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Abstract Many understory woody invasive plants in
North America leaf out earlier or retain leaves later
than their native associates. This extended leaf phe-
nology is thought to grant invasive species an advan-
tage over native species because spring and fall are
crucial times for light access and carbon acquisition in
understory habitats. However, it is unclear whether
this advantage persists at northern latitudes where
freezing temperatures constrain growing season length
and low light levels reduce carbon gain. To investigate
the costs and benefits of extended leaf phenology at
northern latitudes, we observed leaf phenology, esti-
mated total carbon gain, measured growth, and tested
susceptibility to freezing temperatures for four native
and four invasive woody shrubs in a disturbed forest in
northern Minnesota, USA. We found that the invaders
leafed out simultaneously with the natives in the
spring but retained their leaves later in the autumn than
native species. This extended fall phenology did not
enable greater total carbon gain for the invaders
because they assimilated less carbon earlier in the year
than the natives. There was also no significant
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difference between native and invasive species in
their susceptibility to freezing temperatures. Instead
freezing tolerance related more to native range then
leaf phenology. Our results suggest that freezing
temperatures do not limit invasive species’ northern
expansion and instead indicate that at the northern
edge of their ranges, these species may lose any
competitive advantage granted by extended leaf
phenology over their native associates. This study
demonstrates the importance of considering latitude
and forest structure when investigating phenology and
growth.

Keywords Carbon assimilation - Photosynthesis -
Distribution - Leaf out - Senescence

Introduction

Many understory woody invasive plants in North
America, such as Rhamnus cathartica, Lonicera x
bella, and Berberis thunbergii, leaf out before and/or
retain functional leaves after their native associates
(Harrington et al. 1989; Xu et al. 2007; Fridley 2012)
because they evolved in Europe and Asia, where
growing seasons are longer than in North America
(Zohner and Renner 2017). This extended leaf
phenology may increase these species’ competitive
advantage over natives in North America by granting
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greater access to understory light and lengthening their
growing season (Wolkovich and Cleland 2011; Smith
2013). There is also evidence that invasive species
respond more strongly to warming temperatures,
enabling them to be more successful than natives
under future climatic conditions (Cleland et al. 2012)
and thus continue expanding north in the future
(Merow et al. 2017). However, little is known about
how invasive plants near the northern edge of their
distributions respond to cold temperatures and low
light levels because there is sparse data on their
physiology in the northern parts of their ranges. To
examine whether extended leaf phenology could help
facilitate invasive species’ continued northern expan-
sion, we need to better understand the costs and
benefits of this growth pattern at northern latitudes,
where irradiance levels are lower, cold temperatures
limit growing season length, and seasons transition
rapidly.

Light availability, which changes with latitude and
fluctuates throughout the growing season (Fig. 1),
heavily influences carbon gain in the understory
(Miyashita et al. 2012). Many early-leafing understory
plants access as much as 80% of their yearly light
(Augspurger et al. 2005; Lopez et al. 2008; Kwit et al.
2010) and assimilate 27—100% of their yearly carbon
(Harrington et al. 1989; Heberling et al. 2018) before
the forest canopy closes in the spring. Similarly in the
fall, plants can acquire up to 21% of their total carbon
after the overstory canopy reopens (Fridley 2012).
However, freezing temperatures occur later in the
spring and earlier in the fall at northern latitudes and
shorten the period of unshaded understory growth
during both seasons (Kwit et al. 2010). In general, light
in the fall is less crucial to carbon gain than in the
spring because photosynthetic rates decline in older
leaves (Wilson et al. 2001), daylength shortens, and
light transmission decreases (Baldocchi et al. 1984;
Lopez et al. 2008), especially at northern latitudes
(Lappi and Stenberg 1998). All of these factors could
impact the success of invasive species at northern
latitudes.

Many woody invasive plants exhibit high plasticity
in response to seasonal changes in light (Martinez and
Fridley 2018) and can survive under a range of light
conditions, including low light at northern latitudes
(i.e., lower solar elevation angle and shorter spring and
fall day length). However, these species often display
greater growth under high light (Berberis thunbergii:
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Silander and Klepeis 1999; Frangula alnus: Cunard
and Lee 2009; Lonicera maackii: Luken et al. 1995;
Lieurance and Landsbergen 2016; Rhamnus cathar-
tica: Kurylo et al. 2007; Pretorius 2015). Decreased
light availability may even dampen invasion success
in mature forests (Meiners et al. 2002; Cunard and Lee
2009). As a result of these limitations, invasive species
often grow where light transmittance is high, such as
in gaps (Sanford et al. 2003), disturbed habitats (With
2002; Fan et al. 2013), and early successional forests
(Meiners et al. 2002). It is unclear how invasive
species’ sensitivity to light impacts their productivity
in lower light conditions of northern latitudes.

The timing and severity of freezing temperatures
can also play a critical role in determining whether a
species can expand into northern latitudes (Fig. 1).
Species that leaf out early should have freezing
tolerant leaves or an ability to reflush leaves after
freezing damage (McEwan et al. 2009; Vitasse et al.
2014a). These species also often have smaller diam-
eter vessel elements which reduce the risk of
embolism during freezing events (Davis et al. 1999;
Panchen et al. 2014; Yin et al. 2016). Freezing
tolerance is an expensive investment that often
correlates with slower growth rates in many species
(Koehler et al. 2012; Savage and Cavender-Bares
2013; Reich 2014). Although invasive species are
known to display high growth rates (Grotkopp et al.
2002; Dawson et al. 2011) and have small diameter
vessels (Smith et al. 2013; Yin et al. 2016), few studies
have investigated how these species respond to
freezing temperatures (except Stewart et al. 2006;
Friedman et al. 2008; McEwan et al. 2009).

