quantum speed limit.
We conclude in Sec. VII with a discussion of our results in a
broader context.

II. MODEL AND HYPERPOLARIZATION SCHEME

A. Hamiltonian

We focus on a concrete central spin model describing a
qubit interacting with L — 1 spin-1/2 bath spins. The Hamil-
tonian is given by

L-1 L-1

) 1 o
H(t) = Q)5+ ) QS5+ 5 D8, (557 +5557).

j=1 j=1

@
where Q(t) is the magnetic field strength on the qubit, Q5 ;
is the magnetic field strength on the jth bath spin, and g;
is the coupling strength between the qubit and the jth bath
spin, with j =1,2,...,L — 1. Equation (2) describes sev-
eral physical setups in rotating frames, such as color defects
or quantum dots coupled to ensembles of nuclear spins via
dipolar interactions [17,19,23,24,38]. Spin conserving (‘flip-
flop’) transitions dominate the dipolar interaction provided
gj < Qo + Qp, with the latter set by the amplitudes of the
continuous driving fields; a standard derivation is given in
Appendix A. The top panel of Fig. 1 shows a schematic of
the model.

Experimentally, the bath field and qubit-bath couplings
are spatially inhomogeneous. For simplicity, we model these
inhomogeneities as uncorrelated disorder: We draw each Qg ;
independently from a uniform distribution

Qp ;€ [Qp— v, L+ v2]s 3

where Qp sets the mean value and y, sets the z-disorder
strength. We also draw each g; independently from a uniform
distribution

8j € [g_yxxs§+yxx]a (4)

where g sets the mean value and y,, sets the xx-disorder
strength. In this work, we probe the weak coupling and dis-
order regime given by Yy, ¥, < § K Q5.

Since H conserves total magnetization [H, M] = 0, where

L—1
M=Y"s, 5)
j=0

its eigenspectrum splits into L + 1 polarization sectors (see
left of lower panel in Fig. 1). Each sector can alternatively be
specified by the number N = M + L/2 of spin flips above the
fully-polarized state ||) ® |[{{ ... {). The aim of hyperpo-
larization is then to find protocols that systematically reduce
M, where a fully polarized state corresponds to N =0 or
M =-L)2.
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FIG. 1. Model schematic, spectrum, and hyperpolarization
scheme. (Top panel) Schematic of the central spin model in Eq. (2).
(Bottom panel) On the left, we illustrate the polarization sectors and
spectrum for a system with an even number L of spins and small
disorder strengths. On the right, we illustrate the spectrum in two
polarization sectors with M < 0, A, sets the maximal width of
the resonance region, together with an outline of the transfer-reset
hyperpolarization scheme.

B. Spectrum

The eigenstates of H capture essential features common
in applications of dynamic polarization: bright states which
allow resonant polarization transfer when €2, (z) is varied and
dark states which limit transfer. In the y, = 0 limit, the model
is integrable and the structure of its eigenstates is known [34].
While our proposed protocols are not restricted to integrable
models, the known eigenstate structure at the integrable point
allows for a quantitative understanding of the general cooling
protocols. We briefly review these eigenstates and their basic
properties in the integrable limit and subsequently extend the
discussion to y, > 0.

1. Bright states (y, = 0)

Bright eigenstates can be written as
IB*(1)) = c{(A) 1) ® IBY) + [ (M) @ IBT),  (6)
where
A1) = Qo) — Q25 (N

measures the detuning between the qubit and bath fields. On
resonance, 29 = Qp and A = 0. The index « distinguishes
between the different bright states. Crucially, the bath states
|B‘;!¢) do not depend on A.

As such, when varying XA the bright states only cou-
ple in pairs (¢ = =£k), behaving as independent two-level
Landau-Zener systems. The Hamiltonian in each such two-
dimensional subspace can be written as

H,(A) = ASE 4+ ASE + Q M, ®)

where A, sets the energy splitting (gap) of the pair at reso-
nance [34] and we have introduced generalized spin operators
S8»"* acting on the two-dimensional space spanned by |B%) =

1) ® |Bg) and |B*) = |) ® |BY).
St = LBy (BY| + 1B%) (B),
8 = 1(BY) (BY] — 1BL) (B,
8% = 3UBS) (BY| — 1BY) (B)).

o

82 corresponds to S§ projected on a bright pair subspace. The
apparent simplicity of the problem in this subspace hides the
complexity of the qubit-bath interactions present in the origi-
nal spin basis, where the bath states |B‘f’ ,) and the gap A, are
obtained by solving a set of nonlinear Bethe equations [34].
Within each magnetization sector M = N — L/2, we label
bright state pairs by « = |k|, where k € {1,2,...,ng} and

L—1
nB:(N—l) &)

is the number of pairs in the sector for M < 0.!
The Hamiltonian (8) returns the bright state energies

Ef(\) = QM+ 3,./22+ AL, (10)

We refer to the set of bright states with positive
E% — QpM > 0 as the fop bright band and those with negative
Ef — QM < 0 as the bottom bright band (see red bands in
bottom panel of Fig. 1).

In bright states, polarization can be transferred between
the qubit and the bath. At resonance (A = 0) the bright state
pairs are fully hybridized with ¢* = 4¢**. Initializing the
system in a fully polarized central spin state and then quench-
ing to resonance, as is done in sudden protocols, transfers
polarization on the timescale A !. Adiabatic protocols induce
a qubit-bath polarization transfer in bright states by slowly
varying A(t) resonance. As . — =00, bright states approach
a product form and the initial eigenstate |1) ® |B‘;) is adiabat-
ically connected to || ) ® |B‘i‘) and vice versa.

Each Landau-Zener problem is fully characterized by its
gap. The distribution of bright pair gaps at resonance A, is
shown in Fig. 2 for various polarization sectors. As shown
in Appendix B, the gap distribution can be obtained analyt-
ically at zero disorder (y,, = 0) in the thermodynamic limit
where we take L — o0, holding m = |M|/L fixed. Since these
gaps set the necessary time scales for adiabatic protocols, we
briefly detail some relevant gap scales. The typical gap scale
is given by

Ap=.,> &~VL-1g (11)

I'Since the aim of the proposed protocols is to reduce magnetiza-
tion, we focus on M < 0.
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FIG. 2. Distribution of bright pair gaps at resonance. Histogram
of number n(A,) of bright state pairs with gap A,. Data is shown
for a typical disorder realization in multiple polarization sectors.
The gold vertical dashed line denotes the typical gap A,. The
black dashed curve denotes the distribution of gaps from Eq. (14).
Parameters: L = 16, = 0,g = 0.1, y,, = 0.05, y, = 0, and 60 bins.

shown as a gold vertical dashed line in Fig. 2, whereas the
maximal gap, also setting the maximal width of the resonance
region, is given by

Amax ~ L, (12)

scaling extensively in L. The smallest bright gap in the homo-
geneous model can be found as

Amin = 8/2(M + 1) ~gv/2mL. (13)

At sufficiently small gaps A 2 Apin, the distribution of bright
pair gaps is given by

142m
1—-2m

This distribution is shown in Fig. 2 as a dashed black curve.
We find good qualitative agreement between the analytical
curve at ., = 0 and our numerical results for small but finite
disorder y,, = 0.05 in the magnetization sector M = —1 with
the largest Hilbert space dimension.

Figure 2 also shows the numerically obtained distribution
of bright pair gaps in the M = —4 and M = —7 sectors. The
distribution in the M = —4 sector exhibits three broad peaks
which are centered around the three bright pair gap energies in
the y,, = 0 limit (Appendix B). As the width of each peak is
proportional to y,,L while the bright pair gaps at y,, = 0 are
order one, we expect the three-peak structure to be washed
out at larger L and the distribution to be captured by Eq. (14)
instead. In the M = —7 sector, we expect a single pair of
bright states with pair gap ~Ay, at small y,, as confirmed
by Fig. 2. We note that Eq. (14) only applies to sectors with
finite magnetization density at large L.

The main difference comes from the nonzero density of
gaps for A < Ayin. However, as will be shown in the fol-
lowing sections, this nonzero density does not qualitatively
influence our protocols.

In sum, the bright bands consist of an ensemble of inde-
pendent Landau-Zener systems with a nontrivial distribution
of gaps. For each bright pair, an adiabatic passage of A across
resonance prevents excitations across its gap and flips polar-
ization of the qubit, transferring polarization to the bath.

_(A/Amin)2
n(A) o A ( ) A A (14)

2. Dark states (y, = 0)

Dark states have the following product form with the cen-
tral qubit fully polarized:

D) =N ®IDf) or [DY)=[)®I|D)),  (15)

where the index « distinguishes between the different dark
states. The bath states |D‘;’ i) depend implicitly on {g;}, but
crucially not on A, and are obtained by solving a set of ‘dark’
Bethe equations [34].

In a given polarization sector M = N — L/2, there are

_‘L—l L—l‘ 6
nD_(N)_<N—1) (16)

dark states. Dark states with central qubit polarized along +z
only exist in sectors M > 0, while dark states with central
spin polarization along —z only exist in sectors M < 0, and
no dark states exist in the sector M = 0. Dark states are
eigenstates of S§ and are annihilated by the interaction part
of the Hamiltonian [34], such that the energies given by

ES (M) = QM + sgn[M] % 17)

change linearly with the qubit field detuning A. Their wave
functions, however, do not change with A, preventing polar-
ization transfer to the bath.

3. Bright and dark states (y, > 0)

In the presence of z disorder (y, > 0), the system is not
integrable. However, the same qualitative picture for the
eigenstates holds: On adiabatically changing the detuning A
and comparing the polarization of the central spin far away
from resonance (A = £00), there exists a subset of ‘bright
states’ in which the polarization is changed and a subset of
‘dark states’ for which the polarization is unchanged.

Since the central spin is polarized far away from resonance,
a counting argument can be used to determine the number of
bright and dark states. Consider a sector with magnetization
M < 0 and dimension ny = (}): There are ny = (*') states

N
in which the qubit is fully polarized along the —z direction and

ny = (5”}) states in which the qubit is fully polarized along
the 4z direction. Far from resonance, the energies are given by
QpM — A/2 and Qp + A /2, respectively. Comparing the total
number of states in the top and bottom band far away from
resonance, there must be np = n| — ny dark states in which
the polarization of the qubit does not flip for an adiabatic
passage across resonance (see also Fig. 1). The remaining
ny — np = 2 ny states are bright states in which the spin of
the qubit flips during such an adiabatic process, consistent
with Eqgs. (9) and (16). This simple counting argument only
uses conservation of total z magnetization and produces the
same qualitative eigenstate band structure as the Bethe ansatz
in the integrable limit (y, = 0) [34].

