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We derive a topological classification of the steady states of d-dimensional lattice models driven by D
incommensurate tones. Mapping to a unifying (dþD)-dimensional localized model in frequency space
reveals anomalous localized topological phases (ALTPs) with no static analog. While the formal
classification is determined by dþD, the observable signatures of each ALTP depend on the spatial
dimension d. For each d, with dþD ¼ 3, we identify a quantized circulating current and corresponding
topological edge states. The edge states for a driven wire (d ¼ 1) function as a quantized, nonadiabatic
energy pump between the drives. We design concrete models of quasiperiodically driven qubits and wires
that achieve ALTPs of several topological classes. Our results provide a route to experimentally access
higher dimensional ALTPs in driven low-dimensional systems.
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Introduction.—Topological order in static systems can
underlie the quantization of nonequilibrium responses in
slowly driven systems with fewer dimensions. A well-
known example is the Thouless charge pump, a slowly and
periodically driven insulating wire that transmits charge at
a quantized rate [1–6]. Fourier transform of the drive
produces a static frequency lattice with one spatial and
one synthetic dimension in the presence of a weak electric
field. Charge pumping in the wire can then be understood
via the integer quantum Hall effect in the frequency lattice.
Analogous arguments also relate a qubit slowly driven by
two incommensurate tones to a frequency lattice with two
synthetic dimensions [7–12]. In this setting, the integer
quantumHall effect manifests as a quantized energy current
between the two drives.
Can nonequilibrium responses be quantized away from

the adiabatic limit? An affirmative answer with periodic
driving is provided by the two-dimensional anomalous
Floquet-Anderson insulator (AFAI), which transports
charge along the boundary of the sample at a quantized
rate. Charge pumping in the AFAI can be understood
through a topological invariant of a frequency lattice, now
with two spatial and one synthetic dimension [13,14].
In this Letter, we use the frequency lattice construction to

reveal nonadiabatic topological responses in quasiperiodi-
cally driven systems. Our key observation is that the
frequency lattice treats spatial and synthetic dimensions
on an equal footing when its eigenstates are localized
(Fig. 1). More formally, the topological classification of
localized phases of d-dimensional tight-binding models
driven by D incommensurate periodic tones depends
only on the total frequency lattice dimension dþD. The
classification is by an integer when dþD > 1 is odd and is
trivial otherwise. We call the nontrivial phases anomalous
localized topological phases (ALTPs).

We obtain the observable signatures of ALTPs for each
d, with dþD ¼ 3 from the frequency lattice as summa-
rized in Fig. 1. In particular, edge states in the frequency
lattice manifest as a quantized energy current between the
two drives for the d ¼ 1 wire. We verify our predictions
numerically in concrete models and close with experimen-
tal implications.

(a)

(b)

(c)

(d)

FIG. 1. Correspondence between ALTPs with fixed dþD ¼ 3.
(a) (0þ 3): A qudit driven by three incommensurate frequencies
showing chiral circulation of energy ⟪M⟫ between the drives.
(b) (1þ 2): A localized fermionic chain driven by two tones also
exhibits an energy-charge circulation in the bulk and topological
edge states that pump energy between the drives ⟪I⟫. (c) (2þ 1):
A localized two-dimensional system driven by one tone has a
quantized bulk magnetization and quantized edge currents
[13,14]. (d) (3þ 0): All three systems have a unifying description
in terms of a static frequency lattice with localized bulk
eigenstates and an electric field Ω⃗.
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The effects of quasiperiodic driving have been exten-
sively studied in few-body systems [15–29] and more
recently in many-body settings [30–37]. A cohesive fre-
quency lattice lens allows us to significantly expand the
number of dynamical phases accessible by quasiperiodic
driving.
Localization and the frequency lattice.—Tight-binding

models in d spatial dimensions driven byD incommensurate
periodic tones are described by a Hamiltonian
H½θdþ1ðtÞ;…; θdþDðtÞ� (we use the indices j ∈ f1;…; dg
for spatial dimensions). We assume H is smooth and
periodic in each of the D drive phases θjðtÞ ¼ Ωjtþ θ0j,
where Ωdþi is the angular frequency of the ith drive and
θ0ðdþiÞ is its initial phase. For brevity of notation, we
assemble the drive phases and frequencies into a vector
such as Ω⃗ ¼ PdþD

