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High-fidelity blood flow modelling is crucial for enhancing our understand-
ing of cardiovascular disease. Despite significant advances in computational
and experimental characterization of blood flow, the knowledge that we
can acquire from such investigations remains limited by the presence of
uncertainty in parameters, low resolution, and measurement noise.
Additionally, extracting useful information from these datasets is challen-
ging. Data-driven modelling techniques have the potential to overcome
these challenges and transform cardiovascular flow modelling. Here, we
review several data-driven modelling techniques, highlight the common
ideas and principles that emerge across numerous such techniques, and pro-
vide illustrative examples of how they could be used in the context of
cardiovascular fluid mechanics. In particular, we discuss principal com-
ponent analysis (PCA), robust PCA, compressed sensing, the Kalman filter
for data assimilation, low-rank data recovery, and several additional
methods for reduced-order modelling of cardiovascular flows, including
the dynamic mode decomposition and the sparse identification of nonlinear
dynamics. All techniques are presented in the context of cardiovascular
flows with simple examples. These data-driven modelling techniques
have the potential to transform computational and experimental cardiovas-
cular research, and we discuss challenges and opportunities in applying
these techniques in the field, looking ultimately towards data-driven
patient-specific blood flow modelling.
1. Introduction
We live in the age of data science, where the wealth of data and advances in data
processing and computational power are beginning to affect every field. The field
of cardiovascular fluid mechanics is no exception. Blood flow modelling has
come a longway fromWomersley’s analytical Navier–Stokes solution for incom-
pressible pulsatile flow in tubes during the 1950s [1] to the recent Food and Drug
Administration approval of patient-specific computational fluid dynamics (CFD)
estimation of pressure drop in coronary artery disease [2]. Advances in compu-
tational and experimental characterization of blood flow along with promising
advances in the field of data science provide a unique opportunity for exciting
developments in the field of cardiovascular fluid mechanics with the potential
to transform our understanding of cardiovascular disease.

In modelling cardiovascular disease, blood flow and haemodynamics
data are provided by multiple modalities. Patient-specific CFD, in vivo four-
dimensional (4D) flow magnetic resonance imaging (MRI), and in vitro particle
image velocimetry (PIV) or particle tracking velocimetry are leading modalities
in providing three-dimensional time-resolved blood flow data. However, none
of these modalities are perfect. Numerical error, parameter uncertainty, imaging
artefacts, low spatio-temporal resolution, and measurement noise are among
the limitations of these methods. Some open questions are summarized: How
can we improve the quality and accuracy of the data generated by either of
these modalities? If we possess data from more than one modality, is it possible

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2020.0802&domain=pdf&date_stamp=2021-02-10
mailto:amir.arzani@nau.edu
http://orcid.org/
http://orcid.org/0000-0002-3706-7909


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200802

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
1 
to generate new data with superior accuracy with respect to
either dataset? How can we best extract useful information
from these datasets? Given the complex spatio-temporal pat-
terns in haemodynamics, is it possible to derive simplified
representations of the data that facilitate physical understand-
ing and further modelling? Data-driven modelling techniques
provide potential means to answer these questions.

This work will focus on data-driven modelling techniques
that seek to exploit underlying low-dimensionality and spar-
sity in data, and in the systems that generate such data. These
methods combine classical data-driven analysis techniques
originating from principal component analysis (PCA) devel-
oped over a century ago by Pearson [3], with more recent
advances in data-driven dynamical systems analysis [4–7],
compressive sensing [8–10], and optimal data reconstruction
and interpolation [11–13]. In the class of methods that we
focus on, we are typically interested in representing complex
high-dimensional data in a simpler low-dimensional space,
while also potentially dealing with corrupted or under-
resolved data. Note that the class of data-driven modelling
methods considered here share some similarities and distinc-
tions with classical machine learning and deep learning
applications. In both techniques, we are interested in learning
patterns in data. In deep learning with neural networks,
we are seeking optimized function approximators that are
capable of revealing hidden patterns in data. Similarly, in
the data-driven modelling methods discussed here, we are
often interested in finding optimized models that can rep-
resent the data. A major distinction is that in what we
present as data-driven modelling, we often deal with small
and sometimes corrupted datasets, whereas classical deep
learning techniques typically require very large datasets.
Additionally, lack of interpretability is a shortcoming of cur-
rent deep learning techniques, which is an important issue in
fluid mechanics where we are often interested in the flow
physics [14]. On the other hand, data-driven reduced-order
modelling facilitates physical interpretation [15].

The fact that high-dimensional datasets are (at least
approximately) low rank can be observed empirically across
a broad range of applications, and this ubiquitous phenom-
enon can also be demonstrated theoretically under certain
assumptions [16]. By definition, a low-rank dataset can be
represented by a small number of functions. For example,
low-rank data representing a snapshot in time of the state
of a system can be expressed as a certain linear combination
of such functions, for any time. These functions can be
viewed as a small number of elements of a basis that spans
the space of all possible data, whether physically realistic or
not. The fact that any physically realistic snapshot can be rep-
resented by a small number of basis functions means that a
dataset consisting of many such snapshots is sparse in this
basis. The existence of a basis in which the data are sparse
allows for the application of several related techniques that
exploit this sparsity, such as reconstruction of full-state
information from a limited number of sensor measurements,
which may be placed randomly, or more optimally if given
more information about the system. Also, by considering
data generated from a given physical system as having
some type of sparsity in an appropriate basis, we can further
consider notions of sparsity in the underlying equations
that can generate or approximate the data. For example, if
approximating a given physical system by a set of nonlinear
ordinary differential equations involving a small number of
state variables, the structure of the equations might typically
only require a small number of non-zero terms. These
non-zero terms are sparse in the space of all possible terms
and can be identified from data using sparsity-promoting
identification methods [7].

In this paper, we review several data-driven modelling
techniques and provide examples of how they could be
used in cardiovascular fluid mechanics research. The over-
arching goal of these techniques is to facilitate data
interpretation, augment data when the data are incomplete
or low-resolution, improve the quality of data, and leverage
data from multiple modalities to improve data fidelity.
Many of these techniques are based on a well-established,
yet diverse set of mathematical tools. Familiarity with these
fundamental mathematical techniques and concepts may
enable cardiovascular researchers to come up with custo-
mized techniques to improve their models. The objective of
this paper is to provide an introduction to some of these tech-
niques with tangible examples for the cardiovascular fluid
mechanics community. To help researchers who would like
a more in-depth introduction to these topics, in table 1, we
provide a list of excellent books that we recommend for
each topic. The list is classified based on several important
fundamental and applied mathematical topics that are gener-
ally important in data science and data-driven modelling for
engineering and applied sciences.

1.1. Paper organization
In each section, we present an important data-driven model-
ling technique. Each section is divided into subsections
where we present the motivation behind the need for the
technique, the mathematical theory, example(s) relevant to
cardiovascular flow problems, and a short discussion on
opportunities for cardiovascular researchers as well as
challenges in applying the technique to practical problems.
Finally, we briefly discuss a few recent trends in compu-
tational mechanics related to data science that could be
valuable in cardiovascular biomechanics modelling.
2. Principal component analysis: detecting
redundancy and low-dimensionality in data

2.1. Motivation
Thanks to high-performance computing, numerical simu-
lations can provide spatio-temporally highly resolved
haemodynamics data. However, often haemodynamics data
possess hidden low-dimensionality, which once exposed, can
reduce the dimensionality of the data and provide opportu-
nities for advanced data analysis as discussed in the next
sections. This is due to the high correlation among temporal
snapshots in data (or equivalently, between different locations
in space). That is, under an appropriate coordinate system, we
can reduce the size of haemodynamics data with minimal loss
in accuracy. PCA is based on singular value decomposition
(SVD), which is one of the most ubiquitous and powerful
matrix transformations in linear algebra [36]. As an aside,
note however that PCA (and the independently developed
Hotelling analysis [37]) predated much of the theory and
numerical analysis of SVD. PCA provides an optimal basis
where with the minimum number of independent/uncorre-
lated modes one may represent the data. In other words, we



Table 1. List of recommended books for an in-depth introduction to fundamental and applied mathematical topics that form the basis of data-driven
modelling.

book title author comments ref.

linear algebra

linear algebra and learning from data G. Strang an excellent introduction with emphasis on data-driven modelling.

