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Abstract. Kostant’s partition function is a vector partition function that
counts the number of ways one can express a weight of a Lie algebra g as
a nonnegative integral linear combination of the positive roots of g. Mul-
tiplex juggling sequences are generalizations of juggling sequences that
specify an initial and terminal configuration of balls and allow for multiple
balls at any particular discrete height. Magic multiplex juggling sequences
generalize further to include magic balls, which cancel with standard balls
when they meet at the same height. In this paper, we establish a combi-
natorial equivalence between positive roots of a Lie algebra and throws
during a juggling sequence. This provides a juggling framework to cal-
culate Kostant’s partition functions, and a partition function framework
to compute the number of juggling sequences. From this equivalence we
provide a broad range of consequences and applications connecting this
work to polytopes, posets, positroids, and weight multiplicities.
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1. Introduction

Juggling was formalized as a mathematical concept around 1980 [47]. Juggling
sequences keep track of the movement of a finite number of balls by recording
their discrete heights at discrete time steps, under the condition that only one
ball is caught and thrown at any time [7]. This imitates the continuous action
of how a juggler catches and throws balls while juggling.

Since the formalization of mathematical juggling, researchers have deter-
mined the number of distinct juggling sequences satisfying certain juggling
parameters. Moreover, a number of extensions to juggling sequences have been
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made, including Butler and Graham’s recent extension to multiplex juggling
sequences [10], in which the juggler can now hold up to m balls in their hand
(their hand capacity). Some of these sequences were enumerated in [9]. To
learn more about the mathematics of juggling, we recommend the short his-
tory given by Varpanen [52] or the more comprehensive summary by Polster
[44].

The study of juggling patterns has been shown to have connections to
many areas of mathematics such as walks on graphs [10,13], probability and
Markov processes [2,34], q-analogues [16–18], positroid varieties [32], vector
compositions [49], and vector partition functions [23,25]. It is this last connec-
tion that motivates our current work.

We recall that a weight μ of a Lie algebra g is a linear functional on
the dual of a Cartan subalgebra of g. More simply, a weight is a vector in
R

n, for some appropriate n and with certain defining conditions on its entries
dependent on the Lie algebra of interest. In this way, the set of positive roots of
g is a finite linearly dependent set of vectors in R

n, which we denote by Φ+. As
for weights, the linear dependence relation between the vectors in Φ+ depends
on the Lie algebra involved; we make this precise in Sect. 2.4. Then Kostant’s
partition function is a vector partition function that counts the number of
ways to express a weight μ of a Lie algebra as a sum of its positive roots. We
denote this count by K(μ).

We extend the definition of a multiplex juggling sequence to deal with
the negative integers that arise as entries in the vectors defining the positive
roots of a Lie algebra. This leads to the concept of a magic multiplex juggling
sequence that includes both the standard non-magic balls as well as new magic
balls. In these juggling sequences, a magic ball and a non-magic ball located at
the same height nullify each other and both disappear. Since all of our results
involve magic multiplex juggling sequences, throughout this manuscript, we
drop the language “magic multiplex” and refer to them simply as juggling
sequences. We let the integer tuple 〈a1, a2, . . . , ak〉 describe the configuration
of

∑k
i=1 ai balls in which ai balls are at height i (and where they are magic

balls if ai < 0).
The key insight setting the foundation for our results is that there is a

combinatorial equivalence between the throwing of a ball during a juggling
sequence at time i to height j and the positive root εi − εi+j appearing in a
partition of a weight of a Lie algebra of type Ar, where {ε1, . . . , εr+1} are the
standard basis vectors in R

r+1. Thinking of a juggling sequence as a multiset
of throws and a vector partition as a multiset of positive roots establishes a
correspondence between these collective objects, which we develop in Sects. 3
and 4.

The correspondence leads to a bijection (Theorem 3.7) between the par-
titions of a weight μ =

∑r+1
i=1 μiεi of type Ar (where each μi ∈ Z) and juggling

sequences of length r where balls start with the configuration 〈μ1, . . . , μr〉 and
end with all μ1+· · ·+μr balls at height one, the cardinality of which is denoted
js(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r). This gives the following enumerative result
for Kostant’s partition function K(μ).
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Theorem 3.8. Let μ be a weight of the Lie algebra of type Ar and let
〈μ1, . . . , μr+1〉 be its standard basis vector representation. Then

K(μ) = js(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r).

The same correspondence provides a bijection (Theorem 4.4) between a
general set of juggling sequences with initial configuration of balls a, a terminal
configuration of balls b (with both a and b containing the same net number of
balls), hand capacity m, and length n and the set of partitions of a weight δ of
type An (specified by a, b, and n) with an explicit restriction on the positive
roots allowed in the partition.

These results are just the tip of the mathematical iceberg. The Lie algebra
of type A is one in a family of four classical simple Lie algebras. Hence, one
could ask how the bijections between juggling sequences and partitions of
weights generalize to other Lie types. In Sect. 5.1, we define a new variety of
juggling that models partitions of weights in Lie algebras of type B, C, and
D. Then in Sect. 5.2, we provide a way to count these new juggling sequences
as sums of standard (type A) juggling sequences, which makes use of a result
of Schmidt and Bincer [45]. See Corollary 5.6.

One motivation for this paper was the value of Kostant’s partition func-
tion on the highest root of the Lie algebras of types B and C. Harris, Insko,
and Omar [23] gave generating functions for these values, verifying the claim
of Harris, Insko, and Williams [25] that the generating functions for the value
of Kostant’s partition function on the highest root were the same as those for
counting certain multiplex juggling sequences. Although the generating func-
tions agreed, neither set of authors gave combinatorial proofs for these results.
Section 5.3 is devoted to applying our methods to establish these bijective
proofs, which are stated in Theorems 5.9 and 5.10.

In Sect. 6, we give further applications and connections from the cor-
respondence between partitions of a weight of a Lie algebra of type A and
juggling sequences. Since the former can be seen as lattice points of flow poly-
topes [3] or elements of a poset [46], we define the equivalent juggling polytope
(see Fig. 8) of real-valued juggling sequences and juggling poset (see Fig. 9).
The connection with polytopes allows us to conclude polynomiality properties
of the number of juggling sequences (Corollary 6.5 and Corollary 6.7). In addi-
tion, we translate results from Chung–Graham [13] and Butler–Graham [10]
on juggling sequences to give permanent and determinant formulas for values
of restricted Kostant’s partition function on the highest root of the Lie algebra
of type A (Theorem 6.16).

This manuscript is organized as follows. In Sect. 2, we give precise math-
ematical definitions of juggling and of the Lie algebras of interest. Section 3
provides the bijection between partitions of a weight of a Lie algebra of type A
and certain multiplex juggling sequences, while Sect. 4 shows how to convert a
multiplex juggling sequence into a partition of a weight of a Lie algebra of type
A with certain restrictions. Section 5 extends multiplex juggling sequences to
other classical Lie types as described above. Section 6 presents applications
and connections to polytopes, posets, generating functions, positroids, and
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weight multiplicities, with open problems scattered throughout. We end the
manuscript by providing a dictionary of notation for the benefit of the authors
and the reader.

2. Background

2.1. Juggling Sequences

We now present the mathematics of juggling using the definitions and notation
presented by Butler and Graham [10]. We consider time to be broken down into
discrete steps. When we juggle, we throw each ball into the air immediately
upon catching it—the ball returns to our hand after a fixed amount of time
that is determined by how high the ball was thrown. A juggling state records
the position of the b ∈ N indistinguishable balls at a given time. That is, a
juggling state is a vector s = 〈s1, . . . , sh〉 of nonnegative integers that sum to
b, where si denotes the number of balls at height i with i = 1, 2, . . . , h. We say
that the height h of s is its largest non-zero index.

A multiplex juggling sequence S = (s0, s1, . . . , sn) represents the act of
juggling over time. Hence, two successive juggling states si−1 = 〈s1, . . . , sh〉
and si must satisfy

si = 〈s2 + b1, s3 + b2, . . . , sh + bh−1, bh, . . . , bh′〉, (2.1)

where the nonnegative integers bj satisfy
∑h′

j=1 bj = s1. This defining condition
represents accounting for the throwing of the s1 balls that land in your hand
at time i to heights j = 1, . . . , h′ (where bj balls return to your hand at time
i + j) and gravity (balls in the air are one time step closer to landing in your
hand). When a ball at height 1 at time i − 1 is thrown to height j at time i,
we call this a throw at time i to height j, which we denote by Ti,j . Since we
only consider multiplex juggling sequences, we drop the word multiplex.

A juggling sequence is said to be periodic if its initial state is the same
as its terminal state.

A juggling sequence can also have a hand capacity constraint, which
specifies the maximum number of balls at any height. Equivalently, any entry
in a juggling state must be less than or equal to m, representing that we
can only catch m balls at any given time. When m = 1 we recover standard
juggling sequences. When m is greater than or equal to the number of balls,
the hand capacity parameter does not play a role and can be ignored.

We define JS(a,b, n,m) to be the set of all juggling sequences of length n,
hand capacity m, initial state a, and terminal state b, and we let js(a,b, n,m)
denote the number of juggling sequences with these parameters. When there
is no hand capacity (or if m ≥ b), we write JS(a,b, n) and we let js(a,b, n)
denote its cardinality.

In physical juggling, the balls rise and fall in a parabolic motion, but it
is easier to represent a juggling state s = 〈s1, . . . , sh〉 visually as a conveyor in
which s1, s2, . . . , sh balls are located in buckets at heights 1, 2, . . . , h, respec-
tively. A juggling sequence is therefore a sequence of juggling states in which
the balls at heights 2 through h descend by one unit height in successive time
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〈1, 1〉 〈2〉 〈0, 1, 1〉 〈1, 1〉

Figure 1. The juggling sequence (〈1, 1〉, 〈2〉, 〈0, 1, 1〉, 〈1, 1〉)

〈2, 1, 0,−1〉 〈3, 0,−1〉 〈1, 0, 1〉 〈1, 1〉

Figure 2. Example of a magic juggling sequence

steps, while the balls at height 1 are redistributed into buckets of some desired
heights. We illustrate the conveyor with the following example.

