1092

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 28, NO. 3, MAY 2020

Embedding Approximate Nonlinear Model Predictive Control
at Ultrahigh Speed and Extremely Low Power

Arnab Raha“’, Ankush Chakrabarty ', Vijay Raghunathan, and Gregery T. Buzzard

Abstract— Embedded systems require control algorithms that
are safe and able to operate in embedded platforms with extreme
limitations on energy, memory, and area footprint. Nonlinear
model predictive control (NMPC) algorithms respect operational
constraints to ensure safety but are typically challenging to imple-
ment on resource-constrained embedded systems at high speeds.
This brief introduces a formalism for deploying an approximate
NMPC control law on severely resource-constrained hardware
by systematically leveraging approximate computing tools. The
resulting field-programmable gate array (FPGA) implementation
operates at extremely low power, is ultrafast, requires very small
on-chip area, and consumes lower memory than cutting-edge
implementations of embedded NMPC for systems of similar
state-space dimension. Feasibility and stability guarantees are
provided for the embedded controller by preemptively bound-
ing the allowable approximation error in the hardware design
phase. An FPGA-in-the-loop implementation exhibits speeds in
nanosecond range with power consumption in <1 mW for
2-D and 3-D nonlinear systems.

Index Terms— Approximate computing, embedded systems,
field-programmable gate array (FPGA), finite-precision, internet-
of-things (IoT), model predictive control (MPC), real-time
systems.

I. INTRODUCTION

PPLICATIONS for pervasive computing platforms

such as the emerging Internet-of-Things (IoT) require
high-speed real-time implementable control algorithms that
operate with consistent reliability and can be deployed from
low-power embedded systems. In the presence of practical
constraints and nonlinear dynamics, model predictive con-
trol (MPC) makes for a strong contender in various fields,
including biomedical, automotive, and factory automation
systems [1], [2].

High-speed and low-power/memory implementations of
nonlinear MPC (NMPC) are a relatively unexplored but
critical problem. Since the underlying optimal control prob-
lem in NMPC is typically not convex, local solutions via
Newton-type optimization algorithms such as interior-point

Manuscript received December 5, 2018; accepted February 5, 2019.
Date of publication March 1, 2019; date of current version April 13,
2020. Manuscript received in final form February 6, 2019. Recommended
by Associate Editor L. Fagiano. The work of G. T. Buzzard was sup-
ported in part by NSF under Award CCF-1763896. (Corresponding author:
Ankush Chakrabarty.)

A. Raha is with the Microarchitecture Research Laboratory, Intel Labora-
tories, Santa Clara, CA 95054 USA (e-mail: araha@ purdue.edu).

A. Chakrabarty is with the Mitsubishi Electric Research Laboratories,
Cambridge, MA 02139 USA (e-mail: chakrabarty @merl.com).

V. Raghunathan is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA (e-mail: vr@purdue.edu).

G. T. Buzzard is with the Department of Mathematics, Purdue University,
West Lafayette, IN 47907 USA (e-mail: buzzard @ purdue.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2019.2898835

method (IPM) and sequential quadratic programming (SQP)
are effective [3], [4]. One of the initial Newton-type algo-
rithms that enabled real-time NMPC was described in [5],
which was extended from an SQP to an IPM formalism
using continuation methods in [6]. The real-time iteration
scheme and its variants [7]-[9] are widely used SQP-type
online algorithms that exploit the fact that NMPC requires the
solution of similar optimal control problems at each iteration
to enable very fast online implementation. Other numerically
efficient methods for embedded NMPC deployment can be
found in the literature. For example, Liniger ef al. [10] propose
an iterative linearization-based NMPC implementation and
solve the corresponding quadratic programs in an embed-
ded platform, reporting computational speeds of milliseconds.
An investigation into the tractability of Nesterov’s fast gradi-
ent in embedded MPC with successive linearization of the
nonlinear model is made in [11] with complexity studies.
Other implementations of fast-gradient methods in NMPC are
found in [12] and [13]. Splitting methods with complexity
certificates are provided in [14] and [15]. Modifications and
approximations of SQP approaches can be found in [16]
and [17] and careful removal of constraints to enable uncon-
strained minimization is proposed for field-programmable
gate array (FPGA) implementation in [18]. This latter paper,
as well as [19], considers optimization algorithms such as fast
gradients or particle swarms that can be parallelized, therefore
being amenable to distributed implementation. In spite of these
advances, not only the maintaining feasibility is an extremely
challenging problem [20], even the fastest implementations
cannot go below microseconds in spite of employing highly
sophisticated tools [21] (see a comparative study made in [22]
on a 2-D nonlinear model).

To the best of authour knowledge, very few embedded
NMPC implementations have exhibited the potential for
operations under severe resource constraints, e.g., require-
ment of ultrafast (in the order of nanoseconds) con-
trol updates or very low-memory implementation. Notable
exceptions include [23]-[25], where the authors use func-
tion approximators to incorporate speed and scalability. For
example, Ayala ef al. [23] demonstrated speeds in tens of
microseconds using radial basis function networks, while
Summers et al. [24] and Chakrabarty ef al. [25] use ideas
from interpolation and regression (respectively) to eliminate
the computational complexity involved in successive lineariza-
tion. These latter works theorize controller updates in the order
of nanoseconds with current on-chip technology, but neither
validate this claim on hardware.

Approximate computing is an emerging design paradigm
that leverages the inherent error tolerance of error-resilient

1063-6536 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.htm! for more information.

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8848-1069
https://orcid.org/0000-0001-9637-854X
https://orcid.org/0000-0001-9777-3090
https://orcid.org/0000-0003-4713-5386

RAHA et al.: EMBEDDING APPROXIMATE NMPC AT ULTRAHIGH SPEED AND EXTREMELY LOW POWER

applications to improve performance on-chip [26], [27].
In this brief, approximate computing is used to deploy a
sampling-based explicit nonlinear model predictive control
(ENMPC) [25] for fast, low-energy implementation to demon-
strate the potential of this approach in resource-constrained
embedded systems via an FPGA-in-the-loop (FIL) verification.