To determine potential costs and benefits of
extended leaf phenology in invasive woody plants at
northern latitudes, we observed leaf phenology, mod-
eled seasonal carbon gain, measured growth rates, and
tested the susceptibility to freezing temperatures of
four native and four invasive shrubs in a disturbed
forest in Northern Minnesota, USA. Our study site is in
the northern part of these invasive species’ ranges
(Fig. 1) and is further north than many previous
studies (Harrington et al. 1989; Schierenbeck and
Marshall 1993; Luken et al. 1997; Silander and
Klepeis 1999; Xu et al. 2007; Cunard and Lee 2009;
Fridley 2012; Lieurance and Landsbergen 2016;
Heberling et al. 2018). At this latitude, freezing
temperatures occur later in the spring and earlier in the
fall, seasonal changes in daylength are more drastic,
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Fig. 1 Temperature and light conditions throughout the year
for sites ranging from 33° N to 47° N latitude. Locations span the
distribution of the invasive species included in this study and
represent previous studies investigating invasive shrub physi-
ology: Duluth, MN (black, this study), Syracuse, NY (dark grey,
Fridley 2012), Cincinnati, OH (medium grey, Lieurance and
Landsbergen 2016), Aiken, SC (light grey, Schierenbeck and
Marshall 1993). a Daily minimum temperatures from the Global
Historical Climatology Network (Menne et al. 2012a, b)

and irradiance levels are lower overall than at more
southern latitudes. This study addresses the questions:
(1) Do invasive shrubs leaf out earlier and/or retain
leaves later than their native associates, even when
phenological events are condensed into shorter time
frames at northern latitudes? (2) Does extended leaf
phenology enable greater total carbon gain for inva-
sive shrubs, as a result of higher carbon assimilation
during the spring and fall? (3) Do invasive species
exhibit lower susceptibility to freezing temperatures
than native species because they have leaves later and/
or early in the year? We predict that shorter springs
and falls and lower light levels will reduce spring and
fall carbon gain, while a brighter disturbed forest will
increase the role of summer carbon gain. We also
expect that invasive species require a lower suscep-
tibility to freezing temperatures to help support the
maintenance of leaf tissue during early spring and late
fall. This research provides insight into the costs and
benefits of extended leaf phenology at northern

" Sep  Nov

averaged across 50 years (1968-2018). b Daily photoperiod
(hours of daylight) for 2017 calculated with the R package insol
(Corripio 2003). ¢ Monthly averages of daily solar irradiance
across each study site’s corresponding county and over 11 years
(1998-2009). Data are from the National Renewable Energy
Laboratory (Perez-SUNY/NREL 2007) and represent the global
horizontal irradiance, which is the sum of direct normal and
diffuse irradiance components

latitudes and helps us understand how freezing
temperatures and light levels might limit invasive
species’ northern expansion in the future.

Materials and methods
Study site and species selection

Our study site, Bagley Nature Area, in Duluth,
Minnesota, USA (46.81686427° N, 92.08800509°
W), is located at the border between boreal and
temperate forest ecotypes. Bagley Nature Area is a
22-hectare site with a 50-year-old mixed forest
dominated by Acer saccharum, Betula papyrifera,
Populus tremuloides, and Abies balsamea. Ten indi-
viduals of the four most invasive understory shrub
species were selected to study at the site (Table 1). We
surveyed the six closest native shrubs around each of
these plants to determine the four most common
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associates (Table S1 from ESM). Our selection of
invasive species was limited by growth form (3 shrubs
and 1 sub-shrub) and replication was the same for
native and invasive plants (10 individuals per species).

Leaf phenology

Beginning in mid-February 2017 and late March 2018,
we visited the same ten plants per species weekly and
estimated the percentage of buds at each of five
phenophases (Lenz et al. 2013; Fridley and Craddock
2015): (0) dormant—bud inactive and tightly closed,
(1) swelling—bud beginning to change color and
expand, (2) bursting—green leaf tips visible, (3) leaf
emergence—Ileaves present but still folded, and (4)
leaf out—Ileaves reflexed and petiole extended (Fig. S1
from ESM). Bud burst and leaf out dates were
determined by fitting self-starting gaussian models
and self-starting nonlinear least squares logistic mod-
els in R (version 3.4.1, 2017), respectively, with date
predicting the estimated percent of buds at budburst
(Eq. S1 from ESM) or leaf out (Eq. S2 from ESM). A
plant was considered to have reached a given
phenophase when at least 30% of its buds qualified
for that stage (Augspurger 2008). These models were
selected to provide continuous daily estimates of
phenology progression and more holistically represent
phenological events, similar to Moussus et al. (2010).
The percentage of full leaf expansion in 2017 was
calculated based on weekly measurements of scanned
leaf area on 6-15 leaves per plant.

We monitored weekly fall phenology by estimating
the percentage of leaves on each plant that senesced
from the beginning of September until mid-December
in 2017 and late-November in 2018 similar to Panchen

Table 1 Description of species in the study

et al. (2015). Leaves were considered senesced when
they dropped, changed color, and/or lost photosystem
function. Loss of photosystem function was confirmed
in mid-November 2017 by measuring chlorophyll
fluorescence on dark-adapted leaves with a mini-PAM
IT (Heinz Walz GmbH, Effeltrich, Germany) on the
three species that still had leaves (i.e., Lonicera,
Rhamnus, and Frangula). Since Rubus is biennial,
senescence of first- and second-year growth were
averaged. Senescence estimates in Cornus may
include damage from insect predation in both years.
We fit sigmoidal curves to percent senescence as a
function of date for each plant, with the self-starting
nonlinear least squares logistic model in R (Eq. S2
from ESM). Using the resulting equation, the date of
50% and 75% senescence for each plant was
interpolated.

Annual carbon assimilation model

Maximum total carbon acquisition of six plants per
species was estimated during one growing season by
measuring understory light availability, carbon diox-
ide assimilation rates, and leaf area over time, and then
modelling carbon assimilation in R assuming only
sunny days (Fig. 2).

