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EikoNet: Solving the Eikonal Equation With Deep
Neural Networks
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Abstract— The recent deep learning revolution has created
enormous opportunities for accelerating compute capabilities in
the context of physics-based simulations. In this article, we pro-
pose EikoNet, a deep learning approach to solving the Eikonal
equation, which characterizes the first-arrival-time field in het-
erogeneous 3-D velocity structures. Our grid-free approach allows
for rapid determination of the travel time between any two points
within a continuous 3-D domain. These travel time solutions
are allowed to violate the differential equation—which casts the
problem as one of optimization—with the goal of finding network
parameters that minimize the degree to which the equation is
violated. In doing so, the method exploits the differentiability of
neural networks to calculate the spatial gradients analytically,
meaning that the network can be trained on its own without
ever needing solutions from a finite-difference algorithm. EikoNet
is rigorously tested on several velocity models and sampling
methods to demonstrate robustness and versatility. Training and
inference are highly parallelized, making the approach well-
suited for GPUs. EikoNet has low memory overhead and further
avoids the need for travel-time lookup tables. The developed
approach has important applications to earthquake hypocenter
inversion, ray multipathing, and tomographic modeling, as well
as to other fields beyond seismology where ray tracing is essential.

Index Terms— Geophysics, partial differential equations
(PDEs), ray tracing, travel time.

I. INTRODUCTION

THE 3-D ray tracing is a fundamental component of
modern seismology, having direct applications to earth-

quake hypocenter inversions [8], seismic tomography [29],
and earthquake source properties [4]. These derived products
further form the basis for many downstream seismological
applications. The Eikonal equation is a well-known nonlinear
partial differential equation (PDE) that characterizes the first-
arrival-time field for a given source location in a 3-D medium
[17]. The Eikonal formulation can be solved with several
finite-difference algorithms [18], [20], [27], with varying com-
putational demands and stabilities to the solutions.
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Recent advances in deep learning have shown to be
extremely promising in the context of physics-based simula-
tions [7], [31]. This technology has started to be applied to
geophysics as well, for example, to predict the acoustic wave
response of a medium given a velocity model as input [15],
forecast the next time step of a wavefield conditional on its his-
tory [15], and accelerate viscoelastic simulations [5]. However,
these techniques rely on inputs from precomputed physics-
based models, which could themselves contain modeling-
based artifacts and input bias. Instead, we wish to learn the
underlying physics by incorporating the formulations into the
neural network architecture and loss function. These physics-
based procedures [1], [13], [19], [22], [28] take advantage
of the backpropagation procedure to compute the gradient of
the neural network output relative to the input terms. Such
physics-informed neural networks (PINNs) [19], [22] are mesh
independent, giving a continuous function output related to
the inputs. These techniques have been used to learn the
parameterization for formulations of the Burgers, Schrodinger,
and Navier–Stokes equations, with comparisons made to the
numerical derivatives [22].

In this article, we propose EikoNet, an approach to solving
the factored Eikonal equation. EikoNet can be trained to learn
the travel time between any two points in a truly continuous
3-D medium, avoiding the use of grids. We leverage the
differentiability of neural networks to analytically compute the
spatial gradients of the travel-time field and train the network
to minimize the difference between the true and the predicted
velocity model for the factored Eikonal formulation. EikoNet
is massively parallelized and therefore well-suited for GPUs,
has low memory overhead, and avoids the need for travel-
time lookup tables. In addition, EikoNet has several novel
advantages that are not currently offered with conventional
finite-difference schemes.

II. EIKONAL FORMULATION

The Eikonal equation is a nonlinear first-order PDE repre-
senting a high-frequency approximation to the propagation of
waves in heterogeneous media [17]. The equation takes the
general form

�∇Ts→r�2 = 1

V (�xr )
2 = S(�xr )

2 (1)

where � · �2 is the Euclidean norm, Ts→r is the travel time
through the medium from a source location s to a receiver
location r , Vr is the velocity of the medium at the receiver
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location, Sr is the slowness of the medium at the receiver
location, and ∇r is the gradient at the receiver location.