This brief is an extension of preliminary results presented
in [28]. Herein, we make the following additional contri-
butions: 1) we introduce a simple design procedure using
approximate computing that allows embedding an NMPC
under severe resource limitations; a detailed description of
the steps involved in the design is presented in Section III;
2) we demonstrate our method’s potential via experimental
validation using an FIL in Section V; 3) we investigate
the effect of regularization and basis function selection on
controller performance in Section V-A3; and 4) we study
theoretical properties of the proposed approximate NMPC
in Section IV.

II. SAMPLING-BASED NMPC

We consider systems of the form

x+ = f(x,u)

1)

where x € X C R" denotes the state of the system,
u € U c R"™ denotes the control action, f is a con-
tinuously differentiable nonlinearity that models the system
dynamics, and x* represents the state update (that is, x for
continuous-time systems, and xj1 for discrete-time systems).
Standard assumptions such as f(0,0) = 0 and compactness,
convexity of X and U are made (see [29]). To expedite
embedded implementation and without loss, we assume as
in [14] that the set U contains the origin in its interior and
can be represented as a set of box constraints.

A brief overview of the sample-driven NMPC design
methodology proposed in [25] is provided here: the objective
of this brief is to implement this sample-driven NMPC control
law on an embedded system at high-speed while consuming
very low power and requiring low area footprint. We assume
that an inner approximation F of the feasible region for the
NMPC is known, and begin by extracting N samples within F.
At each sample x; € F, we solve the following finite-horizon
optimal control problem

u” (x;)
= argmin V(x, u)
ucl
st. x(r)eX, u(xr)elU, Vrel0, Tyl
= f(x,u), x0)=xi, x(Ty) e Xr,

Ty
V@, u) = VeGe(Ty) + fu £(xe(e), u(e)) dr. (2)

Here, the functions Vy and £ are the terminal penalty and
stage cost, respectively, the positive scalar T is the predictive
horizon of the controller, and X7 is a predetermined terminal
set. The solution of (2) yields a feasible NMPC control law

w (i) = [wj(a) - - - w5 () - - up ()]

where u} (x;) represents the jth component of the optimal
NMPC control law with x; as the initial state.

Using the control actions obtained at each sample within F,
we can construct an NMPC control law over F using function
approximators. Concretely, for the jth component of the con-
trol vector, let {¢ jr}f": ; denote user-defined polynomial basis
functions used for performing regression; M denotes the num-
ber of basis functions used for the controller approximation.
Let

[¢j1(11) ¢jM(Il)-| Irﬂj(xl)[O]'I
Xj = : . : and U; := :

|_¢j1(:xN) - ¢jM:(xN)J u}(x:v)[ﬂ]J

where u;f(xlj[O] denotes the first element of the control
sequence uj (x1). Using these matrices, we pose the control
law approximation as the (regularized) regression problem

Basic: min ||U; — Xja;| (3a)
lajllo=a

Ridge: min U/ — X;a;]| +4;lla;13 (3b)

Lasso: min ||U; — Xja;|| + A;llajlh (3c)

where a; is a vector of regression coefficients with element
ajr with 1 <k < M, 1; > 0 is a user-defined regularization
parameter, and the tuning parameter a > O ensures that the
regression coefficients in the unregularized formulation are
bounded. Thus, the jth ENMPC control law is

M
ij(x)=T (Z a ,,v,@-r(x)))
r=1
where I' is a projection operator to the set U and j =
1,2,...,n,. Note that we sample F and solve (2)—(3) offline.
For online implementation, we use the state x to compute a
control action using (4), which usually requires few computa-

tions even if the state-space dimension is large (see [25]).

Although the method in [25] is designed to stabilize
continuous-time systems, it has also been modified for the
tracking problem in discrete-time systems [30].

III. EMBEDDED DESIGN VIA APPROXIMATE COMPUTING

The controller designed in Section II may require a large
number of basis functions (i.e., M > 1) in order to get a
good approximation of the control law. Assuming that the
ENMPC designed using (3) is fixed (i.e., its basis represen-
tation cannot be altered), we describe approximate computing
methods in this section that optimize hardware for acceleration
on a resource-constrained embedded system by sharing com-
mon basis units [factor sharing (FS)] to reduce arithmetical
operations and by modifying the bit-precision of regression
coefficients while bounding the allowable approximation error
(precision scaling).

A high-level schematic of the application-specified inte-
grated circuit (ASIC) architecture when n, = 1 is shown
in Fig. 1. Given an input state x, the controller evaluates the
basis functions {¢,(x;)} at the register transfer level (RTL).
Subsequently, the evaluated basis functions are multiplied with
the corresponding coefficients {a,}, and the generated products

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

1094
ENMPC
Ctrl logic
(%g {0} | | X
Clock || ulx)
H Basis fns
Arith
I“P"‘W — A
Fig. 1. Schematic of the ASIC architecture with ny = 1. Arith units =

Arithmetic Units. Regs = Registers. MAC = Multiplier-Accumulator.

Py

“162"”

fy <
It [y
&29—

FS Within fy
i . fm
4 L o
fi—u ’/®/ -

fs f
f‘i—""

&
FS Across

Fig. 2. Efficient hardware implementation using FS. P| naive implementation
(top). FS within a polynomial (bottom left). FS across two polynomials
(bottom right).

are all added together in the multiplier-accumulator (MAC)
unit. The MAC unit also contains a combination of a logic gate
and a multiplexer for implementing the projection operator I'".
This is possible because the admissible control set U is a
product of intervals, hence, the projection operator (I') maps
the final output #(x) elementwise to U.