There are, however, important differences between the in-
tegrable (y, = 0) and nonintegrable (y, > 0) models in the
resonance regime. When y, > 0, the simple product state
structure of dark states and the Landau-Zener structure of
bright states is no longer exact: The nonintegrable eigenstates
are mixtures of the unperturbed states and exhibit ergodic
behavior (Appendix E).
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While adiabatic protocols transferring polarization in the
inhomogeneous model are qualitatively similar to those in the
homogeneous model, and bright and dark states can gener-
ally be defined by their central spin polarization far away
from resonance, nonadiabatic effects can enhance polarization
transfer in the inhomogeneous model. Finite z disorder is
useful for the purposes of dynamic polarization: In a nona-
diabatic protocol dark states can be excited to bright states
since |(D°‘|S§|B"")| > (. Dark states in the inhomogeneous
model can be depopulated during a nonadiabatic passage
across resonance, such that the limit on hyperpolarization can
be overcome by preferentially inducing transitions from dark
states to bright states.

C. Hyperpolarization scheme

We now discuss the basic hyperpolarization scheme as
illustrated in Fig. 1. To polarize the spin bath, we apply a
cyclical scheme. In each cycle, we (i) reset the polarization
of the qubit to |]) at large detuning, and (ii) we transfer
polarization from the qubit to the bath by sweeping the central
field detuning A(¢) across resonance over a timescale t,. The
reset step is a routine experimental step in quantum computing
platforms; for example, in a NV setup, the qubit can be reset
using a rapid optical pulse [59,79]. The ramp varies A(¢) from
an initial value A; to a final value A, = —A;, such that the cycle
starts and ends far from resonance Ao = |A;| = |Af| > Apax,
where the qubit is completely polarized in every eigenstate.
From one cycle to the next, the direction of the ramp is
reversed (after each reset) in a forward-backward fashion.

During a single reset and sweep cycle probability is trans-
ferred in every magnetization sector’ (M) from states with
up qubit polarization |1) in sector M to states with down
qubit polarization ||) in the magnetization sector (M — 1)
(as depicted in Fig. 1). The effects on a single bright state
can be readily understood: Suppose the system is initially
in a bright eigenstate ||) ® |B‘f), factorizable far away from
resonance and with fixed magnetization M. Then the total
magnetization of the bath state is necessarily M + 1/2. Af-
ter an ideal adiabatic transfer across resonance, this bright
state is given by |[1) ® |B‘;), again far away from resonance.
From conservation of magnetization, the bath state now has
total magnetization M — 1/2. Following the reset step of the
central spin, this state is reset to ||) ® |B‘%‘), which is no
longer an eigenstate but rather a superposition of eigenstates.
Crucially, these states all have magnetization M — 1: The total
bath magnetization has been reduced. Dark states of the form
) ® |D‘i‘) are left invariant by these steps. After several
cycles, dark state populations build up and ultimately saturate
the bath spin polarization well above its fully polarized value.

The success of the protocol depends on the suppression
of diabatic excitations. However, transitions between bright
states within their own band are irrelevant for the purposes of
polarization transfer, and thus we only require that transitions
be suppressed between the bands. Specifically, we mimic a

>The reset and transfer steps have an effect on all polarization
sectors simultaneously.

slow smooth ramp A(¢) with ramp time 7, > 7(, where

70 = 2ho/Amin (18)
sets the timescale for the onset of diabatic transitions between
eigenstate bands (Appendix C). While such a protocol may
still be too slow in practical applications, here it serves only

as a starting point which guarantees efficient transfer.

III. POLARIZATION TRANSFER PROTOCOLS

We detail how to speed up adiabatic ramps with the as-
sistance of CD and LCD protocols in a single sweep. Such
(L)CD protocols can be exactly analyzed in the integrable
limit. We further compare our CD protocols to unassisted
(UA) protocols which, unlike CD, attempt to polarize the
bath without engineering additional controls. A full cooling
protocol consisting of repeated sweeps will be analyzed in
Sec. IV.

We simulate sweeps A(?) across resonance by numerically
solving the time-dependent Schrodinger equation® in a spe-
cific polarization sector and measure efficiency. The system is
initialized at A; = —A¢ < —Ayp in a mixed state:

pt=0)=N){I® ps 19)

where the bath is in an infinite-temperature state pp. This
choice of a spatially uncorrelated and unpolarized bath state
is motivated by experimental conditions. We also expect any
coherences in the initial bath state to be lost during the re-
peated cycling of the qubit. This gives an initial probability
Pg(t = 0) of starting in the top bright band and Pp (t = 0)
of starting in the dark band, with

Pgy (1) = ZTr[,O(t)7’¢,¢|Ba)<3“|7’¢,¢], (20)
Ppy+(t) =Y Trlp(t) P, 4[DND*[Py 1], (21)

in which P, = |]) (J| ® I is the projection operator to the
subspace with down qubit polarization and similarly P; =
[1) (11 ®I. At the end of the ramp (A; = +Ap), the state
p(t = t,) has a probability Pg4(t = 7,) of being in the top
bright band, Pp (f = 7,) of being in the dark band, and
P (1) of having transitioned to the bottom bright band.
For protocol efficiency, we use two measures: (i) the transfer
efficiency,

nr = Ppy(7,)/Ppy(0), (22)

which measures how effectively the qubit polarization in
bright states is flipped during a single sweep, and (ii) the kick
efficiency,

nk =1 —Pp(7)/Ppy(0), (23)

3The specific ramp function used in this work is a smooth poly-
nomial A(t) = Ao (12 (¢/7,)° — 30 (t/7,)* +20(¢/7,)* — 1), which
monotonically increases from A(0) = —Xi¢ to A(t,) = Ao and has
vanishing first and second derivatives at the protocol boundaries. The
minimal order of a polynomial in ¢ /7, that satisfies these constraints
is five. However, any form A(#) with sufficiently smooth boundary
conditions can be used [49].
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FIG. 3. Efficiency vs ramp time. Disorder-averaged transfer ef-
ficiency (top) and kick efficiency (bottom) of UA, CD, and LCD
protocols in systems with y, = 0.00 (crosses) and y, = 0.05 (boxes).
Dashed lines show the analytic prediction for the UA transfer effi-
ciency (26), the analytic predictions for LCD transfer (41), and kick
efficiencies (43) at large ramp velocities. Parameters: N; = 150, L =
10,M = —1,Q5 =10, 4y = 5,8 = 0.1, y,, = 0.05, and 7y ~ 1000.

which measures how effectively dark states are depopu-
lated (or ‘kicked’) into the bright manifold. Throughout this
section, we continually refer to Fig. 3, which plots these
efficiencies over a range of ramp times 7, for numerically
simulated UA and CD protocols. Note that we average over
N; realizations of disorder in 5 ; and g;, which we denote by
an overline as 77 or 7jg.

A. Unassisted driving (UA)

We first discuss unassisted (UA) protocols, correspond-
ing to a sweep of A over a finite time. Adiabatic protocols
correspond to infinite ramp times t, — 0o, where all bright
state polarization is transferred across a single sweep: ny = 1
while ng = 0. At finite ramp times diabatic effects become
important and generally nr < 1 and ng > 0. In the fast limit
(tr, = 0) the system does not have time to respond to the
drive, completely preventing polarization transfer and dark
state depletion such that 7, ng — 0.

In a system with a homogeneous bath field (y, = 0), the
operator S§ only couples bright state pairs,* and within each
M sector all excitations induced by a finite ramp speed A > 0
occur only between bright state pairs [34]. Each bright state
pair can be treated as an independent two-level Landau-Zener
problem following Eq. (8), for which the known transition
probability for a ramp A(¢) across a resonant gap A, is given

“Note that dark states at y, = 0 are eigenstates of S, so they cannot
couple to bright states on changing the qubit z field in time.

by [80,81]

T A2
Prans[Ae] = exp <_E Ta) (24
Averaging this transition probability over the gap distribu-
tion (14) returns an approximate transfer efficiency for a given
magnetization sector

Jao Puans[Aln(A)d A

Ny =1-— , 25
Gl NS )
which can be evaluated to return
_ | AT mngzL 26)
= —_ —F) X —_ g ,
Gl 1 +ag, P i

in which m = M/L is the magnetization density, A o Ao/T,,

and
1 142
Ty = —— 1n< + m) 27)
mmug L 1—2m

The transfer efficiency in Eq. (26) is plotted in Fig. 3 as a
dashed black curve and shows excellent agreement with the
UA calculations for y, = 0 and y, = 0.05.

As shown in Fig. 3, the distinction between a system with a
homogeneous bath field (crosses) and an inhomogeneous bath
field (squares) has little impact on the UA transfer efficiency.
The transfer efficiency in UA dynamics varies drastically
with t,. When t, is sufficiently large [t, > 19; cf. Eq. (18)],
transitions between eigenstate bands become suppressed and
the system becomes effectively adiabatic for the purposes of
polarization transfer: The qubit flips in bright state bands but
not in dark bands. Figure 3 shows the tendency of simulated
UA protocols toward unit transfer efficiency.

The difference between homogeneous and inhomogeneous
systems is important when considering the kick efficiency. In
a system with inhomogeneous bath fields (y, > 0), S§ couples
bright and dark eigenstates. As such, inhomogeneous fields
lead to a nonzero kick efficiency because diabatic transitions
can depopulate dark states, whereas homogeneous fields lead
to a zero kick efficiency at all ramp rates.

The convergence 77 — 1 (shown) occurs much faster than
the convergence 7jx — 01 (not shown). The former is deter-
mined by the gap between bright state pairs, which remain
finite throughout the ramp at numerically accessible system
sizes, whereas the latter is determined by the dark-bright gaps,
which tend to close away from resonance. This leads to dark-
bright transitions at large yet finite 7, < (AE)~2, where AE is
on the order of the level spacing (Appendix C). Any attempt to
drive the system faster (t, < 1) leads to diabatic excitations
between eigenstates. When y, = 0, speeding up UA protocols
decreases the transfer efficiency due to transitions between
bright bands but again does not deplete dark states. At finite
disorder strength y, = 0.05, UA protocols suffer a similar loss
of transfer efficiency but gain the ability to kick dark states,
with a peak kick efficiency at intermediate speeds t, ~ 1.