Understory light availability (Box I in Fig. 2)

To quantify understory light, percent light transmit-
tance on cloudy days was measured above 10 plants
per species at four time points: May—open canopy,
July—-closed canopy and long daylength, Septem-
ber—closed canopy and short daylength, and Octo-
ber—open canopy. Each measurement is the ratio of

Species Family Origin Growth form Life cycle
Berberis thunbergii D.C. Berberidaceae Invasive Subshrub Perennial
Frangula alnus Mill. Rhamnaceae Invasive Tree-like shrub Perennial
Lonicera x bella Zabel [L. morrowii x L. tatarica] Caprifoliaceae Invasive Shrub Perennial
Rhamnus cathartica L. Rhamnaceae Invasive Tree-like shrub Perennial
Cornus sericea L. Cornaceae Native Shrub Perennial
Corylus cornuta Marshall var. cornuta Betulaceae Native Shrub Perennial
Rubus idaeus L. Rosaceae Native Subshrub Biennial

Viburnum lentago L. Caprifoliaceae Native Tree-like shrub Perennial

@ Springer



Extended leaf phenology has limited benefits

/(1) Understory ) [(
Light Availability *

(umol photons m ?s '1)

2) Photosynthetic Light\
Response Curves (A)

(umol CO, m ZsT)

a. Seasonal light bins
determined by %
transmitted light

b. Daily light levels at
15 minute intervals \_

a. Young leaves

b. Mature leaves

RMSE = 0.04-1.01
df = 3-6

RMSE = 0.05-0.23

df = 5-6
J

(PPFD) on 10-15

sunny days per month \/\
N s

l\/I ( (4) Total Leaf Area )

@)

(umol CO, m” day ) *

(m 2 plant '1)

a. Spring leaf

L Daily carbon gain

expansion (%)
RMSE = 0.54-25.8
df = 20-120

v

b. Total summer
leaf area (100%)

(5)

plant c. Fall leaf
(umol CO, plant” day )

senescence (%)
RMSE = 1.07-17.41

Daily carbon gain per plant

\ df =5-8 /

ina glven season

((6) Seasonal Carbon Gain
(umol CO, plant " season ™)

a. Spring (open canopy)
b. Summer (closed canopy)
c. Fall (open canopy)

J

Fig. 2 Seasonal carbon gain model components. The model is
comprised of three main inputs (shaded boxes): (1) understory
light availability, (2) photosynthetic light response curves, and
(4) total leaf area. Numbers specify order of steps and lowercase

the light level (lumens s_l, 15-s average) above the
plant to the light level recorded simultaneously in the
open (Parent and Messier 1996). Using these data, we
divided the plants into six bins during each time period
(e.g. July: <20%, 21-31%, 32-43%, 44-54%,
55-66%, 67-78%, > T79% transmitted light) and
selected six plants with the percent light transmittance
closest to the bin averages (Box la in Fig. 2). Light
was then measured at 15-min intervals on 10—15 sunny
days per month using lux sensors (HOBO Pendant
Temp/Light, 8 k, UA-002-08, Onset Computer Cor-
poration, Bourne, Massachusetts USA) mounted at the

letters represent components of each parameter. Arrows indicate
the workflow direction and * represents input multiplication.
Model fits are provided as RSME and df ranges for inputs that
were fit to curves within the model

top of the selected plants (Box 1b in Fig. 2). These
data were converted from lux (lumens s_l) to PPFD
(umol photons m~2 s™") based on seasonal calibra-
tions in each month (Long et al. 2012; Table S2 from
ESM) using a light meter (LI-250A, LI-COR, Lincoln,
NE).

Photosynthetic light response curves (Box 2 in Fig. 2)
Plant photosynthetic rate changes with light levels. To

estimate carbon assimilation rate (A), we measured
light response curves of immature, expanding leaves
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(early June) and mature leaves (mid-August) on six
plants per species (Box 2 in Fig. 2). Measurements
were made on sun leaves between 8 a.m. and 2 p.m.
during sunny days using a portable gas exchange
system (6400, LI-COR, Lincoln, NE) with a red-blue
light source (6400-02B). The auto program Light-
Curve was used with 10 light levels between 0 and
2000 pmol photons m~2 s~'. To standardize mea-
surements, we set leaf temperature at 20 °C and CO,
concentration at 400 pmol CO, mol ™" air. Water con-
tent and flow rate were kept in the range of 12—15 mmol
H,0 mol air~" and 50-200 pmol air s, respectively.
Light response curves were fit in R with a non-
rectangular hyperbola using least squares regression
(Marshall and Biscoe 1980; Heberling and Fridley
2013).

Light response curves were then used to determine
total carbon assimilated (A) every 15-min from the
daily PPFD measurements (multiplying Box 1 and
Box 2 in Fig. 2). We used light response curves from
immature leaves for spring (Box 2a in Fig. 2) and from
mature leaves for summer and fall (Box 2b in Fig. 2)
to account for seasonal changes in photosynthetic
capacity. Although photosynthetic capacity also decli-
nes during the fall (Morecroft et al. 2003) and in older
leaves (Wilson et al. 2001), our model assumes
maximum carbon gain with sustained photosynthetic
capacity throughout the fall. Total daily carbon
assimilation (Ag4,y) was calculated as the area under
the curve of A over time (Box 3 in Fig. 2). On days that
light levels were not measured, Ag,y Was interpolated
using a 5-parameter polynomial curve of Aq,, over the
growing season. This interpolation indirectly included
daylength because daily carbon assimilation decreases
with photoperiod.

Total leaf area (Box 4 in Fig. 2)

To account for leaf area, the CO, assimilated each day
(Agay, Box 3 in Fig. 2) was multiplied by the total leaf
area per plant (Box 4 in Fig. 2) giving us total carbon
gain per plant per day (Apian; Box 5 in Fig. 2). To
estimate total leaf area, we collected and scanned 6-15
fully expanded leaves per plant, measured individual
leaf size using ImageJ (Rasband 1997-2018), counted
the number of leaves per plant, and multiplied the
average leaf size by the total leaf count. Leaf area was
adjusted based on our estimates of percent expansion
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in the spring (Box 4a in Fig. 2) and senescence in the
fall (Box 4c in Fig. 2).

Seasonal carbon gain (Box 6 in Fig. 2)

Total carbon assimilated per plant per season was
estimated by adding Ay (Box 5 in Fig. 2) over the
complete growing season (Box 6 in Fig. 2). It is
important to note that these calculations assume that
there is no self-shading within the tree. As a result, our
output is an overestimate of carbon assimilation and
gives a maximum carbon assimilation per plant per
year. To investigate how canopy openness impacted
carbon gain, the growing season was divided into three
time frames: spring (open canopy), summer (closed
canopy), and fall (open canopy) based on hemispher-
ical photographs of the overstory canopy taken above
80 plants 1-2 times a month (Frazer et al. 1997; Lopez
et al. 2008). Photographs were processed with an
ImageJ plugin created by Beckschifer (2015). Hemi-
spherical photos, rather than percent light transmit-
tance, were used to partition understory carbon gain
relative to overstory phenology because, while light
transmittance is a useful metric for determining light
levels, hemispherical photos more directly estimate
overstory phenology.