Example 2.1. Figure 1 shows the juggling sequence (〈1, 1〉, 〈2〉, 〈0, 1, 1〉, 〈1, 1〉),
which is a member of JS(〈1, 1〉, 〈1, 1〉, 3, 2). Note that there are two times at
which balls are thrown. At time t = 1, a ball is thrown to height 1 and at time
t = 2, the two balls are thrown to heights 2 and 3, respectively.

2.2. Magic Juggling Sequences

A magic juggling sequence removes the restriction that all entries in a juggling
state must be nonnegative integers. An entry sj < 0 in a juggling state denotes
|sj | “magic” balls at height j. The name magic is used because when a magic
ball and a standard non-magic ball come into contact they “magically” disap-
pear. In this way, a juggling state is now an integer vector s = 〈s1, . . . , sh〉,
and a magic juggling sequence S = (s0, . . . , sn) satisfies Eq. (2.1) and requires
that any magic balls not be redistributed. For this reason, any hand capac-
ity constraint only applies to non-magic balls. See Fig. 2 for an example of a
magic juggling sequence in JS(〈2, 1, 0,−1〉, 〈1, 1〉, 3). Magic balls arising from
negative entries in the starting state are represented by white balls.

Because a magic juggling sequence is simply a standard juggling sequence
when the entries of a are nonnegative, we can extend the definitions of
JS(a,b, n,m) and js(a,b, n,m) to represent the set and number of magic jug-
gling sequences, respectively. We once again drop the last parameter if there is
no hand capacity constraint or if the hand capacity constraint is larger than the
number of non-magic balls. Since we only consider magic juggling sequences,
we drop the word magic.
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1 2 2 3

1 2

2 3 3

←→

Figure 3. The labeled juggling state 〈[1, 2, 1], [1,−1, 0],
[0, 1, 2]〉 decomposes into three juggling states, s1 = 〈1, 1〉,
s2 = 〈2,−1, 1〉, and s3 = 〈1, 0, 2〉

1 2 2 3

1 2

2 3 3

1 3

2 3 3

1 2

2 3 3 3

1 2

1

1 2 2

1 3 3 3

Figure 4. The labeled juggling sequence (〈[1, 2, 1], [1,−1, 0],
[0, 1, 2]〉, 〈[1, 0, 1], [0, 1, 2], [1, 1, 0]〉, 〈[0, 1, 3], [1, 1, 0], [1, 0, 0]〉,
〈[1, 2, 0], [1, 0, 3]〉)

2.3. Labeled Juggling Sequences

A labeled juggling sequence allows the balls to be distinguishable. In this case,
we let l ≤ b denote the labels we may use. In this case, a juggling state is
a vector s = 〈u1, . . . ,uh〉 of integer tuples ui = [u1

i , . . . , u
l
i] ∈ Z

l, where |uj
i |

records how many balls of label j are present at height i. Note that if uj
i > 0

then there are |uj
i | balls labeled j at height i, and if uj

i < 0 then there are |uj
i |

magic balls labeled j at height i.
There is a natural decomposition of a labeled juggling state with l labels

into l juggling states, each independently corresponding to having balls with
only one specified label. If s = 〈u1, . . . ,uh〉 is a labeled juggling state, then
sj = 〈uj

1, . . . , u
j
h〉 is an unlabeled juggling state, as in Fig. 3. Similarly, a labeled

juggling sequence S = 〈s0, . . . , sn〉 involving l labels can be decomposed into l

juggling sequences Sj = 〈sj
0, . . . , s

j
n〉, one for each label 1 ≤ j ≤ l. An example

of a labeled juggling sequence is shown in Fig. 4.
A consequence of this decomposition is a formula for the number ljs of

labeled juggling sequences as a product of numbers of juggling sequences.

Proposition 2.2. Let a and b be labeled juggling states and n be an integer.
Then

ljs(a,b, n) =
l∏

j=1

js(aj ,bj , n).

Proposition 2.2 answers the question of Butler and Graham in [10,
Sect. 4.2] of how many juggling sequences exist when the balls are not identi-
cal, so as long as the hand capacity is large enough. Note that Proposition 2.2
does not apply when hand capacities are restrictive because a hand capacity
for balls of all labels cannot be independently decomposed into multiple hand
capacities.
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2.4. Kostant’s Partition Function

In what follows we use the choices of vector space bases presented in Goodman
and Wallach [19, Sect. 2.4.3]. For each Lie type, we describe a choice of sim-
ple roots, list the positive roots, and specify the corresponding highest root.
Throughout, ε1, ε2, . . . , εd denote the standard basis vectors of R

d, with d being
appropriately chosen depending on the Lie algebra. Also, Φ denotes a root sys-
tem for a Lie algebra of type Ar, Br, Cr or Dr and Δ = {α1, α2, . . . , αr} ⊂ Φ
is a set of simple roots if every root in Φ can be written as a linear combination
of the elements in Δ where the coefficients all have the same sign. We denote
by Φ+ the set of positive roots of Φ, that is, the set of roots that can be written
as linear combination of the roots in Δ with coefficients equal to 0 or 1. When
multiple root systems are involved, we include a subscript in Φ+ to denote the
Lie algebra of interest, as in Example 2.5.

Type Ar (slr+1(C)): Let r ≥ 1 and let αi = εi − εi+1 for 1 ≤ i ≤ r. Then
Δ = {αi | 1 ≤ i ≤ r} is a set of simple roots. The associated set of positive
roots is Φ+ = {εi − εj : 1 ≤ i < j ≤ r + 1}, and the highest root is α̃ =
α1 + α2 + · · · + αr.

Type Br (so2r+1(C)): Let r ≥ 2 and let αi = εi − εi+1 for 1 ≤ i ≤ r − 1 and
αr = εr. Then Δ = {αi | 1 ≤ i ≤ r} is a set of simple roots. The associated
set of positive roots is Φ+ = {εi −εj , εi +εj : 1 ≤ i < j ≤ r}∪{εi : 1 ≤ i ≤ r},
and the highest root is α̃ = α1 + 2α2 + · · · + 2αr.

Type Cr (sp2r(C)): Let r ≥ 3 and let αi = εi − εi+1 for 1 ≤ i ≤ r − 1 and
αr = 2εr. Then Δ = {αi | 1 ≤ i ≤ r} is a set of simple roots. The associated
set of positive roots is Φ+ = {εi−εj , εi+εj : 1 ≤ i < j ≤ r}∪{2εi : 1 ≤ i ≤ r},
and the highest root is α̃ = 2α1 + 2α2 + · · · + 2αr−1 + αr.

Type Dr (so2r(C)): Let r ≥ 4 and let αi = εi − εi+1 for 1 ≤ i ≤ r − 1 and
αr = εr−1 + εr. Then Δ = {αi | 1 ≤ i ≤ r} is a set of simple roots. The
associated set of positive roots is Φ+ = {εi − εj , εi + εj | 1 ≤ i < j ≤ r}, and
the highest root is α̃ = ε1 + ε2 = α1 + 2α2 + · · · + 2αr−2 + αr−1 + αr.

Remark 2.3. Since a Lie algebra of type Ar is a subalgebra of a Lie algebra
g of Lie type Br, Cr, or Dr, we simplify the exposition and reference positive
roots in type Ar as positive roots in other Lie types. More rigorously, we map
positive roots in Φ+

Ar
to their analogous positive roots in Φ+

g by mapping every
simple root αi ∈ Φ+

Ar
to the simple root αi ∈ Φ+

g for all 1 ≤ i ≤ r, and extend
this map linearly to all positive roots in Φ+

Ar
.

We are now ready to define our main object of study.

Definition 2.4. Kostant’s partition function is a nonnegative integer valued
function which counts the number of ways that a weight μ can be written as
a nonnegative integer linear combination of elements of Φ+. We denote this
count by K(μ).

When multiple root systems are involved, we include a subscript on K
to denote the Lie algebra of interest.
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An equivalent formulation is to represent a nonnegative integral linear
combination of positive roots as a multiset p = {β1, β2, . . . , βl} with the roots
βi ∈ Φ+. We say p is a partition of μ if

∑l
i=1 βi = μ and we let P (μ) denote

the set of partitions of the weight μ. We therefore have K(μ) = |P (μ)|. By
convention, K(0) is defined to be 1.

Example 2.5. Let μ = α1 + 2α2 + α3 be a weight of the Lie algebra of type
A3. Then

P (μ) =
{

{α1, α2, α2, α3}, {α1 + α2, α2 + α3},
{α1 + α2, α2, α3}, {α1, α2, α2 + α3}, {α1 + α2 + α3, α2}

}

are all of the partitions of μ using the elements of Φ+
A3

, so K(μ) = 5.

In Sect. 4, we will restrict the set of positive roots allowed in the partitions
of a weight; we define a restricted Kostant’s partition function as follows.

Definition 2.6. Let Λ ⊆ Φ+. Then KΛ defines a restriction to Kostant’s par-
tition function, counting the number of ways that a weight μ can be written
as a nonnegative integer linear combination of elements of Λ. We let PΛ(μ)
denote the set of partitions of the weight μ using the positive roots in Λ, so
KΛ(μ) = |PΛ(μ)|.

In the sections that follow it will be useful to express a weight μ in terms
of the standard basis vectors. Hence if μ = μ1ε1 + μ2ε2 + · · · + μrεr, where
μi are real numbers for all 1 ≤ i ≤ r, we use the notation 〈μ1, μ2, . . . , μr〉 to
represent the standard basis representation of μ.