A. Embedding Multivariate Polynomials via Factor Sharing

FS is an efficient design method for reducing the complexity
of the overall hardware when evaluating polynomials on a
chip. The premise of FS is to prevent recomputing of common
basis functions, monomials, or combination of monomials
(referred to herein as “factors™), by sharing the arithmetic
units on the embedded system dedicated to evaluating those
factors. This leads to a reduction in the overall chip area
and energy footprint while enhancing the computation speed.
Furthermore, FS enables an efficient evaluation of common
basis functions across multiple polynomials; this becomes
critical when the number of control actions, n,, is large.

We consider arithmetic operators that operate on two
operands at a time, which is common in hardware implemen-
tation. Suppose the two polynomials to be evaluated are given
byPi=fi fa 3+ fi fa faand Pr= fi f2 f5 fe, where
Jf1, f2, ..., fe are factors. Sharing factors within a polynomial
can reduce the total number of arithmetic operators (four
multipliers and one adder to two multipliers and one adder),
decreasing the area as well as the power consumption of the
ASIC. Furthermore, although the implementation of 7, in “FS
Within” shown in Fig. 2 seems efficient, since both P; and P>
are to be evaluated, sharing the common factor fi f> results
in a reduction of a multiplier unit, as demonstrated in “FS
Across” in Fig. 2.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 28, NO. 3, MAY 2020

B. Hardware Optimization Using Precision Scaling

Precision scaling or bit-width reduction of input and inter-
mediate operands has proven to be an efficient technique
for tradingoff quality for energy [27], [31]. Contrary to FS,
precision scaling not only leads to additional area and power
savings but also reduces the latency of operation to a signifi-
cant extent.

To accelerate the ENMPC, precision scaling involves
purposefully introducing roundoff errors in the coefficients
{a;-}™, of the each of the n, polynomials, as well as
basis function evaluation steps, in order to lower hardware
complexity. The notion of average pointwise error (APE) is
the cornerstone of investigating the tradeoff in complexity
reduction versus controller law approximation error. For the
Jjth polynomial ENMPC control law (4), the APE is estimated
by extracting N, low-discrepancy samples within F and
computing an error metric between the exact ENMPC i ; (x)
and the embedded ENMPC (by “embedded ENMPC,” we refer
to the approximate precision scaled ENMPC), denoted a'f™.
Mathematically, the APE is written as

Nt

1 . ”
EAPE = N Z (uj(.l‘,-) — utjeSt(xr))Z)

T k=1

where r =1,2,..., N;.

Remark 1: Although we consider approximate control laws
with basis functions as tensored polynomials for which we
can provide control-theoretic guarantees, the approximation
computing methods described in this section generalize to
popular approximators such as neural networks (see [32]).

IV. PERFORMANCE GUARANTEES

In this section, conditions are provided that if satisfied
during hardware design, guarantee feasibility, and stability
for the closed loop under the embedded control law T (&'").
Concretely, these conditions are: 1) the N samples drawn for
controller construction are extracted from a low-discrepancy
sequence (see [33] and [34] for the definition and implemen-
tation details of low-discrepancy sequences); 2) the regres-
sion polynomials are tensored Chebyshev polynomials; and
3) the N, samples used to compute the average precision error
are drawn from a low-discrepancy sequence.

We add two definitions to facilitate the ensuing discussion.

Definition 2: Let F be a topological space and T(F) denote
the open sets of F. Elements of the o-algebra generated by
T(F) that are subsets of F are called Borel subsets of F

Definition 3 (c.f. [33]): The discrepancy of a sequence
{xj}:?f:l C X is defined as

#Xy _ Vol(X)
N Vol(X)

Dy (ixj}) £ sup

where J is a set of n-dimensional product intervals and #X y =
card{j e {1,..., N} : x; € X}.

We begin with the following lemma.

Lemma 4: Let Q be a Borel subset of the feasible set
[0, 1]"*, and P be any polynomial with finite coefficients.

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

RAHA et al.: EMBEDDING APPROXIMATE NMPC AT ULTRAHIGH SPEED AND EXTREMELY LOW POWER

Let Pq denote the restriction of P on Q. Then there exists a
scalar S € (0, co) such that

| N
fn’P(x)dx —EZ'PQ(IJ') EﬁD({Ij}j'V:l) (6)
j=1

where D({x j}?;]) is the discrepancy of the sequence {x;}.

Proof: Since P is smooth, and Pq is piecewise smooth,
we know from [35] that the inequality (6) is satisfied with

_ (d-lal) CAY
p= > 2 (2) Pw

ae(0,1)nx
Since P(x) has a finite number of coefficients, the integrand
in (7) is bounded. Thus, f is a finite weighted sum of bounded
integrals, which implies that 0 < £ < oo. []

The next theorem ensures that we can select an admissible
eapg small enough and a number of low-discrepancy samples
N; large enough such that the deviation between the ENMPC
ij and the embedded ENMPC 4'f*" is as small as we desire.
Since a maximal N, and minimal gapg can be chosen for
all j =1,...,n,, one can assume n, = 1 without loss of
generality.

Theorem 5: Let Q denote a Borel subset in the interior of
the feasible set F, and {x,} is the low-discrepancy samples
within € used to check that upon precision scaling, the embed-
ded ENMPC satisfies (5). Then for each ¢ > 0, there exists
e* > 0and Nf € N so that if egapg < £* and N; > N7, then
& — @)z () < ¢ for any N, > NF.

Proof: Note that ¢, ..., ¢ is a basis for the polynomial
P := it — i", since both these polynomials have the same
basis. By Gram—Schmidt orthogonalization, one can convert
P1,...,¢u to a basis ¢1,...,¢nu that is orthonormal with
respect to the inner product (g, h)g = Jo 8@x)h(x)dx. Since
each (j is a polynomial, it is bounded on €, i.e., ||l £, @) =

dx. (1)

[0, 1]

pi. In the new basis, P has an expansion P = Z,"'i] ¢idi,
and using Parseval’s identity, we obtain [, Pi(x)dx =
Z}"i] cf. Using the definition of p; and invoking the triangle
and Cauchy-Schwarz inequalities on the expansion of P,
the following result is obtained:
1
IPlla,e < a(fgP?(x)dx)? ®)
where a = (Zf’il pf)% depends only on the basis (1, . . .
thus, only on ¢y, ..., ¢y and Q.