The value of travel time is computed by minimizing the
misfit of a travel-time field that satisfies the user imposed
velocity model, with the additional boundary condition that the
travel time at the source location equals zero, Ts→s = 0. Solu-
tions to 1 have a strong singularity at the source location [25],
leading to numerical errors close to the source. To mitigate
such singularity effects, a factored formulation is often used,
with solutions representing the travel-time deviation from a
homogeneous medium with V = 1 [25]. The factored travel-
time form can then be represented by

Ts→r = T0 · τs→r (2)

where T0 = � �xr − �xs�, representing the distance function from
the source location, and τ is the deviation of the travel-time
field from a model travel time with homogeneous unity veloc-
ity. Substituting the formulation of 2 into 1 and expanding
using the chain rule, then the velocity can be represented by

V ( �xr )

=
[

T 2
0 �∇

r
τs→r�2 + 2τs→r ( �xr − �xs) · ∇

r
τs→r + τ 2

s→r

]− 1
2

. (3)

The partial differential terms in 3 are typically solved
using a finite-difference approach and will be discussed in
Section IV.

III. METHODS

A. Network Architecture and Training

Our approach to solving the Eikonal equation trains a deep
neural network, fθ , to predict the travel-time field, τ , between
an input pair of source–receiver coordinates, �x = [ �xs, �xr ]. The
deviation of the travel-time field is then represented by

τ = fθ (�x) (4)

with the corresponding travel time between source and receiver
location represented by 2.

If τ was known, a neural network could be trained for
catalog source–receiver pairs. However, τ itself is unknown,
being the solution to the equation that we want to solve.
Instead, only the velocity model and a differential equation
specifying how τ relates to V are known, but this can be
used to train the neural network. Thus, we cast the problem
as one where we aim to accurately predict the local velocity,
assuming that the output of fθ is indeed τ , and use this value
to compute V from 3, defining this predicted velocity as V̂ .
Here, we exploit the differentiability of deep neural networks
to analytically determine the spatial gradient of 4 with respect
to �xr . This is possible because the layers and activations of
the neural network are chosen precisely to be analytically
differentiable. In this study, we use Pytorch to calculate the
gradients and perform all network training.

Solving the factored Eikonal equation is therefore reduced
to training a neural network with supervision on the velocity
model, by iteratively updating the parameters θ to minimize
some loss function. Once trained, the Eikonal equation is no

longer needed, as fθ outputs τ directly [see Fig. 1(a)]. In the
process, the details of the velocity model will be encoded
in the network, requiring the network to be retrained if the
velocity model is to be changed. As such, the algorithm is
fully capable of solving the Eikonal equation from scratch,
without needing to run a separate finite-difference simulation
to generate training data.

The model architecture is a feedforward network consisting
of a series of residual blocks with fully connected layers
[10] followed by nonlinear units [see Fig. 1(a)]. We use an
exponential linear unit (ELU) as the activation [3] function on
all hidden layers. This activation was chosen as the method is
aligned with the notion of natural gradients, which uses the
geometry induced by Fisher information to adjust the gradient
direction [3], pushing the activation to stay in a region that is
not saturated.

The optimal number of layers (or residual blocks) generally
depends on the complexity of the training data. Here, we use
ten residual blocks, which was found to provide the best results
for the tests herein, comprising a total of 7 913 249 parameters
to be optimized. For highly complex velocity structures, this
number may need to increase.

The neural network learns the travel time between any
source–receiver pair and must contain adequate sampling from
across the 3-D medium. The input features are organized into
a vector of six components

�x = [Xs , Ys , Zs, Xr , Yr , Zr ] (5)

where X , Y , and Z are the Cartesian coordinates of the
source or receiver. The features are paired with the seismic
velocity at the receiver location

y = V (Xr , Yr , Zr ). (6)

A training data set therefore consists of many (�x, y) samples,
taken from across the 3-D volume [see Fig. 1(c)]. We discuss
how these data sets are constructed in Section III-B.