To evaluate the best predictors of total seasonal
carbon gain, multiple linear regression models were
tested in R including variables representing the three
main components of our carbon estimation model:
seasonal light (logged spring, summer, and logged
fall % PPFD), total leaf area (logged), and carbon
assimilation rate (logged A ,.x in June and August), as
well as additional traits potentially relating to carbon
gain (square root of plant height, SLA, stem number,
leaf out date, and 75% senescence date). Through an
iterative selection process, predictor variables exhibit-
ing collinearity were removed and only those corre-
lated with total seasonal carbon gain were included in
the final regression model.

Growth traits

We measured monthly (June, July, August, and
November) branch elongation of six new branches
on ten plants per species during the 2017 growing
season and estimated the total rate of elongation from
leaf emergence to 50% leaf senescence. Sun branches
were selected when possible and the longest branch
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was measured when branch growth diverged. We fit
asymptotic curves in R over the growing season and
used the asymptote as the total branch length when
calculating absolute branch elongation rate (AGR).
Stems consumed by herbivores or otherwise damaged
were excluded from analysis from the time of damage
onward. Relative basal growth rate was calculated by
measuring with calipers the basal diameter of 1-3
stems per plant in June and September 2018. Stems
were measured in the widest direction and the three
largest stems were selected for plants with more than
three stems. Average basal area was multiplied by
June stem counts to address differing growth forms
and total basal area was used in the calculation of
relative basal growth rate (RGR). We measured
specific leaf area (SLA) for at least six expanded
leaves per plant in mid-July 2017 because SLA has
been shown to correlate with growth rate (Wright et al.
2004; Reich 2014). Light response curves (described
above) were also used to estimate maximum photo-
synthetic capacity (Anax) of immature and mature
leaves, another metric often correlated with growth
rate (Reich 2014).

Freezing damage
Sample collection and freezing cycles

Freezing tolerance is a complex trait that varies across
seasons and among tissue types (Sakai and Larcher
1987; Savage and Cavender-Bares 2013). To charac-
terize some of this variation, we examined the freezing
damage of branches with young leaves (late May—
June), mature leaves (mid-September—early October),
and late fall buds (November) exposed to different
temperature treatments. Plants that exhibited less
damage in response to our treatments were considered
more freezing tolerant.

Branches were cut underwater, and 5-cm segments
were placed in water-filled rose tubes. The samples
were then frozen at — 5 °C per hour in a controlled
freezing chamber (Tenney TUJR, Thermal Product
Solutions, White Deer, Pennsylvania USA) with a
temperature ramping controller (Watlow F4S/D,
Winona, Minnesota USA) and held at a minimum
temperature for 3 h. Exothermic freezing events were
recorded by attaching thermocouples (HOBO 4-chan-
nel thermocouple logger UX120-014 M, Onset Com-
puter Corporation, Bourne, Massachusetts USA) to the

buds and leaves and ambient temperature was mea-
sured with thermocouples placed in the freezer
interior. Exotherms occurred at — 3.5 °C £+ 1.9 SD,
indicating that temperature treatments below — 8 °C
induced freezing for all species. In all trials, one
control from each individual remained at 7 °C in the
refrigerator.

Quantifying freezing damage

We used two techniques to quantify freezing damage:
electrolyte leakage to assess branch, bud, and young
leaf freezing damage (Lenz et al. 2013; Vitasse et al.
2014b) and chlorophyll fluorescence to determine
freezing damage of young and mature leaves (Boorse
et al. 1998). With each metric, LT50, or the lethal
temperature at which the tissue experienced 50% of
maximum freezing damage was determined by mea-
suring freezing damage at a range of temperatures and
fitting a 3-parameter logistic curve in JMP or a self-
starting nonlinear least squares logistic model in R
(Eq. S3 from ESM), similar to Thalhammer et al.
(2014). Measurements were standardized relative to
the maximum measured damage (i.e., the asymptote
value) for both chlorophyll fluorescence and elec-
trolyte leakage (Friedman et al. 2008). For mature
leaves and fall buds, we used values from samples
frozen to — 20 °C and — 80 °C, respectively, as the
maximum damage controls because tissue frozen to
these temperatures exhibited maximum damage in the
spring.

We compiled our data on freezing damage to
estimate freezing tolerance using a principle compo-
nent analyses (PCA) in JMP. In this analysis, we
described freezing tolerance based on LT50 young
leaf electrolyte leakage, LT50 young leaf chlorophyll
fluorescence, LT50 mature leaf chlorophyll fluores-
cence, and autumn bud electrolyte leakage at — 30 °C.
All metrics of freezing damage were scaled to one
before conducting the PCA. To test for relationships
between freezing tolerance, phenology, and native
range temperature, linear regressions were performed
in R with the freezing tolerance PCA two primary axes
as predictors for leaf out date, 75% senescence date,
and minimum temperature in each species’ native
range.
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Electrolyte leakage and chlorophyll fluorescence
measurements

In the spring (during leaf out), freezing damage was
measured with electrolyte leakage at a range of
temperatures and in the fall (dormant buds), all plants
were compared at — 30 °C. After freezing, we excised
I-cm stem segments from the frozen and control
samples and placed them in test tubes with 10 mL of
Milli-Q water. After 22-26 h in a 22 °C water bath,
we measured the conductivity of the frozen samples
and non-frozen controls. To determine the maximum
conductivity of a dead sample, all samples (except
those frozen to — 80 °C) were autoclaved at 121 °C
for 20 min, incubated in the water bath for 22-26 h,
and remeasured. Freezing damage was estimated
using the index of injury according to Flint et al.
(1967).

We also assessed leaf freezing damage by measur-
ing dark-adapted quantum efficiency using a mini-
PAM II (Heinz Walz GmbH, Effeltrich, Germany). In
late spring and early fall, leaves (22-30 samples per
species) were frozen to — 2 °C, — 5 °C, — 8 °C and
— 10 °C. In the spring, we also included — 15 °C and
— 20 °C to guarantee maximum damage. After
freezing, the leaves were held at 7 °C for 24 h and
dark adapted for at least 2 h before measuring
chlorophyll fluorescence (Badeck and Rizza 2015).
The decline in photosystem function was determined
by subtracting each measurement from the unfrozen
control measured at the same time.