B. Exact counterdiabatic driving (CD)

CD protocols suppress transitions between the eigenstates
of an instantaneous Hamiltonian by evolving the system with
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an assisted Hamiltonian that exactly cancels all diabatic ex-
citations [49]. The inclusion of counterdiabatic terms in a
hyperpolarization protocol can hence be used to increase the
transfer efficiency.

Within each two-dimensional Landay-Zener subspace (8),
the system remains in an instantaneous eigenstate of H, (A(f))
at all times when evolved with a time-dependent Hamilto-
nian [49]

. Ae o
Hcp,o(t) = Hy(M(1)) — ?»(t)m PN 2
where the auxiliary (counterdiabatic) term oS}, exactly can-
cels diabatic transitions between the bright states for arbitrary
ramp speeds provided A = 0 at the beginning and end of the
ramp.

CD is realized for the full system if the system is evolved
with the time-dependent CD Hamiltonian

Hep(1) = HOW(0)) + 4(6) A (1 (1)), (29)

where the CD term A;, also known as the adiabatic gauge
potential, follows as

A -

A =-Y —=§8. 30

k( ) Za: )L2 + Ag o ( )

The summation index o runs over all bright pairs in all mag-

netization sectors. The effect of the counterdiabatic term can

be understqod in the limit A — oo, where the Hamiltonian

reduces to A.A; and the evolution operator for a single sweep
can be written as

exp (i/oo .Amlk) :l_[exp(—inS’g;). 31)

The gauge potential generates a rotation around the y axis that
exchanges |BY) < [B%) when A is swept across resonance,
exactly as happens in the adiabatic protocol.

Alternatively, the gauge potential can be written in closed
form as (see Appendix F)

A, = —% (H — QM) [H, 7). (32)

The first (inverse) term in the product is to be interpreted in the
sense of a pseudoinverse, and the second (commutator) term
in the product is given by:

[H.S5] =i g;(S58;—5)8%). (33)
J

The gauge potential is a complex many-body operator,
difficult to compute in theory and even harder to implement
in practice [49]. Only in certain special cases, for example
when 0, H is an integrable perturbation of an integrable model
H, is this operator sufficiently local [49,82,83]. Fortunately,
0,H = §§ is an integrable perturbation of H in the y, = 0 limit
of our present model, and the pair structure of the bright state
could be used to immediately write down the adiabatic gauge
potential. A similar two-level structure for the gauge potential
also arises in integrable free-fermionic systems [82].

In a system with an inhomogeneous bath field (y, > 0), we
can no longer express the adiabatic gauge potential explicitly.

Nevertheless, as CD mimics an adiabatic protocol, the transfer
efficiency will be maximal.

Figure 3 showcases the effect of exact CD in a transfer pro-
tocol across resonance for systems with y, = 0 and y, = 0.05
(crosses and squares, respectively). In both cases, the com-
plete suppression of bright state transitions yields a maximally
efficient transfer protocol ny = 1, systematically improving
on the UA protocol, while the complete suppression of dark
state transitions results in zero kick efficiency ng = 0.

C. Local counterdiabatic driving (LCD)

In practice, it is hard to realize exact CD, and we must
resort to approximation schemes. In this section, we follow the
method devised in Ref. [55] to develop a local approximation
Arcp to Aj. We refer to assisted driving [see Eq. (29)] with
Apcp as local counterdiabatic driving (LCD).

As proposed in Ref. [55] and detailed in Appendix G, a
formal expansion for the adiabatic gauge potential can be
found in terms of nested commutators:

q
sziZaj[H, [H,...[H, 0,H]]]. (34)
J=1 2j—1

For ¢ — oo Eq. (34) reproduces the exact gauge potential. A
local approximation for A, is obtained by truncating the com-
mutator expansion of Eq. (34) to a desired order g and using
a variational minimization scheme [54] to set the coefficients
ajforj=1,...,q.

We focus on the leading order term because it (i) is simple
enough to be implemented by Floquet driving on the qubit
field (see Sec. VI) and (ii) is already remarkably effective for
polarization transfer. One can always refine the approximation
to CD by adding higher-order commutators in Eq. (34); the
rapid convergence of higher-order LCD to CD is shown in
Appendix G.

To leading order (¢ = 1), we obtain:

o (A) =—

Avco(h) = iy (1) [H, S5), (35)

A2+ AL
This scheme leads to a coefficient o (1) depending on a single
energy scale which coincides exactly with the typical gap
Atyp, in contrast with exact CD, where the prefactor depends
either explicitly (28) or implicitly (32) on all bright state gaps
Ag. In sum,

Hicp(t) = H(A®)) + id(t) o (1)) [H, 5]

(1) x x
D> 8i(S587 = 557).
j

=H®@))+ m
(36)

typ

Figure 3 shows the resulting LCD curves as unmarked solid
red curves (y, =0.0) and circle-marked red curves (y, =
0.05). LCD is approximate, 777 < 1 (see top panel of Fig. 3).
Nevertheless, LCD’s transfer efficiency is high (777 = 0.75)
over the whole range of ramp times t,, even as t, — 0 where
UA becomes completely transfer inefficient.

A finer comparison between A; cp and A; can be made for
y. = 0 by expressing the gauge potential in the Landau-Zener
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picture (8),

. Agy Agp &
Arcp () Z <Alyp> T AT S (37)
Rather than targeting individual gaps as in Eq. (30), the
LCD protocols effectively target a single typical energy split-
ting scale to suppress diabatic transitions between the bright
bands. In contrast with Eq. (30), the Lorentzian prefactor of S},
has a fixed width A, which does not vary with bright state
gap, and a modulated amplitude A, /Ayyp.

This discrepancy introduces polarization transfer errors in
LCD at intermediate and fast ramps (7, S 79). Comparing

with Eq. (31), in the limit A — oo the LCD protocol again
generates a rotation within bright state pairs:

o Ay ~
exp (l/ -ALCD d)») = l_[exp < A < y)' (38)
-0 o typ

LCD strongly suppresses transitions between those bright
pairs with a gap A, ~ Ay, but otherwise yield only partial
suppression.

From Eq. (38) we can define a mismatch error between CD
and LCD for each bright pair with gap A, as

2 (T Ay
E[AL] = cos (2 Atyp) 39

Averaging over the gap distribution (14), the transfer effi-
ciency at large ramp rates is

S ElAIn(A)dA

nr=1-— 40
r TREOST 0
The saddle-point approximation returns
> dt t sin®
ﬁ]‘ _ .[l ( )gl+2m) ) (41)

[ ()

This expression agrees with the LCD transfer efficiency in
Fig. 3 (dashed red line) and will be discussed in more detail in
the following section.

Figure 3 (bottom panel) also shows the LCD kick effi-
ciency over several 7, orders. In the y, = 0 limit, LCD has no
effect on dark states, just like UA and CD, again leading to a
zero kick efficiency (crosses in bottom panel of Fig. 3). When
v, > 0, LCD protocols do not prevent dark-bright transitions
and exhibit nonzero kick efficiency. Since the bright-dark gap
is smaller than the typical bright band gap Ay, especially far
from resonance where the bright-dark gap tends to close, LCD
allows dark-bright transitions as in UA driving.

The difference in gap scales gives LCD both the advantages
of CD for efficient transfer and the advantages of diabatic
UA for depopulating dark states. For slow ramps t, > 7,
LCD and UA have similar transfer efficiencies as the diabatic
transition probabilities are small. In faster ramps (z, < 79),
bright band transitions are suppressed by LCD but not UA.
Meanwhile, LCD saturates to a maximum kick efficiency for
T, < Tp, in contrast with UA protocols which peak around
7, ~ 10 and then lose kick efficiency as t, — 0. The distinc-
tion between LCD and UA protocols in this fast limit will be
further quantified in Eq. (43), following Appendix E, where

1.0 4 @_ ...........................
o
(ILO
0.8 - O-.
—— CD Sy
7t 0.6 { Z0- LCD
UA
041 . ...
0.2 1 T T B T
0.1 0.2 0.3 0.4
054 0O L=10 0
O L=12 ,O"
0479 0 L=14 dj’
— 0.3 - 5
M o
0.2 - -
A
0.1 - dj:r '
0.1 0.2 0.3 0.4

Density of spin flips N/L

FIG. 4. Efficiency vs polarization sector. The vertical axes show
transfer efficiency (top) and kick efficiency (bottom) for fast LCD
(colored) and UA (gray) sweeps across resonance in a system with
an inhomogeneous bath field. The horizontal axis shows the density
N/L =M/L + 1/2 of spin flips above the fully polarized state in
M < 0 sectors. We plot theoretical predictions to 77, based on the
thermodynamic limit calculations at zero disorder [cf. Egs. (26)
and (41)] and to 7, based on 7, [cf. Eq. (43)]. For reference, we
also plot corresponding efficiencies for CD protocols. Parameters:
N, =150, Q5 =10, 4 =5,g=0.1, y, = 0.05, and 7, = 500/L.

it is argued that in the limit 7, — O the kick efficiency is
proportional to the transfer efficiency.

Finally, note that this work focuses on the weak xx-disorder
limit y,, < g where there is a finite gap between bright bands
at numerically accessible system sizes. However, a finite
bright pair gap is not necessary to design efficient LCD pro-
tocols that need only target a typical gap between the bright
bands. In Appendix D we show that LCD maintains high
transfer and kick efficiencies in the presence of strong xx
disorder even in the presence of small gap as long as the bulk
of the bright spectrum still has a gap ~Ay,.

D. Protocol efficiency and polarization sector

We compare the efficiencies of CD, LCD, and UA proto-
cols for a single sweep across different polarization sectors
M. Since all protocols systematically reduce polarization, it
is crucial to understand how the transfer and kick efficiencies
depend on the polarization sector. The results are summarized
in Fig. 4 for a fast ramp (7, = 0.05 7p) in a system with an
inhomogeneous bath field (y, = 0.05) for multiple system
sizes L.

