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1. Introduction

A fundamental question in the arithmetic theory of quadratic forms is to decide when 
two given rational quadratic forms are integrally equivalent. For the sake of convenience, 
we will identify each quadratic form with its Gram matrix. Given a pair of n-ary regular 
quadratic forms F and G over Q, the question is to decide whether there is a matrix 
τ ∈ GLn(Z) such that
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τ ′Fτ = G, (1.1)

where τ ′ denotes the transpose of τ . Gauss’ reduction theory provides a quite satisfactory 
solution to this question when n = 2. Therefore in the subsequent discussion we will focus 
mainly on the case when n ≥ 3, although many results mentioned later also hold for the 
binary case. When F and G are positive definite, one can deduce from (1.1) explicit 
upper bounds on the height of τ in terms of the heights of F and G (the height of a 
matrix, denoted by H, and other height functions will be defined later in Section 2). 
Hence, in principle, we could perform an exhaustive search for τ , and a fortiori provide 
an effective solution to the question in this case.

When F and G are indefinite, (1.1) has infinitely many solutions and an exhaustive 
search for τ is not possible. However, Siegel [11] showed that there exists a function 
C(n, F, G) such that if (1.1) has a solution then it must have one whose height is less 
than C(n, F, G). Although Siegel did not give an explicit upper bound for C(n, F, G), 
his method is effective. Indeed, by following Siegel’s argument Straumann [12] showed 
that

C(n, F,G) ≤ exp
(
kn(H(F )H(G))δn

)
where δn is an explicit polynomial in n and kn is a constant depending only on n. Masser 
[7, page 252] conjectured that (for n ≥ 3)

C(n, F,G) �n (H(F ) + H(G))λn

where λn is a constant depending only on n. This conjecture has been confirmed by 
Dietmann [4] for n = 3 (and for n ≥ 4 when det(F ) is cube-free), and by the third 
author and Margulis [5, Theorem 1] for all n ≥ 3 who also show that λn can be taken to 
be a polynomial of n. Thus, in principle, there is a deterministic algorithm to decide if F
and G are equivalent over Z and, if they are, to exhibit an explicit integral equivalence 
τ satisfying (1.1).

Another approach is appealing to the theory of spinor genus. Before checking whether 
F and G are equivalent over Z, we could check first if they are in the same genus, that 
is, if they are equivalent over R and over Zp for every prime p. Over R this is straight-
forward; by Sylvester’s Law of Inertia we just need to make sure that F and G have 
the same numbers (counted with multiplicity) of positive as well as negative eigenvalues. 
Over Zp, this can be done effectively by using the invariants deriving from the Jordan 
decompositions of F and G; see [8, Chapter IX] or [2, Chapter 8]. When n ≥ 3, the 
spinor genus and the class of an indefinite quadratic form coincide [8, 104:5]. Therefore, 
the question is now reduced to deciding if F and G are in the same spinor genus, assum-
ing that F and G are already in the same genus. There are effective algorithms to do 
just that; see [1] or [3, Chapter 13, Section 9]. These algorithms usually require a ratio-
nal matrix τ which satisfies (1.1) and is invertible over the ring ZP :=

⋂
p∈P (Zp ∩Q), 
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where P is the set of prime divisors of 2 det(F ). Finding such an explicit τ is one of the 
principal questions posed by Conway and Sloane in [3, Page 402, Question (G4)]:

(G4) “If two quadratic forms are in the same genus, find an explicit rational equivalence 
whose denominator is prime to any given number.”

Existence of such rational equivalence can be deduced from the weak approximation 
property of the special orthogonal groups [8, 101:7]. Siegel [10] also demonstrated the 
existence by a different argument making use of the Cayley Transformation. Both ap-
proaches have not been made effective. However, a careful review of Siegel’s argument 
suggests to us that his proof can be made effective and this is our approach to a solution 
to (G4). Our main result (Theorem 3.1) is an explicit upper bound on the height of 
a skew-symmetric matrix whose image under the Cayley transformation is the rational 
equivalence wanted in (G4). Thus, in principle, one of such rational equivalences can be 
found by an exhaustive search.

The rest of the paper is organized as follows. Throughout this paper, k, m, n are 
positive integers and p is always a prime number. Section 2 contains preliminary materials 
on estimates pertaining to the p-adic valuations and on quadratic forms. The main 
theorem, Theorem 3.1, will be presented in Section 3.