Author’s linear algebra video lectures are available on MIT OCW

website

[17]

introduction to applied linear algebra:

vectors, matrices and least-squares

S. Boyd &

L. Vandenberghe

basic linear algebra concepts. S. Boyd’s ‘Introduction to Linear

Dynamical Systems’ video lectures covering similar topics are

available on Youtube

[18]

numerical linear algebra L. Trefethen &

D. Bau

a standard introductory textbook for numerical implementation of

linear algebra algorithms

[19]

statistics

practical statistics for data scientists: 50+

essential concepts using R and Python

P. Bruce et al. an easy read for essential statistical tools in data-driven modelling [20]

probability and mathematical statistics:

theory, applications, and practice in R

M. Meyer a comprehensive mathematical introduction to statistical theories [21]

optimization

convex optimization S. Boyd &

L. Vandenberghe

the standard textbook for convex optimization. S. Boyd’s video

lectures based on this topic are available on Youtube

[22]

dynamical systems

differential equations and dynamical

systems

L. Perko one of the best mathematical introductions to dynamical systems [23]

nonlinear dynamics and chaos: with

applications to physics, biology,

chemistry and engineering

S. Strogatz a simple conceptual and practical introduction to dynamical

systems. Strogatz’s video lectures based on this topic are

available on Youtube

[24]

data assimilation

data assimilation: methods, algorithms

and applications

M. Asch et al. a rigorous and comprehensive introduction to the topic [25]

data assimilation: a mathematical

introduction

K. Law et al. a mathematical introduction with Matlab codes [26]

compressed sensing (CS) and sparsity

CS for engineers A. Majumdar an excellent practical introduction to CS with different examples

such as medical imaging

[27]

sparse modelling: theory, algorithms and

applications

I. Rish &

G. Grabarnik

a mathematically more detailed introduction to CS and sparsity [28]

machine learning

the hundred-page machine learning book A. Burkov a concise but informative and conceptual introduction to machine

learning

[29]

an introduction to statistical learning G. James et al. one of the most popular and accessible references in machine

learning

[30]

matrix methods in data mining and

pattern recognition

L. Eldén a mathematical introduction to machine learning with emphasis

on linear algebra

[31]

reduced-order and data-driven modelling

reduced basis methods for partial

differential equations: an introduction

A. Quarteroni et al. a detailed mathematical introduction to reduced-order modelling

of partial differential equations and proper orthogonal

decomposition (POD)

[32]

(Continued.)
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Table 1. (Continued.)

book title author comments ref.

turbulence, coherent structures,

dynamical systems and symmetry

P. Holmes et al. an introduction to POD with focus on applications in fluid

mechanics and turbulence

[5]

dynamic mode decomposition (DMD):

data-driven modelling of complex

systems

N. Kutz et al. an introduction to reduced-order modelling of dynamical systems

using DMD

[33]

data-driven modelling and scientific

computation: methods for complex

systems and big data

N. Kutz a comprehensive introductory book on a wide range of data-driven

modelling tools and necessary mathematical preliminaries.

Kutz’s video lectures based on this topic are available on

Youtube

[34]

data-driven science and engineering:

machine learning, dynamical systems

and control

S. Brunton &

N. Kutz

an excellent overview of various data-driven modelling techniques.

Brunton’s video lectures based on this topic are available on

Youtube

[35]
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seek to find a basis where the data have minimal correlation,
and therefore reduced redundancy. What we introduce as
PCA in §2.2 is essentially equivalent to what is known as the
proper orthogonal decomposition (POD) in fluid mechanics
[38], which will be discussed explicitly in §6.2.
2.2. Model theory and background
In PCA, the data are stacked into a rectangular matrix. Here, we
arrange the spatial data in n rows and the temporal data in m
columns. Therefore, spatio-temporal haemodynamics data for
a variable (e.g. velocity) could be arranged into a matrix X

X(n�m) ¼ W1 W2 � � � Wm½ �, (2:1)

where the spatial data in each snapshot (time-step) is arranged
as a column. This form of data representation will frequently be
used throughout the paper. Here, for clarity, we on occasion use
subscripts such as (n ×m) to indicate the dimensions of amatrix.
The temporal mean of the data at each spatial location is
subtracted from each row to define a new matrix ~X

~X(n�m) ¼
ffiffiffiffi
1
m

r �
X(n�m) � �x(n�1)J(1�m)

�
, (2:2)

where J(1×m) = [1 1 · · · 1], and �x(n�1) ¼ (1=m)
Pm

j¼1 Xij is a column
vector containing the mean of each row. Subsequently, SVD is
performed on the processed data matrix

~X ¼ USV�, (2:3)

where the columns of U and V are the left and right singular
vectors (which are orthonormal), the diagonal values of Σ are
the singular values, and * specifies the complex conjugate trans-
pose. For the ‘full’ SVD, U and V are square matrices, but here
we will only need to consider the columns corresponding to
nonzero singular values.

The left and right singular vectors are also eigenvectors of
the equivalent space- and time-correlation matrices, satisfying

~X~X
�
u j ¼ s2

ju j (2:4)

and

~X
�~Xv j ¼ s2

jv j, (2:5)
where uj and vj are the jth columns of U and V, and σj is the jth
diagonal entry of Σ.

The SVD is unique (up to rotation of the singular vectors
in the complex plane), and allows for an ‘optimal’ low-rank
approximation of the original data. More precisely, the
rank-r approximation ~Xr that minimizes the reconstruction
error (using the Frobenius norm)

er ¼ k~X� ~XrkF (2:6)

is given by

~Xr ¼ UrSrV�
r , (2:7)

where Ur and Vr contain the first r columns of U and V, and Σr
contains the first r rows and columns of Σ.

Physically, with the data arranged as described in equation
(2.1), the columns of U denote an ordered set of spatial func-
tions, or ‘modes’, which represent the principal components
of the data. The extent to which a given such function charac-
terizes the data is given by the associated singular value (i.e.
the corresponding diagonal entry of Σ). The columns of V (or
equivalently, rows of V*) give information about the relative
amplitude of the corresponding spatialmode for each snapshot
of data. Time-resolved data are not required to compute the
spatial PCA modes, but in the case where time-resolved
data are available, these columns of V are functions of time.
Therefore, we can equivalently express equation (2.3) as

~X ¼
Xmin (n,m)

j¼1

u js jv�j , (2:8)

where uj and vj are the jth columns ofU andV respectively, and
σj is the jth diagonal entry of Σ.

Remark For vectorial data such as velocity, the data at
one time-step are still placed in one column by considering
all components of the vector.

2.3. Example: low-dimensional behaviour in cerebral
and aortic aneurysm haemodynamics

2.3.1. Problem statement
Do blood flow data in aneurysms exhibit low-dimensional
behaviour? How many modes are required to reconstruct
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Figure 1. PCA performed on cerebral and abdominal aortic aneurysm velocity data. (a) A single snapshot of the velocity streamlines is shown. (b) The singular
values for different principal components (modes) are plotted. (c) A semi-log plot is shown for better visualization in the range of singular values. (d ) The
normalized cumulative energy defined as the cumulative sum of singular values normalized by the sum of all singular values.
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the data? How does the complexity in cerebral and
abdominal aortic aneurysm (AAA) data compare?

2.3.2. Problem solution
Patient-specific CFD results from prior work in a cerebral
aneurysm [39] and an AAA [40] are used. Details about the
CFD simulations can be found in [39,40]. Fifty time-steps
are used from one cardiac cycle and PCA is performed on
the velocity data. The results are shown in figure 1. In the cer-
ebral aneurysm model, a single mode is capable of capturing
a significant portion of the data (70% energy), whereas more
modes are required in the AAA data. To capture 90% of the
data (based on singular values), 6 and 16 modes are required
for the cerebral aneurysm and AAAmodels, respectively. The
dominant modes are capable of explaining the majority of the
data. The higher number of modes in the AAA data are due
to the more complex and chaotic nature of blood flow in
aortic aneurysms [41]. In practice, the number of modes is
selected such that a balance between model complexity and
fidelity is achieved.