3. The Bijection

In this section, we describe the bijection between juggling sequences and the
partitions of a weight counted by Kostant’s partition function. The key insight
in this bijection is an association between throws made at time i to height j
and the positive root εi − εi+j in a Lie algebra of type Ar, with r sufficiently
large. In the analogous way, given a positive root εi − εi+j of the Lie algebra
of type Ar we can associate it to the throw of a ball at time i to height j in a
juggling sequence of an appropriate length. In the definitions that follow, we
make this correspondence precise.

Definition 3.1. For r ≥ 1, define Tr to be the set of throws at time i to height
j for integers i and j that satisfy 1 ≤ i < i + j ≤ r + 1. Namely,

Tr = {Ti,j : 1 ≤ i < i + j ≤ r + 1}.

Proposition 3.2. The function Γ : Φ+
Ar

→ Tr defined by Γ(εi − εi+j) = Ti,j is
a bijection.

Proof. The function is well defined because every positive root in type Ar is
of the form εi − εi+j with 1 ≤ i < i+ j ≤ r +1. By construction Γ is injective.
The surjectivity of Γ follows because for every throw Ti,j ∈ Tr, the positive
root εi − εi+j ∈ Φ+

Ar
satisfies Γ(εi − εi+j) = Ti,j . �
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We can characterize a juggling sequence through the multiset of throws
that occur during the sequence. Given that Γ is a bijection between Φ+

Ar
and

Tr, then so is its extension to multisets.

Definition 3.3. We extend Γ to apply to a multiset p of positive roots Φ+
Ar

.
Define Γ(p) to be the multiset {Γ(β) : β ∈ p} ⊆ Tr.

Next we give a connection between the weight we partition and the mul-
tiset of throws in a juggling sequence.

Definition 3.4. Consider a juggling sequence S = 〈s0, s1, . . . , sn〉 whose cor-
responding multiset of throws is T . Define the net change vector δ(S) of S
as

δ(S) =
∑

T∈T
Γ−1(T ) =

n∑

i=1

∑

j∈Ji

(εi − εi+j),

where Ji is the multiset of heights to which balls are thrown at time i.

For example, the net change vector of the juggling sequence S =
(〈1, 1〉, 〈2〉, 〈0, 1, 1〉, 〈1, 1〉), as illustrated in Fig. 1, is

δ(S) = (ε1 − ε2) + (ε2 − ε4) + (ε2 − ε5) = ε1 + ε2 − ε4 − ε5,

while the net change vector of the juggling sequence S = (〈2, 1, 0,−1〉, 〈3, 0,−1〉,
〈1, 0, 1〉, 〈1, 1〉) from Fig. 2 is

δ(S)=2(ε1−ε2)+(ε2−ε3)+(ε2 − ε4)+(ε2 − ε5)+(ε3 − ε4) = 2ε1 + ε2 − 2ε4 − ε5.

Theorem 3.5. Consider initial state a = 〈a1, . . . , as〉, terminal state b =
〈b1, . . . , bt〉, sequence length n, and hand capacity m. If a1 + · · · + as =
b1 + · · · + bt, then the net change vector for every S ∈ JS(a,b, n,m) is

δ(a,b, n,m) = a1ε1 + · · · + asεs − (b1εn+1 + · · · + btεn+t). (3.1)

Proof. Recall that magic balls cannot be distributed. Consistently label the b
balls in a juggling sequence S ∈ JS(a,b, n,m) using the labels 1, . . . , b so that
balls on height j ≥ 2 at time i − 1 are on height j − 1 at time i and the set of
(necessarily non-magic) labeled balls thrown at time i are distributed to the
multiset of heights Ji. The constraint that a1 + · · · + as = b1 + · · · + bt ensures
that no magic balls disappear without cancelling a non-magic ball.

A non-magic ball that is thrown at some point and that starts at height
i at time 0 and ends at height j at time n will cumulatively generate a con-
tribution to δ(S) of εi − εn+j because the intermediate contributions from
throwing cancel each other in a telescoping manner. If a magic ball interacts
with a non-magic ball at time i and at height j, then this magic ball started
at height i + j at time 0. If the non-magic ball started at height h then the
contribution to δ(S) from this pair of balls will be εh − εi+j , again because
intermediate contributions cancel in a telescoping manner. The contribution
to δ(S) of a ball that is not thrown is necessarily zero, as is its contribution
to the right-hand side of Eq. (3.1) because a ball that starts at height h ends
at height h − n contributes εh − εn+(h−n). Summing the contributions over all
balls gives Eq. (3.1). This does not depend on the choice of S. �
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If the dimension of δ(S) is r + 1, we can view δ(S) as a weight of the Lie
algebra of type Ar.

Theorem 3.6. Let r ≥ 1. Consider an initial state a = 〈a1, . . . , as〉 and a
terminal state b = 〈b1〉 satisfying s ≤ r + 1 and a1 + · · · + as = b1. When
δ = a1ε1 + · · · + asεs − b1εr+1, the function Γ : PAr

(δ) → JS(a,b, r) is a
bijection.

Proof. To show Γ is a bijection, we need only show that both Γ and its inverse
are well defined on their respective domains. We first show that Γ is well
defined.

Since s ≤ r + 1, we write a = 〈a1, a2, . . . , ar+1〉, where we append zeros
so a has r + 1 entries. Let p be an arbitrary partition of

δ = a1ε1 + · · · + arεr − (b1 − ar+1)εr+1

into positive roots of the Lie algebra of type Ar, and further subpartition p
into multisets pi for 1 ≤ i ≤ r consisting of all positive roots in p of the form
εi − εj for some i < j ≤ r + 1. Let m(i, j) denote the multiplicity of εi − εj in
the set pi. We construct a juggling sequence S = (s0, . . . , sr) as follows. Define

si =

⎧
⎪⎪⎨

⎪⎪⎩

〈a1, a2, a3, . . . , ar+1〉 if i = 0

〈ai+1, ai+2, . . . , ar+1〉 +

〈
i∑

j=1

m(j, i + 1),
i∑

j=1

m(j, i + 2), . . . ,
i∑

j=1

m(j, r + 1)

〉

if 1 ≤ i ≤ r.

(3.2)

(In Definition 3.3, we append 0s to the shorter vector as necessary to make the
addition well defined.) In the juggling sequence we are constructing, at time i
we will have m(i, k) balls thrown to height k and

sr =

〈

ar+1 +
r∑

j=1

m(j, r + 1)

〉

. (3.3)

Thus
∑r

j=1 m(j, r+1) = b1−ar+1, since this sum counts the number of positive
roots containing −εr+1. Therefore, sr = b, so Γ(p) ∈ JS(a,b, r).

It is easier to see that the inverse function is well defined; it follows
directly from Theorem 3.5. �

In the next section, we start with an arbitrary juggling sequence and
determine the corresponding partition function. Before doing so, we present
results for calculating Kostant’s partition functions of Type A for various
weights using juggling sequences.

Theorem 3.7. Let μ be a weight of the Lie algebra of type Ar and let
〈μ1, . . . , μr+1〉 be its standard basis vector representation. The function Γ is
a bijection between PAr

(μ) and

JS(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r).

Proof. Apply Theorem 3.6 where μr+1 = −(μ1 + · · · + μr) and the net change
vector

δ(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r)
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is

〈μ1, . . . , μr, 0〉 − 〈0, . . . , 0, μ1 + · · · + μr〉 = 〈μ1, . . . , μr, μr+1〉.
�

Theorem 3.8. Let μ be a weight of the Lie algebra of type Ar and let
〈μ1, . . . , μr+1〉 be its standard basis vector representation. Then

KAr
(μ) = js(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r).

Corollary 3.9. Let n ∈ N and KAr
denote the type Ar Kostant’s partition

function. If α̃Ar
is the highest root of the Lie algebra of type Ar, then

KAr
(nα̃Ar

) = js(〈n〉, 〈n〉, r).
Proof. The highest root of Ar is α̃A = α1+ · · ·+αr, so nα̃A = nε1−nεr+1. �

An alternate proof of Corollary 3.9 was proposed by Steve Butler [8]; we
include his beautiful combinatorial argument involving strips of paper.

Alternate proof of Corollary 3.9. We enumerate the partitions of nα̃Ar
using

all the positive roots of type Ar in the following way. Take n indistinguishable
strips of paper, and write the numbers 1 through r on each of them. Each strip
can be torn into pieces with tears between the numbers on the strips. Each
tearing corresponds to a partition of nα̃Ar

in which a substrip with i, i+1, . . . , j
is associated to the positive root αi + αi+1 + · · · + αj . Any partition of nα̃Ar

can be uniquely associated with a multiset of torn substrips of paper made by
tearing the n strips of paper labeled 1 through r, and vice versa.

We can also uniquely associate each element of JS(〈n〉, 〈n〉, r) to a tear-
ing of n strips of paper labeled 1 through r. Let S = (s0, s1, . . . , sr) be any
juggling sequence in JS(〈n〉, 〈n〉, r), so that all balls are at height 1 in s0 and
sr. Associate a ball to a strip of paper. When the ball is thrown at time i to
height j tear its associated strip of paper between numbers i+ j and i+ j +1.
Each strip of paper describes the movement of the associated ball. Thus, a
multiset of torn substrips of paper made by tearing n strips of paper labeled
1 through r yields a unique juggling sequence in JS(〈n〉, 〈n〉, r). This proves
that KAr

(nα̃Ar
) = js(〈n〉, 〈n〉, r).

Example 3.10. The partition {α1, α2 + α3, α4, α1 + α2, α3 + α4, α1, α2, α3, α4}
of 3α̃A4 corresponds to the multiset of torn strips numbered 1, 2, 3, 4 shown in
Fig. 5. The equivalent juggling sequence in JS(〈3〉, 〈3〉, 4) is also pictured.