Note that P? is a polynomial with finite coefficients
(by design). Furthermore, even though F is not the unit
hypercube [0, 1]+, it can be bounded by a box in B C R,
where P? is defined to be zero in B\ F. Without loss
of generality, the box B can be transformed into the unit
hypercube. Thus, the preconditions for Lemma 4 are satisfied.
We now combine (8) with the inequality (5), (6) to obtain
IPlcew@ =< @/N:leape| + BD({x;}), where g is a finite
scalar and eapg = Zi‘] ’Pé(xr). Since gapg < &%, this
implies

> M3

1Pl zoo(@) < ae®+ BD{x,)). ®)

® ©]
(P '
o] e o
Fig. 3. FS in implementation of polynomials. Alphabets (a—p) within the

smaller circles represent factors. The doubling of leading coefficients in the
basis polynomials is exploited for swift implementation using 8-bit exponent
adders/bit-shift operators (denoted by).

By construction, the samples {x,}i‘] are drawn from a
low-discrepancy sequence. Thus, there exists an N} suffi-
ciently large such that for any N, > N7, we get D({x,}) <
e/2p. For the given ¢, one can then select ¢* < g/2a.
Thus, the inequality (9) yields || — a'*||z @) < a(¢/2a) +
Pe/2B) =e. -

This important result guarantees closed-loop feasibility and
stability for the nonlinear system under embedded ENMPC
control. This is stated in the following theorem. The set Q
and samples {xr}i\;"l are the same as in Theorem 5.

Theorem 6: There exist positive scalars N*, M*, N}, and
¢* such that if M > M*, N > N*, N; > N}, and eapg < &%,
then the closed-loop trajectories x(f) of the nonlinear sys-
tem (1) with control # = I'(#'**") and initial condition xg € Q
satisfy the following conditions.

1) Feasibility: x(t) € F for all t > 1p.

2) Asymptotic Stability: ||x(t)|| — 0 as t — o0.

Proof: For a given ¢ > 0, Theorem 5 ensures that there
exist scalars ¢* > 0 and N7} such that if eapp < &* and
N; = N}, then [ld—id"*|| £ (q) < &/2. Furthermore, from [25,
Th. 3], we know that there exist scalars M = M*, N = N*
that ensure |ju — ﬁ||gm(g) < &/2, where u; denotes the
actual NMPC. From the triangle inequality, it is clear that
lu —a*Y < e/2+4¢e/2 = . The result of [25, Th. 4] can be
directly applied to yield properties 1) and 2). |

V. HARDWARE-IN-THE-LOOP EXPERIMENTS

We offer two examples to illustrate the potential of our
proposed method. The first example is a two-state academic
nonlinear system that has been studied in the literature; the
rationale behind choosing this unstable system is to help
visualize the design procedure step-by-step while illustrating
feasibility and stability of the embedded ENMPC. We use
knowledge gained from this academic example to test the
proposed method on a more sophisticated model that has
multiple control inputs and more involved nonlinearities. All
experiments are performed with an FPGA in the control loop.

A. Example 1 (Illustrative Example)
We use the unstable nonlinear system

i= _12x+ 0.5 U+ 0
—|-34 —2 —0.25x5

described in [36] to test the efficacy of our embedded
ENMPC implementation. The constraint sets are given by

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

1096

X={x:|xll0c <4and U = {u : |u| < 2}); N = 2000
samples are drawn from a low-discrepancy Halton sequence
and the NMPC control actions are obtained at these samples
by solving (4) with Vy = xT Px where P = [333160.75607
and £(x,u) = x'Ox + u"Ru with Q = 10, R = 0.1,
and prediction horizon Ty = 0.5 s. An inner approximation
of the feasible region is constructed using support vector
machines, using the approach provided in [25]. Next, M = 13
Chebyshev polynomial basis functions are chosen to construct
the ENMPC regression surface using (3a) with a = 1000.
Although we see that M is not large, we use this as an example
to demonstrate the design steps.

1) FPGA-in-the-Loop Implementation Details: The
ENMPC controller is implemented at the RTL, synthesized
using the Synposys Design Compiler, and mapped to the
45-nm-based open-cell Nangate technology library. For
verification, the controller was programmed on an Altera
Cyclone IV FPGA-based DE2-115 development board that
is interfaced with Simulink using FIL which is contained in
MATLAB’s Hardware Description Language Verifier. Note
that the FPGA is an emulator for an ASIC that will eventually
implement the control law in hardware.

2) Modes Arising From Approximate Computing Tools:
All inputs, intermediate scalars, and outputs use the IEEE-
754 standard for floating point arithmetic. The baseline
hardware implementations use 32-bit (1 sign, 8 exponent,
23 mantissa) single-precision floating point representation.

In the subsequent discussion, the hardware implementation
of the ENMPC prior to approximation is referred to as Mode
0, denoted My, and the mode induced by FS is denoted M.
Note that both Mg and M use the full 32-bit width, and
therefore compute identical control actions.

The factors themselves are implemented with low-
complexity arithmetic units. For example, we leverage the
shift operator for multiplication with exponents of two for
fixed-point representation. Note that the shift operator is just an
internal manipulation of wire positions and almost completely
eliminates the logic overhead required for implementing a
full-fledged multiplier. Similarly, for floating point numbers,
the resource usage of a floating-point multiplier can still
be greatly reduced when multiplied using exponents of two.
In this case, when a floating-point number is multiplied by
exponents of two, the mantissa and sign (total 24 bits) of
the result remain unchanged, whereas only the exponent of
the number changes. The change in exponent can be obtained
by just using an 8-bit adder only for the exponent part that
has significantly/considerable lower resource usage compared
to a full 32-bit multiplier. This enables us to eliminate area
and power-hungry multipliers to a large extent. Leading coef-
ficients being multiples of two offer a particular advantage
to employing the Chebyshev polynomials from a hardware
implementation perspective (see Fig. 3). Note that we do not
perform any approximations to the control circuitry of the
controller that is responsible for completing the application
execution.