2.4. Opportunities and challenges
PCA could not only be used to post-process data but it is also a
powerful pre-processing step in various data-driven model-
ling tools, which will be discussed in the following sections.
Herein, we have demonstrated how PCA reveals hidden
low-dimensionality in haemodynamics data. In our example,
the temporal data are stacked in columns; therefore low-
dimensionality implies a high correlation between these col-
umns of temporal data. Equivalently, these results also show
that there must exist high amounts of correlation between
measurements at different spatial locations. Beyond this
example, it is possible to organize haemodynamics data differ-
ently. For example, if the columns represent haemodynamic
data with varying different parameters (e.g. boundary con-
ditions), then PCA can demonstrate the correlation among
data with different parameters. Applying PCA to such data
will enable data classification and pattern recognition, which
could serve as a crucial step in machine learning. For example,
linear discriminant analysis could be applied to labelled SVD/
PCA modes for supervised learning and data classification
[34]. This technique has been used to investigate correlations
between haemodynamic and geometric parameters and
aortic insufficiency and ischaemic events in the aorta of left
ventricular assist device patients [42]. PCA has been used in
predicting cerebral aneurysm rupture based on morphology
and haemodynamics [43]. Statistical shape modelling with
PCA could facilitate geometric characterization of the vascula-
ture [44–47] and the heart [48,49]. One challenge in using PCA
is that the rows need to be consistently placed in different
snapshots. For instance, if the haemodynamic data in columns
are based on different patients, care must be taken to ensure
that the data are oriented and aligned consistently. A major
limitation of the PCA method is its inherent linearity. PCA
cannot effectively identify low-dimensional nonlinear pat-
terns in the data. The advantages gained by using manifold
learning and nonlinear generalizations of PCA such as
kernel PCA [50], locally linear embedding [51], spectral clus-
tering [52] and autoencoder neural networks [53] should be
investigated in futurework. Aswith all statistical data analysis
methods, sufficient quantity and quality of data is required
such that the results obtained from applying PCA on a given
dataset converge to the results that would be obtained given
an infinite amount of data [54] (unless one is only interested
in the properties of the specific dataset itself ). This is depen-
dent on a variety of factors, including the number of
principal components to be identified, the amount of energy
contained in each principal component, the accuracy required
for any ensuing analysis, the presence of any bias in the
sampled data towards certain principal components and
the presence of measurement noise that may be present in
the data. Section 3 will discuss an extension of PCA that is
explicitly designed to remove random noise from data. In gen-
eral, convergence of PCA can be evaluated by testing the
extent to which adding or removing data influences the
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results, with convergence obtained if adding additional data
does not have a tangible effect on the results of the analysis.
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3. Robust principal component analysis: noisy
and fluctuating data

3.1. Motivation
Noisy, fluctuating data can compromise the accuracy of PCA.
Such data often result in a larger number of energetic PCA
modes than what is truly needed to represent the physics of
the data. The issue is pronounced in experimental data but
can also exist in computational data. In experimental blood
flow data, noisy and corrupt data are often inevitable.
Additionally, in cases where transitional flow exists (e.g.
blood flow in aneurysms [55]), high-resolution CFD solvers
can capture fluctuating velocity data that may compromise
the temporal statistical correlation in PCA if one is interested
in mean flow behaviour. Robust principal component analy-
sis (RPCA), as developed in [56], and recently applied to
fluids data in [57] has been proposed to overcome these limit-
ations by separating the noisy data from the rest of the data
using an optimization framework.
3.2. Model theory and background
Consider the same data matrix X defined in equation (2.1).
We assume that the noise is randomly and sparsely distribu-
ted in the data. The first step is to write X as the sum of a low-
rank matrix L containing the correlated data we are interested
in and a sparse matrix S containing the noisy/fluctuating/
corrupt data:

X ¼ Lþ S: (3:1)

Next, the above objective is mathematically formulated using
an optimization problem

min
L, S

(rank(L)þ kSk0) s:t: X ¼ Lþ S, (3:2)

where rank(L) is equivalent to the number of non-zero singu-
lar values of L, and kSk0 (which is not strictly a norm)
denotes the number of non-zero entries in S. Optimizing
equation (3.2) is a combinatorial problem, which can typically
only be solved using a non-tractable brute force method.
Therefore, the problem is relaxed to a convex optimization
problem, formulated as

min
L, S

(kLk� þ lkSk1) s:t: X ¼ Lþ S, (3:3)

where k:k� is the nuclear norm (sum of the singular values),
the non-convex l0 pseudonorm is replaced by the convex l1
norm, and λ is a regularization parameter controlling the
level of sparsity in S. To find L and S, the above problem
can be solved using the augmented Lagrange multiplier
algorithm [58]. Finally, we may use the L matrix to perform
PCA as explained in the previous section.

3.3. Example: low-dimensional behaviour in
haemodynamics data with noise

3.3.1. Problem statement
Can RPCA improve low-dimensional data extraction in
patient-specific AAA data with noise?
3.3.2. Problem solution
The same AAA blood flow velocity data used in the previous
section are used. Noise is randomly added in space and time
in 30% of the data. The value of noise is sampled from a
random normal distribution with zero mean and a standard
deviation equal to 10% of the maximum streamwise velocity
in the data. The noise is added to all components of the vel-
ocity vector using the same distribution. PCA and RPCA are
applied to both original and noisy data. The results shown in
figure 2 demonstrate that PCA fails in exposing the low-
dimensionality in noisy data where the singular values do
not asymptote to zero. RPCA overcomes this issue and
reveals the low-dimensionality in the data. An interesting
observation is that RPCA applied to the original data (with-
out noise) leads to a smaller number of dominant modes
compared to PCA, due to the fact that some of the data are
incorporated into the sparse matrix S, and discarded prior
to the decomposition.

3.4. Opportunities and challenges
RPCA is an excellentmethod to detect low-dimensionality and
coherent patterns in experimental haemodynamics datawhere
noise is inevitable. Recently, RPCA has been successfully
applied to experimental PIV data of complex fluid flow [57].
Experimental cardiovascular fluid mechanics techniques
such as 4D flow MRI often carry a significant amount of
noisy and corrupted data. RPCA could be applied to such
data to reconstruct the dominant flow structures. Additionally,
RPCA has the potential to facilitate data-driven modelling
techniques such as dynamic mode decomposition (DMD; see
§6) that are sensitive to noise. One challenge in applying
RPCA is the requirement that the corrupt data should be spar-
sely distributed. This requirement and sensitivity to the
hyperparameter λ should be investigated in the context of
cardiovascular flows in future work.
4. Compressed sensing: reconstructing high-
resolution data from low-resolution sampling

4.1. Motivation
In experimental modelling of cardiovascular flows, high-
resolution sampling of haemodynamics data is often not poss-
ible due to inherent limitations. However, high-resolution data
are an essential part of many modelling tasks (e.g. patient-
specific flow waveforms for inlet boundary conditions, spatial
gradients for wall shear stress calculation). In the previous
sections, we saw that high-resolution data may admit a low-
dimensional sparse representation in an appropriate basis.
The idea behind compressed sensing (CS) is that if we have a
priori knowledge of such a basis, then we can reconstruct
high-resolution data from low-resolution sampling. CS is a
theoretical framework that solves an under-determined
system of linear equations when the solution is known to be
sparse. As a simple example, assume we have sampled vel-
ocity data in the aorta with a spatial resolution of 3mm
(typical 4D flow MRI resolution); however, we would like to
reconstruct the data with a spatial resolution of 0.5 mm (typi-
cal CFD resolution). The only constraint here is that at the
sampled MRI locations, the reconstructed data must match
the 4D flowMRI data. Obviously, this is an under-determined
system, meaning that the reconstruction problem has an
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Figure 2. RPCA performed on AAA velocity data. PCA on the original data (i), PCA on the original data with noise (ii), RPCA on the original data (iii), and RPCA on
the original data with noise (iv) are plotted where the principal components in (a) a regular plot, (b) semi-log plot, and (c) cumulative sum of singular values
normalized by the sum of all singular values are shown.
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infinite number of possible solutions. In CS, we regularize this
problem to enable a solution, by promoting a solution that is
sparse in the specified basis.
4.2. Model theory and background
Supposewe havem low-resolutionmeasurements y [ Rm and
wewant to reconstruct the high-resolution data x [ Rn with n
components, where n≫m. We know the location of low-
resolution measurements with respect to the high-resolution
data via a known measurement matrix C

y ¼ Cx: (4:1)

If the low-resolution measurements are a subset of the
high-resolution data, then each row of C consists of zeros
everywhere except for the column corresponding to a
measurement location, which has an entry of 1. The central
assumption is that we have a priori knowledge of a transform-
ation Φ that relates the high-resolution data with a sparse
vector s where x =Φs, which implies that we know how to
sparsify the data. Combining the previous two equations, we
arrive at an equation that could be solved for s

y ¼ CFs: (4:2)

This is an under-determined system of equations. To enable
solution, the following optimization problem is solved:

min
s

ksk1 s:t: y ¼ CFs, (4:3)

where using the l1 norm, we seek the sparsest solution s that
satisfies the measurement constraints. Here, the use of the l1
norm is again used as a convex proxy for the l0 pseudonorm
representing the number of non-zero elements of s, in order to
make the problem computationally tractable. Alternatively, the
optimization problem could be written using the least absolute
shrinkage and selection operator method [59]

min
s

ky� CFsk2 þ lksk1, (4:4)

where the hyperparameter λ controls the level of sparsity. Note
in particular that this formulation means that equation (4.1) no
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(b) the downsampled waveform, (c) CS waveform reconstruction, and (d ) CS waveform reconstruction with Gaussian smoothing are plotted.
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longer needs to be exactly satisfied. Once s is found, the high-
resolution data could be recovered using x =Φs.