4. Bijection Restrictions

We gain further insights about both Kostant’s partition functions and juggling
sequences by understanding restrictions to Γ from Sect. 3. A key insight is that
a restriction on the set of roots that can appear in a partition corresponds to
a restriction on which throws are allowed in a juggling sequence. Theorem 4.2
explains which juggling sequences correspond to a restriction of the positive
roots for Kostant’s partition function while Theorem 4.4 gives the restricted
partition function that corresponds to enumerating general juggling sequences.
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1 2 3 4

1 2 3 4

1 2 3 4

〈3〉 〈2, 1〉 〈2, 1〉 〈2, 1〉 〈3〉

Figure 5. Illustration of the association of a set of torn strips
of paper to a juggling sequence in JS(〈3〉, 〈3〉, 4)

Definition 4.1. Let T ⊆ Tr be a set of allowed throws. Define JST (a,b, n,m)
to be the set of juggling sequences that only use allowed throws and
jsT (a,b, n,m) = |JST (a,b, n,m)|.
Theorem 4.2. Let μ be a weight of the Lie algebra of type Ar and let Λ ⊆ Φ+

Ar
.

Then PΛ(μ) is in bijection with JSΓ(Λ)(〈μ1, μ2, . . . , μr〉, 〈μ1 +μ2 + · · · +μr〉, r)
and

KΛ(μ) = jsΓ(Λ)(〈μ1, μ2, . . . , μr〉, 〈μ1 + μ2 + · · · + μr〉, r).

Note that Theorem 3.6 is a special case of Theorem 4.2 when Λ = Φ+
Ar

.

Proof. The restriction that a root εi − εi+j not be allowed in the partition
is equivalent to the condition that m(i, i + j) must be zero in the proof of
Theorem 3.6, which is the same as requiring that no balls are thrown at time
i to level j. �

Theorem 4.2 answers a question of Butler and Graham [10, Sect. 4.2], in
which they wish to incorporate a restriction of the maximum height to which
any ball is thrown. If we restrict our throws to height h, this corresponds to
restricting the positive roots to be of the form εi − εi+j , where j ≤ h.

We present an example where roots are restricted to be either simple
roots or the sum of three consecutive simple roots.

Example 4.3. Let Λ = {α1, α2, α3, α4, α1+α2+α3, α2+α3+α4} ⊆ Φ+
A4

. Then
T = Γ(Λ) is the set of throws at any time to heights 1 or 3.

Let μ = α1 + 2α2 + 2α3 + α4. Then KΛ(μ) = 4 because the partitions of
μ using the positive roots in Λ are

{α1, α2, α2, α3, α3, α4}, {α1 + α2 + α3, α2 + α3 + α4},



Kostant’s Partition Function 451

{α1 + α2 + α3, α2, α3, α4}, and {α1, α2, α3, α2 + α3 + α4}.

Since

μ = α1 + 2α2 + 2α3 + α4 = 〈1, 1, 0,−1,−1〉,
Theorem 4.2 implies that jsT (〈1, 1, 0,−1〉, 〈1〉, 4) = 4. The four juggling
sequences are

(〈1, 1, 0, −1〉, 〈2, 0, −1〉, 〈2, −1〉, 〈1〉, 〈1〉), (〈1, 1, 0, −1〉, 〈2, 0, −1〉, 〈1, −1, 1〉, 〈0, 1〉, 〈1〉),
(〈1, 1, 0, −1〉, 〈1〉, 〈0, 0, 1〉, 〈0, 1〉, 〈1〉), and (〈1, 1, 0, −1〉, 〈1〉, 〈1〉, 〈1〉, 〈1〉).

The reader can verify that the only throws are of height one and three.

We now consider a general juggling sequence question and find the cor-
responding partition function question.

Theorem 4.4. Consider juggling states a = 〈a1, . . . , as〉 and b = 〈b1, . . . , bt〉,
satisfying

a1 + · · · + as = b1 + · · · + bt,

and positive integers n and m. Let

δ = a1ε1 + · · · + asεs − (b1εn+1 + · · · + btεn+t)

and r + 1 be the dimension of this vector. Further, let

Λ =
{
εi − εj ∈ Φ+

Ar
: 1 ≤ i < j ≤ r + 1 and i ≤ n

}
,

and define

QΛ(δ) := {p ∈ PΛ(δ) : for allj > 0, aj +
∑

εi−εj∈p

1 ≤ m}. (4.1)

Then Γ is a bijection between the set QΛ(δ) and JS(a,b, n,m) and there-
fore js(a,b, n,m) = |QΛ(δ)|. When there is no hand capacity constraint, then
QΛ(δ) = PΛ(δ) and js(a,b, n) = KΛ(δ).

Proof. Similar to the proof of Theorem 3.6, we show that both Γ and its inverse
are well defined on their domains.

We first show Γ is well defined. Let p ∈ QΛ(δ) with parts εi−εj satisfying
(1) 1 ≤ i < j ≤ r + 1 and i ≤ n,
(2) for all j > 0, aj +

∑
εi−εj∈p 1 ≤ m.

Now, similar to construction of si in Eq. (3.2), create a juggling sequence S
starting at a of length n, whose throws are at time i to height j − i for all
εi − εj ∈ p. The terminal state of S is given by s = 〈sn, sn+1, . . . , sn+t−1〉,
where si = ai +

∑
εi−εj∈p 1 = bi since p is a partition of δ. The condition in

item (2) restricts the number of balls present at any time and at any height
to be less than or equal to m. Therefore, S ∈ JS(a,b, n,m).

We now show that Γ−1 is well defined. By construction, δ = δ(a,b, n,m)
is the net change vector of every juggling sequence in JS(a,b, n,m). Every
juggling sequence S in JS(a,b, n,m) corresponds to a multiset of throws, where
each of the throws is at a time i between 1 and n to a height of at most
r + 1 − i and where at most m non-magic balls are at any height at any time.
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The condition on throws implies that Γ−1 takes JS(a,b, n,m) into PΛ(δ). The
hand capacity condition shows that Γ−1(JS(a,b, n,m)) ⊆ QΛ(δ) because the
number of balls at height h at time j − h is the number of balls that started
at height j (which is negative if they are magic) plus the number of balls that
were thrown to height k at time j − k for 1 ≤ k < j − h. Under Γ−1, these
throws in S are of the form (εi − εj) for i < j. The hand capacity restriction
on S is exactly the restriction on the number of times a positive root can be
used, which defines QΛ(δ).

When there is no hand capacity restriction, QΛ(δ) = PΛ(δ), so Γ becomes
a bijection between PΛ(δ) and JS(a,b, n) and we conclude that js(a,b, n) =
KΛ(δ). �

Butler and Graham give generating functions for the number of some
periodic juggling sequences, which are juggling sequences whose terminal state
is the same as its initial state. With Theorem 4.4 at hand, we now present
the weights of a Lie algebra of type Ar to which these juggling sequences
correspond. This is presented in Table 1, with an additional column listing the
corresponding weights, keeping in mind the restriction to the partition function
we are using, as described in Eq. eqrefPTsps. By extracting coefficients from
the generating functions, we are able to give some closed partition function
formulas.

In what follows, for Λ ⊆ Φ+
Ar

, we let

QΛ,m(μ) = {p ∈ PΛ(μ) : for allj > 0, aj +
∑

εi−εj∈p

1 ≤ m}.

Corollary 4.5. If r ≥ 2, then

KAr
(2α1 + 2α2 + · · · + 2αr) =

1
5 · 2r

(
(5 −

√
5)r + (5 +

√
5)r

)
.

Remark 4.6. For a positive integer n, in [11, Thm. 1] it was shown that the
sequence {KAr

(nα̃Ar
)}r≥1 satisfies a linear recurrence of degree equal to the

number of integer partitions of n. It would be of interest to find the generating
function for this sequence for any fixed r. (See Table 1 and Sect. 6.2.2.)

Corollary 4.7. Let r ≥ 2. If Λ = Φ+
Ar

\{αr}, then
∣
∣QΛ,2(α1 + 2α2 + · · · + 2αr−1 + αr)

∣
∣

=

(√
5 − 3

) (
5 −

√
5
)r−1

+
(√

5 + 3
) (

5 +
√

5
)r−1

5
√

5 · 2r
.

Corollary 4.8. Let r ≥ 3. If Λ = {εi − εj ∈ Φ+
Ar

: 1 ≤ i < j ≤ r + 1, i ≤ r − 2},
then

∣
∣QΛ,2(2α1 + 3α2 + · · · + 3αr−1 + αr)

∣
∣

=

(
14

√
3 − 9

) (
4 −

√
3
)r−1

+
(
14

√
3 + 9

) (
4 +

√
3
)r−1

169
√

3
.
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Corollary 4.9. Let r ≥ 5. If Λ = {εi − εj ∈ Φ+
Ar

: 1 ≤ i < j ≤ r + 1, i ≤ r − 2},
then

∣
∣QΛ,2(α1 + 2α2 + 3α3 + · · · + 3αr−2 + 2αr−1 + αr)

∣
∣

=

(
9 − 14

√
3
) (

4 −
√

3
)r−2

+
(
9 + 14

√
3
) (

4 +
√

3
)r−2

338
.

Next we place restriction to the throws of juggling sequences. We show
that such restrictions correspond to restrictions on the positive roots allowed
in Kostant’s partition function. We formalize this in the next result, which
follows similarly to Theorem 4.4 using the correspondence between allowed
throws and allowed roots.

Corollary 4.10. Consider juggling states a = 〈a1, . . . , as〉 and b = 〈b1, . . . , bt〉,
satisfying

a1 + · · · + as = b1 + · · · + bt,

and positive integers n and m. Let

δ = a1ε1 + · · · + asεs − (b1εn+1 + · · · + btεn+t)

and r + 1 be the dimension of this vector. Suppose T ⊆ Tr is an allowed set of
throws and

Λ =
{
Γ−1(T ) : T ∈ T

}
⊆ Φ+

Ar
,

and define

QΛ(δ) := {p ∈ PΛ(δ) : for all j > 0, aj +
∑

εi−εj∈p

1 ≤ m}.