For precision scaling, an APE upper bound £* = 15 x 103
is selected, computed over N} = 10* samples within . This
introduces eight new modes Mjy — My (see [28, Table I])

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 28, NO. 3, MAY 2020

0.03
0.025
0.02
i

0015 Rla3

001 \ Moge d

0.005

Total energy (nl)

— B ! Ml 8
Mo i SR —_— e

o 2 4 [8 10 12 14
Average Precision Error (x 107

Fig. 4. Error-power tradeoff for various operating modes obtained FIL using
Chebyshev polynomials with basic regression.

with varying degrees of approximation and varying output
quality. Henceforth, the term “output quality” refers to the
approximation accuracy of the embedded ENMPC control
action compared to the exact ENMPC control action. Out of
these eight approximation modes, the first six modes My—M7
have lower operand precision with only the mantissa bit-width
reduced. It is also possible to truncate the exponent; however,
for this example, truncating the exponent results in a worse
error-energy tradeoff since the error incurred is much more
than mantissa truncation, while the energy savings are less
(as there are only eight exponent bits compared to 23 mantissa
bits). Gradually reducing bit-widths in the mantissa results in
the last two approximation modes Mg and Mg where some of
the coefficients reduce to zero. For example, in Mg, the basis
functions ¢o, ¢10, ¢12, and ¢13 are all eliminated. In Mo,
in addition to the previous basis functions, ¢7 and ¢;; are also
omitted. It is important to mention that we preserve multiple
modes of approximation to demonstrate the tradeoff between
computational efficacy and controller performance; in practice,
only one mode (at the designer’s discretion) would be decided
upon and extensive formal verification on the selected mode
would be required to validate the implementation on an ASIC.

As described previously, the effect of precision scaling on
the controller implementation is twofold. It can result in a
lower power (and lower area) implementation while producing
acceptable outputs with reduced accuracy. This leads to the
generation of a well-defined quality (or error) versus energy
(or power) tradeoff (Q—FE) plot as shown in Fig. 4. An essential
trait in any approximate computing work is the Q—E tradeoff.
This relationship is extremely useful to determine the appro-
priate operational mode for a particular quality/error bound.
In practice, one would select the mode on this tradeoff curve
closest to the application-specific needs. If a high accuracy
is required with significant energy savings, a designer would
likely select modes My or Ms, whereas if the primary
concern is energy, Mg would be the best choice. In case,
the error bound &* is set to a different value, for example:
lowered to 5 x 1073, then the designer can use this Q—E
relationship to select M.

Offline verification of the hardware approximation
infrastructure involves a training phase and a validation
phase [27], [37], [38]. In the training phase, we explore
different configurations of the approximation knobs that will

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

RAHA et al.: EMBEDDING APPROXIMATE NMPC AT ULTRAHIGH SPEED AND EXTREMELY LOW POWER

(S]] “—
—
|
=

o @

~ A

=
o f

Total power (mW)
[=RC N SRR FUR SV)

Hz
T

1L

Frequency (MHz)
= 8

Fig. 5. Characteristics of different operating modes when Chebyshev-based
ENMPC controller is synthesized using IBM 45-nm Nangate library.

satisfy different error bounds/constraints using representative
samples. Once a satisfactory mode is fixed by the designer
based on these samples, the validation phase involves
computing control actions at samples outside the training set
and ensuring that the APE bound is not violated.

3) Area, Power, Energy, and Frequency of Operation for
Different Modes: Fig. 5 shows the total area, power, and
frequency for different modes of operation for a Chebyshev
polynomial-based ENMPC controller with basic regression
described in (3a). Chebyshev polynomials are considered pri-
marily because these basis functions possess theoretical prop-
erties that enable the proof of Theorem 6. The most interesting
modes are the ENMPC My, the factor shared ENMPC M,
and the three most aggressive approximation modes, M7 g o.
In comparison with the ENMPC implementation My, the total
area and power are shown to decrease by factors of 1.07x
and 1.06x, respectively, when using FS (M;). As expected,
the total number of gates, which includes the combinational
and noncombinational gates, decreases with an increase in the
degree of approximation via precision scaling. For example,
modes Mg and Mg have area reductions of 14.5x and 17.1x,
respectively, compared to the baseline ENMPC. Similarly, both
the dynamic and leakage power (and therefore, total power)
decrease for higher modes. For example, Mg and Mo reduce
the total power by 8.4x and 9.7x compared to the baseline.

If the primary resource constraint is in terms of processor
speed, the output latency value becomes critical. Note that
approximations not only reduce the area and power con-
sumption but also the overall processing time due to the
lesser bit-width of different operands. To this end, the lowest
plot in Fig. 5 also illustrates the maximum frequency of
operation, which is the inverse of the latency incurred in
computing a controller action via (4). The frequency varies in
the range [165, 500] MHz for the ASIC implementations using
Open Nangate technology. As expected, at higher modes of
approximation, the circuits have smaller critical paths due to
fewer logic components. This results in a higher frequency of
operation. For example, compared to the baseline My, modes
Mg and Mg cause operational frequencies to increase by
2.94x. This implies that the controller update is in the order
of nanoseconds.

NMPC —— M, ——M,
Chebyshev Hermite Legendre
basic basic basic
4 4 4
2 2 2
D)
£ £o Bl
2 @ 2 @ 2 @
-4 4 4
< -1 0 1 4 -4 1 0 2 4 4 -2 0 T 4
* * %
4 ridge . ridge 4 ridge
2 2 2
] i]
-2 2 -2
-+ -4 -4

Fig. 6. Closed-loop state trajectories from a fixed-initial condition
[2.21, 3.33]T for multiple implementations of the embedded ENMPC.