4.3. Example: high-resolution reconstruction of blood
flow waveform from low-resolution data

4.3.1. Problem statement
Given low-resolution measured blood flow waveform data in
the aorta, is it possible to reconstruct the high-resolution flow
waveform using CS?

4.3.2. Problem solution
We consider a typical blood flow waveform in the infrarenal
aorta represented using Fourier series (figure 3). Such a wave-
form is often used as an inlet boundary condition for CFD
simulations in AAAs [60]. In vivo phase-contrast MRI enables
patient-specific measurement of such waveforms. We assume
that we have low-resolution temporal sampling over 20 car-
diac cycles. We randomly sample 100 data points over 20
cardiac cycles (on average 5 points per cardiac cycle). The
goal is to reconstruct the data with 1000 data points (50
points per cardiac cycle). The original and downsampled
waveforms are shown in figure 3a,b, respectively. In this
example, we assume that the waveform is sparse in the dis-
crete cosine transform basis. The CS solution (from
equation (4.3)) is shown in figure 3c. The result shows signifi-
cant improvement over the low-resolution data. However,
the CS waveform does not perfectly recover the original
waveform even though the features are recovered. Artificial
high-frequency features are present in the CS recovered
waveform, which may be removed using a Gaussian
smoothing filter (figure 3d ).

4.4. Opportunities and challenges
CS is a very important data-driven modelling tool with
various applications [27]. In experimental cardiovascular bio-
mechanics modelling, it is often not possible to collect data at
the desired spatial and/or temporal resolution. Under certain
conditions, CS provides the means to recover high-resolution
data given low-resolution measurements. If we know the
basis where the data are sparse, then we do not necessarily
need to collect high-resolution data as we can reconstruct the
data using CS. In other words, if such a basis exists, then the
Nyquist–Shannon sampling law [61], which requires data
sampling at a rate twice as fast as the highest frequency, is
no longer required. CS is widely used in medical imaging
such as computed tomography (CT) [62] and MRI [63]. For
example, CS has been used to accelerate blood flow velocity
measurement in 4D flowMRI in the K-space (the Fourier trans-
form of the magnetic resonance image) [64]. However, the
application of CS to high-resolution reconstruction of low-
resolution blood flow data has remained elusive. Amajor chal-
lenge is identifying the appropriate basis where the solution is
sparse. In a number of applications, sparsity in space can be
achieved via a wavelet transform, while temporal sparsity
can often be obtained using a Fourier transform. For example,
the wavelet transform has been used to successfully recon-
struct spatial data governed by the diffusion equation with
10 times higher resolution [65]. However, successful recon-
struction using a standard basis will likely be challenging.
Dictionary learning and transform learning provide the
means to identify an optimized basis [27]; however, their suc-
cess in complex blood flow data remains to be investigated. An
alternative approach is to learn the sparsifying basis using
training data. This topic is discussed in §7.

Another challenge is the requirement that the data
should be sampled in a manner that is incoherent with the
basis in which the signal is sparse. This requirement, which
can be expressed more formally as the restricted isometry
property [66], ensures that the sampled signal can detect
non-zero coefficients of all basis elements. As a counterexam-
ple, uniform sampling is ‘periodic’ and thus is not incoherent
with a Fourier basis. Most typically, we can allow this inco-
herence property to be satisfied by choosing a random
sampling procedure.
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5. Data assimilation using the Kalman filter:
merging experimental and computational
data

5.1. Motivation
Sometimes in cardiovascular flow modelling, we have the
luxury of possessing both experimental data and computatio-
nal models. However, both experimental and computational
models have limitations and errors. Experimental data are
often low-resolution and noisy, whereas even high-resolution
computational simulations have limitations due to uncertainty
in model parameters and/or governing equations. The field of
‘data assimilation’ deals with hybrid models that integrate
observed experimental data with computational models.
The goal is to use the computational model to advance the sol-
ution in time and based on the availability of experimental
data, alter the computational model’s prediction to improve
solution reliability.

5.2. Model theory and background
Here, we will discuss the simplest implementation of the
Kalman filter. Consider our computational model governed
by a dynamical system as

_x(t) ¼ f(x, t)þ q1; x(t0) ¼ x0 þ q2, (5:1)

where q1 is the unknown error in the model and q2 represents
the uncertainty in the initial condition of the system.
Consider the set of experimental data as

y(t) ¼ g(t)þ q3, (5:2)

where g(t) are themeasured data and q3 is the associated error.
Note that the measurements do not necessarily need to be
available at all points. We would like our model (equation
(5.1)) to satisfy the experimental observation. The above
equations form a system of overdetermined equations where
we have more equations than unknowns. Therefore, an optim-
ization problem is defined to find the solution that minimizes
the error weighted by the above errors in themodel and exper-
imental data. In the case of one-dimensional data, the solution
to such optimization problem may be written as

�xk ¼ xk þ K(yk � xk), (5:3)

where �x is the data assimilated prediction, x is the compu-
tational/analytical model, y denotes the experimental data,
K is the Kalman filter (Kalman gain), and the subscript k spe-
cifies the time-step. The experimental data may not be
available at every model time-step, therefore the above predic-
tion will only be applied at the time-steps where the
experimental data are available. The Kalman gain may be
written as

K ¼ s2
x

s2
x þ s2

y
, (5:4)

where it is assumed that the errors could be represented with
Gaussian distributions. σx and σy represent the standard devi-
ation of the error distribution in the model and experimental
data, respectively. It could be seen that K weights the contri-
bution of experimental and computational data based on
their expected errors.

The above implementation could be extended to vectorial
data and the Kalman gain could be improved and updated
at every step using the extended Kalman filter method.
These methods are described in a simple but informative
presentation in [34] and in more detail in [25,67].

5.3. Example: merging computational and experimental
trajectories in transient vortical flows

5.3.1. Problem statement
Consider an unsteady version of Hill’s spherical vortex, which
is an extension to the steady version that has been used as a
very simple analytical model of three-dimensional vortex
flows in the left ventricle of the heart [68]. The goal is to con-
struct particle trajectories considering uncertainty in the
initial condition and availability of noisy experimental data.

5.3.2. Problem solution
We extend Hill’s spherical vortex [69] to a transient vortex by
periodic movement of the vortex centre:

u(x, y, z, t) ¼ (x2 þ 1� 2r2, xy, xz)T if r � 1

z2r�5 � 1
3 r

�3 � 2
3 , xyr�5, xzr�5

� �T if r . 1,

(

(5:5)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ (y� A)2 þ (z� A)2

q
and A = sin (πt/50). The

above equation is numerically integrated for T = 20, with the
initial condition x0 = (0, 0.5, 0)T and time-step Δt = 0.001 to
generate the reference data. We assume synthetic experimen-
tal data are available at a lower sampling rate (Δt = 0.04) with
uncorrelated Gaussian white noise added with σy = 0.05. For
the computational model, we assume we do not have precise
knowledge of the initial condition, and thus to each com-
ponent of x0 we add Gaussian noise with σx = 0.15. The
Kalman filter method is used to correct the model prediction
based on the synthetic experimental data using equation (5.3)
for each component of x, which is applied once every 40 steps
(based on the lower sampling rate of the experimental data).

The results are shown in figure 4. A snapshot of the vortex
flow is shown. The induced unsteadiness in the flow causes
trajectory sensitivity to the initial condition. We can see that
the perturbed solution (figure 4c) behaves very differently
from the exact solution (figure 4b). The Kalman filter
improves the estimation of the trajectory (figure 4d ); however,
noise is still present due to the noisy nature of the experimen-
tal observation. Finally, the errors in trajectories are shown
(figure 4e) in a semi-log plot where the Kalman filter
significantly outperforms the perturbed solution.

