
Demonstration of Chestnut: An In-memory Data
Layout Designer for Database Applications

Mingwei Samuel
Alvin Cheung

{mingwei,akcheung}@berkeley.edu
UC Berkeley

Cong Yan
congy@cs.washington.edu
University of Washington

ABSTRACT
This demonstration showcases Chestnut, a data layout gen-
erator for in-memory object-oriented database applications.
Given an application and a memory budget, Chestnut gen-
erates a customized in-memory data layout and the corre-
sponding query plans that are specialized for the queries
issued by the application.
Our demo will let users design and improve simple web

applications using Chestnut. Users can view the Chest-
nut-generated data layouts using a custom visualization
system, which will allow users to see how the application
parameters affect Chestnut’s design. Finally, users will be
able to run queries generated by the application via the cus-
tomized query plans generated by Chestnut or traditional
relational query engines, and can compare the results and
observe the speedup achieved by the Chestnut-generated
query plans.

ACM Reference Format:
Mingwei Samuel, Alvin Cheung, and Cong Yan. 2020. Demonstra-
tion of Chestnut: An In-memory Data Layout Designer for Data-
base Applications. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3318464.3384712

1 INTRODUCTION
Rather than directly embedding SQL queries into applica-
tion code, database applications are increasingly written
using object-oriented programming languages (such as Java,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384712

Python, or Ruby) while using relational databases for per-
sistent data storage. The object-oriented programming para-
digm makes it easy to develop applications: data to be per-
sistently managed are organized into classes, each class is
mapped to a relation, and each object instance becomes a
tuple. Besides, by utilizing relational databases, such object-
oriented database applications (OODAs) can leverage rela-
tional query optimization techniques to more efficiently man-
age application data.

In practice, however, OODA queries have different charac-
teristics than analytical or transactional queries. Most impor-
tantly, OODAs define one-to-many and many-to-many rela-
tionship between classes as “has_one” or “has_many” (e.g.,
in a project management application, a Project “has_many”
Issues and a Issue “has_one” Project), and use the nested
data model rather than relational when processing the data
in the application (e.g., an array of Projects where each
Project object contains a nested array of Issue objects). The
object queries also return results in such nested data model.
Such model can easily create deep object hierarchy, while
data stored in relational databases are maintained in a tabu-
lar format. Moving data across the database and application
incurs serialization cost (i.e., converting materialized join
results into nested objects), which can often take longer than
the query execution itself.

The above aspects make OODAs challenging to optimize
using standard query processing techniques. In Chestnut,
we propose storing data in a customized, nested data lay-
out when loading data from disk to memory, in addition to
storing in tabular layout in the disk. To find the optimal
data representation for each OODA, we have implemented
Chestnut, an in-memory data layout and query plan gen-
erator for OODAs. Chestnut leverages recent advances in
program analysis, symbolic execution, and solvers to auto-
matically generate a custom data layout and query plans
given application queries.
To use Chestnut, user provides as input OODA source

code (written using a subset of the Ruby on Rails API) and a
memory budget. It searches for the best in-memory layout
that optimizes for overall query performance, and outputs
C++ code that implements the data layout and query plans.

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2813

https://doi.org/10.1145/3318464.3384712
https://doi.org/10.1145/3318464.3384712

This paper presents a demonstration for Chestnut. Our
demo comes with three main features. First, it visualizes the
data structures generated by Chestnut as well as the query
plans to let users better understand the output of Chestnut.
Furthermore, the visualization contains an animation show-
ing how the data structures are populated from the tabular
data in the database, as well as an animation showing how
the query plan generated by Chestnut is executed at each
step. Second, it comes with a backend system that runs the
Chestnut-generated code, and users can see the Chestnut-
generated query’s performance and compare with the origi-
nal query performance while running on relational databases.
Third, the demo includes a few user interactions. It lets users
change the application workload like the queries to be in-
cluded and the query weight to understand how it affects
the data layout, as well as the memory bound. It also lets
users to partially design their own data layout. Users can
create their own nested data layout via our drag-and-drop
interface, and let Chestnut generate a query plan to see
how the performance differs from the Chestnut-generated
layout.