The set JST (a,b, n,m) is in bijection with QΛ(δ); therefore, jsT (a,b, n,m) =
|QΛ(δ)|.

Similar to above, js(a,b, n) = KΛ(δ).

5. Other Lie Types

In this section, we extend our work on juggling sequences to the Lie algebras of
type B, C, and D, by defining how to juggle in these Lie types. We then give
a correspondence of counting these new juggling sequences as sums of juggling
sequences in type A. We end the section by giving a result relating the number
of partitions of the highest root, settling a problem of Harris, Insko, and Omar
[23].

5.1. Juggling Sequences of Other Lie Types

We can define juggling sequences of types B, C, and D that involve a second
(reflected) conveyer. To be precise, a type B, C, or D juggling state is a pair
(s, t), where s = 〈s1, . . . , sh〉 is an integer vector and t = 〈t1, . . . , th〉 is a
nonnegative integer vector. The difference between types B, C, and D is how
balls can be thrown, be dropped, or disappear, which are informed by the
positive roots of each Lie type.
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(a) Downward throw to
height 3

(b) Single drop (c) Double drop (d) Cancellation

Figure 6. Examples of behaviors that may occur in juggling
sequences of types B, C, and D

Definition 5.1. A downward throw at time i to height j is a throw of a ball at
height 1 in the standard conveyer to height j in the reflected conveyer. This
corresponds to a positive root of the form εi + εi+j . A single drop at time
i is when a ball at height 1 at time i in the standard conveyer disappears.
This corresponds to a positive root of the form εi. A double drop at time i
is when two balls at height 1 at time i in the standard conveyer disappear
simultaneously. This corresponds to a positive root of the form 2εi. Last, a
cancellation at time i is when a ball at height 1 in the standard conveyer and
a ball at height 1 in the reflected conveyer disappear simultaneously.

Figure 6 illustrates the behaviors described in Definition 5.1.

Remark 5.2. Balls in the reflected conveyer are never thrown; they must dis-
appear through cancellations.

Definition 5.3. A type B, C, or D juggling sequence is a sequence

S =
(
(s0, t0), (s1, t1), . . . , (sn, tn)

)

where two successive juggling states (si−1, ti−1) = (〈s1, . . . , sh〉, 〈t1, . . . , th〉)
and (si, ti) satisfy

si = 〈s2 + b1, s3 + b2, . . . , sh + bh−1, bh, . . . , bh′〉
and

ti = 〈t2 + c1, t3 + c2, . . . , th + ch−1, ch, . . . , ch′〉,
subject to conditions that depend on the type as detailed below.

In type D, positive roots are of the form εi − εj and εi + εj , which means
(upward) throws and downward throws are allowed (as are cancellations) but
no drops are allowed. As such, the nonnegative integers bj and cj satisfy

h′
∑

j=1

bj + cj = s1 − t1. (5.1)

In type B, positive roots are of the form εi−εj , εi+εj , and εi, so (upward)
throws, downward throws, and single drops are allowed (as are cancellations),
but no double drops are allowed. The condition in Eq. (5.1) is replaced by

di +
h′

∑

j=1

bj + cj = s1 − t1, (5.2)
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where di is the nonnegative integer of single drops at time i.
In type C, positive roots are of the form εi − εj , εi + εj , and 2εi, so

(upward) throws, downward throws, and double drops are allowed (as are
cancellations), but no single drops are allowed. The condition is that the bj

and cj satisfy Eq. (5.2) with the additional restriction that di is a nonnegative
even integer.

Example 5.4. In type D4, KD4(α̃D4) = 5 since the five partitions of
α̃D4 = 2ε1 (and their corresponding juggling sequences) are the following.

p1 = {ε1 − ε2, ε1 + ε2} p2 = {ε1 − ε3, ε1 + ε3}

p3 = {ε1 − ε2, ε1 + ε3, ε2 − ε3} p4 = {ε1 − ε2, ε1 − ε3, ε2 + ε3}

p5 = {ε1 − ε2, ε1 − ε2, ε2 − ε3, ε2 + ε3}

5.2. Identity of Schmidt and Bincer

By applying an identity of Schmidt and Bincer [45], we can convert any
Kostant’s partition function of type B, C, or D into a sum of Kostant’s par-
tition functions of type A. We follow [45, Sects. 2 and 4] and use Remark 2.3,
where we think of positive roots of type A, as a subset of the positive roots of
other Lie types. Let S = Φ+

g be the set of positive roots of g, and consider the
set of positive roots of type A, Φ+

Ar
⊆ Φ+

g . Next we let T = Φ+
Ar

.
To evaluate KS(μ), we note that every partition of μ is a multiset p

containing some parts βi in T and some parts γi in S\T . In other words,
μ = μT + μS\T , where μT has only parts in T , and μS\T has only parts in
S\T . By defining an ordering of the positive roots in T = {βi : 1 ≤ i ≤ k}, we
note that μT =

∑k
i=1 ciβi = c ·β with nonnegative integers ci for all 1 ≤ i ≤ k.

It follows that the number of ways to write μ as μT + μS\T for a particular
fixed configuration of the coefficients c1, . . . , ck is given by

KT (μT ) = KT (μ − c · β).

Thus

KS(μ) =
∑

c

KT (μ − c · β),

where the c runs over all possible coefficient configurations such that μ−c·β is
a nonnegative integral combination of the positive roots in T . This establishes
the following result.
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Proposition 5.5 ( [45], Equation (4.1)). If g is a classical Lie algebra of type
Br, Cr, or Dr, then

Kg(μ) =
∑

(c1,...,cn)

KAr

(

μ −
n∑

i=1

ciβi

)

,

where β1, β2, . . . , βn denotes an ordering of the positive roots of type Ar, and
where (c1, . . . , cn) denotes all possible tuples of nonnegative integers such that
μ −

∑n
i=1 ciβi is a nonnegative integral combination of positive roots in Φ+

Ar
.

The next result follows from Proposition 5.5 and Theorem 3.8.

Corollary 5.6. Let g be a classical Lie algebra of rank r and let β1, β2, . . . , βn

denote an ordering of the positive roots of type Ar. For a fixed weight μ of
g let Cμ be the set of all coefficient configurations (c1, c2, . . . , cn) such that
μ −

∑n
i=1 ciβi = μ − c · β is a nonnegative integral linear combination of

positive roots in Φ+
Ar

. If
∑r+1

i=1 diεi, with d1, . . . , dr+1 ∈ Z, is the standard
basis representation of μ − c · β, then

Kg(μ) =
∑

(c1,...,cn)∈Cµ

js

(

〈d1, d2, . . . , dr〉 ,

〈
r∑

i=1

di

〉

, r,
r∑

i=1

|di|
)

.

5.3. Problem of Harris–Insko–Omar

In [23] Harris, Insko, and Omar determined the generating functions for the
number of partitions of the highest root of a Lie algebra (of types B, C, and
D, respectively) into a sum of positive roots. With these generating function
at hand they posed the following problems.

Problem 5.7. Find a combinatorial proof of the identity from [23, Table 1]

KBr
(α̃Br

) = js(〈1, 1〉, 〈1, 1〉, r)when r ≥ 2. (5.3)

Problem 5.8. Find a combinatorial proof of the identity from [23, Table 1]

KCr
(α̃Cr

) = js(〈2〉, 〈2〉, r) when r ≥ 3. (5.4)

The original statements in [23] include the hand capacity constraint m =
2. Since only two balls are being juggled, this is not a restriction on the juggling
sequence so we omit it. We settle these two problems, as well as the type D
version, with the following results.

Theorem 5.9. For r ≥ 2, there is a bijection between the set of partitions of
the highest root of the Lie algebra of type Br into positive roots and the set
JS(〈1, 1〉, 〈1, 1〉, r).

Theorem 5.10. For r ≥ 3, there is a bijection between the set of partitions of
the highest root of the Lie algebra of type Cr into positive roots and the set
JS(〈2〉, 〈2〉, r).

Theorem 5.11. For r ≥ 4, there is a bijection between the set of partitions of
the highest root of the Lie algebra of type Dr into positive roots and the set
Z5 × JS(〈1〉, 〈1〉, r − 1).
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Remark 5.12. The theorems above show that KBr
(α̃Br

) and KCr
(α̃Cr

) are
given by the number of certain juggling sequences. In the type D case, a corol-
lary of a result of [23, Theorem 5.2] obtained via generating functions implies
that KDr

(α̃Dr
) = 5 · KBr−2(α̃Br−2), which proves Theorem 5.11. However, it

is natural to ask if there is a more direct combinatorial proof of the formula
for KDr

(α̃Dr
), perhaps involving a new set of juggling sequences.

Proof of Theorem 5.9. Recall that the highest root of the Lie algebras of type
Ar+1 and Br are α̃Ar+1 = α1+ · · ·+αr+1 and α̃Br

= α1+2α2+2α3+ · · ·+2αr,
respectively. We begin by establishing a bijection from the set of partitions of
α̃Br

using the positive roots in Φ+
Br

to the set of partitions of 2α̃Ar+1 − α1 −
αr+1 using the positive roots in Λ = Φ+

Ar+1
\{αr+1}. We then give a bijection

between the set of partitions of 2α̃Ar+1 − α1 − αr+1 and the desired juggling
sequences. �
Lemma 5.13. Consider the Lie algebras of types Ar+1 and Br for r ≥ 2, with
positive roots Φ+

Ar+1
and Φ+

Br
, respectively. If Λ = Φ+

Ar+1
\{αr+1}, then

KBr
(α̃Br

) = KΛ(2α̃Ar+1 − α1 − αr+1).