2. Preliminaries

For any prime number p, | |p is the p-adic valuation normalized so that |p|p = p−1. 
The norm ‖ ‖p on any Qm

p is the p-adic sup-norm, that is,

‖ξ‖p = max
1≤i≤n

{|ξi|p}, ξ = (ξ1, . . . , ξm) ∈ Qm
p .

Let hp(ξ) := max{‖ξ‖p, 1}, which is often called the p-adic inhomogeneous height of ξ. 
It is obvious that ‖ξ‖p ≤ hp(ξ). For any m × n matrix A over Qp, ‖A‖p and hp(A) are 
defined by viewing A as a vector in Qmn

p .

Lemma 2.1. Let X, Y be two n × n matrices over Qp. Then:

(1) ‖X + Y ‖p ≤ max{‖X‖p, ‖Y ‖p}.
(2) ‖XY ‖p ≤ ‖X‖p‖Y ‖p.
(3) | det(X)|p ≤ ‖X‖np ≤ hp(X)n.

(4) If X is invertible, then ‖X−1‖p ≤ ‖X‖n−1
p

| det(X)|p .

Proof. This is clear. �
Lemma 2.2. Let X, Y be n × n matrices over Qp. If ‖Y − X‖p <

| det(X)|p
hp(X)n , then 

| det(X)|p = | det(Y )|p.
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Proof. Let us write Y = (yij) and X = (xij), and let Sn be the symmetric group on 
{1, . . . , n}. Notice that

|det(Y ) − det(X)|p =

∣∣∣∣∣
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

yiσ(i)

)
−

∑
σ∈Sn

(
sgn(σ)

n∏
i=1

xiσ(i)

)∣∣∣∣∣
p

=

∣∣∣∣∣
∑
σ∈Sn

sgn(σ)
(

n∏
i=1

yiσ(i) −
n∏

i=1
xiσ(i)

)∣∣∣∣∣
p

.

To finish the proof, it suffices, by the ultra-triangle inequality, to show that the p-adic 
valuation of each term in the sum is strictly less than | det(X)|p. For the sake of brevity, 
we will only demonstrate the analysis for one term. The readers will find no trouble in 
carrying out the same argument for the other terms.

Let us consider the term 
∏n

i=1 yii −
∏n

i=1 xii. By writing yii = xii + δi, we see that

n∏
i=1

yii −
n∏

i=1
xii =

n∏
i=1

(xii + δi) −
n∏

i=1
xii

which is a sum of 2n − 1 terms, each being a product of n numbers in Qp whose p-adic 
valuation is smaller than

‖X‖n−k
p ‖Y −X‖kp

for some 1 ≤ k ≤ n. Note that ‖X−Y ‖kp ≤ ‖X−Y ‖p for any k ≥ 1 because ‖X−Y ‖p < 1
as a result of Lemma 2.1(3). Therefore,

‖X‖n−k
p ‖X − Y ‖kp ≤ ‖X − Y ‖p hp(X)n < |det(X)|p

as claimed. �
Lemma 2.3. Let P be a finite set of primes, d be a positive integer, and 0 < ε ≤ 1 be 
a real number. Suppose that for every p ∈ P , an xp ∈ Qp is given such that dxp ∈ Zp. 
Then, there exists z ∈ Z such that for each p ∈ P ,∣∣∣z

d
− xp

∣∣∣
p
< ε and 0 ≤ z <

∏
p∈P

p�p

where �p =
⌈
logp

(
d
ε

)⌉
+ 1.

Proof. Since Z is dense in each Zp, there exists zp ∈ Z such that

|dxp − zp|p <
ε

d
, ∀ p ∈ P.

By the Chinese Remainder Theorem, there exists an integer z such that for each p ∈ P ,
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z ≡ zp mod p�p , and 0 ≤ z <
∏
p∈P

p�p .

Moreover, since p�p ε
d > 1,

|z − dxp|p = |z − zp + zp − dxp|p
≤ max{|z − zp|p, |zp − dxp|p}

<
ε

d
.

Then, since d|d|p ≥ 1, 
∣∣ z
d − xp

∣∣
p
< ε as claimed. �

The following lemma is essentially [10, Lemma 15] but we draw a different conclusion 
at the end of its proof.