Species distribution models

Climatic suitability was modeled with Maxent (Ver-
sion 3.4.1, Phillips 2018) based on the coldest
temperatures in known locations for each species.
We used bioclimatic data from WorldClim (World-
Clim.org, Fick and Hijmans 2017) for the minimum
temperature of the coldest month (code: BIO6) and
occurrence data from the Global Biodiversity Infor-
mation Facility website (GBIF.org 2018; Table S3
from ESM). For the native species, occurrences were
limited to North America. For invasive species, native
ranges were determined based on the Kew Botanical
Gardens “Plants of the World Online” resources
(plantsoftheworldonline.org; IPNI 2018; WCSP 2018)
and their invasive ranges was determined based on
their North American ranges. We found a minimum of
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111 occurrence locations per species and used 75% of
the occurrence data to train each model and the
remaining 25% to test the model. Freezing tolerance
was also compared to historic temperatures in Duluth
over the past 50 years using data from the Daily
Global Historical Climatology Network (Menne et al.
2012a, b).

Testing for differences by species’ origin
and species

Differences between native and invasive species were
examined in traits relating to phenology, carbon gain,
growth, and susceptibility to freezing temperatures
using generalized linear models and ANOVA’s
(o0 = 0.05) tested in JMP (pro 14.0.0, 2018). Most
models included two fixed-effects: origin (native or
invasive) and species nested within origin. We used
ANOVA'’s for normally distributed data and general-
ized linear models with the best fit distribution for each
trait (Table S4 from ESM). Leaf age (young or mature)
effect was added in the ANOV A comparing maximum
photosynthesis rates. Temperature effects (— 2 °C,
— 5°C, and — 8 °C) were also added in the gener-
alized linear models of freezing damage, and tissue
type and method combinations were tested separately.
The interaction of additional effects with origin and
species nested within origin was accounted for. Model
fit was assessed with a Wald’s test to determine
whether the explanatory variables were significant.

Results
Leaf phenology

Spring occurred later and more rapidly in 2018 than in
2017, yet the overall order of budburst remained
consistent for most species across both years (Fig. 3a).
Native and invasive plants exhibited no significant
difference in budburst date (Wald-le,ﬁ =0.28,
p=0.6) nor in leaf out date (Wald-x21,6= 1.0,
p = 0.3) in spring 2017, as interpolated from 3-pa-
rameter nonlinear least squares logistic models
(Table S5 in ESM; RMSE = 0.0-13.9 percent of buds
at budburst, RMSE = 0.0-13.9 percent of buds at leaf
out). Under- and overstory plants expanded their
leaves nearly simultaneously, but at least 30% of
understory leaves were unfolded before the canopy
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Fig. 3 Leaf phenology in 2017 and 2018 based on weekly
observations of 10 plants per species. Boxplots represent
phenophases: 30% bud burst date (light green), 30% leaf out
date (dark green), and 75% senescence date (orange). a Leaf
phenology by origin in both years (o= 0.05; *p < 0.05,
NS = no significant difference). b Leaf phenology by species

was more than 75% closed (Fig. 3b). Bud burst dates
and leaf out dates were more similar between native
and invasive species in 2018 (Fig. S2 from ESM; bud
burst: Wald-xzw = 1.2, p=0.3; leaf out: Wald-
sz = 1.9, p = 0.2) based on fitted curves (Table S5
in ESM; RMSE = 0.0-9.8 percent of buds at budburst,
RMSE = 0.0-29.8 percent of buds at leaf out) and all
phenological stages occurred within a shorter time
window.

In autumn 2017, invasive plants reached 75% leaf
senescence 24 days later than native plants on average
(Fig. 3; Wald-leb = 4.5, p = 0.03), based on dates
interpolated from 3-parameter nonlinear least squares
logistic models (Table S5 in ESM; RMSE = 1.7-17.4
percent leaf senescence). Meaning that, contrary to the
natives, invasive species retained green leaves after
the canopy re-opened, thereby experiencing extended
access to light and a lengthened growing season.
Although invasive and native fall senescence dates
were not significantly different in 2018 (Fig. 3a,
Fig. S2 from ESM; Wald-x* ¢ =27, p=0.1),
autumn 2018 patterns were consistent with 2017 and
invasive species reached 75% senescence 15 days on
average after native species based on dates

JLIm Slep

dct Nlov Déc

in 2017. Background shading indicates canopy phenology
calculated from hemispherical photographs: open canopy
(white), closed canopy (dark grey), and transition period
ranging from 25% canopy open to 25% canopy closed (light
grey). All data were interpolated from fitted curves

interpolated from fitted curves (Table S5 in ESM;
RMSE = 0.1-34.6 percent leaf senescence).

Carbon assimilation

According to carbon gain estimates from our model,
invasive and native species accumulated similar
amounts of total carbon in one year (Wald-
le,e = 0.071, p = 0.8), but their relative carbon gain
differed within and across seasons (Fig. 4). Natives
species gained a larger percentage of their total carbon
in the spring (Wald-y? ¢ = 18.5, p = < 0.0001) and
summer (Wald-le,ﬁ = 4.8, p = 0.03). Although fall
accounted for less than 17% total carbon gain,
invasive species made up for their earlier season
deficit with greater relative fall carbon gain than native
species (Wald-xzm = 19.8, p = 0.003). This trend is
especially notable for Rhamnus and Frangula, and
less applicable for Berberis which relied heavily on
spring carbon gain. Overall, summer was the most
important season for carbon gain, with all species
acquiring over 75% of their total annual carbon during
the summer.
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Fig. 4 a Modeled daily
carbon gain for native (dark
green) and invasive species
(light green) for eight
species: Berberis and Rubus
(solid), Lonicera and
Corylus (dotted), Frangula
and Viburnum (long dash),
Rhamnus and Cornus (dot
dash). Background shading
indicates when the canopy
is > 95% closed. b Native
species gained significantly
greater proportions of their
carbon in the spring and
summer, while invaders

30+

N
o

/
7’

Aplant (mol CO, day™)
)

o
.

*

-

-~

.

-

/

_" tree-like \:.-
shrubs

/

subshrubs

.
2

4

Status
E3 Invasive
B8 Native

shrubs

*
*

¢ .,

A
N

-
» .