Proof. Let

μ = 2α̃Ar+1 − α1 − αr+1 = α1 + 2α2 + · · · + 2αr + αr+1

and let p ∈ PΛ(μ). Then p must contain both
(1) a positive root αi + · · · + αr+1, with i < r + 1 and
(2) a positive root αj + · · · + αr, with j ≤ r.

Moreover, note that αi + · · ·+αj−1 +2αj + · · ·+2αr cannot appear in PΛ(μ).
Define a map g : PΛ(μ) → PBr

(α̃Br
) as follows. If the parts of p ∈ PΛ(μ)

described in (1) and (2) satisfy i < j, then let g(p) be the partition of α̃Br

that replaces the parts αi + · · · + αr+1 and αj + · · · + αr in p by the part
αi + · · · + αj−1 + 2αj + · · · + 2αr. On the other hand, if i ≥ j, then let g(p) be
the partition of α̃Br

that replaces the part αi + · · · + αr+1 by αi + · · · + αr.
In both cases, all other positive roots in Φ+

Ar
are taken to their analogous

positive roots in Φ+
Br

by taking every simple roots αi ∈ Φ+
Ar

to the simple root
αi ∈ Φ+

Br
for all 1 ≤ i ≤ r, and extending this linearly to all positive roots in

Φ+
Ar

(see Remark 2.3).
For any p ∈ PΛ(μ), g(p) is a partition of α̃Br

and the function is injective
by construction. We now establish that g is surjective. To see this, take a
partition p = {β1, β2, . . . , βl} of α̃Br

, where βi ∈ Φ+
Br

for all 1 ≤ i ≤ l. Note
that either
Case 1: there exists β ∈ p such that β = αi + · · ·+αj−1 +2αj + · · ·+2αr with

i < j, or
Case 2: there exist β, β′ ∈ p such that β = αi + · · ·+αr and β′ = αj + · · ·+αr,

where we assume without loss of generality that i ≤ j, and when i = j
then both of these positive roots are the simple root αr.

In Case 1, consider the partition

p′ = (p\{αi + · · · + αj−1 + 2αj + · · · + 2αr}) ∪ {αi + · · · + αr+1, αj + · · · + αr}.
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Note p′ is a partition of μ, hence p′ ∈ PΛ(μ), and g(p′) = p as desired. In Case
2, consider the partition

p′ = (p\{αi + · · · + αr}) ∪ {αi + · · · + αr+1}.

Then p′ is a partition of μ and g(p′) = p as desired.
This establishes that g is a bijection between PΛ(μ) and PBr

(α̃Br
). Thus

KΛ(μ) = KBr
(α̃Br

). �

Corollary 5.14. Consider the Lie algebra of type Ar+1 with r ≥ 2, with positive
roots Φ+

Ar+1
. If Λ = Φ+

Ar+1
\{αr+1}, then

KΛ(2α̃Ar+1 − α1 − αr+1) = js(〈1, 1〉, 〈1, 1〉, r).

Proof. By Theorem 3.5, we know that δ(〈1, 1〉, 〈1, 1〉, r) = ε1 + ε2 − εr+1 −
εr+2 = 2α̃Ar+1 − α1 − αr+1 and the result follows from Theorem 4.4. �

Finally, Theorem 5.9 follows from Lemma 5.13 and Corollary 5.14.

Proof of Theorem 5.10. Recall that the highest root of the Lie algebra of type
Cr is α̃Cr

= 2α1 + 2α2 + · · · + 2αr−1 + αr. As in the previous section, we
establish a bijection from the set of partitions of α̃Cr

using the positive roots
in Φ+

Cr
to the set of partitions of 2α̃Ar

using the positive roots in Φ+
Ar

. We then
give a bijection between the set of partitions of 2α̃Ar

and the desired juggling
sequences. �

Lemma 5.15. If r ≥ 3, then KAr
(2α̃Ar

) = KCr
(α̃Cr

).

Proof. We provide a bijection from the sets of partitions PCr
(α̃Cr

) and
PAr

(2α̃Ar
). Any partition p ∈ PCr

(α̃Cr
) either contains

(1) exactly one positive root of the form αi + · · ·+αj−1 +2αj +2αj+1 + · · ·+
2αr−1 + αr, with 1 ≤ i < j ≤ r − 1 , or

(2) exactly one positive root of the form 2αi + · · · + 2αr−1 + αr, with 1 ≤
i ≤ r − 1 , or

(3) only positive roots of the form αi for 1 ≤ i ≤ r and αi + · · · + αj with
1 ≤ i ≤ j ≤ r, with exactly one such root containing αr.
We now define a map g : PCr

(α̃Cr
) → PAr

(α̃Ar
) as follows. If p ∈

PCr
(α̃Cr

) contains the part as in (1), then let

g(p) = (p\{αi + · · · + αj−1 + 2αj + 2αj+1 + · · · + 2αr−1 + αr})
∪{αi + · · · + αr, αj + · · · + αr}.

If p ∈ PCr
(α̃Cr

) contains a part as in (2), then let

g(p) = (p\{2αi + · · · + 2αr−1 + αr}) ∪ {αi + · · · + αr, αi + · · · + αr}.

If p ∈ PCr
(α̃Cr

) contains only parts as in (3), then let

g(p) = p ∪ {αr}.

By construction, for any p ∈ PCr
(α̃Cr

), g(p) is a partition of 2α̃Ar
, so the

function is injective. We now establish that g is surjective. To see this, take a
partition p = {β1, β2, . . . , βl} ∈ PAr

(2α̃Ar
), where βi ∈ Φ+

Ar
for all 1 ≤ i ≤ l.

Note that either
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Case 1: αr appears twice as a part in p, or
Case 2: αr and αi + · · · + αr appear as parts in p, with 1 ≤ i ≤ r − 1, or
Case 3: αi+· · ·+αr and αj +· · ·+αr appear as parts in p, with 1 ≤ i, j ≤ r−1.

In Case 1 and Case 2, consider the partition p′ = p\{αr} as positive roots
in Φ+

Cr
. Then p′ is a partition of α̃Cr

and g(p′) = p as desired.
In Case 3, if i = j, then consider the partition

p′ = (p\{αi + · · · + αr, αi + · · · + αr}) ∪ {2αi + · · · + 2αr−1 + αr}
as positive roots in Φ+

Cr
. Then p′ is a partition of α̃Cr

and g(p′) = p as desired.
If i �= j then without loss of generality assume i < j. Consider the partition

p′ = (p\{αi + · · · + αr, αj + · · · + αr}) ∪ {αi + · · · + αj−1 + 2αj + · · · + 2αr−1 + αr},

positive roots in Φ+
Cr

. Then p′ is a partition of α̃Cr
and g(p′) = p as desired.

This establishes that g is a bijection between PCr
(α̃Cr

) and PAr
(2α̃Br

).
Thus KCr

(α̃Cr
) = KAr

(2α̃Ar
), as desired. �

Finally, Theorem 5.10 follows from Corollary 3.9 and Lemma 5.15.

Proof of Theorem 5.11. Recall that the highest root of the Lie algebra of type
Dr is α̃Dr

= α1 + 2α2 + · · · + 2αr−2 + αr−1 + αr. �

Lemma 5.16. If r ≥ 4 and Λ = Φ+
Ar−1

\{αr−1}, then

KDr
(α̃Dr

) = 5 · KBr−2(α̃Br−2) = 5 · KΛ(α̃Ar−1 − α1 − αr−1).

Proof. The first equality follows by setting q = 1 in [23, Theorem 5.2] and the
second equality follows from Lemma 5.13. �

Finally, Theorem 5.11 follows by replacing r + 1 with r − 1 in Corollary
5.14 and from Lemma 5.16.

6. Applications, Connections, and Future Work

Having found a link between juggling sequences and Kostant’s partition func-
tion, we provide some applications and connections between both areas. We
provide open questions throughout.

6.1. New Juggling Concepts

6.1.1. The Juggling Polytope. Kostant’s partition function can be viewed as
counting lattice points of certain polytopes called flow polytopes [4,36,41].
Because of our main correspondence, we can similarly define a polytope that
represents juggling sequences. We refer the reader to [5] for background on
polytopes.

Definition 6.1 ( [3, Sect. 2]). If μ is a weight of a Lie algebra of type Ar,
then a type Ar flow with netflow μ is a function f : Φ+

Ar
→ R≥0 such that∑

β∈Φ+ f(β)β = μ. We let FAr
(μ) be the set of type Ar flows with netflow μ.

The set FAr
(μ) forms a polytope called a flow polytope.
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Figure 7. An R-juggling sequence

The lattice points of FAr
(μ) (the integral type Ar flows with netflow μ)

correspond to partitions of the weight μ. Thus, the number of lattice points of
FAr

(μ) is given by Kostant’s partition function KAr
(μ).

Definition 6.2. A real-valued juggling state (R-juggling state) is a vector
s = 〈s1, . . . , sh〉, where each si is a nonnegative real number representing
si fragments of balls at height i.

Definition 6.3. A real-valued juggling sequence (R-juggling sequence) is a
sequence of R-juggling states S = (s0, s1, . . . , sn) where successive states
si−1 = 〈s1, . . . , sh〉 and si satisfy

si = 〈s2 + b1, . . . , sh + bh−1, bh, . . . , bh′〉,

where (b1, . . . , bh′) is a tuple of nonnegative real numbers satisfying
∑h′

i=1 bi =
s1.

We interpret R-juggling sequences as redistributing fragments of balls
that were at height one into fragments of balls at different heights. Figure 7
illustrates the real-valued juggling sequence S = (〈1〉, 〈1/2, 1/4, 1/4〉, 〈1/2, 1/2〉,
〈1〉).