Lemma 2.4. Let A ∈ GLn(Qp). There exists at least one diagonal matrix E whose diag-
onal entries are 1 or −1 such that

|det(A−E)|p ≥ |2n · det(A)|p.

Proof. Let D be the diagonal matrix with indeterminate diagonal entries λ1, λ2, · · · , λn. 
The determinant det(A −D) is a linear function of any of the λk(k = 1, 2..., n) and the 
same holds for the function

T (λ1, λ2, · · · , λn) :=
∑
Λ∈E

det(A− ΛD), (2.1)

where E is the group of n × n diagonal matrices with ±1 as the diagonal entries. If D
is replaced by ΛD, for any Λ ∈ E , the function T is not changed. Consequently T is an 
even function of any of the variables λk(k = 1, 2..., n). This proves that T is a constant. 
By taking in particular D = In and 0 in (2.1), we obtain

∣∣∣∣∣
∑
Λ∈E

det(A− Λ)

∣∣∣∣∣
p

= |2n · det(A)|p .

Therefore, there must be at least one E ∈ E such that | det(A −E)|p ≥ |2n ·det(A)|p. �
For any ξ ∈ Qm, the homogeneous height of ξ is

H(ξ) := ‖ξ‖
∏
p

‖ξ‖p

where ‖ξ‖ is the sup-norm of ξ. The inhomogeneous height of ξ is defined as
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h(ξ) := H((1, ξ)) = ‖(ξ, 1)‖
∏
p

hp(ξ).

It is not hard to see that for any positive number C, there are only finitely many ξ ∈ Qm

such that h(ξ) ≤ C (the Northcott Property). For any m × n matrix A over Q, H(A)
and h(A) are defined by viewing A as a vector in Qmn.

Let F and G be two n-ary regular quadratic forms over Q. There are two matrices 
determined by F and G that will be taken as input data in Theorem 3.1:

(i) A matrix Σ ∈ GLn(Q) such that Σ′FΣ is diagonal.
The columns x1, . . . , xn of Σ form an orthogonal basis of Qn with respect to the 
bilinear form induced by F . Finding such an orthogonal basis is the well-known 
Gram-Schmidt process. We first pick a vector x1 such that F (x1) 
= 0. The second 
vector x2 must be in the orthogonal complement of x1 and hence it is in the solution 
space of the homogeneous system x′Fx1 = 0. We may continue this process to find 
the other xi.

(ii) A matrix σ ∈ GLn(Q) such that σ′Fσ = G.
By (i), we may assume that G is already diagonalized, say G = diag(b1, . . . , bn). Since 
G is regular, each bi is nonzero. Finding σ is tantamount to finding an orthogonal 
basis t1, . . . , tn of Qn with respect to the symmetric bilinear form induced by F
such that F (ti) = bi for 1 ≤ i ≤ n. Let Fb1 be the (n + 1)-ary quadratic form 
F (x1, . . . , xn) − b1x

2
n+1. A theorem of Masser [6] shows that there must be a vector 

t1 ∈ Qn such that F (t1) = b1 and

h(t1) ≤ 3
n+1

2 nn+1 H(Fb1)
n+1

2 .

As we mentioned earlier, there are only finitely many vectors in Qn whose inhomo-
geneous height satisfy this inequality. This gives us an effective procedure to find 
t1.
The second vector t2 must be in the orthogonal complement of t1, which is the 
solution space of the homogeneous system x′F t1 = 0. Take a basis v2, . . . , vn of 
this subspace, and let T be the matrix whose columns are these n − 1 vectors. We 
may then apply Masser’s theorem to the quadratic form T ′FT and find an explicit 
search bound for the inhomogeneous height of t2. Once again we have an effective 
procedure to find t2. By continuing this process in the obvious manner we should be 
able to find the other ti.

As in the proof of Lemma 2.4, we let E be the group of diagonal matrices with diagonal 
entries 1 or −1.

Lemma 2.5. Let F and G be n-ary regular rationally equivalent quadratic forms over Q. 
Let σ, Σ ∈ GLn(Q) be such that σ′Fσ = G and Σ′FΣ is diagonal. Then,



W.K. Chan et al. / Journal of Number Theory 225 (2021) 281–293 287
(1) For any E ∈ E,

(ΣEΣ−1σ)′F (ΣEΣ−1σ) = G.