As expected, CD always produces unit transfer efficiency
and zero kick efficiency. Moreover, LCD outperforms UA
by both efficiency measures in every polarization sector. The
top panel shows the transfer efficiency 7, plotted against
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N/L=M/L —1/2. For both LCD and UA protocols, the
transfer efficiency decreases with N/L because the minimal
gap and the number of bright state pairs ng = (N:]) increases
with N/L, in turn increasing the likelihood of diabatic transi-
tions between bright pairs. For LCD, the transfer efficiency is
maximal (7 = 1) in the sector with N = 1 because there is
only one bright state pair with gap A, = Arcp to target.

The bottom panel shows the kick efficiency 7, plotted
against N/L. For both LCD and UA, the kick efficiency in-
creases with polarization. This increase can be understood by
comparing the number np of dark states to the number of
bright pairs np within each sector. In the sector with N = 1,
there are (L — 2) dark states compared to a single pair of
bright states, which severely limits the pool of bright states
that dark states can transition to. As we probe increasingly
larger N, ng eventually surpasses np such that ng/np — O(L)
as N/L — 0.5. The number of available bright states that
dark states can transition to increases and thus enhances kick
efficiency.

Figure 4 also shows the analytic predictions (black curves)
for the transfer efficiency from Eqs. (26) and (41), consistent
with the collapse of the curves. For LCD in fast ramps (41),
the only dependence of 77 is on m = M/L, consistent with the
collapse of i curves at different system sizes as a function of
spin flip density (N/L ~ M/L + 1/2). The transfer efficiency
in Eq. (26) depends on both m and g’L/A. To achieve a
collapse of curves at different system sizes, one must also
scale A ~ L to eliminate the residual L dependence, yielding
a transfer efficiency which depends only on N/L. In prac-
tice, the collapse can be achieved by scaling up Ao ~ L at
fixed ramp time 7, or scaling down 7, ~ 1/L at fixed ramp
range; in our simulations, we have implemented the latter.
Both predictions show excellent agreement with simulation
results in most magnetization sectors, except near N ~ O(1)
where finite size effects are significant. Such finite-size effects
also lead to the deviation of the numerically observed bright
pair gap distribution in Fig. 2 from the analytical one at large
negative values of M.

Remarkably, there is a simple approximate relation be-
tween 7 and 7jg for LCD and UA protocols in the presence
of z disorder at moderate-to-fast ramps 7 < 7. Along with
Egs. (41) and (26), this relation provides an analytical predic-
tion for the kick efficiency, such that the protocol efficiency
can be fully characterized analytically. Assume that the prob-
ability weight that is not successfully transferred to states with
up qubit polarization ergodically mixes between the available
dark and bright states with spin down. Then,

ng(l1 —=7r) +np

Ppy(t,) =~ Pp, (0 42
py (1) ~ Pp(0) - (42)
which implies a kick efficiency
— Pp () ng  _ N _
g =1—- =~ —2 7, = SNC5)

~ n
Ppy(0)  ng4np (L—-N) "

The black curves in Fig. 4 show 7 computed using
Egs. (43), (41), and (26). These analytic curves are in good
agreement with the numerical data for both LCD and UA.
Note that the derivation of Eq. (43) assumes equal mixing
between dark and bright states: Closer to integrable points,
this assumption breaks down, and an analytic relation between

UA CD LCD
0.0 ] !
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FIG. 5. Polarizing the spin bath. Expectation value of the bath
polarization per spin ((S;)) along a sequence of N, = 100 back and
forth cycles of the detuning X across resonance. Top and bottom
panels show a typical realization for systems with zero and finite
z disorder, respectively. The system is initialized in an infinite tem-
perature state. The forward-backward transfer flow between resets
is illustrated by the gold arrows. Gray dotted lines denote the po-
larization of the fully polarized state. Parameters: L = 4, Qp = 10,
M =5,g=0.1, . =0.05, y, =0 (top), y, = 0.05 (bottom), and
7. /70 ~ 0.05.

the transfer and kick efficiency is no longer possible. The
resulting protocols hence depend on the interplay of different
effects across magnetization sectors: increasing m, the total
number of bright states capable of transferring polarization
increases, the average transfer efficiency decreases, and the
kick efficiency increases.

IV. HYPERPOLARIZING THE BATH

We now turn to the performance of the various protocols
over multiple reset-transfer cycles. In particular, we show how
the ability of LCD to kick dark states enables complete bath
spin polarization.

Figures 5 and 6 illustrate the progressive polarization of
the bath over multiple (N, = 100) reset-transfer cycles in UA,
CD, and LCD protocols. We focus on fast sweeps 7,/ty =~
0.05, where the effects of LCD and UA are significantly dif-
ferentiated. For this simple demonstration, we consider a qubit
coupled to three bath spins; however, the observed qualitative
behavior generalizes to larger baths (see Sec. V). In both
figures, we measure the expectation value of the average bath
spin polarization per spin:

((S5) = 7— Y (83, (44)
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0.0 4 — N — The state of the system after ¢ transfer-reset polarization
~ 7= = 0.00 ~ 7= = 0.05 cycles is given by:
-0.1 A - -
Pg,,[0]
= _0.2- Ps 1]
a)m 0.2 B%
~ -0.3 1 D ’
~ PB PB | [L]
P = = = . 5 45
-0.4 1 © [PD] Pp,,[0] “45)
Pp, (1]
_0.5 L I T T I I 1 E
10° 10" 10% 10° 10 102 LPp,y[L]]

cycle

FIG. 6. Spin bath polarization vs cycle. Average bath polariza-
tion per spin vs cycle number with the same setup as in Fig. 5.
Parameters: Ny, =1, L =4, Qp =10, 4y = 5, g = 0.1, y,, = 0.05,
y. = 0 (top), . = 0.05 (bottom), and 7, /7y =~ 0.05.

where (Sj) = Tr[,o(t)Sj] is the expectation value of Sj in the
density matrix p(t) of the system at time ¢.

In Fig. 5, the bath polarization per spin is shown as a func-
tion of the detuning A(¢) across resonance. After each transfer
sweep, the qubit polarization is reset and the direction of
the ramp reversed; the resulting forward-backward motion is
depicted by the gold arrows. Figure 6 shows the corresponding
bath polarization per spin after every cycle.

In a typical realization of a system with a homogeneous
bath field (y, = 0), CD protocols at first quickly reduce the
bath polarization due to their maximal transfer efficiency but
soon slow down and saturate as dark states become popu-
lated. The saturation point lies well above the fully polarized
state (see gray dotted line ((S§)) = —0.5). In contrast, UA
protocols are relatively inefficient and much slower to reach
saturation, requiring many more sweeps. LCD protocols per-
form only slightly worse than CD and much better than UA;
they eventually also saturate above the fully polarized state.

In a typical realization of a system with an inhomogeneous
bath field (y, = 0.05), CD protocols behave the same as in the
homogeneous limit, quickly polarizing the bath to a saturation
point. LCD protocols no longer saturate and can polarize the
bath close to the fully polarized state due to their nonzero kick
efficiency. Since the hyperpolarization scheme progressively
populates smaller M sectors, and the kick efficiency decreases
with decreasing M (see Fig. 4), the polarization rate per cycle
decreases as we ((S3)) — —1/2. UA protocols, like LCD, are
able to fully polarize the bath, but their smaller kick efficiency
requires many more sweeps.

V. SCALING TO LARGE BATHS

In this section, we explore how the number of cycles
needed to hyperpolarize the bath scales with system size L.
So far we focused on relatively small system sizes L < 10 to
design and test our protocols with accessible exact dynamic
simulations. To circumvent the resource cost of simulating ex-
act dynamics with larger system sizes, we introduce a scalable
master equation of the hyperpolarization process in terms of
probability flow equations which should be accurate at large
transfer speeds.

where Pg | [N] is the probability of finding the system in a
bright state with down qubit polarization in the sector with N
spin flips above the fully polarized state, and Pp |[N] is the
probability of finding the system in a dark state with down
qubit polarization in the same sector. We do not track the
probabilities of bright and dark states with up qubit polariza-
tion, as they are always converted to states with down qubit
polarization after reset. Moreover, as there exist no dark states
with down qubit polarization forM > 0, Pp |[N] = Ofor N >
L/2. Finally, we assume that the bath is fully characterized by
the probabilities in Eq. (45) and ignore any correlations in the
density matrix between individual dark and bright states since
the bath generally decoheres between different polarization
cycles. This assumption is justified a posteriori by compar-
ing the efficiencies predicted by the master equation to exact
simulations.

The dynamics of the system is obtained by applying a
transfer matrix 7'

P(c+1)=T P(c), (46)
where the transfer matrix can be schematically written as
Tgs  Tpp
T = . 47
|:TDB TDDi| “7)

The transfer efficiency nr sets the probability that the qubit
polarization is flipped in bright states during a sweep across
resonance. On the other hand, the kick efficiency ng sets the
probability that dark states are kicked into bright states. We
assume that dark states with down qubit polarization are only
kicked into bright states with down qubit polarization. When
the qubit polarization is reset after each sweep, bright states
with qubit state |1) transition to either bright states (with
[4)) or dark states (with || }) in a lower magnetization sector,
with relative probability 7g and rp, respectively. Therefore, the
nonzero matrix elements of the transfer matrix are given by:

Tppli, i1 =1 —nrli] (48)

Tppli — 1, 1] = rplilnrlil (49)

Tpgli — 1, i1 = rplil nrli] (50

Tppli, i] =1 — nkli] (51)

Tppli, il = nkli] (52)

for every sector index i=0,...,L. Figure 7 illustrates

the transfer and reset rates for a single cycle. Note
rgli] + rpli] = 1, so only one reset rate needs to be specified.
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Transfer Reset Repeat

FIG. 7. Effective model. Schematic representing the action of the
transfer matrix through the efficiency functions n and reset rates
r in bright (red) and dark (black) manifolds in two neighboring
polarization sectors N = i + 1 and N = i during a single polarization
(transfer and reset) cycle.

As shown in Sec. III, the different protocols CD, UA, and
LCD have different efficiency functions ny[i] and ng[i]. Here,
we consider moderate-to-fast ramp speeds (z, < 1p) where
LCD and UA have distinct effects. Since we are interested
in obtaining the scaling of the full protocol, we linearize the
previous expressions and model the kick efficiency for LCD
and UA as

nklil = no é; (i < L/2), (53)

and model the corresponding transfer efficiency nr[i] (i <
L/2) using Eq. (43).