2 SYSTEM OVERVIEW
This section gives a background on OODAs, followed by a
description of Chestnut architecture and its interaction
with the demo application.

2.1 Object-Oriented Database Applications
OODAs are often structured in a three-tier manner: a client,
an application server, and a backend database. When an
application runs, the client issues an HTTP request to the
application server. The server then generates object queries
to retrieve the data from database. The object queries are
translated by an object-relational mapping (ORM) frame-
works like Ruby on Rails [3] into a SQL query to run on the
backend, and the query result is deserialized into objects and
nested objects to the application server. The server processes
the result to render a webpage which is sent to the client.

Chestnut changes the above workflow by replacing the
ORM and in-memory database running SQL query utilizing
Chestnut-generated data structures and query plans that
are customized for the input OODA.

2.2 Chestnut Overview
As input, Chestnut receives a list of queries that can poten-
tially be invoked by the application and a memory bound.
Chestnut then determines the best data layout and query
plans for the given OODA queries. The best data layout can
store data in a nested format similar to the nested data model
used in OODAs. For example, in a project management appli-
cation, Issues associated with each project can be stored as a
nested array inside each Project, rather than as two separate

relations connected via foreign keys. To find the best layout,
Chestnut 1) enumerates different ways to nest classes used
in a query, 2) enumerates indexes, including clustered and
non-clustered index, to add on each nesting that are poten-
tially used by the query (Figure 1(a)), and 3) searches for a
query plan for every data layout where one layout includes
one way to nest classes as well as the added indexes (Fig-
ure 1(b)). Along with enumeration, Chestnut estimates the
memory cost for each data layout and the computation cost
for each query plan. To find the best layout within a mem-
ory bound that optimizes the overall query time, Chestnut
formulates this problem into an integer linear programming
(ILP) problem (Figure 1(c)). It uses an external ILP solver to
solve the ILP formulation and, once solved, generates C++
code for its chosen data layout and query plans. Our research
paper [10] covers the technical details.

2.3 Demo Workflow

demo UI (frontend)

chestnut (local server)
enumerate

nesting & index
search

query plan
ILP

query
workload

in-memory database (remote server)

(a) (b) (c)

data layout
&

query plan

partially
customized

layout

C++
impl

query
time

① ② ⑤

③④

codegen

(d)

Figure 1: Demo architechture and workflow
This demo will allow the audience to visualize the hier-

archical layouts and query plans that Chestnut generates,
as well as comparing the performance gain it provides by
automatic specialization.
The demo will be structured in the following way. An

OODA will be hosted a local server along with Chestnut,
with a backend in-memory database hosted on a remote
server, as shown in Figure 1. The application server will gen-
erate a set of webpages to be rendered on the front end. Each
webpage contains a set of webpages, each corresponds to
a query that retrieves data to render for that webpage. The
user can define a workload by choosing the set of webpages
or changing their weight. The user also chooses a memory
bound as a constraint to Chestnut. The workload and the
memory bound is passed to the local server (Step 1 in Fig-
ure 1). On the local server, Chestnut determines a data

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2814

layout and query plan for each query in the workload, and
generates both an internal representation of the data layout
and query plans to send to the front end 2 , and the C++
code which is sent to the remote server 3 . The front end
visualizes the data layout and query plans in a web browser.
The remote server compiles the Chestnut-generated C++
code, loads the application data into the data layout, and
runs the query plans upon request. It runs the Chestnut-
generated plans and the original query (including the SQL
query and the serialization of query result). Both query times
will be passed to the front end to show to the user 4 .