[T~ e s |

Pt i it Hermite wit Legendre
iy iy il !

asc ridge = hasic ridge lam basic rdge lamn
e PR P
18 e 15!
L1 | | 1| [. i:

i ridge ™ O e sidge ™ Koy g lamo

Frequntey (MiHz)
Eiﬁ

Frequetssy (MEH2)
SEEE

g [
s idge == haic sidge lazam tasic radge [
1 s
oz oz By oz
? g ook g Eom §gom
<o < om < oo
o o om ol = ala] = ol
ridge asse

basio ridge s [rge Tasso Taskc [

Fig. 7. Characteristics of various ENMPC controller implementations using
different basis functions under different constraints.

To compare the effect of basis function selection and
regularization of polynomial coefficients, nine ENMPC con-
trollers are constructed with combinations made of three
basis functions that exhibit good practical performance for
continuous function approximation (Legendre, Hermite, and
Chebyshev polynomials) and three regularized regression
methods [described in (3)] with 4 = 1. Fig. 6 shows the
comparison of closed-loop state trajectories of an optimal
NMPC against an ENMPC Mg/ M and the corresponding
embedded ENMPC My. Due to the increased aggressiveness
of the approximation modes, it is expected that the closed-loop
trajectory of mode M; will be more similar to the NMPC
than Mg. Although each approximation mode (M>—Mg) con-
verged from the initial condition to the origin, only the worst
approximation mode My is depicted for clarity. A detailed
comparison is provided in Fig. 7, with exact numbers reported
in Table I. With basic regression using (3a), the area reduction
obtained for the most aggressive approximation mode Mg
is roughly 17x, 40x, and 35x for Chebyshev, Hermite,
and Legendre polynomial-based implementations, respectively.
Thus, the Hermite polynomial implementation results in the
fastest operation, with frequencies as high as 676 MHz
corresponding to mode Moq. However, the lowest energy
is required by mode My of the Legendre bases, which is

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 28, NO. 3, MAY 2020

TABLE I
POWER, FREQUENCY, AND APE FOR M), M|, AND Mg WITH DIFFERENT IMPLEMENTATIONS

[Mode

[[Cheby. - basic [Herm. - basic [Legend. - basic| Cheby. - ridge [Herm. - ridge [Legend. - ridge| Cheby. - lasso [Herm. - lasso [Legend. - lasso|

[Parameter |[Mo] M1 [M| Mo M [Ma| Mo [M [M [Mo [Ma [Mo] Mo [Mi [Ms] Mo [Ma] Ms [Mo[M [Mg| Mo M [Ms[Mo [Mi [M|

Power (mW)(| 4.5

4.2

0.5

4.1

4.4

0.4

8.2

1.7

0.3

4.4

4.0

0.4

4.2

4.5

0.4[8.4

1.8

0.3

3.9

3.7

0.5

3.7

3.9

0.4

8.0

1.4

0.3

685

510

407

Freq. (MHz)|[167
log,, APE || -6

186
-6

490
-2

165
-6

182
-6

676
-2

172
-6

130
-6

413
-6

164
-6

183
-6

-2

172
-6

187
-6

76177
6| -6

135
-6

407
2

160
-6

183
-6

-1

172
-6

181
-6

676

6

177
-6

130

6

-1

approximately 0.7 pJ: about 72x lower than the baseline M.
For ridge regression as described in (3b), the maximum
reduction in area and energy occurs for mode Mg of Hermite
and Legendre polynomials, respectively. The number of gates
is 939, the energy consumption is around 0.6 pJ, and the cor-
responding reduction factors are approximately 39x and 72x,
respectively. The maximum frequency of operation occurs for
Chebyshev bases at 685 MHz. Similarly, for lasso regres-
sion, the maximum reduction in area and energy occurs for
mode Mg of Hermite and Legendre polynomials, respectively.
These reduction factors are approximately 35x and 72x,
respectively. The maximum frequency of operation occurs
for the Hermite polynomial implementation at 676 MHz.
As expected, the lasso regression results in a sparse coefficient
vector that enables an implementation with fewer gates overall.
It was found that using the Legendre polynomials as the set
of basis functions results in higher power consumption and
lower frequency values compared to Hermite and Chebyshev
polynomials (see Table I). One reason for this is because it has
many more factors that are not multiples of two in comparison
with the other polynomial families considered, and therefore
cannot be bit-shifted.

B. Example 2 (Cement Milling System)

This example is a more realistic and challenging system
compared to Example 1. Consider the cement milling circuit
example described in [39]

0.3yf = =y + (1 —al,vs,d)p(,d)
i = —o(,d)+ur+y
0.01y, = —y, +a(l,vs,d)ep(l,d)

with a(l, vg,d) = p*30?/(3.56 x 1010 + p%80}), 0(1,d) =
max{0, —0.1116d1>+16.51}, where ¥y is the product flow rate
in tons/hr, [is the load in the mill in tons, y, is the tailing flow
rate in tons/hr, u s is the feed flow rate in tons/hr, v; is the
classifier speed in rpm, and d is the hardness of the material
inside the mill. The system is discretized with a sampling time
of 120 s using a fourth-order Runge—Kutta scheme. We assume
that the full state information is available. The control actions
are vy € [165,180] and u s e [80, 150], and the outputs that
are to be regulated to the reference r = [110,425]" are y f
and y,. The states are bounded as follows: ys € [80, 150],
I € [0,100], and y, e [400,500]. MPC-related matrices,
costs, and horizons are chosen as in [39]. To reiterate, this
example has three states, two inputs, one output, and each of
these is constrained, resulting in 18 constraints and 6 control
optimization variables for a predictive horizon of three time

samples.
For the ENMPC construction, we use N = 10* Halton
samples (50% validation) with &* = 10~* and tensored

TABLE II
HARDWARE ACCELERATION PERFORMANCE (EXAMPLE 2)

My M, Ma My
Gates 72K 21K 6K 3K
Power (mW) 429 3.06 0.75 0.79
Freq. (MHz) 152 242 365 538
log,, APE 6 6 35)