Let RJS(a,b,m, n) be the set of R-juggling sequences with initial state
a, terminal state b, hand capacity m, and length n. Note that JS(a,b, n,m)
is the set of integral juggling sequences in RJS(a,b, n,m). As before, if
there is no hand capacity constraint we omit m. The next result shows that
RJS(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r) is integrally equivalent (see [37, Sect. 2])
to a flow polytope.

Proposition 6.4. Let μ = 〈μ1, . . . , μr+1〉 be a weight of a Lie algebra of type
Ar. The set RJS(〈μ1, . . . , μr〉, 〈μ1 + · · ·+μr〉, r) is a convex polytope integrally
equivalent to the flow polytope FAr

(μ).

Proof. We extend the bijection Γ from Theorem 3.6 to a bijection

Γ : FAr
(μ) → RJS(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r),

as follows. Given a flow f in FAr
(μ), we let R := Γ(f) be the R-juggling

sequence R = (s0, . . . , sr) defined similarly to Eq. (3.2) as

si =

⎧
⎪⎪⎨

⎪⎪⎩

〈μ1, μ2, μ3, . . ., μr〉 if i = 0

〈μi+1, μi+2, . . ., μr〉+
〈

i∑

j=1

f(εj−εi+1),
i∑

j=1

f(εj−εi+2), . . . ,
i∑

j=1

f(εj−εr+1)

〉

if 1 ≤ i ≤ r.

As in the proof of Theorem 3.6, we have that Γ(f) ∈ RJS(〈μ1, . . . , μr〉, 〈μ1 +
· · · + μr〉, r) and that the inverse function is well defined. That is, Γ−1 is the
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map R 
→ f where f(εj −εk) = (sj)k−j − (sj−1)k−j+1, where (sj)i denotes the
ith entry of the juggling sequence sj . The map Γ is an affine transformation
that is a bijection between FAr

(μ) and RJS(〈μ1, . . . , μr〉, 〈μ1+ · · ·+μr〉, r) and
preserves their lattices. �

Because of this result, the set RJS(〈μ1, . . . , μr〉, 〈μ1 + · · ·+μr〉, r) will be
called a juggling polytope. By standard properties of polytopes, we obtain the
following polynomiality result for juggling sequences.

Corollary 6.5. Let μi ∈ N for i = 1, . . . , r. The function js(〈tμ1, . . . , tμr〉, 〈t(μ1+
· · · + μr)〉, r), defined for positive integers t, is a polynomial in t with degree
and leading term equal to the dimension and volume of the juggling polytope
RJS(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r).

Proof. If μi ∈ N for i = 1, . . . , r, then μ =
∑r

i=1 μiεi − (
∑r

i=1 μi)εr+1 is a
weight of the Lie algebra of type Ar. Moreover, the polytope

FAr
(μ) = RJS(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r)

has integral vertices [29, Lemma 2.1], [40, Prop. 2.5] and the function

KAr
(tμ) = js(〈tμ1, . . . , tμr〉, 〈t(μ1 + · · · + μr)〉, r)

is the Ehrhart polynomial of this polytope. The degree and leading term of this
polynomial are given by the dimension and volume of the polytope, respectively
[5, Chapter 3]. �

Moreover, from the theory of flow polytopes there are formulas for KAr
(μ)

for μi ∈ Z≥0 as a weighted sum of values of Kostant’s partition function at
weights independent of μ (see Sect. 5.2). These formulas are due to Lidskii
[35] and generalized to KΛ(μ) by Baldoni–Vergne [3] and proved via polytope
subdivisions in [31,40].

We let
((

n
k

))
:=

(
n+k−1

k

)
. For weak compositions j = (j1, . . . , jn) and

i = (i1, . . . , in) we say that j dominates i if
∑k

i=1 jk ≥
∑k

i=1 ik for k = 1, . . . , n.
Also, given a weight μ =

∑r+1
i=1 μiεi of a Lie algebra of type Ar, in what follows

we let K(μ1, μ2, . . . , μr+1) = K(μ).

Theorem 6.6 ( [3, Propositions 39 and 34]). For a weight μ =
∑r+1

i=1 μiεi with
μi ∈ Z≥0 for all 1 ≤ i ≤ r, we have that

KAr
(μ)

=
∑

j

(
μ1 + r − 1

j1

)(
μ2 + r − 2

j2

)

. . .

(
μr−1

jr−1

)

KAr−2

(j1 − r + 1, j2 − r + 2, . . . , jr−2 − 2, jr−1 − 1),

=
∑

j

((
μ1 + 1

j1

)) ((
μ2

j2

))

· · ·
((

μr−1 + 3 − r

jr−1

))

KAr−2

(j1 − r + 1, j2 − r + 2, . . . , jr−2 − 2, jr−1 − 1),

where both sums are over weak compositions j = (j1, . . . , jr−1) of
(
r
2

)
that

dominate the composition (r − 1, r − 2, . . . , 1).



Kostant’s Partition Function 463

(a) RJS(〈1〉, 〈1〉, 3) = FA3(α̃A3) (b) RJS(〈1, 1, 1〉, 〈3〉, 3) = FA3(1, 1, 1,−3) (c) RJS(〈1, 1〉, 〈1, 1〉, 3)

Figure 8. Examples of juggling polytopes

We translate this result to juggling sequences using Theorem 3.8.

Corollary 6.7. For nonnegative integers μ1, . . . , μr, we have

js(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r)
=

∑
j

(
μ1+r−1

j1

)(
μ2+r−2

j2

)
· · ·

(
μr−1
jr−1

)
js

(〈j1 − r + 1, j2 − r + 2, . . . , jr−2 − 2〉, 〈1 − jr−1〉, r − 2),

=
∑

j

((
μ1+1

j1

))((
μ2
j2

))
· · ·

((
μr−1+3−r

jr−1

))
js

(〈j1 − r + 1, j2 − r + 2, . . . , jr−2 − 2〉, 〈1 − jr−1〉, r − 2),

where both sums are over weak compositions j = (j1, . . . , jr−1) of
(
r
2

)
that

dominate the composition (r − 1, r − 2, . . . , 1).

In particular, this shows that js(〈μ1, . . . , μr〉, 〈μ1 + · · · + μr〉, r) is a poly-
nomial in μ1, . . . , μr.

Remark 6.8. Note that if a composition (j1, . . . , jn) dominates a composition
(i1, . . . , in) then (jn, . . . , j1) is dominated by (in, . . . , i1). Thus in the equation
above, if (j1, . . . , jn−1) dominates (r − 1, r − 2, . . . , 1) then jn−1 ≤ 1.

We end this section by discussing two examples of juggling polytopes
equivalent to well-known flow polytopes with interesting face structures and
volumes. For more results on volumes and lattice points of flow polytopes, see
[6,30,38–40,53].

Example 6.9. The polytope RJS(〈1〉, 〈1〉, r) = FAr
(α̃Ar

) is known as the
Chan–Robbins–Yuen (CRY) polytope [11]; see Fig. 8a. This polytope has 2r−1

vertices and dimension
(
r
2

)
. In the unpublished work of Postnikov and Stan-

ley, they applied a result of Baldoni–Vergne [3] to show that the normalized
volume of the polytope equals a value of Kostant’s partition function.

(
r
2

)
! · vol FAr

(α̃Ar
) = KAr

(
∑

β∈Φ+
Ar

β). (6.1)

We use Proposition 6.4 and Theorem 3.6 to write Equation (6.1) in terms
of juggling sequences as

(
r
2

)
! · vol (RJS(〈1〉, 〈1〉, r)) = js(〈1, 2, . . . , r − 2〉, 〈

(
r−1
2

)
〉, r − 2).

Moreover, the value of Kostant’s partition function in the right-hand side of
Eq. (6.1) was computed by Zeilberger [54] via a variant of a constant term
identity of Morris to give a product of Catalan numbers Catn := 1

n+1

(
2n
n

)
,

js(〈1, 2, . . . , r − 2〉, 〈
(
r−1
2

)
〉, r − 2) = Cat1 . . . Catr−2. (6.2)
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Example 6.10. The polytope RJS(〈1, . . . , 1〉, 〈r〉, r) = FAr
(1, . . . , 1,−r) is

known as the Tesler polytope [41]; see Fig. 8b. This polytope has r! vertices and
dimension

(
r
2

)
. Using a result of Baldoni–Vergne and a constant term identity,

the authors in [41] showed that the normalized volume of this polytope equals
(
r
2

)
! · vol (RJS(〈1, . . . , 1〉, 〈r〉, r)) =

∣
∣ SYT(r − 1, r − 2, . . . , 1)

∣
∣ · Cat1 · · · Catr−1,(6.3)

where |SYT(λ)| is the number of standard Young tableaux of shape λ.

Remark 6.11. The number of lattice points of the CRY polytope is given by
KAr

(α̃Ar
). For other Lie types, variants of the CRY polytope whose lattice

points are given by partitions of the highest root (see Sect. 5.3) were defined
in [36]. These variants also have remarkable volumes proved by Corteel, Kim,
and Mészáros [14,15]:

• CRYCr+1 := FCr+1(α̃Cr+1) has 3r vertices, and volume 2r(r−1)Cat1 . . .
Catr−1.

• CRYDr+1 := FDr+1(α̃Dr+1) has 3r−2r vertices, and volume 2r(r−2)Cat1 . . .
Catr−1.

These volume formulas are proved case by case using in part constant term
identities. These results suggest that there is a uniform formula or a reduction
to the type A case.

6.1.2. The Juggling Poset. There is an interesting graded poset defined by
Armstrong and further studied by O’Neill [46] on the configurations counted by
Kostant’s partition function. In this context, these configurations are referred
to as Tesler matrices [1,20,41] because of a connection to diagonal harmonics
and the poset in [46] is called the Tesler poset. Since by Theorem 3.6 these
configurations are in bijection with juggling sequences, we can define the anal-
ogous graded poset for juggling sequences. For background on posets see [50,
Chapter 3].