Furthermore, users can partially design their own data
layout via our demo’s frontend. They can design how classes
are nested using drag-and-drop interface. The nesting will be
passed to Chestnut 5 . Chestnut will add indexes on the
user-defined nested layout and generates customized query
plans. The layout and query plans are visualized as described
above, and users can compare the performance between the
self-designed and Chestnut-generated layouts.

3 DEMONSTRATIONWALK-THROUGH
We now describe the different demonstration scenarios that
the audience will experience through our demo.

3.1 Building A Workload
Our demo will come with two real-world open-source web
applications written using Rails (described below) and allow
users to customize these applications.

Figure 2: Example of a workload builder. Users drag
and drop pages to add or remove them from the work-
load. Each page has a “weight” representing what per-
centage of traffic hits that page.

• Kandan [1], an online chatting application like slack.
The abridged version is structured with three classes User,

Channel, and Activity.Wewill select 8webpages from the ap-
plication rendering data like all the channels (with each chan-
nel containing activities), top recent activities, etc. Queries
in this application contain simple predicates, but retrieve
deep hierarchies of nested objects.

• Redmine [2] is a collaboration platform like GitHub. The
abridged version is structured around multiple classes in-
cluding Project, Issue, Issue_status, etc. This application
contains 12 webpages which render data like projects with
open issues, issues assigned to a particular user, etc. Queries
in this application often involve multiple classes with com-
plex predicates to retrieve the associated objects.
Users will first choose one of the applications. We will

next show a collection of most frequently visited webpages
as thumbnails. Users will build their application by choosing
a set of webpages, as shown in Figure 2. The data shown
in each component is retrieved by an object query. Users
can click to view the corresponding object query that will
be executed by each component when run in Ruby and the
corresponding class models involved.
Besides composing webpages, users can also assign a

weight to each webpage which indicates how frequently
it is visited. Chestnut will prioritize optimizing for queries
on higher-weighted webpages when generating data layouts,
and users will be able to compare how different weights
impact the generated data structures via our demo.
Meanwhile the user will see the original data size and

then choose one of the provided memory bounds, as shown
in Figure 2. The demo provides a few memory bounds that
will make Chestnut generate different layouts, which helps
the user understand the memory-performance tradeoff.

3.2 Layout and Query Plan Visualization
After designing a workload for Chestnut to analyze, users
need to understand the data layout and query plans chosen.
We will develop an interactive visualization system which
shows in-memory data layouts and illustrates query plans
while they execute.

An example visualization is shown in Figure 3, where
each colored rectangular “block” represents an individual
tuple (for tabular layout) or object (for Chestnut-generated
layout). For hierarchical layouts, blocks will contain other
nested blocks within them (which may contain more nested
blocks, recursively). For instance, Projects P contain their
nested Issues I, which in turn each may have an issue status
S, as shown in Figure 3.

Our demo also shows how the data layout is constructed
with the data stored in database with an animation. In the
animation the record block from tables will move to its cor-
responding object in the in-memory layout.
Each data layout comes with a query plan. Our demo

contains a visualization of the Chestnut generated query

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2815

Figure 3: An example visualization. Records on the top
represent disk storage. Middle shows the in-memory
data layout, where Projects (P) contain nested Issues (I)
with a nested Issue_Status (S). At the bottom, a simple
query runs, returning projects with issues with status.

plans which is shown with the pseudo code and animation
of the plan execution side-by-side, as shown in Figure 3. User
will be able to step through the demo’s animation, where
each line of the code will be highlighted with data movement
animated. In this and all the other animations, users will be
able to pause and adjust the speed of animations to give them
time to properly understand what is happening.

Finally, after seeing data structures and query plans, users
can run the Chestnut-generated queries alongside equiva-
lent SQL queries on large-scale datasets on a remote machine.
The demo displays the timing results in real time, letting
users observe Chestnut’s speedup.

3.3 Interacting With Data Layouts
After visualizing Chestnut’s chosen data layout, our demo
will allow user to design their own layouts. This will provide
a deeper understanding of how Chestnut’s nested data
structures work, and let users compare their designs against
those generated by Chestnut.