The reset rates rp[i] and rg[i] depend on the probability
distribution of the state within each bright/dark band and
details of the structure of eigenstates. Furthermore, these rates
can drastically change from one disorder realization to another
and are hence difficult to predict. To get a reasonable esti-
mate for our master equation, we take rp[i + 1] and rg[i + 1]
proportional to to the number of accessible dark and bright
states in the i'” sector, respectively. For M > 0, all the weight
is transferred to bright states,

rgli+1]=1, M >0, 54)

since dark states have qubit spin up and are not accessible
during reset. For M < 0, dark states have qubit spin down and
become accessible, such that

nglil
nglil + nplil’

with np and np given by Egs. (9) and (16), and we refer to
this reset rate as well mixed. Although we cannot generally
satisfy the equiprobable condition within every bright band,
we expect to approximately have well-mixed reset rates on
average in large disordered systems.

We test the master equation in Fig. 8, which compares UA,
CD, and LCD dynamics with Eq. (46) to the corresponding
exact dynamics for different system sizes (L =4, 8). The
figure plots the average bath polarization per spin over many
cycles for a single disorder realization. Our master equation
agrees well with the results from exact dynamics for all
protocols, justifying the assumptions in Eq. (45). The exact
dynamics is computed at small ramp times 7, ~ 0.05 7. To
properly capture protocol efficiencies at this ramp speed, we

rpli+ 1] = M <0, (55)

0 20 40 60
cycle

0 10 20 30
cycle

FIG. 8. Spin bath polarization vs cycle. Average bath spin po-
larization after every transfer-reset cycle over many cycles. The left
and right panels show simulation results for systems of size L = 4
and L = 8§, respectively. Colored markers indicate numerical results
using our scalable master equation. Solid colored lines correspond to
exact dynamics simulations. Parameters: Ny = 1, Qp = 10, Ay = 5,
2=0.1, y, = 0.05, y, = 0.05, and 7, = 500/L.

set g &~ 1.0 for LCD and 71 ~ 0.4 for UA in accordance with
the results in Fig. 4.

The master equation allows access to much larger system
sizes compared to exact diagonalization. Figure 9 shows the
number of cycles N, required to reach 99% of the polariza-
tion of the fully polarized state against system size L. The
opaque and faint curves denote master equations capturing
7, = 0.01 79 and 7, = 0.05 7o, respectively.

We find that the number of polarization cycles needed to
fully polarize the bath in both LCD and UA protocols scales
linearly with system size L. The main difference between
LCD and UA is in the prefactor, depending on protocol du-
ration, and which can be orders of magnitude larger in the
UA protocol compared to the LCD protocol at sufficiently
fast ramps. In slower ramps 7, > 75 (not shown), LCD and
UA have similar prefactor, but the prefactor for UA however
increases as 1, is decreased. Our results are consistent with
the expectation that as 7, — 0, UA takes progressively more

108 {— LCD Pty

FIG. 9. Number of cycles to 99% polarization vs system size.
Master equation simulation results are shown for UA (dashed black)
and LCD (solid red) protocol. Opaque curves show results for ng =
1.0 set for LCD and 1y = 0.1 set for UA, which model ramps with
7, = 0.01 7. At this ramp speed, we find N, & 4L for LCD and N, =
40L for UA. Faint curves show results for ny = 1.0 set for LCD and
no = 0.4 set for UA, which model ramps with 7, = 0.05 7y. At this
ramp speed, we find N, &~ 4L for LCD and N, ~ 10L for UA.
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cycles to fully polarize the bath. Thus, moderate-to-fast LCD
is not only time efficient but also optimizes the number of
cycles required to reach the fully polarized state.

We conclude this section with a couple of remarks. (i) The
master equation is applicable at sufficiently fast ramp times
T, < Tp~ A Ar_nizn, where A, ~ +/L g in the lowest polar-
ization sectors. To ensure this condition holds as L — oo,
we scale Ao ~ L. Otherwise at fixed Ao and sufficiently large
L ~ Ao/(t,2), the master equation would need to be refined
to properly account for more complicated speed dependencies
in the transfer and kick efficiencies. (ii) Similarly, our master
equation is based on efficiency measurements at sufficiently
large z disorder, where y, 2 Afnin /Ao. In the lowest energy
sectors, this requires y. > Lg”/Ao. Again, the L dependence
can be canceled by scaling Ag ~ L.

VI. FLOQUET ENGINEERING (FE) OF LCD

The physical implementation of the LCD protocol requires
realizing a nontrivial operator [H, S§]. We show how it is
possible to obtain this LCD Hamiltonian as an effective high-
frequency Hamiltonian through Floquet engineering.

Floquet engineering focuses on the design and physical
effects of periodic drives [84]. A periodically driven system
exhibits dynamics which can be described stroboscopically
using an effective slow/static Floquet Hamiltonian Hg. Fre-
quently, a control is periodically modulated at a frequency
scale w larger than any other dynamical frequency in the sys-
tem, and Hr can be (Magnus) expanded in powers of w1 [84].
In addition to capturing high-frequency physics, the Magnus
expansion has a commutator structure closely related to the
structure of the gauge potential in Eq. (34) and can be used to
realize local counterdiabatic driving at every order [55].

A. Two-level system

In order to give some intuition for the many-body Floquet
protocol, we illustrate the general ideas on the two-level sys-
tem of Egs. (8) and (28). Temporarily dropping the bright
state label and making the time-dependence implicit, the CD
Hamiltonian to be realized can be written as

Hep = A8 4+ A8 + ha  AS. (56)

In an experimental setup only A is an accessible control pa-
rameter, whereas A is constant and the §¥ term is absent
(as it corresponds to a complex many-body operator acting
on the bright pair states). In order to realize Hcp as an ef-
fective Hamiltonian, we consider a LZ Hamiltonian and add
high-frequency oscillations modulated by a slowly-varying
amplitude. Specifically, we consider a time-dependent Hamil-
tonian of the form

Hgg(1)

=y ()8.+ AS,+ [B()wsin(wt)+ B(t)(1— cos(wr))]3,,
(57)

with B(¢) and y () slowly-varying functions to be determined.

The choice of this time dependence is motivated by
the resulting effective Hamiltonian: In the limit of a large
driving frequency w, the stroboscopic dynamics for this
time-dependent Hamiltonian is generated by the Floquet

Hamiltonian (derived in Appendix H)
Hg = yS. +Jo(B)Alcos(B) Si —sin(B) S,1,  (58)

where the slow time dependence has been made implicit and
Jo 1s a Bessel function of the first kind.

The effective Hamiltonian is of the form (56), containing
a 8y term not present in the instantaneous Hamiltonian. How-
ever, in the CD Hamiltonian the prefactor of S, is constant
and the prefactor of S, is time dependent. Since the (slow)
time dependence of these terms in the Floquet Hamiltonian is
determined by the same factor B(¢), it is not possible to di-
rectly realize the CD Hamiltonian in this way. Rather, we can
realize a Hamiltonian proportional to the CD Hamiltonian.

Demanding Hr = G(t)Hcp, the prefactor for S, imme-
diately returns the time-dependent prefactor of the full
Hamiltonian as

G(t) = Jo(B(1)) cos(B(1)). (59)

Time evolution follows the time-dependent Schrodinger equa-
tion

id; [ (1)) = G(t)Hcp Y (1)) - (60)

Defining a ‘rescaled time’ s(¢) such that 9, = G(¢)d;, Eq. (60)
can be used to realize counterdiabatic control in the rescaled
time provided id, | (£(s))) = Hep(s(t)) | ¥ (s(¢))). The coun-
terdiabatic term is obtained by setting

tan(B (1)) = —a (s(t)A(s(1)), (61)
determining B(¢) as a function of «(¢), leaving
y (1) = G (s(1)), (62)

to finally return Hr = G(t)Hcp(s(z)). Note that the ex-
perimental time necessarily runs in the positive direction,
requiring G(t) > Oand B € [-m /2, 7w /2].

B. FE protocol

The ideas in Sec. VI A can be immediately extended to the
many-body Hamiltonian and LCD of Eq. (36). Given a target
LCD ramp with A(t) = Q¢(t) — Qp, we drive the system with
the Floquet engineered (FE) Hamiltonian:

Hpg = H(A(1)), (63)
with a modified field detuning A(r) = Q¢(t) — Qp given by
A1) = Jo(B(1)) cos(B(1)) A(s(1))
+ Bt w sin(wt) + Bt) (1 — cos(wt)).  (64)
Following Eq. (61), we set
dr(s(1))

B(t) = arctan <— al(s(t))>, (65)

and the rescaled time s = s(¢) satisfying ds = G(¢)dt is de-
fined as

s = / Jo(B(t")) cos(B(t"))dt’ > 0. (66)
0

This FE Hamiltonian is designed precisely so that the leading
order approximation to its Floquet Hamiltonian Hy in the
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high-frequency limit is the LCD Hamiltonian in the rescaled
time:

He = HOGs)) + 1 2

1
a1 ()H(Ms)), ,H] + 0(5)'

(67)
More specifically, the effective Floquet Hamiltonian is found
as (see Appendix H)

Hp = G(r)[x(s(t))Sé + Zm; S;
J

+ ) g (S5SE+8)8)) — tan(B())i [H, Sé]:|,
J

(68)

where (SQ; = (Qp,; — Qp)/G(t) is the renormalized z disor-
der.

The FE protocol is stroboscopically equivalent to LCD
with Arcp in Eq. (35). Moreover, in a smooth ramp A with
X,- =i r =0, Hpg and HF yield the exact same initial and final
states, which guarantees that FE and LCD produce the same
polarization transfer during our hyperpolarization scheme.

We remark that Hr equals Hycp only in the absence of z
disorder (y, = 0). At finite z disorder (y, > 0), the two differ
due to the renormalization 8Q’j of the bath fields. Away from
this point, the renormalization tends to enhance z disorder
since G(¢) € [0, 1]. No significant quantitative differences in
performance were found between FE (in laboratory time) and
LCD (in rescaled time) with renormalized disorder, as shown
next.