The misfit between the predicted V̂ , as determined from 3,
and observed V velocities are then minimized using a mean-
squared error loss function

L = �V − V̂ �2. (7)

We use the Adam optimization algorithm for training with a
learning rate of 5 × 10−5 [12] [see Fig. 1(d)]. The batch and
data set size are set to 752 and 106, respectively, with their
variability discussed further in Section VI-B. The data set is
separated into training and validation data, with the validation
data set at 10% of the total size. An additional test data set is
created representing 104 source–receiver pairs that are blind
to the user prior to loss calculation. For all the simulations,
we use a single Nvidia Tesla V100 GPU, with models taking
66 s per epoch given the parameters mentioned earlier. The
effects of parameter values on computation cost can be found
in Section VI-B

Once trained, the network can be applied to a series of user-
defined source–receiver pairs to determine the travel time and
predicted velocity, as shown in Fig. 1(e).
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B. Building a Training Data Set

Our approach builds a training data set by randomly sam-
pling source and receiver points from the continuous 3-D
medium and labeling each with the velocity at the receiver
location. Since the velocity model is gridded, we use linear
interpolation to map these values to a continuous domain.
In this study, we explore three different methods for sampling
the velocity model. In these formulations, we investigate two
sampling techniques from the classical theory of Bertrand
paradox: sampling random points across the model space and
sampling points at random distances.

1) Random Distance: The data set is composed of a series
of source locations selected randomly across the model space.
Once a source point is selected, a receiver point in space is
sampled at a random distance away from the source location
along a random vector. This method inherently allows the
source–receivers pairs to have a distance distribution that is
uniform across the model space.

2) Random Locations: The data set could also be composed
of a series of randomly selected source and receiver locations.
This allows for a more random distribution of points across the
model space, but inherently has a nonuniform distribution of
distances between source and receiver points, with a lower
sampling at short distances, as expressed by the Bertrand
paradox.

3) Weighted Sampling: In complex velocity contrasting
models, the training procedure could quickly learn areas of
simple velocity variations, and we act to improve the training
efficiency of this procedure by allowing dynamic resampling
of the training source–point pairs for values of greatest misfit.
For the first epoch of training, we minimize the misfit between
the actual and predicted velocity estimates using an L2-norm
but also determine an importance weight parameter, w, for
each training sample defined by

w =
∣∣V̂ − V

∣∣
V

(8)

where V̂ is the neural-network predicted velocity value and
V is the actual imposed velocity model. The weight value
is high for the samples with the greatest relative misfit.
For subsequent training epochs, training samples are selected
based on the weight value normalized by the maximum
weight in the training data set. To mitigate stagnation in the
extremes of the weight distribution, we project the weights
between a user-defined minimum and maximum, represented
by [min, max] = [0.1, 0.9]. This bound was chosen to mitigate
the undersampling of regions with low misfit and oversampling
of regions that could contain singularities.

C. Model Verification

The accuracy of the solution to the Eikonal equation is given
directly by the loss, which quantifies the degree to which the
solution violates the PDE in a least-squares sense. Thus, after
training is finished, we can predict the travel time to all points
desired within the 3-D medium and use 1 to calculate the
learned velocity model. Comparing the learned velocity model
to the actual velocity model provides a visual and rigorous

quantitative approach to understanding the accuracy of the
solution [see Fig. 1(e)].

IV. BASELINES

In this section, we discuss some current approaches for
solving the Eikonal formulation. While there have been
many techniques developed for solving the Eikonal equation,
a number of these can be broadly classified as either fast
marching methods (FMMs) or fast sweeping methods (FSMs).
The FMM is a grid-based numerical scheme that uses a
special finite-difference operator to track the evolution of the
minimum travel time using an advancing interface scheme
[20], [23]. In contrast, the FSM is an iterative method for
solving the Eikonal equation via upwind differencing using a
Gauss–Seidel iteration scheme [30]. This method groups the
wavefronts by the sweeping directions in addition to meeting
the requirement of increasing travel times orthogonal to the
wavefronts. Typically, this sweeping procedure is implemented
six times, for each of the positive and negative directions
in the Cartesian coordinate system. As this method does not
have to track an advancing interface, the computational cost is
lower than the FMM, although this procedure can breakdown
in the presence of strongly heterogeneous velocity structures
[2]. A more in-depth comparison between the FMM and FSM
methods computational costs and solution misfit can be found
in [2].

Throughout this study, we utilize the python FMM as a
baseline since it is less sensitive to sharp velocity contrasts
with only minor differences in the computational time to
the FSMs [2]. To compute the FMM travel times, we use
the CPU toolkit scikit-fmm (https://pythonhosted.org/scikit-
fmm/) to formulate the travel time from a source location
on a receiver geometry at 0.1 km grid spacing in the X, Y,
and Z dimensions. The root-mean-squared (rms) travel-time
difference between the FMM and EikoNet approaches is
calculated for each of the models. The FMM simulations are
only used for comparison and are not used in the training of
the neural network.