(2) There exists a matrix τ ∈ {ΣEΣ−1σ : E ∈ E} satisfying the following properties. 
Suppose that F and G are equivalent over Zp. Then there exists a τp ∈ GLn(Zp)
such that τ ′pFτp = G, that det(τ − τp) 
= 0, and that

‖(τ − τp)−1‖p ≤ hp(τ)n−1 · max
{

1
|2n|p

,
1

|det(σ)|p

}
.

Proof. Part (1) follows from direct computation, which we leave the detail to the readers. 
For part (2), let Equiv(F, G) denote the set of all prime numbers p for which F and G
are equivalent over Zp, and let p0 be the smallest element in Equiv(F, G). Let σ0 be any 
matrix in GLn(Zp0) satisfying

σ′
0Fσ0 = G.

Applying Lemma 2.4 to A0 := Σ−1σ0σ
−1Σ, we get that there exists an E0 ∈ E such that

|det(A0 −E0)|p0 ≥ |2n · det(A0)|p0 . (2.2)

We shall prove that τ := ΣE0Σ−1σ ∈ GLn(Q) satisfies our lemma.
First, for p = p0, we take τp0 = σ0. Since σ0 ∈ GLn(Zp0), we have | det(σ0)|p0 = 1. 

This fact and (2.2) give us

|det(τ − σ0)|p0 = |det(Σ(A0 −E0)Σ−1σ)|p0

= |det(Σ)|p0 |det(A0 − E0)|p0 |det(Σ−1)|p0 |det(σ)|p0

≥ |2n · det(A0)|p0 |det(σ)|p0

= |2n · det(σ) · det(σ0) · det(σ−1)|p0

= |2n|p0 .

Therefore, as ‖σ0‖p0 = 1,

‖(τ − σ0)−1‖p0 ≤ 1
|det(τ − σ0)|p0

‖τ − σ0‖n−1
p0

≤ hp0(τ)n−1

|2n|p0

.

This proves that τp0 = σ0 satisfies the lemma.
Next we consider the case for p ∈ Equiv(A, B) with p > p0. Then, plainly, p > 2. By 

[2, Page 115] or [8, §92], F is equivalent to a diagonal quadratic form over Zp. Thus, 
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there exists a Σp ∈ GLn(Zp) such that Fp := Σ′
pFΣp is diagonal. Let σp be any matrix 

in GLn(Zp) which satisfies

σ′
pFσp = G.

By applying Lemma 2.4 to Ap := Σ−1
p τσ−1

p Σp, we get that there exists an Ep ∈ E such 
that

|det(Ap −Ep)|p ≥ |2n · det(Ap)|p = |det(Ap)|p.

Let τp := ΣpEpΣ−1
p σp. Clearly, τp ∈ GLn(Zp). Since E′

pFpEp = Fp, we have τ ′pFτp = G. 
Notice that

|det(τ − τp)|p = |det(Σp(Ap − Ep)Σ−1
p σp)|p

= |detΣp|p |det(Ap −Ep)|p |det(Σ−1
p )|p |det(σp)|p

≥ |det(Ap)|p
= |det(τ) · det(σ−1

p )|p
= |det(σ)|p.

Hence we have

‖(τ − τp)−1‖p ≤ 1
|det(τ − τp)|p

‖(τ − τp)‖n−1
p

≤ hp(τ)n−1

|detσ|p
.

This implies that our choice of τp satisfies the lemma. �
Let Q be an n-ary regular quadratic form over a field K of characteristic 
= 2. Let OQ

be the orthogonal group of Q and Skewn be the set of n × n skew-symmetric matrices, 
both viewed as algebraic groups over K. Let L be an extension of K. If U ∈ Skewn(L)
such that det(U + Q) 
= 0, then

μ := (U + Q)−1(U −Q) (2.3)

is an element in OQ(L) with det(In−μ) 
= 0. The map U �−→ μ is called the Cayley Trans-
formation (or Cayley-Dickson Parametrization), which is a birational K-isomorphism 
from Skewn to OQ. For any μ in OQ(L) with det(In − μ) 
= 0, the inverse of this Cay-
ley Transformation is defined and given by μ �−→ U = 2Q(In − μ)−1 − Q. This U is 
in Skewn(L) such that det(U + Q) 
= 0 and (2.3) holds. The readers may consult [10, 
Lemma 16] and [9, Proposition 7.4] for more on these properties.
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3. Main theorem