\

Canopy
[ ] Open
[ ] Closed

'\
\\ A

N .

made up the difference in
the fall. ¢ According to our

N.OV

model native and invasive
species assimilated similar
total amounts of carbon
annually (a0 = 0.05;

*#¥p < 0.001, **p < 0.01,
*p < 0.05, NS = no
significant difference)

100
80 |
60 |
40 4
20 4

L=

o

*%

() NS 1400

~300

~200

=)

100

e

Annual Carbon Gain (%)

Spring

The light response curves within the carbon gain
model were well represented by non-rectangular
hyperbola least squares regression models (Table S6
in ESM; RMSE = 0.04-1.01 pmol CO, m~2 s~ for
young leaves, RMSE = 0.05-0.86 pmol CO,m 2 s~ !
for mature leaves). Likewise, nonlinear least squares
logistic models were a good fit for leaf area expansion
over time (Table S7 in ESM; RMSE = 0.5-25.8 sz)_

Of the three carbon model inputs (Fig. 2, Box 1:
understory light availability, Box 2: photosynthetic
light response curves, and Box 4: total leaf area), total
leaf area was the best predictor of carbon gain
(Table 2; leaf area total: partial F =63.41,
p =< 0.0001, partial 2= 0.99; A,.x mature leaf:
partial F=8.51, p=<0.0001, partial r*=0.02).
Removing leaf area from the model reduces the
importance of summer carbon gain (Fig. S3 from
ESM). Because total leaf area relates to growth form,
species grouped by growth form in their summer daily
carbon assimilation rates (Fig. 4a). The two sub-
shrubs, Berberis and Rubus, had the smallest leaf area
and the lowest daily carbon gain. Of the shrubs,
Lonicera, Cornus, and Corylus exhibited the highest
carbon assimilation rates due to their higher leaf
counts and multi-stemmed growth form. Meanwhile,
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Rhamnus, Frangula, and Viburnum had fewer leaves,
large single stems, and mid-level assimilation rates.

Growth traits

The invasive shrubs had similar growth rates (basal
RGR and branch AGR), specific leaf area (SLA), and
maximum carbon assimilation rate (A,,,) as native
species, but exhibited higher absolute branch growth
rate (AGR) than native species (Fig. 5; basal RGR:
%16 = 1.9, p = 0.2; branch AGR: Wald-y? ¢ = 5.9,
p = 0.02; A,.x mature leaf: Fy g = 3.6, p = 0.06; SLA:
%16 =045, p=0.5).

Freezing damage

Native and invasive species had similar overall
susceptibility to freezing damage (Fig. 6). The 3-pa-
rameter nonlinear least squares logistic models were
well-fitted to freezing damage (Table S8 from ESM,
Fig. S4 from ESM; young leaves measured with
electrolyte leakage: RMSE = 14.4-21.9 percent dam-
age; young leaves measured with chlorophyll fluores-
cence: RMSE = 0.08-0.17 decline in photosystem II
function, Y(II); mature leaves measured with
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Table 2 Multiple linear regression models for total carbon gain and freezing principle components predictors of minimum

temperature

Model Model
no.

Independent variable

F-ratio df  p value adj. AIC

r2

Carbon gain 1

log(total leaf area) + stem count + \/ plant height + spring ~ 492.1 13,
PPFD + log(summer PPFD) + log(fall

< 0.0001 0.99 - 379
26

PPFD) + log(budburst date) + leaf out date + senescence
date + log(Anax young leaf) + log(A,.x mature

leaf) + log(branch AGR) + log(SLA)

Carbon gain 2 log(total leaf area) + log(A,.x mature leaf) 4+ senescence 1448 4, < 0.0001 099 — 438
date + log(summer PPFD) 42

Carbon gain 3 log(total leaf area) + log(A,.x mature leaf) 4+ senescence 1560 3, < 0.0001 099 — 347
date 43

Carbon gain 4% log(total leaf area) + log(A,.x mature leaf) 2010 2, < 0.0001 099 - 28.6
44

Carbon gain 5 log(total leaf area) 1525 1, < 0.0001 0.97 15.2

Freezing 1 freeze PC1 + freeze PC2 + freeze PC3
Freezing 2° freeze PC1 + freeze PC2
Freezing 3 freeze PC1

6.436 3,3 0.080 0.73 36.6
12.18 2,4 0.020  0.79 35.0
7324 1,5 0.042 051 40.4

“Best predictive models

chlorophyll fluorescence: RMSE = 0.13-1.49 decline
in photosystem II function, Y(II)). Freezing damage
was comparable between native and invasive species’
young leaves assessed with electrolyte leakage
(le,ﬁ =12, p =0.07) and chlorophyll fluorescence
(x2 1.6 = 2.1,p = 0.2), and mature leaves assessed with
chlorophyll fluorescence (le,(, = 3.6, p=0.06) at
different temperatures. Furthermore, the temperatures
at which the tissue experienced 50% of the maximum
damage (LT50) did not differ between groups (young
leaves measured with electrolyte leakage: F; ¢ = 4.5,
p = 0.08; young leaves measured with chlorophyll
fluorescence: Fy ¢ = 3.3, p = 0.1; mature leaves mea-
sured with chlorophyll fluorescence: F;¢ = 0.30,
p = 0.6). Average minimum temperatures at the study
site during the last 50 years have not been cold enough
to induce substantial freezing damage during the times
of year that we measured freezing damage (Fig. 6).
The first two axes of the PCA analysis explained
71.9% of the variation in freezing tolerances (Fig. 7a).
The two axes corresponded to freezing tolerance in
different seasons, with PC1 and PC2 capturing vari-
ation in fall and spring freezing tolerance, respec-
tively. The invasive and native species showed spatial
separation along the second axis, which explains
26.5% of differences between species and was driven

by spring freezing tolerance (young leaf electrolyte
leakage and chlorophyll fluorescence). Electrolyte
leakage and chlorophyll fluorescence were not corre-
lated with each other in the spring (t; ¢ =— 1.7,
p =0.9, r* =0.005) and exhibited opposite trends.
One explanation for this pattern is that the native
plants have a lower quantum efficiency because they
exhibit a cold-induced photoprotective response and
have sustained zeaxanthin concentrations at night
(Adams et al. 1995). However, more research is
needed to determine if this is the case. In the fall,
freezing tolerance of mature leaves and dormant buds
do show similar trends across species, though they are
not correlated (t; 6 = 1.6, p = 0.2, * = 0.3) and not
related to invasiveness. Additionally, spring (young
leaf) and fall (mature leaf and dormant bud) metrics of
were not correlated across seasons.