Definition 6.12. Consider juggling states a = 〈a1, . . . , as〉 and b = 〈b1, . . . , bt〉,
satisfying a1 + · · · + as = b1 + · · · + bt, and positive integers n and m. Let
PJS(a,b, n,m) be the poset with elements JS(a,b, n,m) and cover relations
S � S′ if S′ is obtained from S by replacing both a throw at time i to height
j and a throw at time i + j to height k in S by one throw at time i to height
j +k. As before, if there is no hand capacity constraint, we omit m. See Fig. 9
for examples.

Remark 6.13. After applying the bijection Γ from Theorem 4.4, the poset
PJS(a,b, n,m) is equivalent to a poset with elements QΛ(δ) and cover rela-
tions p � p′ if p′ is obtained from p by replacing one instance of εi − εi+j and
εi+j − εi+j+k in p by εi − εi+j+k ∈ Λ.

In the special case of the correspondence in Theorem 3.6, the juggling
poset PJS(〈μ1, . . . , μn〉, 〈μ1 + · · · + μn〉, n) is precisely the dual to the Tesler
poset in [46] with elements PAr

(μ). This poset is graded and has unique min-
imal and maximal elements [46, Sect. 3.2]. It is not difficult to see that the
juggling poset PJS(〈1〉, 〈1〉, n, 1) is isomorphic to the Boolean lattice of rank
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(a) PJS(〈1〉, 〈1〉, 3) (b) PJS(〈1, 1, 1〉, 〈3〉, 3) (c) PJS(〈1, 1〉, 〈1, 1〉, 3)

Figure 9. Examples of juggling posets

n − 1 (see Fig. 9a). Interestingly, the juggling posets with binary initial state
a and terminal state 〈a1 + · · · + an〉 have surprisingly simple characteristic
polynomials χ(·).

Theorem 6.14. ( [46], Theorem 3) Let a ∈ [0, 1]n then

χ(PJS(a, 〈a1 + · · · + an〉, n), q) = (q − 1)
∑n

i=1(n−i)ai .

In particular, χ(PJS(〈1〉, 〈1〉, n), q) = (q − 1)n−1 for the Boolean lattice
and

χ(PJS(〈1n〉, 〈n〉, n), q) = (q − 1)(
n
2),

where 〈1n〉 = 〈1, . . . , 1〉 (see Figure 9b for an example of PJS(〈1, 1, 1〉, 〈3〉, 3)).
The latter result of O’Neill was originally conjectured by Armstrong. It would
be of interest to further study Tesler posets and the more general juggling
posets PJS(a,b, n,m) (see Fig. 9c).

6.2. Connections

6.2.1. Permanent and Determinant Formulas. A result of Chung and Graham
[13, Theorem 2], extended to multiplex juggling by Butler and Graham [10],
gives a method for counting juggling sequences with hand capacity one by
taking permanents. This result can be extended to the case of a restricted set
of throws and hand capacity one. Moreover, the resulting permanent equals a
determinant of a very similar matrix, and thus can be computed efficiently.

Definition 6.15. Given a set of positive roots Λ ⊆ Φ+
Ar

with corresponding set
of throws Γ(Λ), let M(r,Λ) = (mi,j) and N(r,Λ) = (ni,j) be the (r+1)×(r+1)
matrices with entries

mi,j =

⎧
⎪⎨

⎪⎩

1 if j ≥ i and εi − εj+1 ∈ Λ
1 if j = i − 1
0 otherwise,

and

ni,j =

⎧
⎪⎨

⎪⎩

1 if j ≥ i and εi − εj+1 ∈ Λ
−1 if j = i − 1
0 otherwise.
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Theorem 6.16. Given a set Λ ⊆ Φ+
Ar

, then

KΛ(α̃Ar
) = jsΓ(Λ)(〈1〉, 〈1〉, r) = perm(M(r,Λ)) = det(N(r,Λ)).

Proof. The first equality follows by Theorem 4.2 for the weight μ = α̃Ar
. The

second equality is essentially the result in [13, Theorem 2] (the case b = 1)
allowing for a restricted set of roots Λ. The last equality was observed by
Morales and Wang (unpublished) and can be verified by induction or using
[50, Example 2.2.4]. �

Example 6.17. Let Λ be the set of positive roots in Φ+
A3

of length at most two.
More precisely,

Λ = {ε1 − ε2, ε1 − ε3, ε2 − ε3, ε2 − ε4, ε3 − ε4} and
Γ(Λ) = {T1,1, T1,2, T2,2, T2,3, T3,3}.

By Theorem 6.16

KΛ(α̃A3) = jsΓ(Λ)(〈1〉, 〈1〉, 3) = perm

⎡

⎢
⎢
⎣

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⎤

⎥
⎥
⎦ = det

⎡

⎢
⎢
⎣

1 1 0 0
−1 1 1 0
0 −1 1 1
0 0 −1 1

⎤

⎥
⎥
⎦ = 5.

In light of Theorem 6.16 we ask:

Open Question 6.18. For what other hand capacities can one develop a per-
manent or determinant formula to count the number of juggling sequences?

Given our results in this paper, an answer to this question would yield
permanent or determinant formulas for the value of Kostant’s partition func-
tion and its restriction.

6.2.2. Classes of Generating Functions. The examples of generating functions
for juggling sequences in Table 1 and for ar := js(〈n〉, 〈n〉, r) (see Remark 4.6)
are all rational. However, it is not true that the generating function for the
number of juggling sequences of a fixed state and length n are rational, alge-
braic, or even D-finite. See [51, Ch. 6] for background on generating functions.

Proposition 6.19. Let μ =
∑

i

(
i+1
2

)
αi, the generating function for the sequence

ar := KAr
(μ) = js(〈1, 2, . . . , r〉, 〈

(
r+1
2

)
〉, r) is not D-finite, in other words, the

sequence is not P -recursive.

Proof. By Eq. (6.2) ar = Cat1Cat2 . . . Catr, which grows superexponentially
since Catr ∼ 4r

r3/2√
π
. Hence, the generating function

∑
r≥0 arx

r cannot be
D-finite [43]. �

Thus, we pose the following.
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Open Question 6.20. Find conditions on initial and terminal states, a and
b, respectively, so that the generating function of magic multiplex juggling
sequences ar := js(a,b, r) is rational, algebraic, D-finite, etc.

6.2.3. Positroids. Juggling sequences appear in the context of positroids in
[32]. It can be seen that every juggling sequence JS(v,v, n, 1), where v ∈
{0, 1}n is such that

∑n
i=i vi = k, corresponds to a positroid of rank k seen as

a bounded affine permutation (see [32, Section 3]).

Open Question 6.21. What further connections exist between positroids and
juggling sequences?

6.2.4. Weight Multiplicities. Kostant’s weight multiplicity gives the multiplic-
ity of the weight μ in the highest weight representation L(λ) of a simple Lie
algebra g [33]. This formula is given by

m(λ, μ) =
∑

σ∈W

(−1)�(σ)K(σ(λ + ρ) − μ − ρ), (6.4)

where W denotes the Weyl group of g, �(σ) denotes the length of a Weyl group
element, K denotes Kostant’s partition function, and ρ = 1

2

∑
α∈Φ+ α.

Much work has been done in giving closed formulas for Eq. (6.4). This
includes determining the support of the function when λ is the highest root of a
Lie algebra and μ is zero or a positive root [12,21,22,25], determining solutions
to associated q-analog problems [23,24,26], and providing visualizations for the
support of (6.4) in low rank examples [27,28]. In light of the main results in
the current, we pose the following.

Open Question 6.22. Can one exploit the connection between juggling sequences
and Kostant’s partition function to provide new formulas for Kostant’s weight
multiplicity formula?
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Dictionary of Notation

h Height of a juggling state
m Hand capacity of a juggling sequence
n Length of a juggling sequence
p Multiset of positive roots
r Rank of Lie algebra
si Entry of juggling sequence vector

Ar Lie algebra slr+1(C)
Br Lie algebra so2r+1(C)
Cr Lie algebra sp2r(C)
Dr Lie algebra so2r(C)

K(μ) Number of partitions of μ using positive roots of type A
KΛ(μ) Number of partitions of μ using roots from Λ
P (μ) Set of partitions of μ

PΛ(μ) Set of partitions of μ using roots from Λ
QΛ(μ) Subset of PΛ(μ) subject to a hand capacity constraint

S Juggling sequence
Ti,j A throw at time i to height j

T A set of throws
Tr Set of all throws that land by time r + 1
a Initial state of a juggling sequence
b Terminal state of a juggling sequence
s Juggling state
t Reflected juggling state

αi Simple roots of a Lie algebra
α̃ Highest root of a Lie algebra
βi A positive root

δ(S) Net change vector of S
εi Standard basis vectors
μ Weight of a Lie algebra
Γ Function between (multisets of) positive roots and (multi-

sets of) throws
Δ Simple roots of a Lie algebra
Φ Root system of a Lie algebra

Φ+ Positive roots of a Lie algebra
Λ Subset of Φ+

JS Set of juggling sequences
js Number of juggling sequences

JST Set of juggling sequences using throws from T
jsT Number of juggling sequences using throws from T

LJS Set of labeled juggling sequences
ljs Number of labeled juggling sequences

PJS Juggling poset
RJS Juggling polytope/set of real-valued juggling sequences

(·, ·, ·) Parentheses denote a juggling sequence
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〈·, ·, ·〉 Angle brackets denote a juggling state
[·, ·, ·] Square brackets denote the components of a labeled juggling

state
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[34] Leskelä, L., Varpanen, H., Juggler’s exclusion process, J. Appl. Probab., 49,
(2012), no. 1, 266–279, https://doi.org/10.1239/jap/1331216846
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