j¼dþ1Ωjêj. The quasiperiodicity of the
driving is stated formally as Hðθ⃗tÞ ¼ Hðθ⃗t þ 2πêjÞ [38].
We look for a basis of solutions to the Schrödinger

equation of the form

jψαðtÞi ¼ e−iϵαtjϕαðθ⃗tÞi; ð1Þ

where α indexes the system’s Hilbert space, ϵα is a constant
quasienergy, and jϕαðθ⃗Þi is a smooth quasienergy state
defined on the torus of drive phases. Equation (1) is the
generalization of the Floquet-Bloch decomposition to
quasiperiodic driving [15,19,39]. Substituting Eq. (1) into
the time-dependent Schrödinger equation, i∂tjψαðtÞi ¼
Hðθ⃗tÞjψαðtÞi (with ℏ ¼ 1), and Fourier transforming gives

ϵαjϕαn⃗i ¼
X
m⃗∈ZD

ðHn⃗−m⃗ − n⃗ · Ω⃗δn⃗ m⃗Þjϕαm⃗i; ð2Þ

where Hn⃗ and jϕαn⃗i are the Fourier components of Hðθ⃗Þ
and jϕαðθ⃗Þi, respectively.
Introducing auxiliary degrees of freedom associated to

the Fourier components jn⃗i—a frequency lattice—allows
the quasienergy states to be explicitly represented as the
eigenstates

P
n⃗∈ZD jϕαn⃗ijn⃗i of a quasienergy operator

[15,19,40]:

K ¼
X

n⃗;m⃗∈ZD

ðHn⃗−m⃗ − n⃗ · Ω⃗δn⃗ m⃗Þjn⃗ihm⃗j: ð3Þ

K has the form of a lattice Hamiltonian with an electric field
Ω⃗ and translationally invariant hopping matricesHn⃗. As the
Hn⃗ themselves act on a d-dimensional lattice, the full
dimension of the frequency lattice is dþD, with d spatial
and D synthetic dimensions. The frequency lattice is
illustrated in Fig. 1(d) for dþD ¼ 3.
Although Eq. (3) holds for classical driving, it is useful to

interpret the auxiliary state jnji as corresponding to the
photon number of the jth drive [11]. A nearest-neighbor
hop along direction j then corresponds to photon emission

or absorption into drive j, while the potential energy Ωjnj
accounts for the energy of the drive.
We demand localization of the quasienergy states in the

spatial dimensions for the purposes of stability of our
classification. Localization ensures that small perturbations
by local operators do not strongly couple distant quasie-
nergy states, preventing the dramatic rearrangement of
eigenstates that could otherwise occur.
Localization in the synthetic dimensions is then equiv-

alent to the existence of a complete set of solutions (1). To
see this, note that the Fourier expansion of the solution

jψαðtÞi ¼ e−iϵαtjϕαðθ⃗tÞi ¼ e−iϵαt
X
n⃗∈ZD

jϕαn⃗ie−in⃗·θ⃗t ð4Þ

converges only when the Fourier components jϕαn⃗i are
square summable, that is, when the eigenstates of K are
normalizable. When we have localization in both spatial
and synthetic dimensions, we refer to the system as being in
a localized phase.
An immediate dynamical consequence of localization is

the quasiperiodic time dependence of local observables.
This follows from the decomposition of an observableOðtÞ
in the Heisenberg picture in the basis of quasienergy states,

OðtÞ ¼
X
α;β

Oαβðθ⃗tÞe−iðϵβ−ϵαÞtjϕαðθ⃗0Þihϕβðθ⃗0Þj; ð5Þ

where Oαβðθ⃗tÞ ¼ hϕαðθ⃗tÞjOð0Þjϕβðθ⃗tÞi is quasiperiodic.
(We have assumed O does not have explicit time depend-
ence.) Roughly, localization of jϕαðθ⃗tÞi implies that only
finitely many of the terms Oαβðθ⃗tÞ contribute significantly
to expectation values, so that hOðtÞi is explicitly quasi-
periodic. Mathematically, the power spectrum of all local
observables in a localized phase is pure point [18,19].
Formal classification.—The topological classification is

most naturally expressed through the micromotion operator
(cf. [41])