5.4. Opportunities and challenges
Herein, we have presented a very simple example of the
Kalman filter. More advanced implementations of the
Kalman filter are possible for more reliable results in more
complex settings. For example, the ensemble Kalman filter
has been used to merge 4D flow MRI and CFD simulations
[70]. Parameters in zero- and one-dimensional blood flow
models have been estimated based on clinical measurements
using the ensemble Kalman filter [71,72] and the unscented
Kalman filter [73], which are extensions formulated to deal
with large state dimensions and nonlinear system dynamics,
respectively. The ensemble Kalman filter has also been used
to estimate the inlet flow waveform in patient-specific arterial
network models [74]. Reduced-order unscented Kalman filter
has been used in conjunction with fluid–structure interaction
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(FSI) simulations to estimate aortic aneurysm wall stiffness
from wall displacement measurements [75]. Other data
assimilation methods such as variational data assimilation
could also be used to merge multi-modality haemodynamics
data [76]. In general, the family of Kalman filter data assim-
ilation models provides the means to improve the accuracy
of computational models by leveraging even imperfect exper-
imental data. There are a growing number of studies in the
literature on merging CFD and 4D flow MRI data using data
assimilation [70,77–81]. PIV is another popular approach in
haemodynamics quantification. Multi-modality data assimila-
tion methods that leverage all of these modalities could
improve the accuracy and reliability needed in transformative
patient-specific haemodynamics modelling. It would be inter-
esting to compare the relative success of all of thesemethods in
future work. One challenge in Kalman filter modelling is the
prior knowledge of the error distribution and magnitude,
which might not be always available and needs to be esti-
mated. Additionally, the assumption that errors follow a
Gaussian distribution might not always be appropriate.
6. Reduced-order physics: dynamic mode
decomposition and proper orthogonal
decomposition

6.1. Motivation
Discovering low-dimensional behaviour in blood flow data
enables a simplified understanding of the flow physics and
opens up the door for efficient reduced-order and data-
driven modelling. Physically, these reduced-order models
are motivated by the presence of coherent structures or pat-
terns, which are often observed in even highly complicated
fluid flow processes. POD has been traditionally used in
fluid mechanics for reduced-order modelling of coherent
structures [5,38,82]. POD guarantees optimal reconstruction
of the original dataset from an energetic perspective for a
given number of modes. However, this can come with the
price of losing physical interpretability due to the associated
frequency mixing [83]. DMD is a more recent technique,
which is data-driven (equation-free) and reduces temporal
snapshots of input data to a best-fit linear reduced-order
model [6,33,84,85]. POD ranks modes by energy (reconstruc-
tion optimality), whereas DMD decomposes data into modes
that isolate different dynamical features within a dataset.
6.2. Model theory and background
Generally speaking, modal decomposition methods seek to
decompose a system, or dataset, into spatial functions
(modes), and their temporal coefficients. That is, if we have a
system state given by y(x, t), wewish to obtain a decomposition
that separates the spatial and temporal features by

y(x, t) �
Xm
j¼1

a j(t)u j(x), (6:1)

where uj(x) are spatial functions, with time-varying coefficients
given by aj(t). There are several methods to obtain such a
decomposition from data, each of which has certain desirable
features. If we wish to obtain a decomposition that is most effi-
cient in the sense that the difference between the left and right
sides of equation (6.1) isminimized, thenwe can utilize a singu-
lar value decomposition (i.e. PCA), as described in §2.2, using
the optimality property of SVD that minimizes the recon-
struction error (equation (2.6)). Here, the spatial modes uj
correspond to the left singular vectors of the data matrix, with
the temporal functions given by the scaled right singular vec-
tors, aj(t) = σjvj

*. In this context, this is called a POD. As the
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name suggests, this decomposition also gives spatialmodes that
are orthogonal (from the properties of SVD).

In practice, if the size of a snapshot is much larger than
the number of snapshots (i.e. n≫m), it can be computation-
ally cheaper to compute this decomposition by first finding vj
from the eigendecomposition given in equation (2.5), from
which the POD modes can be subsequently found from

u j ¼ s�1
j
~Xv j: (6:2)

This method for computing POD was first proposed in [86],
and is the approach employed in the examples considered
here. As discussed previously in the context of PCA, suffi-
cient data are required to ensure that the identified POD
modes are sufficiently converged. As an example, in the con-
text of noisy experimental data, Epps & Techet [87] suggest a
threshold of s j . e

ffiffiffiffiffiffiffi
mn

p
to ensure the accuracy of the first J

modes, where ϵ is the root-mean-square noise level, and as
before m and n denote the number of snapshots and size of
each snapshot of data, respectively. Note also that the accu-
racy requirements also depend on how the results of POD
are used. For example, higher quantitative accuracy may be
required if the modes are used for reduced-order modelling
via Galerkin projection [5], as opposed for qualitative
identification of coherent structures.

POD is not the only choice of decomposition for equation
(6.1). Wemight alsowant to obtain a decompositionwhere the
coefficients aj(t) possess certain properties (note that they are
also orthogonal functions in the POD). In particular, if we have

a j(t) ¼ exp (l jt), (6:3)

then each spatial mode can be associated with a characteristic
growth/decay rate and frequency of oscillation in time, given
by the real and imaginary components of λj, respectively. Such
a decomposition can be obtained via DMD. For DMD, it is
assumed that the data are time-resolved, with a fixed timestep,
Δt. The fundamental idea underlying DMD is to find a linear
operator A, which maps the system one timestep into the
future, the eigenvectors and eigenvalues of which are DMD
modes and eigenvalues. Letting X1 and X2 denote the data
matrix with the last and first column (snapshot) removed,
respectively, the linear operator A is given by

A ¼ X2Xþ
1 , (6:4)

where + denotes the pseudoinverse. In practice, the n × n
matrix A is typically not computed directly, as it is computa-
tionally easier to work in a lower dimensional space
obtained via an SVD of the data. A typical algorithm to com-
pute DMD involves the following steps:

1. Compute the (optionally truncated to rank r) SVD X1 =
UΣV*≈UrΣrVr

*.
2. Compute Ar ¼ U�

rX2VrS
�1
r , and find its eigenvalues and

eigenvectors satisfying Arwj = μjwj.
3. Compute DMD modes ϕj =Urwj corresponding to each

continuous time eigenvalue λj, where μj = exp (λjΔt).

With this approach, the number ofDMDmodes (or equiva-
lently, the number of terms in the sum in equation (6.1)) is
controlled by the truncation parameter, r. In practice, alterna-
tive approaches to choose a smaller number of modes can
include modifying the basis of projection (e.g. [88,89]), choos-
ing a smaller subset of modes to use from those that are
computed (e.g. [90–92]), or performing a balanced truncation
on the resulting linear model (e.g. [93]). There are numerous
further variants of DMD that extend its applicability and use-
fulness for a wider variety of systems, incorporating, for
example, external inputs [94], nonlinear observables [95] and
noisy data [96–98]. For a more comprehensive discussion of
these variants, see [15,35,93].

6.3. Example: blood flow physics in a cerebral aneurysm
using dynamic mode decomposition and proper
orthogonal decomposition

6.3.1. Problem statement
Given spatio-temporally resolved velocity data in a two-
dimensional cerebral aneurysmmodel, compare the dominant
DMD and POD modes.

6.3.2. Problem solution
Transient CFD simulations are performed using the open-
source finite-element solver FEniCS [99]. An idealized two-
dimensional cerebral aneurysm model is considered with
the geometric dimensions shown in figure 5. Incompressible
Navier–Stokes equations are solved with μ = 0.04 P and ρ =
1.06 g cm−3. The pulsatile inlet flow waveform is shown in
figure 5 and the simulations are run for three cardiac cycles
and the last cycle is used in data analysis. The mesh consists
of 15.2 K triangular elements. The first four dominant POD
and DMD modes are shown in figure 5. The dominant
DMD modes are selected using the sparsity-promoting algor-
ithm given in [90]. The first dominant mode in both methods
is very similar. POD picks up more complex structures in the
other modes, whereas the DMD modes seem to be influenced
by the dominant vortex in the aneurysm.

6.4. Opportunities and challenges
Modal analysis techniques such as POD and DMD facilitate
flow physics analysis by breaking down the flow evolution
into several coherent structures (modes) ranked based on
their energy (POD) and dynamics (DMD). These reduced-
order models could also be used to reduce computational
costs in simulations. However, accurate long-term extrapol-
ation beyond the training data used in deriving these models
remains a challenge. POD has been used in characterizing tur-
bulent blood flow [100,101] and DMD has been used for
quantitative modal analysis of blood flow physics [39,102].
The pulsatile nature of blood flow and variability in flow pat-
terns during different phases of the cardiac cycle challenge the
direct application of these techniques. Multistage DMD with
control has been proposed to overcome these challenges in
blood flow physics analysis with DMD [39].
7. Machine learning reduced-order models:
overcoming uncertainty in computational
models using low-fidelity experimental data

7.1. Motivation
Uncertainty in model parameters is often an inevitable
aspect of patient-specific computational haemodynamics
simulations. Inlet flow waveform, flow split ratio among
the outlets, blood rheology, the three-dimensional geometry
and vessel wall material property in FSI simulations are
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often not precisely known. These uncertainties may question
the fidelity of even high-resolution and minimally dissipative
CFD solvers, once the results are being interpreted in the con-
text of personalized medicine. On the other hand, in vivo flow
measurement techniques such as 4D flow MRI do not suffer
from such limitations; however, they are limited in resolution
and produce noisy data. Machine learning reduced-order
models provide a framework where one can construct a
library of high-resolution computational simulations by
varying the uncertain parameters, and couple that with
reduced-order modelling and CS to reconstruct high-resolution
data and identify the uncertain parameter using the
low-resolution experimental data [103].
7.2. Model theory and background
First, we perform several high-resolution computational
simulations by varying the uncertain parameter p times (β1,
β2,…, βp). Each simulation often results in several data snap-
shots in time. POD (equivalently, PCA) is performed on the
dataset created for each parameter. Assume we need to
keep m POD modes for each simulation such that we can
reconstruct the data with acceptable error (e.g. capturing
99% of the energy). The number m could be different for
each set of simulations, depending on the change in data
complexity with variation in the uncertain parameter.
A library could be constructed as
c ¼ f1(x, b1) � � � fm(x, b1) f1(x, b2) � � � fm(x, b2) � � � f1(x, b p) � � � fm(x, b p)
� �

: (7:1)
This library contains a reduced-order representation of all
possible dynamics in the system within the range of the con-
sidered parameters and may be thought of as a supervised
machine learning step. Note that it is possible to perform POD
just once on the entire appended dataset as opposed to each β
parameter. This approach could still beused for data reconstruc-
tion; however, it will make parameter identification less trivial.
Next, an underdetermined system of equations is constructed
as Ŷ ¼ (Cc)b, where Ŷ is the low-resolution experimental
data, C is a measurement matrix specifying measurement
locations, andb is avector tobedetermined.To findthe solution,
the following CS problem is solved (see §4):

min
b

kbk1 s:t: Ŷ ¼ (Cc)b: (7:2)
To enable CS, the measurement locations used (C) should be
randomly selected. As we discuss in example 2, relaxing the
CS optimization problem can perform better in parameter
identification

min
b

kbk1 s:t: kŶ� (Cc)bk2 , e, (7:3)

where ϵ is a tolerance. Once the above optimization problem is
solved, the high-resolution data are reconstructed as Y =ψb.

Thus far, we have not specified the locations of measure-
ments (as defined by C). Additionally, we have assumed
knowledge of a basis in which our data are sparse, but
have not prespecified which basis elements will have non-
zero coefficients (i.e. which terms in b are non-zero). Here,
following the work of [13], we show that favourable
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sensor/measurement locations can readily be found given
knowledge of such basis elements. From §2.2, a low-
dimensional set of functions that capture most of the
original data may be obtained from the columns of Ur in the
truncated SVD

c ¼ USV� � UrSrV�
r , (7:4)

where Ur and Vr denote the first r columns of U and V, and Σr
contains the first r diagonal entries of Σ. Under the assumption
that ψ≈UrUr

*ψ, we can, in theory, reconstruct the high-
resolution data from r measurement locations by solving the
(no longer underdetermined) equation

Ŷ ¼ CUr(U�
rc) ¼ CUra, (7:5)

where the r-dimensional vector of coefficients a =Ur
*ψ. In prin-

ciple, equation (7.5) can be solved for a for any choice of sensor
locations C that give linearly independent equations, by using
the pseudoinverse

a ¼ (CUr)
þŶ: (7:6)

However, some choices ofC can result in these equations being
ill-conditioned, whichmeans in particular that noisy measure-
ments Ŷ can give wildly inaccurate reconstructions of the full
data. One method to select measurement locations, as
described in [13], is to choose sensor locations in a manner
that results in CUr having a small condition number. This
can be achieved via the pivoted QR decomposition

UT
r C

T ¼ QR, (7:7)

where the permutations in CT ensure that the diagonal
elements of R are ordered from largest to smallest. In the
examples below, we call this approach optimal sampling.
Similar data reconstruction methods are used in the empirical
interpolationmethods described in [11,12,104]. To summarize,
application of this method involves:

1. Obtain a set of modes/functions Ur that sufficiently cap-
ture the high fidelity data (e.g. via an SVD).
2. Find optimal measurement locations (e.g. low-dimen-
sional data) using a pivoted QR decomposition of Ur

(equation (7.7)).
3. Find the mode coefficients a from equation (7.6).
4. Reconstruct the high-fidelity data via Y =Ura.

7.3. Example 1: reconstruct high-resolution Womersley
flow with uncertain Womersley number and
optimal sensor placement

7.3.1. Problem statement
Given a few clean or noisy velocity samples from theWomers-
ley flow profile, is it possible to reconstruct the entire velocity
profile without knowing the Womersley number?
7.3.2. Problem solution
For demonstration purposes, we consider a wide range of
Womersley numbers α (1–29) based on a fixed pressure gra-
dient waveform (reported in [39]) to construct a library of
Womersley velocity profiles based on Womersley’s analytical
solution [1]. The data are based on 150 radial locations and
100 time-steps over one cardiac cycle. In this example, in con-
structing the library, we apply POD once to the entire data.
The reference data (groundtruth) are considered to be α =
14.7. To test how the method works under noise, noisy data
are created by adding random Gaussian noise with zero
mean and standard deviation of 10% the maximum velocity.
Given only five random and optimal sample points along the
radial direction at one time-step, we are interested in recon-
structing the velocity profile. The results are shown in
figure 6. Optimal sensor placement can reconstruct the true
data with high accuracy (l2 norm in error 0.03 and 0.002 for
noisy and clean data, respectively). Data reconstruction
with random sensor placement has difficulty in reconstruct-
ing the data (l2 norm in error 0.45 and 0.35 for noisy and
clean data, respectively). More sampling points are required
for successful reconstruction with random sampling, and
the optimal sensor placement method is more robust to noise.
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7.4. Example 2: reconstruct high-resolution cerebral
aneurysm flow with uncertain viscosity

7.4.1. Problem statement
Patient-specific variation in blood viscosity is common in
patients with haemorheological disorders (e.g. diabetes)
[105]. Given sparse (low-resolution) sampling of noisy velocity
data in a two-dimensional cerebral aneurysm flow with an
unknown viscosity, is it possible to identify the viscosity?
7.4.2. Problem solution
The two-dimensional cerebral aneurysm model in §6 is con-
sidered. Simulations are performed for eight different
dynamic viscosity values uniformly distributed between
m ¼ 0:03 and 0:2 P. Spatio-temporal velocity data are collected
for all μ values.We considerm ¼ 0:2 Pas the groundtruth data.
Additionally, we assumewe only have one temporal snapshot
inside the cardiac cycle available for measured data. In this
example, we consider 150 random data samples (sensors) to
collect two-dimensional velocity vector data. Noisy data are
created by adding Gaussian noise with zero mean and stan-
dard deviation of 5% the velocity data at each location. POD
is performed for each parameter and appended to build the
libraryψ by keeping 12modes for each parameter. The relaxed
version of the CS problem (equation (7.3)) is solved to identify
the active modes in the library and reconstruct the data. Par-
ameter identification is done based on the dominant active
modes in the library. The resulting active modes are shown
in figure 7. The dominant active mode belongs to the set of
modes where m ¼ 0:2 P, and therefore the method correctly
identifies the unknown viscosity. Most of the other modes
are close to zero in accordance with the sparse regression
model. The reconstructed velocity patterns are very close to
the original data. In general, further investigation showed
that parameter identification couldbe achievedwith fewer sen-
sors, whereas accurate data reconstruction required more
sensors. For example, with even 30 sensors the algorithm
was capable of correctly identifying the unknown viscosity
(with reduced reconstruction accuracy). Another important
observation is the sensitivity of the CS algorithm to noise. In
the presence of noise, the relaxed version of the optimization
problem (equation (7.3)) with a relatively high value of ϵ was
required for convergence (herein, ϵwas set to 25% of the maxi-
mumvelocity). In the example considered here, an increase in ϵ
increased reconstruction error as expected but did not affect
parameter identification.

7.5. Opportunities and challenges
The machine learning ROM framework is capable of mer-
ging high-resolution numerical data (with an uncertain
parameter) with low-resolution experimental data. A prom-
ising application is overcoming limitations in patient-
specific CFD and 4D flow MRI characterization of haemody-
namics. In CFD modelling, we can generate high-resolution
data but often have to face uncertainty in parameters and
assumptions. On the other hand, in vivo 4D flow MRI
directly measures blood flow inside the body (without
uncertainty in parameters); however, it is subject to imaging
artefacts and noise. The machine learning ROM approach
could provide a method to overcome these limitations. A
similar framework has been used to merge CFD and 4D
flow MRI where the authors assumed uncertainty in the
CFD inlet flow waveform [78]. The machine learning ROM
method could be extended to scenarios where multiple
uncertain parameters are present. One challenge in merging
CFD and 4D flow MRI data is the discrepancy in geometries
during image segmentation and three-dimensional model
creation, which could be thought of as another uncertain
parameter (the wall location where the no-slip boundary
condition is imposed). It might be possible to use the
machine learning framework in conjunction with non-uni-
form rational basis spline surfaces (e.g. isogeometric finite
element analysis [106]) to have control over a set of parame-
trized geometries. Another challenge is the construction of
the training library, which is the computationally expensive
part of the model. Greedy algorithms that can appropriately
identify the set of parameters in the library construction pro-
cess could mitigate this difficulty [107].
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8. Low-rank data recovery from random
spatio-temporal measurements

8.1. Motivation
In the previous sections, to reconstruct high-resolution data,
we needed prior knowledge of a basis where the data were
sparse. Such knowledge might not always be available. How-
ever, if the data matrix (equation (2.1)) is low-rank, then the
full data could be recovered with partial data sampling
using low-rank matrix recovery [27]. A low-rank matrix
implies that most of the columns of the matrix (herein, tem-
poral snapshots) are not linearly independent. In other
words, the total degree of freedom of the matrix is much
smaller than the total number of entries; therefore, we may
hope to be able to reconstruct the full data with partial obser-
vation. In complex cardiovascular flows, given a large
number of spatial data points (number of rows) and the com-
plexity in the flow, perfectly correlated columns might not be
observed. For instance, noise in data either due to measure-
ment or numerical errors will cause the data matrix to be
full rank. Nevertheless, a high correlation in temporal snap-
shots is often observed in haemodynamics data. As shown
below, the low-rank matrix recovery method could also
work under these scenarios. Therefore, given low-resolution
random spatial and temporal sampling of haemodynamics
data, we might be able to reconstruct the full data.