V. VELOCITY MODEL EXPERIMENTS

Outlined are a series of experiments designed to demon-
strate the versatility of our approach for learning travel-time
fields in complex 3-D velocity models. We consider four
different velocity models and examine the performance of the
trained network. Each network is trained with a batch size
of 752, using a data set with 106 random distance source–
point pairs with a weighting range of [0.1, 0.9]. The effects
of dynamic sampling and weighting are discussed further in
Section VI.

A. Homogeneous Velocity

The first model we consider is a homogeneous 3-D veloc-
ity structure with a value of 5 km/s [see Fig. 2(a)]. For
demonstration purposes, a source is placed at [X, Y, Z ] =
[10 km, 10 km, 1 km], with both X–Z and X–Y slices of
the travel-time field shown. At each receiver point, we plot
the learned velocity using 1 and use this to determine the
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Fig. 1. Overview of processing workflow. (a) Neural network architecture composed of fully connected layers and residual blocks. Each residual block is
composed of three fully connected layers with 512 neurons. ELU activations are applied on all hidden layers. (b) Summary of Eikonal equation for Ts→r and
Vr . (c) Sampling of source–receiver pairs across the 3-D volume to build the training data set. (d) Network training through the minimization of loss function
relating predicted and observed velocity values. (e) Inspection of neural network outputs by passing user-defined source–receiver pairs.

percent error. For comparison, we also show the FMM solution
calculated on a grid of receivers with 0.1 km grid spacing in
the X , Y , and Z dimensions, providing a travel-time rms with
the EikoNet travel times. The training loss goes to zero after
110 training epochs, showing that the network has learned
the travel-time field perfectly. When comparing the EikoNet
solution with the analytical solution, the rms travel-time error
is zero. The FMM solution has an rms travel-time error of
0.0113 s.

B. Graded Velocity

Next, we consider a velocity model that increases linearly
with depth [see Fig. 2(b)]. The model increases from 3 km/s
at the surface to 7 km/s at 20 km depth. Comparison with the
conventional finite-difference scheme shows good agreement,
with a mean difference between the imposed and recovered
velocity models of 0.00209 km/s. The rms travel time with
the FMM solution reaches a value of 0.0189 and 0.0072 s
with the analytical solution.

C. Block Model

The third test conducted is a 3-D model containing a
central cube embedded within a homogeneous background
[see Fig. 2(c)]. The cube has a constant velocity of 7 km/s,
whereas the background velocity is 5 km/s. Here, the neural
network approach has excellent misfit between the actual and
learned velocities, with only minor disagreement close to
sharp velocity gradients. The neural-network travel-time field
is similar to that of the finite-difference scheme, with the
effects of the sharp velocity contrast shown in the deflection of
the travel-time fronts, a low travel-time rms of 0.0311 s, and
a low mean velocity difference of 0.094 km/s. This model
demonstrates that the neural network approach is able to
reconcile even difficult cases with the sharp velocity changes
of 20% of the mean value.

D. Checkerboard Velocity

The fourth test conducted contains a 3-D checkerboard,
which we use to demonstrate that the proposed algorithm is
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Fig. 2. Velocity model experiments with comparison to finite-difference and imposed velocity models. (Left) X–Z and X–Y slice from the imposed
velocity model, overlayed by the finite-difference expected travel-time. (Middle) X–Z and X–Y slice from the neural network recovered velocity model and
neural-network travel time. (Right) X–Z and X–Y slice velocity model differences between the imposed and recovered velocity models.

able to reconcile positive and negative velocity anomalies vary-
ing spatially within the domain. The velocity varies between
6 and 4 km/s, with a grid spacing of 6 km, meaning that
the model is not symmetrical about the central point [see
Fig. 2(d)]. We compare the solution with the finite-difference
scheme and actual velocity model, showing that the deep
learning approach is able to reconcile the velocity model with
a mean velocity difference of 0.19 km/s and a travel-time rms
of 0.0342 s.