VðΦ⃗; θ⃗Þ ¼
X
α

jϕαðθ⃗Þihαj; ð6Þ

where jαi is a basis for the system’s Hilbert space and we
have suppressed the dependence of the quasienergy states
on the d fluxes Φ⃗ twisting the periodic boundary conditions
of the spatial dimensions. In a localized phase the micro-
motion VðΦ⃗; θ⃗Þ is a smooth map from the (dþD)-
dimensional torus defined by Φ⃗ and the drive phases θ⃗
to the unitary group. It is well known that such maps are
classified by an integer winding numberW½V� when dþD
is odd, defined by [42–45]

W½V�¼CdþD

Z
ddΦdDθϵj���kTr½ðV†∂jVÞ���ðV†∂kVÞ�; ð7Þ
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where the integral is over the torus, ϵj���k is the Levi-Civita
symbol, ∂j is differentiation with respect to one ofΦj or θj,
and CdþD is a constant [46].
Theorem.—ThewindingnumberW½V� is an integer valued

topological invariant characterizing localized phases with
dþD > 1. That is, if the two Hamiltonian-frequency pairs
½H0ðθ⃗Þ; Ω⃗0� and ½H1ðθ⃗Þ; Ω⃗1� are joined by a connected path
½Hsðθ⃗Þ; Ω⃗s� (where s ∈ ½0; 1�) such that all the ½Hsðθ⃗Þ; Ω⃗s�
have localized quasienergy states, then W½V0� ¼ W½V1�.
In the Supplemental Material [46] we show that, under

the conditions of the theorem, the path between the
micromotion operators Vs is continuous [53]. As W½V�
is invariant under smooth deformations of V [42], the
theorem follows [46]. We refer to a localized phase with a
nontrivial winding number W½V� ≠ 0 as an anomalous
localized topological phase (ALTP).
As promised, the classification depends only on the

frequency lattice dimension dþD. Note that the Floquet
classification of anomalous phases without symmetry is
reproduced with D ¼ 1 [41].
Observable consequences.—The formal classification of

ALTPs is physically interesting only because it predicts
quantized observables. The physical observables depend on
d. We identify these for d ∈ f0; 1g when dþD ¼ 3 and
later verify our predictions numerically (Fig. 2). The
Floquet case d ¼ 2 is well studied [13,14].
The chiral energy circulation captures the topological

response of (0þ 3)-dimensional ALTPs—qudits driven by
three incommensurate tones. In more detail, the Heisenberg
operator for the instantaneous rate of work done on the
qudit is U†∂tHðθ⃗tÞU ¼ P

jΩjU†∂jHðθ⃗tÞU, where U ¼
Uðt; 0Þ is the evolution operator from time 0 to t. As energy
input into the qudit must come from the drives, it is natural
to identify U†∂jHU ≡ − _nj as the rate of photon transfer
out of the jth drive. An operator measuring the rate at

which photons circulate between the drives [Fig. 1(a)]
is then

MðtÞ ¼ 1

4
ðn⃗ × _n⃗Þ · Ω̂þ H:c:; ð8Þ

where n⃗ is the integral of _n⃗, and we can drop the constant
of integration [46]. Introducing the notation ⟪A⟫T ≡
ð1=TÞ R T

0 dtTr½AðtÞ�, we prove [46]

⟪M⟫T ¼ jΩ⃗j
2π

W½V� þOðT−1Þ: ð9Þ

That is, the long-time average of the circulation in an initial
mixed state ρ ∝ 1 is quantized and proportional to the
winding number.
A quantized circulation is also present in (1þ 2)-

dimensional ALTPs—wires driven by two incommensurate
tones. However, in contrast to the (0þ 3)-dimensional
ALTP, there are also edge signatures of topology.
At a boundary of the wire there is a topological energy

current between the drives [Fig. 1(b)]. The frequency
lattice for the driven wire has a slab geometry. A nonzero
winding number in the bulk is accompanied by current-
carrying edge states, which must run perpendicular to Ω⃗,
due to Stark localization by the electric field Ω⃗ [Fig. 1(d)].
If Ω⃗ ¼ Ω2ê2 þ Ω3ê3, the edge current is parallel to
Ω3ê2 −Ω2ê3. That is, photons are transferred from drive
3 to drive 2 (or drive 2 to drive 3, depending on the sign of
W½V�) in an energy current.
Quantitatively, the long-time average of the energy

current into drive j, IjðtÞ ¼ Ωj _njðtÞ, in an initial state
localized near an edge is [46]