Users will be able to drag and drop blocks in the Chestnut
layout shown in Figure 3 within each other to design a new
nesting. For instance, rather than Projects containing Issues
containing Issue_Statuses (as in Figure 3), the user could
assign Issue_Statuses as the top-level item containing issues
which each contain projects. In this case, individual projects
will exist multiple times in different issues, which will make
queries selecting a set of projects slower.

Chestnut will then add indexes to the layout and gener-
ate the optimal query plan for the user-designed data layout.

Users can then compare their design with the original design
using the visualization system, and also see the differences
in terms of memory usage and speed.
4 RELATEDWORK
There is much prior work on specializing data structures,
data layout, and physical design. In data structure design,
Idreos et al. [9] customizes a key-value store that changes the
elementary data structures according to the query pattern.
Hyrise [8] and H2O [4] explore column store layout and
decides storing columns together as group instead of individ-
ually, and ReCache [5] uses dynamic caching to store data
in tabular and nested layout to accommodate heterogeneous
data sources like CSV and JSON data. AutoAdmin [6, 7] finds
best indexes and materialized views by trying different pos-
sibilities and asking the query optimizer for the cost. Unlike
previous work, Chestnut co-designs data layout and the
plan, and is able to explore a greater spectrum of data layouts
which can better optimize OODA queries.
5 CONCLUSION
This paper describes the demonstration of Chestnut, an
in-memory data layout and query plan generator for OODAs.
Using our demo, users will be able to visualize how Chest-
nut specializes the data structures and query plans given an
OODA. Furthermore, users can design their own specialized
data layout and compare the performance of their designs
against that generated by Chestnut.
6 ACKNOWLEDGEMENTS
This work is supported in part by the NSF through grants
IIS-1546083, IIS-1651489, and DOE award DE-SC0016260; the
Intel-NSF CAPA center, and gifts from Adobe and Google.
REFERENCES
[1] Kandan, a chatting application. https://github.com/kandanapp/

kandan.
[2] Redmine, a project management application. https://github.com/

redmine/redmine.
[3] Ruby on rails, a ruby web application framework. https://rubyonrails.

org/.
[4] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A hands-free adaptive

store. In SIGMOD, pages 1103–1114, 2014.
[5] T. Azim,M. Karpathiotakis, andA. Ailamaki. Recache: Reactive caching

for fast analytics over heterogeneous data. PVLDB, 11(3):324–337, 2017.
[6] N. Bruno and S. Chaudhuri. Constrained physical design tuning.

PVLDB, 19(1):4–15, 2008.
[7] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index

selection tool for microsoft sql server. In PVLDB, pages 146–155, 1997.
[8] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and

S. Madden. Hyrise: A main memory hybrid storage engine. PVLDB,
4(2):105–116, 2010.

[9] S. Idreos, N. Dayan,W.Qin,M. Akmanalp, S. Hilgard, A. Ross, J. Lennon,
V. Jain, H. Gupta, D. Li, et al. Design continuums and the path toward
self-designing key-value stores that know and learn. In CIDR, 2019.

[10] C. Yan and A. Cheung. Generating application-specific data layouts
for in-memory databases. PVLDB, 12(11):1513–1525, 2019.

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2816

https://github.com/kandanapp/kandan
https://github.com/kandanapp/kandan
https://github.com/redmine/redmine
https://github.com/redmine/redmine
https://rubyonrails.org/
https://rubyonrails.org/

	Abstract
	1 Introduction
	2 System Overview
	2.1 Object-Oriented Database Applications
	2.2 Chestnut Overview
	2.3 Demo Workflow

	3 Demonstration Walk-through
	3.1 Building A Workload
	3.2 Layout and Query Plan Visualization
	3.3 Interacting With Data Layouts

	4 Related Work
	5 Conclusion
	6 ACKNOWLEDGEMENTS
	References