Let F and G be two n-ary regular quadratic forms over Q which are equivalent over 
Q. Let Σ and σ be the rational matrices, as constructed in Section 2, which have the 
properties that

Σ′FΣ is diagonal and σ′Fσ = G. (3.1)

Let P be a finite set of primes. For each p ∈ P , let

κp := max{hp(ΣEΣ−1σ) : E ∈ E},

where E is the group of diagonal matrices with diagonal entries 1 or −1,

αp := max
{
‖F‖p κn

p max
{

1
|2n|p

,
1

|detσ|p

}
, 1
}
,

βp := |2n det(F ) det(σ)|p
κn
p

,

and

ε := min
p∈P

{
βp

κpαn
p

}
. (3.2)

We define two positive constants, depending only on n, σ, Σ, F , and P , by

d =
∏
p∈P

αp, C =
∏
p∈P

p�logp

(
d
ε

)
�+1. (3.3)

Recall that ZP is the ring 
⋂

p∈P (Zp ∩Q).

Theorem 3.1. Let P be a finite set of primes. Let F and G be n-ary regular quadratic 
forms over Q. Suppose that F and G are equivalent over Q and over Zp for each p ∈ P . 
Let σ, Σ ∈ GLn(Q) be as in (3.1), and d, C > 0 be given by (3.3). Then there exists a 
matrix

τ̂ ∈
{

(U + F )−1(U − F )ΣEΣ−1σ : E ∈ E , U ∈ 1
d
· Skewn (Z) , ‖U‖ ≤ C

d

}

such that

τ̂ ∈ GLn(ZP ), τ̂ ′F τ̂ = G.
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Proof. Let τ ∈ GLn(Q) and τp ∈ GLn(Zp), p ∈ P , be matrices satisfying Lemma 2.5. 
We have τ = ΣEΣ−1σ for some E ∈ E and

τ ′Fτ = G, τ ′pFτp = G, τ − τp ∈ GLn(Qp) (3.4)

and

‖(τ − τp)−1‖p ≤ κn−1
p max

{
1

|2n|p
,

1
|detσ|p

}
. (3.5)

A straightforward computation shows that τpτ−1 is in OF (Qp). Moreover, by (3.4), 
det(In − τpτ

−1) 
= 0. Therefore, we may apply the inverse of the Cayley Transformation 
to τpτ−1 and write

τp = (Up + F )−1(Up − F )τ, (3.6)

where Up = 2F (In − τpτ
−1)−1 − F ∈ Skewn(Qp).

The next step is to find a U ∈ Skewn(Q) such that

U ∈ 1
d
· Skewn(Z), ‖U‖ ≤ C

d
, det(U + F ) 
= 0, (3.7)

and that the matrix

τ̂ := (U + F )−1(U − F )τ ∈ GLn(Q) (3.8)

satisfies

‖τ̂ − τp‖p ≤ 1. (3.9)

This implies that τ̂ ∈ GLn(Zp) for all p ∈ P ; hence τ̂ ∈ GLn(ZP ). Moreover, since 
τ̂ τ−1 ∈ OF (Q) because it is the image of U under the Cayley Transformation. Thus, 
τ̂ ′F τ̂ = G and this will finish the proof of the theorem.

To obtain (3.7), we will apply Lemma 2.2 to X = Up + F and Y = U + F , and 
Lemma 2.3 to Up, ε and d. First of all, we obtain from (3.6) that

Up + F = F (τ + τp)(τ − τp)−1 + F = F ((τ + τp)(τ − τp)−1 + In). (3.10)

Since τp ∈ GLn(Zp), we have ‖τp‖p = 1. Then, by applying (3.5) to (3.10), we get that

‖Up + F‖p ≤ ‖F‖p max
{
‖τ + τp‖p‖(τ − τp)−1‖p, 1

}
≤ ‖F‖p hp(τ)κn−1

p max
{

1
|2n|p

,
1

|detσ|p

}

≤ α ,
p
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and hence hp(Up + F ) ≤ αp because 1 ≤ αp. Note that for the second inequality above, 
we have used

hp(τ)κn−1
p max

{
1

|2n|p
,

1
|detσ|p

}
≥ 1 · 1 · 1

|2n|p
≥ 1.