Because the first two axes of the PCA separated out
by season, we examined how phenological events and
native range minimum temperatures related to freez-
ing tolerance during each season. Leaf out date did not
correlate with spring leaf freezing tolerance (PC2;
ts=—0.7,p=0.5, 125 = — 0.08) and the timing of
75% leaf senescence did not relate to fall freezing
tolerance (PC1; ts = — 0.82, p = 0.4, rag; = — 0.05).
Instead, freezing tolerance correlated with minimum
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temperatures in the species’ native ranges. The best Discussion

predictive regression model for the minimum temper-
ature in the species’ native ranges included the first
two axes of the freezing tolerance PCA, though PC2 (a
proxy for spring freezing tolerance) was not indepen-
dently correlated with minimum temperature (Fig. 7b;
Table 2; PCI1: partial F=3.20, p =0.03, partial
? = 0.72; PC2: partial F=27, p=0.05, partial
r* = 0.65). Our climate models also indicate that
invasive species moved from warmer to colder
climates during their invasion (Table S9 from ESM),
and the occurrence data show that our study site is at
the northern edge of their North American invaded
ranges (Fig. S5 from ESM), while more central to the
native species distributions (Fig. S6 from ESM). We
excluded Lonicera from distribution analyses because
this species resulted from a hybridization in its
invasive range.
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Although invasive species retained leaves after the
canopy reopened in the fall (Fig. 3), their extended
leaf phenology did not result in greater total carbon
gain, as compared to native associates (Fig. 4). We
propose that extended leaf phenology provided no
photosynthetic advantage at our site because of
reduced light levels and shorter spring and fall
length at the northern latitude. Instead, both groups
relied on summer carbon gain, when light levels were
highest in the disturbed forest of our study site
(Table 3). Invasive and native species also had
comparable susceptibility to freezing temperatures
(Fig. 6), and we found no evidence that freezing
temperatures limit the invasive species’ northern
distributions. In the end, the largest determinant of
both susceptibility to freezing temperatures and
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Fig. 6 The temperature at which a, b young and ¢ mature
leaves experienced 50% of maximum freezing damage assessed
with electrolyte leakage (EL) and chlorophyll fluores-
cence (CF). Background shading indicates the average mini-
mum temperatures (dashed black line, shaded area is SD) and
record coldest temperature (solid black line) during the past
50 years. There was no significant difference between invasive
(light green) and native (dark green) leaf freezing damage in the
spring when measured with electrolyte leakage and chlorophyll
fluorescence, nor in the fall, when measured with chlorophyll
fluorescence (o = 0.05 and NS = no significant difference)

phenology was geographic origin. All invasive species
studied here are from Europe or Asia (or in the case of
Lonicera x bella, their parental species), where
growing seasons are inherently longer (Zohner and
Renner 2017) and spring temperatures more consistent
(Zohner et al. 2017). They also originated in warmer
climates and their fall susceptibility to freezing
temperatures correlated with the minimum tempera-
ture in their native range (Fig. 7b). These results
suggest that light and geographic origin are critical to
understanding the ability of invasive species to survive
in northern habitats.

Extended leaf phenology may relate to geographic
origin

In northern Minnesota, the four invasive shrub species
we monitored only exhibited extended leaf phenology
in the fall and not in the spring (Fig. 3). These results
are contrary to previous observations at more southern
latitudes that found early spring leaf out increased
carbon gain for Rhamnus cathartica, Lonicera x bella,

21(a)
YOUNG LEAF EL
§ 11 ‘ Frangula
g Lonicera Rhamnus
© A FALL BUD EL
N Rubus
S Viburnum /1//,470,? Berberis
CL '1 7 A 6 ( qu
Cornus Cr
YOUNG LEAF CF
-2 Corylus
oo 04(b) Berberis
\./E Frangula
51
Viburnum
_5 10 Rubus “'PUMY Rhamnus
37 A A
s 154 Cornus
w .
o Corylus partlgl r2= (?.72

2 1 0 1 2
PC1 (45.48%)

Fig. 7 a Principle components analysis of the lethal tempera-
ture at which the tissue experienced 50% maximum damage
(LT50) of young leaves measured with electrolyte leakage
(YOUNG LEAF EL), young leaves measured with chlorophyll
fluorescence (YOUNG LEAF CF), mature leaves measured with
chlorophyll fluorescence (MATURE LEAF CF), and dormant
bud freezing damage at — 30 °C measured with electrolyte
leakage (FALL BUD EL). Arrows point in the direction of
greater freezing susceptibility. Invasive species (light green
circles) and native species (dark green triangles) separate
primarily along PC2. b The minimum temperature during the
coldest month in each species’ native distribution (Distribution
Tmin) relates to freezing tolerance (PC1). Lonicera was excluded
because it is a hybrid and its parental species are from different
native ranges (Europe and Japan)

and Berberis thunbergii (Harrington et al. 1989; Xu
et al. 2007). However, later warming at northern
latitudes may force co-occurring species to leaf out
within a shorter timeframe (Polgar and Primack 2011;
Fahey 2016) and sometimes simultaneously with the
canopy (Kwit et al. 2010). Our study is consistent with
the findings of an investigation of differences in
invasive species’ leaf phenology across latitudes
(Maynard-Bean 2019) and a comprehensive common
garden study conducted in Syracuse, New York that
found North American invasive species mainly
extended their leaf phenology in the fall (Fridley
2012).