E. Industry Velocity Model—Marmousi2

The final velocity model that we test is the Marmousi2 2-D
model. The Marmousi2, expanding on the original Marmousi
model [26], is based on a geophysical profile through the
North Quenguela Trough in the Cuanza Basin, Angola. This

model represents a 17 km × 3.5 km cross section of strongly
heterogeneous velocity contrasts attributed to changes in sub-
surface geology, offsets from fault structures, and reservoir
levels [14]. We investigate the specific use of EikoNet on the
S-wave velocity, as shown in Fig. 3(a). Due to the complexity
in the velocity structure, we expand our network to use
20 residual blocks, to enable EikoNet to encapsulate even the
smallest resolution velocity contrasts. The network is trained
across 400 epochs with 1000 batches of 752 pairs randomly
sampled per epoch. We apply this method to minimize the
undersampling on sharp velocity contrasts, expected from a
fixed sample data set. Training for the 400 epochs required
a total of ∼ 6 h on a single Nvidia V100 GPU. Fig. 3(a)–
(c) shows the EikoNet travel-time and velocity fields for
a series of source locations, on a 0.001-km grid spacing.
For comparison, FMM finite-difference travel-time simulations
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Fig. 3. Marmousi2 2-D travel-time formulations using EikoNet and finite-difference methods. (a) Colormap of the imposed 2-D velocity model. (b) Recovered
travel-time and velocity model fields from a source location at [0 km, 0 km] to a point grid at 0.001 km spacing. Colormap represents the recovered velocity
and white contours represent the travel time at 0.1-s spacing. (c) and (d) Similar plot to (b) but with the different source locations of [0 km, 1.1 km] and
[0 km, 2.25 km] respectively.

are created for each of the source locations on the same
point grid spacing. Travel-time rms is computed with values
ranging between 0.34 and 0.42 s and a mean velocity model
difference of 0.17 km/s. These simulations demonstrate that
the EikoNet formulation is able to reconcile the broad-scale
sharp velocity contrasts of the complex subsurface geology,
as shown on the edges of the velocity model, but are unable
to reconcile the sharp small-scale velocity contrasts, as shown
at the center of the model. An underrepresentation of these
features is expected to be attributing to the 0.34–0.42 s travel-
time variations between the FMM and EikoNet travel-time
formulations. Although misfit still remains, we envisage that
future research in more complex dynamic sampling schemes,
with an adaptive sampling around sharp velocity contrasts and
velocity misfit, could help mitigate the underrepresentation of
these small-scale sharp velocity features.

VI. SAMPLING EXPERIMENTS

Having demonstrated that deep neural networks can indeed
learn to directly solve the Eikonal equation, we now examine
the effect of the sampling scheme on the learned solution.
Here, we use the block velocity model from Section V
and train separate models using each of the three sampling

techniques described in Section III-B. We also separately test
how the total number of training samples and batch size affect
the performance.

A. Sampling Schemes

Fig. 4 shows the validation results for each of the three
sampling methods. The weighted random sampling approach
achieves the lowest loss of the three sampling methods, yet
converges in a similar number of training epochs. However,
the other two methods still perform well, as the differences
in validation loss are relatively small. For the random loca-
tion procedure, there is a greater misfit closer to the source
location, expected due to the bias of the length scale to longer
distances due to the Bertrand paradox, and as such, we use the
random distance metric for sampling. Although the weighted
sampler has little effect on the loss values and travel-time rms
value, we expect that the weighted random sampling will be
of increasing importance in very complex 3-D models and
recommend it for selection of source–point pairs.

B. Size of Training Data Set

We investigate how the number of training samples and
batch size affect the network performance (see Fig. 5).
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Fig. 4. Sampling schemes and their influence on the network performance. (Left Column) Schematic of the different type of sampling. (Middle Column)
Learned velocity model for each simulation. (Right Column) Misfit between the predicted and the imposed velocity model. (Bottom) Training, validation, and
testing loss for each of the simulations.