Hermite polynomials as basis functions, resulting in M = 21
basis functions per control component. Results obtained by
hardware acceleration are shown in Table II; we do not show
the evolution of system states, but report that they converged
to the desired equilibrium in closed loop for 1000 randomly
selected initial conditions within the admissible state space.
The mode My denotes the case when the approximate NMPC
is implemented with the controller components in isolation,
that is, each polynomial representing #; := [1 0]4 and
iy := [0 1]i is implemented without sharing factors between
i and iip. The mode M represents an implementation that
shares factors both within and across the polynomials i}
and #p: this is, especially advantageous because the basis
functions are the same in both controller components, and
only the coefficients vary. From Table II, the benefits of M/
are apparent: we get a 3.5x and 1.4x reduction in area and
power consumption (respectively). As in Example 1, precision
scaling with allowable APE set to 10~ (mode M3) and 10~*
(mode My) further enhances savings during acceleration.
Reducing bit-width results in reduction of coefficients required
to M = 10, which, along with FS, enables operations at
365 MHz (2.74 ns) and 538 MHz (1.86 ns), which is more
than twice the rate obtained by the baseline while incurring
<1 mW of power, enabling low-power, low-area, and ultrafast
implementation of a sophisticated and safe control technology.

VI. CONCLUSION

In this brief, techniques from embedded system design
and the emerging field of approximate computing are lever-
aged to provide a design methodology for ultrafast, extreme
low-power, NMPC. Sampling-based methods for controller
construction enable scalability in state spaces [30]; unlike
state space partitioning methods that are useful for systems
with <5 states [40]. This brief demonstrates the potential of
careful and systematic approximation of sophisticated func-
tions such as the NMPC control law in order to make them
embeddable under severe resource constraints. Our embedded
ENMPC takes a few nanoseconds and operates at below the
milliwatt range without significant compromise in regulatory
performance for systems of comparable size. For applications
where suboptimality is tolerable, or under extreme resource
constraints (extremely small sampling times, low-cost micro-
controllers, or applications where reducing power consumption

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

RAHA et al.: EMBEDDING APPROXIMATE NMPC AT ULTRAHIGH SPEED AND EXTREMELY LOW POWER

is critical) that render solving constrained nonconvex problems
practically infeasible (such as for control of the IoT or
human-powered implantables), our proposed method yields a
feasible implementation of the complex NMPC framework via
approximate computing. A weakness of polynomial approx-
imation is in reconstructing highly fragmented (piecewise
continuous with many partitions) control laws; recent work
has demonstrated the effectiveness of neural network approx-
imation in such scenarios [41]. Since the tools discussed in
this brief are data-driven, it is agnostic to the basis function
selected for approximation, enabling implementation of neural
networks cheaply and with high efficacy [32].

(11
[21

(31

[4]

(51

(6]

(71

(8]

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7

[18]

[19]

REFERENCES

T. A. Johansen, “Toward dependable embedded model predictive con-
trol,” JEEE Syst. J., vol. 11, no. 2, pp. 1208-1219, Jun. 2017.

H. J. Ferreau ef al., “Embedded optimization methods for industrial auto-
matic control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 13194-13209,
Jul. 2017.

M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical methods
for nonlinear MPC and moving horizon estimation,” in Nonlinear Model
Predictive Control. Berlin, Germany: Springer, 2009, pp. 391-417.

C. Kirches, L. Wirsching, S. Sager, and H. G. Bock, “Efficient numerics
for nonlinear model predictive control,” in Recent Advances in Optimiza-
tion and its Applications in Engineering. Berlin, Germany: Springer,
2010, pp. 339-357.

W. C. Li and L. T. Biegler, “A multistep, Newton-type control strategy
for constrained, nonlinear processes,” in Proc. Amer. Control Conf.,
Jun. 1989, pp. 1526-1527.

T. Ohtsuka, “A continuation/GMRES method for fast computation
of nonlinear receding horizon control,” Automatica, vol. 40, no. 4,
pPp. 563-574, Apr. 2004.

M. Diehl, H. G. Bock, and J. P. Schlider, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control.” SIAM J. Control
Optim., vol. 43, no. 5, pp. 1714-1736, Jul. 2005.

S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: Bridging the gap via the real-time iteration,”
Int. J. Control, 2016. doi: 10.1080/00207179.2016.1222553.

H. G. Bock, M. Diehl, E. Kostina, and J. P. Schléder, *Constrained
optimal feedback control of systems governed by large differential alge-
braic equations,” in Real-Time PDE-Constrained Optimization. 2007,
pp. 3-24.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based
autonomous racing of 1:43 scale RC cars,” Optimal Control Appl.
Methods, vol. 36, no. 5, pp. 628-647, Sep./Oct. 2015.

D. Kouzoupis, H. J. Ferreau, H. Peyrl, and M. Diehl, “First-order
methods in embedded nonlinear model predictive control,” in Proc. Eur.
Control Conf. (ECC), Jul. 2015, pp. 2617-2622.

B. Kipernick and K. Graichen, “The gradient based nonlinear model pre-
dictive control software GRAMPC.” in Proc. Eur. Control Conf. (ECC),
Jun. 2014, pp. 1170-1175.

1. Kalmari, J. Backman, and A. Visala, “A toolkit for nonlinear model
predictive control using gradient projection and code generation,” Con-
trol Eng. Pract., vol. 39, pp. 56-66, Jun. 2015.

Y. Pu, M. N. Zeilinger, and C. N. Jones, “Complexity certification of
the fast alternating minimization algorithm for linear MPC,” IEEE Trans.
Autom. Control, vol. 62, no. 2, pp. 888-893, Feb. 2016.

J-H. Hours and C. N. Jones, “A parametric multi-convex splitting
technique with application to real-time NMPC,” in Proc. 53rd IEEE
Conf. Decis. Control (CDC), Dec. 2014, pp. 5052-5057.