(a) (b) (c)

FIG. 2. Numerics for the model Hδ. (a) (0þ 3): Phase diagram. Colors represent the value of ⟪M⟫T over a fixed time T. In black
delocalized regions, the Fourier spectrum of ⟪M⟫T is not pure point on numerical timescales. (b) (0þ 3): ⟪M⟫T for parameter values
which are marked by stars in (a) against averaging time T. The average circulations converge to the theoretically predicted quantized
values. (c) (1þ 2): The work done on drive j at one edge of the wire, T⟪Ij⟫s;T (10). Energy is transported between drives 2 and 3 at the
predicted quantized average rate. Parameters: (a) δ=B0 ¼ 0.01, ω⃗=B0 ¼ ð2; 1.618031…; 1.073506…Þ and Ω⃗ ∝ ω⃗. (b) Ω⃗ ¼ ω⃗, h ¼ 2
(blue), and h ¼ 5 (red). (c) Lattice size L ¼ 40, s ¼ 14 sites filled; see Eq. (14). Further details are reported in [46].
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⟪Ij⟫s;T ≡ ⟪Ijρs⟫T ¼ �Ω2Ω3

2π
W½V� þOðT−1; e−s=ξÞ:

ð10Þ

Here, ρs is a projector onto lattice sites localized within s
sites of the edge, ξ is the single-particle localization length,
and the sign depends on which drive j is being considered.
Experimentally, this is the response of a noninteracting wire
filled with fermions up to a distance s from the edge.
Model.—Constructing a (0þ 3)-dimensional ALTP is

difficult because simultaneously achieving localization in
all the (synthetic) frequency lattice dimensions and a
nonzero winding number is delicate. The electric field Ω⃗
must be the cause of localization, as in the absence of Ω⃗ the
quasienergy operator K is translationally invariant and all
eigenstates are delocalized Bloch states. Indeed, a strong Ω⃗
compared to the typical hopping amplitude J does localize
the quasienergy states, as adjacent sites in the frequency
lattice become far detuned from one another. However,
too short a localization length cannot lead to a nonzero
circulation (9). By adding further-neighbor hops, we
engineer a “sweet spot” with localization across a few
sites and quantized circulation.
We construct a family of driven qubit models indexed by

δ ≥ 0. We define Hδ¼0ðθ⃗Þ ¼ −ðB⃗1 þ B⃗2Þ · σ⃗=2, where σ⃗ is
the vector of Pauli matrices, B⃗1 corresponds to a short-
range model on the frequency lattice, and B⃗2 has the
further-neighbor hops. Explicitly, B⃗1 ¼ B0hηjσ⃗jηi, where

jηðθ⃗Þi ¼ ðsin θ1 þ i sin θ2Þj↑i

þ
�
sin θ3 þ i

�
hþ

X3
k¼1

cos θk

��
j↓i ð11Þ

is an unnormalized eigenstate of B⃗1 · σ⃗, and h is a
dimensionless parameter [54,55]. The field B⃗2 is given by

B⃗2 ¼
½ðω⃗ ·∇ÞB⃗1� × B⃗1

jB⃗1j2
: ð12Þ

When the vector of parameters ω⃗ ¼ Ω⃗, this term acts as a
counterdiabatic correction ensuring that the quasienergy
states are parallel to jηðθ⃗Þi [56,57]. Our choice of jηðθ⃗Þi
then allows for nonzeroW½V�, depending on the value of h
[54,55]. For general δ > 0we truncate the Fourier spectrum
of Hδ¼0ðθ⃗Þ:

Hδðθ⃗Þ ¼
X

fn⃗∶kH0
n⃗
kF≥δg

e−in⃗·θ⃗H0
n⃗; ð13Þ

whereH0
n⃗ are the Fourier coefficients ofH

δ¼0ðθ⃗Þ and k · kF
is the Frobenius norm.