We rerun the simulation with three data set sizes (104,
105, and 106) and three batch sizes (64, 256, and 752),
inspecting the recovery of the final solution and the validation
loss for each simulation. Fig. 5(i) shows the variation of
the optimal recovered solution for the different batch and

sample sizes, with columns representing the increasing number
of samples and rows representing the increase batch size.
Fig. 5(j) shows the validation loss for each of the sepa-
rate simulations with the line color corresponding to the
panel color.
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Fig. 5. Training loss effects with changing sample number and batch size. (a)–(i) Different models runs, with a number of samples increasing by columns
left to right and batch size increasing by rows from top to bottom. (j) Validation loss, along with test loss for each of the separate model runs with color
matching the panel labels.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 05,2021 at 16:39:36 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SMITH et al.: EIKONET: SOLVING THE EIKONAL EQUATION WITH DEEP NEURAL NETWORKS 9

Fig. 6. Seismic ray multipathing procedure applied to an adapted block model velocity experiment with low-velocity block and high-velocity background.
(a) Imposed velocity structure and schematic of the travel times between source locations S1 and S2, to some point P . (b) Travel times from each of the
receiver locations to a grid of receiver locations. (c) Combined travel-time field from the source locations to each of the receiver locations, TTP . (d) Gradient
of the combined travel-time field at each of the receiver locations, (∂TTP/∂ P). Stationary points are represented where this value is zero, with these points
representing possible secondary arrival ray paths.

From Fig. 5, it is clear that the number of training samples
has a profound influence on the network performance. The
data set with 106 samples achieves a loss that is about an
order of magnitude lower than the data set with 104 samples.
In addition, through inspection of the recovered velocity
model, we can see that the low sample size is unable to
reconcile the complex velocity structure of the sharp velocity
contrast of the block model. Therefore, it is crucial that an
adequate number of training samples number should be used
when constructing the data set. Future work could investigate
dynamic sampling of the velocity model space to reconcile
regions of greatest misfit.

While the batch size is seen to influence the training results
early on, the final best loss value is seen to be insensitive to
this hyperparameter (see Fig. 5). This is important as larger
batch sizes are much more computationally efficient.

VII. FUTURE APPLICATIONS

In this section, we discuss the application of EikoNet to a
series of travel-time required problems, outlining the advan-
tage of EikoNet over conventional finite-difference methods
and how these procedures would be implemented.

A. Earthquake Location

In an earthquake location theory, a series of seismic instru-
ments is used to record the arrival time of the incoming

seismic wave. These instrument arrival times are then inverted
using a velocity model to determine an earthquake location
and location uncertainty. In recent years, advances in seis-
mological instrumentation have allowed for the incorporation
of distributed acoustic sensing (DAS), using optical fibers
as a series of nondiscretized station locations [24]. Current
travel-time finite-difference techniques are not tractable for
handling the tens of thousands of virtual receivers that DAS
arrays provide. This would require a large computational cost
and disk storage space. In comparison, our machine learning
technique scales independently of the number of receivers, has
a compact storage footprint, and can rapidly evaluate forward
predictions from the network.

B. Ray Multipathing

The Eikonal formulation represents the first arrival between
source and receiver locations. However, in complex velocity
models, sharp gradients in the velocity structure can produce
a multipathing effect with the energy partitioned between
multiple ray paths. Rawlinson et al. [21] acted to mitigate this
effect by employing FMM to track the evolution of the seismic
wavefront for a narrowband of nodes, representing an interface
of interest. Once the outgoing wave traverses one of these
node locations, an additional simulation is triggered and the
combined wavefield used to determine a possible secondary
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Fig. 7. Effects of transfer learning on the training loss for the Block model velocity experiment. (a) Training snapshots of a full-training procedure and transfer
learning from the homogenous model. Rows represent the full-training and transfer learning approaches. Columns represent the snapshot of the velocity model
for a series of training epochs. (b) Training, validation, and testing loss for each of the separate simulations.

pathway. The deep learning approach can be adapted to include
additional secondary arrivals by determining the travel time
from two separate source locations to the same point in space.
Fig. 6(a) and (b) shows the travel-time field from the two
source locations to a series of points within the block model
velocity experiment but now altered with a slow velocity center
and faster velocity background. By combining the travel time
for the source locations to each of the points, we acquire the
combined travel-time field, as shown in Fig. 6(c). By taking
the gradient of this combined-travel time across the network
relative to the receiver locations [see Fig. 6(d)], we can
determine whether the points are stationary [21], having a
gradient value close to zero and therefore representing a
possible secondary phase arrival pathway. EikoNet is able to
quickly formulate travel-time fields and take gradients relative
to the receiver locations with each possible multipathing point
calculated in 7 s for 1 × 106 points on a single CPU, making
this procedure beneficial for multipathing simulations.