G. Knagge, A. Wills, A. Mills, and B. Ninness, “ASIC and FPGA
implementation strategies for model predictive control,” in Proc. Eur.
Control Conf. (ECC), Aug. 2009, pp. 144-149.

E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan,
and G. A. Constantinides, “Predictive control using an FPGA with
application to aircraft control.” IEEE Trans. Control Syst. Technol.,
vol. 22, no. 3, pp. 1006-1017, May 2014.

B. Kipernick and K. Graichen, “Nonlinear model predictive control
based on constraint transformation,” Optim. Control Appl. Methods,
vol. 37, no. 4, pp. 807-828, Jul./Aug. 2016.

F. Xu, H. Chen, X. Gong, and Q. Mei, “Fast nonlinear model predictive
control on FPGA using particle swarm optimization,” IEEE Trans. Ind.
Electron., vol. 63, no. 1, pp. 310-321, Jan. 2016.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

1099

T. Bichle, S. Hentzelt, and K. Graichen, “Nonlinear model predictive
control of a magnetic levitation system,” Control Eng. Pract., vol. 21,
no. 9, pp. 12501258, Sep. 2013.

R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear MPC: A tutorial using ACADO
integrators,” Optim. Control Appl. Methods, vol. 36, no. 5, pp. 685-704,
Sep./Oct. 2015.

M. Klau¢o, M. Kaliz, and M. Kvasnica, “Real-time implementation of
an explicit MPC-based reference governor for control of a magnetic
levitation system,” Control Eng. Pract., vol. 60, pp. 99-105, Mar. 2017.
H. Ayala, R. Sampaio, D. M. Mufioz, C. Llanos, L. Coelho, and
R. Jacobi, “Nonlinear model predictive control hardware implementation
with custom-precision floating point operations,” in Proc. 24th Medit.
Conf. Control Automat. (MED), Jun. 2016, pp. 135-140.

S. Summers, D. Raimondo, C. Jones, J. Lygeros, and M. Morari, “Fast
explicit nonlinear model predictive control via multiresolution function
approximation with guaranteed stability,” in Proc. 8th IFAC Symp.
Nonlinear Control Syst. (NOLCOS), Sep. 2010.

A. Chakrabarty, V. Dinh, M. J. Corless, A. E. Rundell, S. H. Zak, and
G. T. Buzzard, “Support vector machine informed explicit nonlinear
model predictive control using low-discrepancy sequences,” IEEE Trans.
Autom. Control, vol. 62, no. 1, pp. 135-148, Jan. 2017.

V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and
S. T. Chakradhar, “Scalable effort hardware design: Exploiting algorith-
mic resilience for energy efficiency.” in Proc. Design Automat. Conf.,
New York, NY, USA, Jun. 2016, pp. 555-560.

A. Raha, S. Venkataramani, V. Raghunathan, and A. Raghunathan,
“Energy-efficient reduce-and-rank using input-adaptive approximations,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2,
pp. 462-475, Feb. 2017.

A. Raha, A. Chakrabarty, V. Raghunathan, and G. T. Buzzard, “Ultrafast
embedded explicit model predictive control for nonlinear systems,” in
Proc. Amer. Control Conf. (ACC), May 2017, pp. 4398-4403.

H. Chen and F. Allgower, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability,” Aufomatica, vol. 34,
no. 10, pp. 1205-1217, Oct. 1998.

H. Zhang, A. Chakrabarty, R. Ayoub, G. T. Buzzard, and S. Sundaram,
“Sampling-based explicit nonlinear model predictive control for output
tracking,” in Proc. IEEE 55th Conf. Decis. Control (CDC), Dec. 2016,
pp. 4722-4727.

A. Raha, H. Jayakumar, and V. Raghunathan, “Input-based dynamic
reconfiguration of approximate arithmetic units for video encoding,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 3,
pp. 846857, Mar. 2016.

A. Raha and V. Raghunathan, “gqLUT: Input-aware quantized table
lookup for energy-efficient approximate accelerators,” ACM Trans.
Embedded Comput. Syst., vol. 16, no. 5s, p. 130, Sep. 2017.

H. Niederreiter, “Low-discrepancy and low-dispersion sequences,”
J. Number Theory, vol. 30, no. 1, pp. 51-70, Sep. 1988.

A. Chakrabarty, G. T. Buzzard, and S. H. Zak, “Output-tracking
quantized explicit nonlinear model predictive control using multiclass
support vector machines,” IEEE Trans. Ind. Electron., vol. 64, no. 5,
pp. 4130-4138, May 2017.

L. Brandolini, L. Colzani, G. Gigante, and G. Travaglini, “On the
Koksma-Hlawka inequality,” J. Complex., vol. 29, no. 2, pp. 158-172,
Apr. 2013.

S. Yu, C. Maier, H. Chen, and E. Allgéwer, “Tube MPC scheme based
on robust control invariant set with application to Lipschitz nonlinear
systems,” Syst. Control Lett., vol. 62, no. 2, pp. 194-200, Feb. 2013.
M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“SAGE: Self-tuning approximation for graphics engines,” in Proc. 46th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2013,
pp- 13-24.

A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approxi-
mate memory compression for energy-efficiency,” in Proc. IEEE/ACM
Int. Symp. Low Power Electron. Design (ISLPED), Jul. 2017,
pp. 1-6.

L. Magni, G. De Nicolao, and R. Scattolini, “Output feedback and track-
ing of nonlinear systems with model predictive control,” Automatica,
vol. 37, no. 10, pp. 1601-1607, Oct. 2001.

Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” [EEE Trans. Control Syst. Technol., vol. 18, no. 2,
pp. 267-278, Mar. 2010.

S. Chen et al., “Approximating explicit model predictive control using
constrained neural networks.” in Proc. Annu. Amer. Control Conf. (ACC),
Jun. 2018, pp. 1520-1527.

Authonzed licensed use limited to: Purdue University. Downloaded on May 05,2021 at 20:49:26 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1080/00207179.2016.1222553

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