8.2. Model theory and background
Consider the data matrix X in equation (2.1). Assume we only
observe a random subset of entries (Ω) in the matrix (random
spatial and temporal sampling of data). Our goal is to recon-
struct the entire matrix X with such observation assuming
that X is low rank. Namely,

min rank(X) s:t: Y ¼ MV(X), (8:1)

where MΩ is a masking operator that selects the entries of X
that have been observed as Y. This optimization problem is
computationally very expensive to solve (non-deterministic
polynomial hard). However, the problem could be relaxed
to a convex optimization problem

min kXk� s:t: Y ¼ MV(X), (8:2)

where k:k� is the nuclear norm, in a similar manner to the
‘convexification’ employed for robust PCA in §3.2. This
could be solved using the singular value shrinkage
algorithm [27].

8.3. Example: reconstruct high-resolution blood flow
with random spatio-temporal measurements

8.3.1. Problem statement
Given low-resolution spatio-temporally random sampling
of blood flow velocity data in a cerebral aneurysm and
a coronary artery stenosis, is it possible to recover the
high-resolution data?

8.3.2. Problem solution
Consider the pulsatile blood flow problem in the two-dimen-
sional idealized cerebral aneurysm problem in §6.3 and a
three-dimensional coronary artery stenosis model from a
prior study [39]. We collect the velocity data in the
aneurysmal and plaque regions (boxed regions in figure 8)
and stack the spatio-temporal velocity data into the data
matrix X similar to equation (2.1). The collected data include
vectorial velocity data at 3943 spatial locations and 49 time-
steps throughout the cardiac cycle for the two-dimensional
aneurysm model and 73 239 spatial locations and 51 intra-
cardiac time-steps for the three-dimensional coronary artery
model. Using the low-rank matrix recovery method, we
reconstruct the full data given only 10% and 40% random
spatio-temporal sampling of the data matrix. The results for
two points are shown in figure 8. We observe that 40%
sampling can perfectly capture the velocity outside the aneur-
ysm and with mostly low error for the point inside the
aneurysm and coronary artery stenosis regions. With 10%
sampling, the algorithm can still perform well for the point
outside of the aneurysm with errors near the peak flow
rate, whereas the performance for the point inside the aneur-
ysm and stenosis where more complex flow is present is not
as good.

8.4. Opportunities and challenges
Matrix completion algorithms provide a promising tool to
complete the data when random measurements are missing
and a high correlation exists within the data. Similar ideas
have been used in reconstructing statistics in turbulent flows
[108]. In the context of cardiovascular flows, often the data
are correlated, and therefore we may use matrix completion
algorithms to increase the spatio-temporal resolution. Interest-
ingly, we observed that the algorithm can successfully
complete the data matrix even if the matrix was full-rank,
but exhibited low-rank behaviour once the threshold used in
defining the matrix rank was relaxed. One challenge in
such methods is the requirement that the incomplete data
sampling should be random (in space and time). However, it
might be possible to draw random samples from a uniform
sampling to be able to use such methods. Of course, such
random samplings need to be carefully devised to avoid
accuracy loss.
9. Sparse identification of nonlinear dynamics:
discovering analytical dynamics

9.1. Motivation
Extracting analytical governing equations from large datasets
has the potential to simplify our physical understanding of
dynamical systems and facilitate modelling. Sparse identifi-
cation of nonlinear dynamics (SINDy) is a recent paradigm
that enables the discovery of governing equations from data
[7]. The central assumption is that the governing equations
can be selected sparsely given an appropriately chosen set
of candidate functions.

9.2. Model theory and background
Consider a nonlinear dynamical system

_x(t) ¼ f(x), (9:1)

where x(t) is the state of the system (e.g. particle position in
fluid flow) as a function of time and f is the dynamics of
the system that we would like to approximate analytically
and sparsely using a few functions. We consider a library
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of candidate functions

Q(X) ¼
..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 X XP2 XP3 � � � sin (X) � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
664

3
775, (9:2)

where XP2 is the set of quadratic nonlinear functions combin-
ing the state vector (e.g. x1(t)

2, x1(t)x2(t),…) and so forth.
Subsequently, we represent our dynamical system (equation
(9.1)) with these functions

_X(t) ¼ Q(X)J, (9:3)

where each column of the matrix J, ζk is a sparse vector
of coefficients that determines the active functions in Θ.
To find ζk and therefore the active functions, a convex
optimization problem such as the following can be solved:

min
zk

k _x(t)�Q(X)zkk2 þ lkzkk1, (9:4)

where the λ term promotes sparsity in the selected coeffi-
cients. In practice, the identification of the coefficients ζk can
instead be solved using a sequential thresholded least-
squares algorithm to improve performance under noisy
data [7]. Finally, the governing equations for the dynamical
system could be written for each state xk as

_xk(t) ¼ Q(X)zk: (9:5)
9.3. Example 1: discover a blood coagulation and
thrombosis model

9.3.1. Problem statement
Modelling the fluid mechanics of thrombosis (blood clot
formation) requires solving large systems of advection–
diffusion–reaction equations. It is highly desirable to identify
reduced-order thrombosis models from data to simplify
thrombosis simulations [109]. Given the temporal evolution
of the prominent biochemicals involved in thrombosis,
is it possible to identify the governing equations for the
reaction kinetics?
9.3.2. Problem solution
We consider the reduced-order thrombosis model of Papado-
poulos [110,111] shown in figure 9. The system of ordinary
differential equations models the biochemical reaction kin-
etics involved between thrombin (IIa), prothrombin (II),
activated platelets (AP) and resting platelets (RP). First, we
eliminate the resting platelets from the system by realizing
that the [AP] + [RP] is constant. This is an essential step
since the SINDy algorithm performs poorly when some
variables are highly correlated, due to Θ becoming ill-
conditioned. The reduced Papadopoulos model is solved to
generate biochemical trajectories. In real practice, these trajec-
tories come from experimental data or high-dimensional
thrombosis models and the goal is to identify the governing
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model is derived by eliminating the activated platelets [AP] using [AP] + [RP] = C where C = 0.004 is determined from the initial conditions ([IIa]0 = 0, [II]0 =
9.509 × 10−5, [AP]0 = 0, [RP]0 = 0.004). The constructed trajectories ([IIa](t), [II](t) and [AP](t)) are used to identify the original governing equations using the
sparse regression in SINDy.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20200802

17

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 M

ay
 2

02
1 
equations for the reaction kinetics based on these trajectories.
In constructing the library Θ, the set of all linear and quadra-
tic functions (based on state variables) are considered. Given
the current model, considering a broader set of linearly inde-
pendent functions did not affect the results. The original
model, the generated trajectory, and the identified equations
and trajectory from SINDy are shown in figure 9. Using the
solution trajectories, SINDy exactly captures the active
terms and coefficients in the governing equations.

9.4. Example 2: discover analytical velocity in transient
vortical flows

9.4.1. Problem statement
Given particle trajectories in an unsteady three-dimensional
vortical flow, is it possible to estimate the time-dependent
velocity vector field using SINDy?