Figure 2(a) shows the phase diagram obtained by
numerically solving the Schrödinger equation for Hδ>0

with fifth-nearest-neighbor hops [58]. Three topological
phases of winding numbersW ∈ f0; 1;−2g are visible. The
quantized energy circulation of these phases (9) is verified
in Fig. 2(b).
The winding numbers coincide with those predicted by

having quasienergy states parallel to jηðθ⃗Þi near Ω⃗ ¼ ω⃗.
For large enough frequency jΩ⃗j ≫ B0; jω⃗j the localization
length is short and W ¼ 0 (not shown). At lower frequen-
cies jΩ⃗j≲ B0, jω⃗j the quasienergy states may delocalize.
By reinterpreting one of the synthetic dimensions of

Hδðθ⃗Þ as spatial we obtain a (1þ 2)-dimensional model
with ALTPs. Then the electric field causes localization in
the spatial dimension. Explicitly, drive 1 (say) is replaced
with a lattice of sites jn1i with an electric potential −Ω1n1
and quasiperiodically time-dependent m-site hops:

Hδ
mðθ2; θ3Þ ¼

Z
dθ1
2π

eimθ1Hδðθ⃗Þ: ð14Þ

Truncating the lattice provides the necessary edges to
observe topological boundary effects.
Figure 2(c) confirms that the energy current is quantized

(10). The exponential localization of the current-carrying
modes at the edge can be observed in Fig. 3.
Experimental prospects.—(0þD)-dimensional ALTPs—

driven qudits—are within immediate experimental reach in a
number of solid-state and optical architectures [59–61].
Signatures of topology in the adiabatic limit have already
been observed with two-tone-driven nitrogen vacancy
centers [10].
(1þ 2)-dimensional ALTPs could be achieved in driven

fermionic wires [5], but equivalent single-particle physics
are available in several platforms [59,62–66], in particular,
a qubit coupled to a quantum cavity [67] or a bosonic chain.
In the former the “edge” at which an energy current occurs

FIG. 3. Localization of edge modes. A fit to the slope of
T⟪Ij⟫s;T with T gives an estimate of the average current,
⟪Ij⟫s;fit. The current increases exponentially toward the predicted
value (10) as the number of initially filled sites s is increased. An
exponential fit in the topological regime gives a localization
length of ξ ≈ 2. Parameters: as in Fig. 2(c). Further details are
reported in [46].
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is the vacuum state. We demonstrate topological signatures
in the qubit-cavity ALTP in [46].
An energy current between two drives can form the basis

of many useful devices, e.g., conversion of photons from
one frequency to another [7–9,32,34], cooling cavities [11],
one-way circulation of energy between cavities, and the
preparation of exotic cavity states [11,68]. The nonadia-
batic energy currents of the (1þ 2)-ALTPs promise to
make these devices faster and more stable.
Outlook.—We have derived a stable topological classi-

fication of quasiperiodically driven lattice models and
identified the quantized observables that distinguish each
phase. Localization in a dual frequency lattice is central to
our understanding of these phases.
In one dimension, localization is believed to be stable to

the addition of weak interactions [69–72]. We speculate
that d ¼ 1 ALTPs are stable interacting phases, even at
infinite temperature, due to this many-body localization
(MBL); see Refs. [73,74] for the (2þ 1) case. The MBL
ALTPs would provide new examples of localization-
protected quantum order [75]. The bulk l bits of the
MBL chain would support an energy-charge circulation,
while the edge l bits would support energy currents.
We have discussed observable signatures for each ALTP

with dþD ¼ 3. A natural extension is determining the
corresponding observables for larger numbers of drives and
other symmetry classes. This would provide experimental
access to the topological physics of driven systems in four
dimensions and higher. To date, such responses have been
observed only in the adiabatic limit [76,77].
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several helpful discussions. We would also like to thank E.
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Note added.—Recently, Ref. [78] appeared, which provides
complementary models of (1þ 2)- and (0þ 3)-dimensional
ALTPs. Where Ref. [78] overlaps with this work, they agree.
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