The upper panel of Fig. 10 showcases the FE ramp A(¢)
in Eq. (64) for various ramp times t,. The vertical axis is
rescaled by the magnitude of the initial/final detunings Ay =
Xo, which are designed to coincide with the target ramp at
the ramp endpoints. The target ramp A () is shown for refer-
ence (dashed black curve). Near the adiabatic breakdown time
7,/70 = 1, the FE ramp A(¢) has a base profile (averaging
out the oscillations) similar to A(¢), with small oscillation
amplitudes that get slightly more pronounced in the mid-
dle of the ramp around resonance. For progressively faster
ramps 7,/t9 = 0.05, 0.025, the FE ramp A(¢t) shows more
pronounced deviations from A(¢). First observe that the base
profile of FE changes, keeping the system near resonance
for a progressively larger amount of time. Moreover, the am-
plitude of the high-frequency oscillations around resonance
progressively increases due to S(¢) in A(t). Physically, these
properties ensure the qubit and bath interact strongly and
long enough to effect polarization transfer in accordance with
LCD.

The lower panel of Fig. 10 serves two purposes: (i) to show
the effect of FE on the mean qubit z polarization (S§) over the
course of a sweep, and (ii) to highlight the equivalence of FE
and LCD protocols. The qubit is initialized with spin down
(85) = —0.5 in a mixed state. Over the course of the ramp
A(t), FE (solid colored curves) transfers a large fraction of
the qubit polarization to the bath in perfect agreement with
LCD (dashed white lines). For reference we also show an UA
protocol at 7, /19 = 0.05 (dashed black curve); as expected it

4.0 A
3.0 A
2.0 1
1.0 A
0.0 1
—1.01"°
—2.0 7
—3.0 1

Te/To: == 0,025 == 0.05 == 1.0

A(t)/Ao

0.2 A
0.1 A
0.0 A
—0.1 7
—0.2 1
—0.3 1
—0.4 1
—0.5 1
: : . T .
0.00 0.25 0.50 0.75 1.00

t/ T

(S5(t))

FIG. 10. Floquet engineered ramp. Top panel shows the FE ramp
A(t) (solid colored curves) as a function of time ¢ for ramp times
7, = 0.025, 0.5, 1.0. The target ramp A(¢) (dashed black curve) is
shown for reference. The bottom panel shows the effect of FE ramps
on the mean qubit polarization (S§(¢)) over the course of the ramp at
7, = 0.25, 0.5. The corresponding LCD curves are shown to coincide
with the FE curves. Curves for UA and CD at 7, = 0.05 t are shown
for reference. Parameters: L = 8, Qp =10, Ag = Ao =5, g=0.1,
Yo = 0.05, ¥, = 0.05, 79 ~ 1000, and @ = 100 (note: for display,
we have graphically reduced w by a factor 10 to decrease curve
density).

is much less efficient compared to FE/LCD and CD at this
ramp speed.

In sum, we can systematically realize LCD with FE, where
the LCD protocol can be implemented indirectly in experi-
ments by driving the local qubit field 2,(¢) periodically at
high frequencies ® > Qg, Qp, 7,7!. Importantly, the FE pro-
tocol requires no controls which are not already present in H
in Eq. (2), similar in spirit to Ref. [59]. It can be achieved by
setting a fixed global field 25 and dynamically varying Q2 (z),
without modifying the qubit-bath interactions. This result dif-
fers from other schemes which require controlling interactions
to realize LCD with Floquet engineering [55,57,58].

C. Quantum speed limit

The distinction between the laboratory time ¢ and the
rescaled time s gives rise to a quantum speed limit. Namely,
there exists a critical ramp time t, = 75, > 0 in the laboratory
frame for which the protocol duration 7y in rescaled time
becomes zero and B — 7 /2. Given sufficiently large driving
frequencies, it is always possible to realize LCD using FE
if the LCD ramp time is larger than this critical ramp time.
However, at shorter ramp times, the proposed protocol would
lead to negative protocol durations in stretched times, and the
FE protocol can no longer realize LCD. The speed limit can
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FIG. 11. Power vs protocol time. Disorder-averaged transfer
power against the scaled ramp time 7, /7 for UA, CD, and FE pro-
tocols. The vertical axis is scaled by (1/ts.) (gray dash-dotted line).
The vertical blue solid line marks the disorder-averaged speed limit
timescale tg;. Parameters: Ny, = 50, L =8, Qp =10, Ag = Ao =5,
g=0.1, y, =0.05, y, = 0.05, 7p ~ 1000, and w = 100.

be derived (see Appendix I) by inverting Eq. (66):
75 = lim / [G(t(s)]'ds' ~ A, (69)
R 0

The timescale ts; is set by the typical bright pair gap Ay,
which is on the order of the time needed to transfer polar-
ization from the qubit to the bath while sitting at resonance.
In fact, the profile G(¢)A(s(¢)) of the FE protocol in Eq. (63)
reduces to a sudden quench protocol to resonance as T — Tgy..

Equations (64) and (69) provide an additional connec-
tion between sudden and adiabatic polarization protocols:
Floquet-engineering implements the adiabatic polarization
protocol in a transformed frame, which resembles a sudden
protocol in the laboratory frame when the speed limit is ap-
proached. For ramps faster than the speed limit 7, /75, < 1,
FE can be extended by taking A(z) = % w sin(wt); then FE
effectively oscillates around resonance for a shorter time than
75, and is no longer as effective as LCD.

This speed limit is quantified in Fig. 11, showing the trans-
fer power vs ramp time for several transfer protocols across
resonance. The transfer power is defined as

ASy _[S50:0) — [8504) o0
T, 7,

measuring the rate at which polarization is extracted from the
qubit per unit ramp time. In the absence of tunable qubit-bath
interactions, the maximum possible polarization transfer is a
unit of polarization on the timescale tg;, shown in the plot
as a gray dash-dotted line. We find that UA protocols operate
far below this rate over the whole range of ramp times. On
the other hand, FE protocols significantly enhance power,
peaking in the vicinity of the speed limit. At protocol dura-
tions T > tg; FE nears the efficiency of CD protocols which,
as expected, transfers polarization more effectively than UA
and FE per unit time. At protocol durations t < tsz, the FE
power lies significantly below the CD power. The presence of
this speed limit suggests a broader physical limitation: Any
ramped protocol which does not directly tune system-bath
couplings or add extra controls cannot transfer polarization
at a faster rate than a sudden resonant exchange.

VII. CONCLUSION

In this work, we apply the tools of shortcuts to adiabaticity
to a class of hyperpolarization protocols. In a single cycle of
each such protocol, the qubit is reset along the —z direction by
an external pulse, after which the z field of the qubit is swept
across a resonance region. Polarization is transferred from the
qubit to the spin bath during the sweep.

We introduce local counterdiabatic driving (LCD) proto-
cols that mimic an adiabatic protocol. The LCD protocols
simultaneously tackle two problems: (i) the small sweep rates
necessary for the adiabatic transfer of polarization to the
bath and (ii) the limits on hyperpolarization imposed by dark
states. The LCD protocols tackle (i) by efficiently suppressing
diabatic transitions between bright bands. They tackle (ii)
by depleting dark states in the presence of inhomogeneous
bath fields (i.e., when the system is nonintegrable). In this
way, LCD protocols outperform both unassisted protocols
and exact counterdiabatic protocols since the former does
not suppress transitions between bright bands and the latter
suppresses transitions from dark to bright bands.

Using exact numerics and a master equation, we show that
the LCD protocols outperform the unassisted ones by various
metrics (efficiency, power, and number of cycles). Addition-
ally, the LCD can be experimentally implemented through a
high-frequency Floquet drive on the qubit. These engineered
protocols have a natural quantum speed limit; once the sweep
rate exceeds this limit, the LCD protocols cannot be realized
through Floquet drives.

The LCD may be used to speed up hyperpolarization in
several experimental systems with dipolarly interacting spins.
Indeed, Eq. (2) models the (rotating-frame) Hamiltonian of
a shallow nitrogen-vacancy (NV) defect coupled to surface
electronic spins in high-purity diamond [79,85,86], as well as
the (rotating-frame) Hamiltonian of a NV defect coupled to
bulk C-13 nuclei [7,12] or the nuclei of external molecules
in solution [17]. A promising avenue for future work is to
compare the performance of LCD protocols to sudden pro-
tocols that satisfy the Hartmann-Hahn condition [23] in these
systems. Hyperpolarization of powdered diamond using NV
centers [12,14] is also an important goal for magnetic res-
onance imaging. It would be interesting to develop LCD
protocols that account for the random orientation of the NV
center axes [the z direction of the central spin in Eq. (2)] in
these systems. An additional direction for future work is to use
optimal control theory to design possibly more efficient pro-
tocols and test the validity of the speed limit. However, such
a numerical optimization problem in the many-body setting is
expected to be highly complex. In contrast, the LCD approach,
while not guaranteed to be optimal, is readily extended to
more complex systems with an arbitrary number of spins and
arbitrary interactions.

Theoretically, our work raises questions about the pre-
cise interplay between integrability and hyperpolarizability
in central spin models. The model in Eq. (2) with y, = 0 is
(i) integrable and (ii) has exact dark states for any choice
of g; [34]. However, the closely related XXX model with
y, = 0 and isotropic qubit-bath interactions ) ;8 j§0 . .S_"j is
integrable without exhibiting dark states [87,88]. The XXX
model describes the hyperfine interactions of the electronic
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spin of a quantum dot with surrounding nuclei [89,90]. Previ-
ous work [31,91] suggests that the spin bath can be efficiently
polarized in the XXX model despite its integrability. A nat-
ural direction for future work is to quantify the general role
of integrability in the polarization process. Another possible
direction is to examine the role of interactions in the spin bath.
The accompanying diffusive spin transport is expected to aid
in the polarization of distant bath spins with negligible g;.
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APPENDIX A: DERIVATION OF CENTRAL SPIN
HAMILTONIAN

Consider a driven qubit-bath spin system in a magnetic
field B along the z direction described by the Hamiltonian:

Hy=Hy+ Hp + Hp + Hpp + Hps. (A1)

Here Hy = yp B S§ is the Zeeman energy of the central qubit

with gyromagnetic ratio yp, and Hp = yp B Zf;]] S; is the

Zeeman energy of the bath spins with gyromagnetic ratio yp.
The driving term is given by

L—1
Hp =2 Qg cos(wgt) S + 2 cos(wpt) Q5 S5.  (A2)
j=1

where 29 is a Rabi amplitude on the central spin, Qp ; =
Qp + 8€2; is a generally inhomogeneous Rabi amplitude on
the bath, and wg, wp are, respectively, the corresponding driv-
ing frequencies. The qubit-bath coupling is given by a dipole
interaction term:

YoVB & @ Y
Hop =) =180+ 8i =35y~ 1) ;- 7).