Native geographic distributions are likely a major
driver of differences in leaf phenology between native
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Table 3 Understory light environment at Bagley Nature Area, Duluth, MN, USA

Understory light metric

Spring

Summer

Fall

Canopy phenology®
Canopy openness”
Transmitted light®

PPFD (pumol photons m
Daily PPFD? (mol photons m~> day~")
Percent of total season light®

Open

85% [47-97%]
59.3% [15.8-90.1%]
265.9 [53.2-749.1]
18.4 [6.16-35.3]
34%

Closed

26% [5-83%]
24.9% [1.37-100%]
73.38 [1.1-480.8]
16.4 [1.45-53.3]
61%

Open

84% [41-100%]
30.03% [4.32-80.4%]
33.7 [2.61-222.9]
7.2 [1.48-24.3]

5%

dCanopy phenology is based on 95% of maximum canopy closure

Canopy openness was calculated based on hemispherical photographs (ranges do not include transitional periods of canopy closing

or opening)

“Transmitted light is the ratio of light (lumens s~') above the plant to light in the open, measured on cloudy days

dDaily PPFD measurements were taken on sunny days

°Total seasonal light percentages are between average budburst date and 75% senescence date. Average [min—max]

and non-native plants in this study. Plants native to
North America tend to have shorter periods of
seasonal growth than plants native to Europe or Asia,
regardless of invasive classification (Zohner and
Renner 2017). For example, Rhamnus cathartica
exhibits similar leaf phenology to native European
species where it originated (Knight et al. 2007).
Because spring temperatures vary more in North
America than Europe and Asia (Zohner et al. 2017),
invasive plants in the United States are often more
responsive to temperature cues than their native
associates (Wolkovich and Cleland 2011). This plas-
ticity could provide invasive plants with a fitness
advantage under future climate conditions (Wolk-
ovich and Cleland 2011; Cleland et al. 2012; Zohner
and Renner 2014). The situation maybe be further
exasperated because the invasive species in this study
are native to warmer climates than their Minnesotan
associates (Table S9 from ESM) and plants from
southern latitudes often react more strongly to spring
warming (Morin et al. 2007).

Invasive species shift the timing of their carbon
assimilation

According to our carbon gain model, invasive and
native species exhibited comparable total annual car-
bon gain but differed in their relative carbon gain during
each season (Fig. 4). Invasive plants gained more
carbon in the fall because they had larger leaf areas (e.g.
greater number of leaves and/or larger leaves) when
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carbon assimilation rates were highest. Even when
assuming maximum productivity (i.e., all sunny days,
no self-shading within a plant, and no decline in
photosystem function during the fall or at lower
temperatures), extended leaf phenology did not confer
much of an advantage to the invasive species in our
study and only allowed them to stay competitive with
the natives in terms of carbon gain. We propose these
results are primarily a consequence of the short growing
season and low light levels present at a northern latitude
(Fig. 1). If this is the case, then invasive species with
extended leaf phenology may only have a fitness
advantage over native plants at more southern latitudes.

All species assimilated less than 20% of their total
seasonal carbon during the spring and instead assim-
ilated the majority (> 75%) of their carbon during the
summer, when the canopy was closed (Fig. 4). This
pattern is partly explained by higher light transmit-
tance in the disturbed forest at our site than at sites
with complete canopy closure (Baldocchi et al. 1984;
Gill et al. 1998; Augspurger 2008; Lopez et al. 2008)
or canopy closure simulated with shade cloth, such as
the common garden at Syracuse (Fridley, 2012). The
average light transmittance during the summer was
24.9% =+ 26.7 SD because some plants were growing
at the forest edge or in gaps (Table 3). Without
complete canopy closure, seasonal light availability
was more influenced by photoperiod and irradiance
levels, rather than overstory phenology. Although our
results appear contrary to studies emphasizing the
importance of early spring carbon assimilation
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(Harrington et al. 1989; Augspurger et al. 2005; Lopez
et al. 2008; Heberling et al. 2018), we propose this
discrepancy occurs partly because spring starts later
and progresses more rapidly at northern latitudes,
resulting in a shorter window for carbon gain prior to
canopy closure (Fig. 3). In the fall, irradiance levels
are lower because of rapid changes in daylength and
light quality at northern latitudes (Fig. 1) and this
could explain why invasive plants at our site had lower
fall carbon assimilation than studies at slightly lower
latitudes like Syracuse, NY (Fridley 2012).

Native and invasive species both exhibit low
susceptibility to freezing temperatures

All species studied, regardless of invasive status,
began to incur substantial freezing damage at temper-
atures lower than average observed minimum temper-
atures in the spring and fall (Fig. 6). We hypothesize
that this pattern explains why we did not observe a
relationship between spring leaf phenology and
freezing damage as expected (Lenz et al. 2013;
Vitasse et al. 2014a). Leaves required temperatures
below — 2 °C to exhibit 50% damage (LT50) accord-
ing to our electrolyte leakage and chlorophyll fluores-
cence measurements. In the spring these damaging
temperatures are colder than temperature extremes at
that time of year during the past 50 years (Fig. 6). In
general, temperatures in northern Minnesota while
plants have leaves are not cold enough to cause
substantial damage to any of the species in our study.
Instead, fall freezing tolerance across species appears
to relate most strongly with the minimum temperature
in their native ranges (Fig. 7b). Since all four invaders
moved from warmer climates to colder climates
during their North American invasion (Table S9 from
ESM), they presumably evolved with weaker selective
pressure for freezing tolerance. These results suggest
freezing temperatures may not limit expansion north
of the invasive species and could provide them with an
advantage under future climatic conditions as earlier
springs continue to have late freezing events.

Conclusions
To better understand invasive species’ growth and

physiology at the northern edge of their distributions,
we investigated leaf phenology, carbon gain, growth,

and freezing tolerance of invasive and native species
in a disturbed forest in Northern Minnesota. The
invasive species leafed out simultaneously with native
species in the spring and demonstrated an equally high
freezing tolerance, but retained their leaves later in the
autumn. Since the invasive species assimilated less
carbon during the summer than the native species,
extended fall phenology in invaders was critical to
maintaining competitive levels of carbon gain. How-
ever, with an extended leaf phenology and higher
responsiveness to temperature changes, invaders may
be able to take advantage of warming springs and
longer autumns in the future (Wolkovich and Cleland
2011). This study demonstrates the importance of
considering geography and latitude when studying
invasive species phenology and physiology and sug-
gests that seasonal light, and not climatic tempera-
tures, may be more important in limiting invasive
species’ northern migrations. Going forward, it is
critical the we consider the impact of latitude and
forest structure when studying invaders’ phenology
and growth. Continued work in this area is needed to
further elucidate what limits invasive species’ north-
ern expansion and how northern plant communities
will continue to change in the future.
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