This also implies that αp ≥ ‖F‖p. Consequently,

‖Up‖p ≤ max{‖Up + F‖p, ‖F‖p} ≤ αp. (3.11)

Since | det(τ − τp)|p ≤ hp(τ)n ≤ κn
p , we have

|det (Up + F )|p =
∣∣∣∣2n det(F ) det(τ)

det(τ − τp)

∣∣∣∣
p

≥ |2n det(F ) det(σ)|p
κn
p

= βp.

As a result,

βp

κpαn
p

≤ βp

αn
p

≤ |det(Up + F )|p
hp(Up + F )n ≤ 1. (3.12)

Let ε be as defined in (3.2), which is ≤ 1 by (3.12). It follows from (3.11) that 
dUp ∈ Skewn(Zp) for all p ∈ P . We may then apply Lemma 2.3 entry-wise and obtain a 
U ∈ 1

dSkewn(Z) such that

‖U‖ ≤ C

d
and ‖U − Up‖p <

βp

κpαn
p

, ∀ p ∈ P. (3.13)

Then, by (3.12),

‖U − Up‖p <
βp

κpαn
p

≤ βp

αn
p

≤ |det(Up + F )|p
hp(Up + F )n .

Thus, by Lemma 2.2, | det(U+F )|p = | det(Up+F )|p ≥ βp, implying that det(U+F ) 
= 0. 
Together with (3.13), we obtain (3.7).

Now we come to the proof of (3.9). It follows from (3.6) and (3.8) that

τ̂ − τp = (U + F )−1(U − Up)(τ − τp).

Then,

‖τ̂ − τp‖p ≤ ‖(U + F )−1‖p‖τ − τp‖p‖U − Up‖p

≤
‖U + F‖n−1

p
hp(τ) ‖U − Up‖p.
|det(U + F )|p
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Since ‖Up+F‖p ≤ αp and ‖U−Up‖p <
βp

αn
p
≤ 1 ≤ αp, we have ‖U+F‖p ≤ αp. Therefore,

‖τ̂ − τp‖p ≤
αn−1
p

βp
κp ‖U − Up‖p

≤
αn−1
p

βp
κp

βp

κpαn

= α−1
p

≤ 1.

This finishes the proof of the theorem. �
We conclude by offering a few remarks on the size of the constants C and d in Theo-

rem 3.1. These two constants depend on the input data Σ, σ, and F , and it may not be 
feasible to get precise estimates on their magnitudes. However, their definitions become a 
lot more manageable under some special but yet reasonable circumstances such as when 
F and G are primitive integral quadratic forms in the same genus. This is what we will 
be considering in the following discussion.

Since F is a primitive integral quadratic form, ‖F‖p = 1 for all primes p. Also, because 
F and G are in the same genus, we have det(F ) = det(G) and hence | det(σ)| = 1. For 
each p ∈ P and every E ∈ E , hp(ΣEΣ−1σ)n ≥ | det(ΣEΣ−1σ)|p = 1 by Lemma 2.1(3). 
This means that κp ≥ 1. It is unlikely that κp = 1 for all p ∈ P , since this would require 
that ‖ΣEΣ−1σ‖p ≤ 1 for all p ∈ P and for all E ∈ E .

By definitions, we have

αp = |2−n|pκn
p and βp = |det(F )|p

|2−n|pκn
p

.

As a result,

ε ≤ βp

κpαn
p

= |det(F )|p
|2−(n2+n) |pκn2+n+1

p

.

This implies that the bound Cd on ‖U‖ in Theorem 3.1 is at least

∏
p∈P

|2n|pκ−n
p ·

∏
p∈P

(
d

ε

)
p ≥

∏
p∈P

p ·
∏
p∈P

|2−n2−|P |n|pκn2+|P |n+1
p ·

∏
p∈P

|det(F )|−1
p ,

which is already very large for relatively small n as long as 2 ∈ P or κp > 1 for some 
p ∈ P . Indeed, in a lot of applications, P will contain all the prime divisors of 2 det(F )
and Cd would be at least

2n
2+|P |n · |det(F )| ·

∏
p ·

∏
κn2+|P |n+1
p .
p∈P p∈P
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