(A3)

where 7; is the vector between the central qubit and the ith
bath spin. The interaction term Hpp between bath spin pairs
is generally also dipolar. In this work, we assume bath-bath
interactions are small compared to the qubit-bath couplings,
which is realized in experiments with sufficiently low bath
spin density or with bath spins that satisty ys < yp. The
Hamiltonian Hj in Eq. (A1) describes single qubit systems,
such as NV centers in diamond or quantum dots, interacting
with an ensemble of spins (e.g., spins on the surface of di-
amond) and driven by continuous irradiation fields (such as
radio waves) [5,16,17,19,23,24,38].

In a doubly rotated frame defined by the unitary transfor-
mation

L-1
U = exp |:—i(a)Q S5 + wp ZS,Z> t:|, (A4)

i=1

Hj can be simplified by matching the driving frequencies to
the Zeeman energies (wg = yoB, wp = ypB), and applying
a rotating wave approximation to eliminate rapidly rotating
nonsecular terms which average to zero on the timescale of
the dynamics [24]. Relabeling our axes (x, z) — (z, —x), the
dominant time-averaged motion is described by

L—-1 L-1
Hi(t) = QoS5+ Y QS5+ > 28,5585, (AS)
j=1 j=1
where
8 = 2511 =3 cos’(0). (A6)

and 6; is the angle between B and # in the frame of H.
We note our rotating wave approximation requires |g;/B| <
Yo . VB, |Yo £ 8|, which is readily satisfied in NV centers or
quantum dot experiments [16,18].
The interaction term

8587 = i(SarSj_ + SO_S;r + S;’S;r +5,57) (A7)
describes zero quantum (flip-flop) transitions in its first two
terms and double quantum (flip-flip/flop-flop) transitions in-
teractions in its last two terms. Zero quantum transitions
dominate when g; < Q¢ + Q5 ; [24], yielding the Hamilto-
nian presented in the main text:

L—1 L—1
1 S e
H(t)= QoS5+ Y QS5+ 528/‘ (So S; + S5 S))-

j=1 j=1

(A8)

APPENDIX B: DISTRIBUTION OF ENERGY GAPS IN THE
HOMOGENEOUS LIMIT

In this section, we compute the approximate distribution
of bright pair gaps A, [Eq. (14)] in a system with a homoge-
neous bath field (y, = 0). In the homogeneous limit (y,, = 0),
the central spin model reduces to a two-body Hamiltonian

H =S5+ S(S7S™ +5;5%), (B1)

with §* = Z?;& Sf. The spectrum of this Hamiltonian can be
obtained in the collective bath spin basis, as the Hamiltonian
only couples the states: [1) ® |s, m), ||) ® |s, m + 1). Here
s is the total spin quantum number of the bath, and m is the
total z projection of the bath state, leading to M = m + 1/2.
We take —s < m < s, since the states |1) ® |s, s) and ||) ®
|s, —s) are dark eigenstates of the Hamiltonian.

The energy in each two-dimensional subspace is fully de-
termined by the quantum numbers s and m, leading to energies
+A; /2 at resonance given by

Agm =3/ (s —m)(s+m+1). (B2)
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The number of gaps equal to Ay, is fully determined by
the number of ways the (L — 1) spin-1/2 bath spins can
be coupled to a collective spin s with spin projection m.
Furthermore, since m < s and m is fixed by specifying M,
this also leads to a minimal gap within each polarization
sector M, given by A,, = g+/2M + 1, obtained by setting
s =m+ 1 =M + 1/2. Increasing s resulting in an increasing
Ag.m, whereas smaller values of s are not allowed within this
polarization sector.

Given (L — 1) bath spins, the number of spin-s representa-
tions is given by Catalan’s triangle as

N(L)=CU(L—-1)/2+s,(L—1)/2—5) (B3)
B (L—-1D!2s+1)
L2 —=1)2=)L/2+1/2+5)

which can be approximated for large L as

(B4)

L1:(1/2-5/L)

25 + 1 L
V27 L/2+s+1\ (L/2—s)L/2+s)
(B5)
with fi(p) = —pIn(p) — (1 — p)In(1 — p). The total magne-
tization M fixes m such that the energy gap only depends on
s, and we can introduce a gap density as

Ns(L) ~

d
n(A) = NM)(L)i, (B6)

with s(A) = /(A/3)2 + M? — 1/2 and
ds = i (B7)

dA AR+ M

As mentioned before, every fixed magnetization sector has
a minimal gap, which we write as A,, = g+/2M + 1, such
that n(A < A,;) = 0. Due to the presence of the exponential
term, in the limit of large L all integrals over n(A)d A will
be dominated by the boundary terms where A & A,,. Ap-
proximating the exponential factor at s/L = |M|/L = m for
Ay < A KL gM, we find

n(A) ~ K (i)

LA A ] — 2 2*2
, (B8)

VoL A2 \1+2m

K(i) = — _ | ! —. (B9)
12+ m\ 1/4 — w2

APPENDIX C: DIABATIC TRANSITIONS IN THE
LANDAU-ZENER PROBLEM

The Landau-Zener (LZ) problem, described in Eq. (8)
of the main text, consists of a two-level system with gap
Arz = /A2 4+ A2, where A is a control field and A is the
minimum gap [80,81]. When the control field is varied at a
speed A ~ Ao/T,, we can estimate the speed scale below which
the system remains adiabatic. Adiabaticity occurs when the
rate of change of the gap A is smaller than the dynamical
timescale over the whole range of the control field A. In
particular, this condition holds if it is satisfied near resonance

with

(JA] ~ A) where the gap is smallest.

ALz
< A, < ALZ)
Therefore we satisfy the adiabatic condition when the ramp
timescale 7, > Ao/A2. In faster ramps moreover, the scale
Ty ~ Ao/ A? sets the scale for the onset of diabatic transitions.
As discussed in the main text for our central spin model, the
LZ problem directly captures the interactions between bright
bands. Nevertheless, the LZ problem can also help understand
transitions between dark and bright bands, as we discuss next.
In system with y, = 0, the gap App between a dark state
with energy Ep and a neighboring bright state with energy Ep
is given by

App = |Ep — Ep| = %mi %)" (€2)

since Ep =4A/2 and Ep = i%‘/)\.z + A2

min

= < A% (C1)
A=A

and where
Amin = ming A, is the minimum bright-bright gap at reso-
nance. At resonance, the gap is App = Anpin/2, comparable
to the minimum bright-bright gap. In contrast with bright-
bright gaps, dark-bright gaps are smallest furthest away from
resonance A = £Aq:

2
min Apg ~ %(AA—“:‘> Ao- (C3)
In systems with y, = 0, the presence of a small bright-dark
gap does not imply fast ramps yield diabatic transitions be-
cause the driving operator S§ does not couple bright and dark
states.

When z disorder y, > 0 is introduced in the bath field,
dark and bright bands mix and y; sets an energy window for
perturbed dark/bright energies. Then the perturbed dark and
bright bands will begin to overlap at a critical z disorder y¢
given by

yS ~min Apg ~ AL /Ao (C4)

For y. 2 y¢, the gap between dark and bright bands is
effectively closed away from resonance. Then dark-bright
transitions depend on the many-body level spacing AE <
min Apg. Therefore, any finite-speed ramps will yield dark-
bright diabatic transitions provided

7, < Ao/(AE). (C5)

On the other hand, for small but finite z-disorder regime 0 <
v, < ¥5, Eq. (C3) accurately approximates the dark-bright
minimum gap. The ramp timescale for the onset of diabatic
dark-bright transitions is then given by:

T, ~ Ao/(min App)* ~ A3/ Ay (C6)

min*

APPENDIX D: LCD WITH A GAPLESS MODEL

Our main work has focused on the weak disorder limit
Yxr» Yz < &, in wWhich there is a clear nonzero gap between the
bright bands at numerically accessible system sizes. Although
there is a weak trend suggesting that the gap may close in
the thermodynamic limit, it is not clear from the numerics
whether and how this gap will close. In this section, we
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FIG. 12. Histogram of resonant gaps at large xx-disorder
strength. Plot shows histogram of resonant gaps for y,, = 0.5atL =
14 and M = —1. Vertical dashed gray lines shows reference scale
Ayp. Parameters: Ny =1, Qg =10, M =—-1,1=0,g=0.1,y, =
0.00, L = 14.

show that the LCD protocols are still efficient for polarization
transfer and depopulating dark states in a gapless system.

To probe a gapless system, we consider the strong
xx-disorder limit y,, > g of the Hamiltonian model in equa-
tion (2). Then bright pair gaps have the the gap distribution
shown in Fig. 12. Although many bright pairs show exponen-
tially small gaps, the bulk of the distribution lies on the energy

scale Ayp = /> ; g%, as shown by the dashed gray vertical

line.

Figure 13 shows the transfer and kick efficiency for CD,
LCD, and UA protocols as a function of ramp time 7, at large
xx disorder y,, =5, g = 0.5. For concreteness, we focus on
the magnetization sector M = —1 with large Hilbert dimen-
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FIG. 13. Efficiency vs ramp time at large xx disorder. Disorder-
averaged transfer efficiency (top) and kick efficiency (bottom) of UA,
CD, and LCD protocols in systems with y, = 0.00 (crosses) and y, =
0.05 (squares). Parameters: Ny = 100, L =10, M = —1, Qp = 10,
Ao =35,2=0.1, r, = 0.5, and 7y, =~ 10.