C. Tomographic Modeling

For tomographic inversions that undergo many iterations
successively, new travel-time fields must be computed from
scratch for each iteration. Our approach allows for the neural
network model from the previous iteration to be used as the
starting point for the next training procedure, which could
rapidly converge to the new velocity model if the perturbations
are relatively small. This would effectively remove ray tracing
as a computational burden from this part of the tomography,

as nearly all of the compute time would be spent on the very
first tomography iteration. We outline the use of a transfer
learning technique on the Block model velocity experiment,
comparing the training of a model from scratch relative to
updating originally trained homogeneous model. Fig. 7(a)
shows the comparison of the returned models for a series of
training snapshots. Fig. 7(b) shows that the transfer learning
approach is ∼3–4× faster than training a full model from
scratch.

The computation cost in the training procedure is in learning
the complexities of the velocity model space. If the velocity
model is unknown but the user has some prior knowledge
of possible arrival time differences, then this approach could
be updated to do some form of tomographic inversion. This
procedure instead would learn the velocity model to fit some
known travel-time values. We perceive that this addition can
be made in the loss function term itself, where an additional
loss term can be used to update the velocity model to try and
mitigate known observations. Prior finite-difference methods
would have difficulty with this procedure as the travel-time
field would have to be recalculated for each update to the
velocity model.

VIII. CONCLUSION AND DISCUSSION

We have demonstrated that deep neural networks can
solve the Eikonal equation to learn the travel-time field in
heterogeneous 3-D velocity structures. The method has been
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shown to produce solutions that are consistent with those of
the FMM.

Finite-difference approaches require computing the travel-
time field separately for every source location of interest,
without any ability to pass along knowledge about the wave-
field or velocity structure between simulations. The computa-
tion cost for the finite-difference approach therefore increases
based on the number of source locations and receiver nodes,
with the storage of these travel-time tables increasing drasti-
cally with grid size. The deep learning approach instead is
able to learn from and generalize the knowledge acquired
between multiple source locations, as much of the structure
of the problem is highly similar. For example, if two sources
are placed very close to each other, the travel-time field will
be generally quite similar between them, and the information
learned from solving the equation for the first source can
be used to more rapidly learn the solution for the second
source. This is not the case for fast-marching methods and only
holds for small distances in fast-sweeping methods. Implicitly,
this means that the neural network is learning the velocity
model. The disk storage size required is equal to the size
of the neural network (∼90 MB for ten residual layers) as
only the weights of the network have to be retained. For
more complex velocity structures, the neural network size
may require a larger model, with the disk storage scaling
by a linear function of the network size. However, for finite-
difference approaches, the storage size scales with the product
of the number of source and nodal points; therefore, for a
complex velocity structure, the model would require a fine-
resolution grid spacing or dynamic meshing, making this
method intractable with large lookup table storage sizes. One
of the distinguishing features of EikoNet is that the travel-
time solutions are valid for any two points within the 3-D
continuous domain. This means that it is never necessary to
store a travel-time grid and interpolate it to achieve the desired
result away from the grid nodes. Here, EikoNet automatically
learns an optimized interpolation scheme during the training
process, drawing on context from across the entire data set.

A second important aspect is that solutions to the Eikonal
equation, as learned by EikoNet, are guaranteed to be dif-
ferentiable back through the network with respect to the
source or receiver locations. This has a variety of important
practical applications, such as in locating earthquakes, as the
inverse problem can be formulated as one of gradient descent,
by analytically calculating the gradients of an objective func-
tion with respect to the source locations.

The Eikonal equation is not just used in seismology, but
numerous other domains of wave physics such as optics [9],
medical imagery [6], and video-game rendering [11]. It is
expected that EikoNet would be just as suitable in these fields.

The computational cost of predicting the travel time from a
source-to-receiver location is equal to the time required to pass
across the network (4.047 × 10−4 s per source–point pair on
a single 2.3-GHz Intel Core i5 CPU). The low computation
cost of a forward prediction means that the neural network
model can be used to significantly increase the computation
speed of typically used ray-based procedures. Our approach
is massively parallel and very well suited for GPUs (taking

0.424 s for 106 source–point pairs on a single Nvidia Tesla
V100).
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