0.50
L
-==10
(r) 0.45 - e 13
—14
0.40

FIG. 14. Average level spacing ratio vs qubit field detuning. The
average ratio (r) is shown for several system sizes L. Left panel
(homogeneous bath field) shows a trend toward Poisson statistics
with increasing system size. Right panel (inhomogeneous bath field)
reveals a trend toward GOE statistics around resonance. Gray dashed
lines indicate the Poisson and GOE values. Parameters: N, = 100,
M=—-1, Qg=10, Xo=5, g=0.1, ., =0.05, y, = 0.0 (left),
¥, = 0.05 (right).

sion to bring out the exponential closing of the smallest gaps.
Since the minimum bright pair gap is exponentially small®
in L, making 1y ~ A;ﬂzn exponentially large, we rescale the
horizontal axis instead by Ty, & 210/ ) ; g3 which sets the
scale for the onset of diabatic transitions between a typical
bright pair in the bulk of the spectrum. The behavior of all
protocols is qualitatively similar to the weak disorder limit. In
particular, our LCD protocol maintains a relative high transfer
efficiency and nonzero kick efficiency at fast ramp speeds.
This is to be expected since LCD suppresses transitions by
targeting a single bright pair gap Ay, which is the gap scale
for the bulk of bright pairs.

APPENDIX E: BREAKING INTEGRABILITY
WITH z DISORDER

Energy level statistics are a widely used diagnostic for
ergodicity and chaos [92-94]. The average level spacing ra-
tio (r) is obtained by averaging over an ordered distribution
of energies {E,} the ratio r, = min(s,, s,—1)/ max(s,, S,—1),
where s, = E,+1 — E, [94,95]. In integrable systems satisfy-
ing a Poisson distribution of energy spacings, (r) = 0.3863,
while ergodic systems are expected to satisfy a Wigner-Dyson
distribution in accordance to a grand orthogonal ensemble
with (r) ~ 0.5307.

Figure 14 shows (r) for a range of detunings A around
resonance and multiple system sizes. We average the level
spacing ratio over the middle two quartiles of the spectrum
in the sector M = —1 and further average over N; = 100 dis-
order realizations. The left panel shows a system with y, = 0,
where the ratio (r) tends to the Poisson value with increasing
system size over the whole range of detunings. In contrast,
the right panel shows a system with y, = 0.05, where (r)
tends to the Wigner-Dyson value with increasing system size

SFor comparison with the main text, at weak xx disorder, A, ~ g
in this magnetization sector at accessible system sizes.
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around resonance A ~ 0. This behavior suggests that y, > 0
breaks the integrability of model and establishes chaos and
ergodicity.

APPENDIX F: GAUGE POTENTIAL IN THE ABSENCE OF
z DISORDER

In the presence of a homogeneous global bath field 25,
the central spin Hamiltonian H is integrable and varying A(z)
constitutes an integrable perturbation [34]. Then the closed
form of the gauge potential Eq. (32) is obtained from Eq. (34)
as follows. Let AH = H — QM. Then it can be checked that

[H.S5] = [AH.S§] =i ) gi(SsS)— 885, (F)
i
AH[AH, S| = —[AH, Sj] AH. (F2)
The exact gauge potential satisfies [49]
[0:H + i[Ax, H], H] = 0, (F3)

which can be solved for 0, H = S using Eq. (F2) by
Ay = =7 (AH) [AH, 5], (F4)

The pseudoinverse only acts on the bright states, where we
can expand it as

1
AH)?=4) ——* . F5
(AH) ;MMM (F5)

This reduces to a constant in each bright-state subspace and
returns the total gauge potential as

Aw &
A== msg. (F6)

An alternative way of motivating this solution is by noting
Eq. (F2) implies that
[H.[H,...[H [H S]]
———
k
= QAH)'[AH, S| =2 AH[AH, §5].
Since all nested commutators are proportional to [AH, S§],
the commutator expansion for the gauge potential implies

that the gauge potential itself needs to be proportional to this
commutator up to a AH-dependent prefactor [55].

APPENDIX G: LOCAL VARIATIONAL APPROXIMATIONS
OF THE GAUGE POTENTIAL

The gauge potential can approximated by truncating
Eq. (34) to a desired order g [55]. The approximation can be
improved by setting new coefficients «; which variationally
minimize the following action [54]:

S(A) =Tr[G*]; G =d,H +i[A, H]. (G)

First we express Ay = > a;A;, where {A; 1 j=1,...
the operator basis of order ¢ with

A;j=1[H,...,[H,0,H]].
2j—1

,q}is

107 {CFLCD-1
LCD-3
-O~-LCD-5

T AL ALY | MR | Ty Ty
1073 1072 107! 10° 10!
7/ To

FIG. 15. Transfer error vs ramp time for higher order LCD.
Curves are shown for LCD in the leading three orders labeled by the
number of occurrences of the H in [H, [H, ..., [H, 0,H]]]. Higher
order curves progressively approach the exact CD result 1 — ny = 0.
Parameters: L=8, N, =1, M = -1, Qp=10, =5, g=0.1,
Ve = 0.05, y; = 0.0, 7p = 1000.

Differentiating S(.A;) with respect to a, we obtain:

Zotj Te[{[H, A;], [H, Ac}] = Te[{0,H, [Ar, H]}].  (G2)
j

Thus solving for the variational coefficients «; is equivalent to
solving a matrix equation. In the simplest case (order g = 1)
we can solve the resulting equation directly:
o — Tr[{9,H, [[H, 0,H], H]}]
"7 2Tel[H, [H, , HIP]
For our purposes, 9, H = S, and this expression can be eval-
uated analytically to yield

(G3)

1
"= Ery g (G4)
in accordance with Eq. (35) presented in the main text.
Higher order approximations can be obtained by solving
Eq. (G2) analytically or numerically. Figure 15 showcases
the progressive convergence of local CD approximations to
the exact CD as order g is increased. The plot shows the
transfer efficiency for a numerical simulation of a sweep
across resonance over several orders of magnitude in ramp
time. Although higher order approximations mimic CD more
closely, they come at the cost of increased complexity which
may not be experimentally feasible.

APPENDIX H: HIGH FREQUENCY FLOQUET
HAMILTONIAN

We detail the stroboscopic equivalence between the Flo-
quet Hamiltonian Hy and the LCD Hamiltonian in Eqgs. (57)
and (63) to leading order in the limit of high frequency
. Considering the two-level Hamiltonian (57), we first go
to a rotating frame to cancel the rapidly oscillating term
xB(t)wsin(wt) that will be dominant in the limit w — oo.
Given a unitarity transformation U, the effective Hamiltonian
in the moving frame is given by

Hep = UTHeeU — iUTH,U. (HI)
We now take

U = exp(—if(t) 5), (H2)
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generating a rotation about the z axis by an angle 6(¢) =
B(t) (1 — cos(wt)). The resulting Hamiltonian in this rotating
frame reads:

Hrg = y(t)S° + Alcos(0(1))S* — sin(0(2))S”]. (H3)

In the high-frequency limit, ™! is the fastest timescale, lead-
ing to a timescale separation such that all parameters in the
Hamiltonian are effectively constant over multiple driving
periods of cos(wt). Moreover, we can perform a Magnus
expansion of Hgg in powers of w~! to approximate the Flo-
quet Hamiltonian Hr [84]. To leading order, Hr is found by
averaging Hgg over a period T = 27 /w:

Hp = Hgg[cos(0) — (cos(0));sin(0) — (sin(8))] + O(l)
w
where

1 T
(cos(0)) = ?/ dt cos(6(r)) = Jo(B)cos(B),  (H4)
0

and
1 T
(sin(9)) = ?/ dt sin(0(t)) ~ Jo(B) sin(B), (H5)
0

where Jj is a Bessel function of the first kind, and any time
dependence of B has been neglected. This returns the Flo-
quet Hamiltonian proposed in the main text, satisfying Hgp =
G(B)Hicp with G(B) = Jo(B) cos(B).

The same derivation holds for the central spin model, with
the unitary transformation given by U = exp(—i 0(¢) S§). This
returns

Are = G() M(s(1)) S5+ Y _ 8957
J

+) " gj[cos@(t)) S — sin(0(1)) $3] S*
J

+ ) & [(sin(@)S} + cos(6(1))S}] S
J

(H6)

Regrouping terms and using Eq. (33) of the main text, we ob-
tain the presented Floquet Hamiltonian as the period-averaged
Hrg.

We conclude this section with a couple of remarks: (i) The
laboratory and rotating frames periodically coincide such that
the state of the system under dynamics generated by Hpg(f)
is stroboscopically identical in both frames. (ii) The evolu-
tion under Hpg(¢) is further stroboscopically equivalent to the
evolution under Hr(t) by design, where the remaining time

dependence in Hp is through the slow variation of (¢) and
y (t). This implies by extension that dynamics under the LCD
captured by Hp(s) is stroboscopically equivalent to Hpg(f)
to leading order at high driving frequencies. (iii) Requiring
that A = A = 0 at the ramp endpoints further guarantees the
equivalence and stability of FE and LCD over a full sweep
across resonance.

APPENDIX I: SPEED LIMIT

The mapping between Hpg and Hpcp requires a time-
rescaling transformation dt — ds = G(t)dt. Interestingly,
there exists a finite laboratory timescale ts;, at which the
corresponding rescaled time vanishes. Although FE ramps
over shorter timescales are possible, they no longer map to
LCD ramps.

To derive the speed-limit timescale consider a laboratory
frame ramp with timescale 7 and let 75 be the corresponding
ramp in the rescaled frame. Then

rngIG(t)dt, rzfrs[G(t(s))rlds. an
0 0

Since G(t) <1, then 75 <t. The smallest laboratory
timescale for which this mapping holds is given by:

To = limo / i [G(t(s))] " 'ds. (12)
s—0 Jo

Rescaling the integral by s = s/tg and expanding the
Jo(B) cos(B) term to leading order for 8 ~ 7 /2, we obtain:

1
Ty = — limOC/ g M(tss) (s s)ds + O(rs), (13)
0

T5—
where
_ _Jo/b
V200 /2)
For concreteness, we evaluate this limit directly for a linear
ramp A = 2Ao/7s. Using Eq. (35), we have
1

1
s =20 C ds'. 15
o /0 QoS — M2+, 8 1

Setting Ay, = /ngi = /(L —1)g, we obtain

tan[24o/ A 1
vy ~ 1,08 rcan[2ro/Agpl )
Auyp L-1g

a4

where the last scaling is obtained for ramps which begin/end
far from resonance A¢ > A, and using g,s ~ g for y S 2.
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