9.4.2. Problem solution
We consider a modified version of the unsteady Hill’s spheri-
cal vortex in §5.3 where the three-dimensional velocity field is
given by

u(x, y, z, t) ¼ x2 þ 1� 2r2 ¼ 0:75þ 0:25 cos (4vt)

� x2 � 2y2 � 2z2 þ 2y sin (2vt)
v(x, y, z, t) ¼ xy
w(x, y, z, t) ¼ x zþ 0:4 sin (2vt)ð Þ,

8>>>><
>>>>:

(9:6)

where ω = π/100 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ (y� 0:5 sin (2vt))2 þ z2

q
. We

simulate particle transport for 8 seconds under this flow for
a particle with the initial position of (x0, y0, z0) = (0.02, 0.05,
0.01). Given the resulting trajectory (x(t), y(t), z(t)), we
would like to find an analytical representation for the velocity
field. Here, we use SINDy with control (SINDYc) [112] as a
simple extension of the SINDy algorithm to be able to esti-
mate time-dependent dynamical systems. For the library Θ,
the set of all linear and quadratic functions in x,y,z as well
as sin( jωt), cos( jωt), xisin( jωt), xicos( jωt) are considered
where j = 1, 2,…, 5, and xi = x, y, z. For simplicity, we have
assumed prior knowledge about ω; however, it is possible
to consider a wide range of frequencies by expanding the
library. The results are shown in figure 10. Comparing the
active velocity terms and coefficients with equation (9.6),
we see that the correct terms are accurately predicted.
9.5. Opportunities and challenges
We have demonstrated two examples of SINDy that could be
used in cardiovascular flow modelling. Systems biology
models (system of ordinary differential equations governing
biological reaction kinetics) are an essential part of multiscale
mechanobiology models of disease growth [113,114]. SINDy
provides a framework to derive such models from experimen-
tal data or identify reduced-order systems biology models
from higher-order models. Identifying analytical velocity
fields from particle trajectories is another example. Of course,
this is expected to be a challenging task in complex cardiovas-
cular flows. We have shown an example based on an idealized
vortex flow. It remains to be investigated if similar models
could be derived from other vortex-dominated flows such as
blood flow in the left ventricle.One challenge in the application
of SINDy is that the matrixΘ becomes ill-conditioned once the
trajectories are highly correlated, which will compromise the
algorithm results. A reweighted l1 regularized least squares
technique has been proposed to overcome this issue [115].
Another challenge is in building the library of candidate func-
tions. In the examples considered, not considering an
important active term in the library resulted in a dense solution
where most terms became active. It should be noted that
depending on the complexity of the system studied, it may
not always be possible to represent a dynamical system spar-
sely. Finally, SINDy has been extended to partial differential
equations (PDE) to identify active terms and coefficients in
spatio-temporal PDE models [116].
10. Other techniques and applications
In this section, we briefly discuss some of the recent trends in
data-driven modelling and data science and their potential in
cardiovascular flow modelling.
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                          'xdot'       'ydot'      'zdot'  
    '1'                 [ 0.750]    [     0]    [     0]
    'x'                   [      0]    [     0]    [     0]
    'y'                   [      0]    [     0]    [     0]
    'z'                   [      0]    [     0]    [     0]
    'xx'               [–1.000]    [     0]    [     0]
    'xy'                  [      0]  [1.000]    [     0]
    'xz'                  [      0]    [     0]   [1.000]
    'yy'               [–2.000]    [     0]     [     0]
    'yz'                  [      0]    [     0]    [     0]
    'zz'                [–2.000]    [     0]    [     0]

'sin(1*Omega*t)'         [      0]   [     0]       [     0]
'cos(1*Omega*t)'        [      0]    [     0]      [     0]
   
 'cos(4*Omega*t)'     [ 0.250]    [     0]      [     0]

 'x*sin(2*Omega*t)'    [      0]    [     0]    [0.400]
 'y*sin(2*Omega*t)'  [ 2.000]    [     0]      [     0]

'z*cos(5*Omega*t)'    [      0]     [     0]      [     0]

...

 'xdot'       'ydot'      'zdot'

...

...

...... ...
... ... ...

...
...

...

Figure 10. The SINDy with control (SINDYc) algorithm is applied to a particle trajectory generated from an unsteady version of Hill’s spherical vortex. The particle
trajectory is plotted and the terms identified for the velocity vector field from SINDYc are listed. SINDYc exactly captures the correct terms.
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10.1. Machine learning and neural networks
Neural networks are a powerful class of machine learning
techniques and may be thought of as an approximator to
complex nonlinear functions. A popular application in cardio-
vascular research is learning clinical outcomes based on
different input parameters derived from patient-specific simu-
lations [117,118]. We may think of this as an advanced multi-
parameter regression framework where we have several
input parameters, different clinical outcomes, and large data-
bases where we are interested in learning/fitting a statistical
relationship between the data, which is achieved through the
learning process. Another application area is learning
models from complex large datasets. An active area of research
related to this is learning turbulence models based on direct
numerical simulation (DNS) databases [119]. Given the
unique physics of turbulence in cardiovascular flows
[120,121], learning customized Reynolds averaged Navier–
Stokes or large-eddy simulationmodels based on high-fidelity
DNS data of turbulent pulsatile blood flow seems to be a
promising area of future research. A common question for
machine learning is if it can replace physics-based cardiovas-
cular flow simulations, and therefore provide a very fast
patient-specific estimation of haemodynamics once the one-
time expensive training process is completed. Currently, this
paradigm has been successfully used to estimate CFD-based
fractional flow reserve (FFR) in coronary artery stenosis
[122]. However, FFR is a single variable that measures the
reduction in flow rate (pressure drop) due to a stenosis.
Using a similar paradigm for estimating variables that exhibit
spatial and temporal variation (e.g. velocity or wall shear
stress) [123] is a much more involved process, in which extre-
mely large datasets are required, and it is not clear if it could be
achieved in the near future. In fact, even large datasets are
likely not ‘large’ enough when it comes to systems that are
highly sensitive to variations in input data [124]. The recent
physics-informed neural networks (PINN) paradigm [125]
considers the governing equations in the learning process
and could ultimately reduce some of the costs associated
with traditional CFD modelling such as mesh creation.
PINN has been used for an example inverse modelling pro-
blem in cardiovascular flows where one is interested in
estimating the velocity field based on concentration data
[126]. This approach seems to pave theway to a new in vivo fra-
mework for measuring velocity based on time-resolved
concentration measured using medical imaging (e.g. dynamic
contrast-enhanced imaging). Finally, PINNs have been
recently used for improving 4D flow MRI data fidelity
(super-resolution and denoising) [127].

10.2. Parametric reduced-order models
The reduced-ordermodels that we discussed in §6 did not con-
sider parameter variation. Namely, we approximated them
given spatio-temporal velocity data for a fixed parameter.
Sometimes in computational modelling, we are interested in
a range of parameters. Reduced-order modelling tools such
as the Galerkin-POD learn a projected space and basis,
which they use to evolve the solution and therefore provide
a computationally efficient prediction of the solution. These
methods are trained based on fixed parameters and therefore
cannot be used when parameters in the model change.
Parametric reduced-order models have been developed to
address this challenge [107,128]. These reduced-order model-
ling techniques could be valuable in multiscale modelling of
cardiovascular disease growth where parameters in the
blood flow or structural mechanics models can change
during disease growth simulation.

10.3. Data-driven multiscale modelling
Multiscale modelling of cardiovascular disease is challenging
as such models need to connect different models across
different spatial and temporal scales. Data-driven modell-
ing and machine learning have the potential to transform
multiscale modelling of cardiovascular disease [129].
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Reduced-order models can be used to accelerate computa-
tionally expensive multiscale models. We may use the data
generated from expensivemultiscale simulations or experimen-
tal observations to derive a simplified approximation of the
underlying physics (e.g. using SINDy). Complete collection
of biological data across multiple scales represents a major
challenge in calibrating parameters in multiscale models.
Developing data-driven multiscale models that can leverage
sparsity or are robust to corrupt and incomplete data is a prom-
ising topic of future research. In prior sections, we discussed
data-driven modelling with multi-modality data. Developing
multiscale models that can appropriately leverage multi-
modality data is another interesting topic [130]. Deep neural
networks provide a promising framework for multiphysics
andmultiscalemodelling [131]. Combining data-drivenmodel-
ling and machine learning with physics-based simulations
provides a hybrid modelling strategy [132] with high potential
in multiscale modelling of biological systems [129]. Advance-
ments in each of these fields and their coupling will produce
predictive digital twins [133] that could facilitate treatment
planning, patient management and ultimately transform
personalized cardiovascular medicine [134].
02
11. Conclusion
Recent advances in computational power, data science and
abundance of data are starting to revolutionize different
fields of science and engineering. Data-driven cardiovascular
flow modelling is currently at its infancy, yet there are various
opportunities to develop customized data-driven models that
can transform cardiovascular biomechanics research. Multi-
modality and multi-fidelity data assimilation, overcoming
poor data quality, parameter identification, super-resolution
flow reconstruction and reduced-order modelling are some
examples. We hope that this review inspires researchers to
develop data-driven models that can address outstanding
challenges in the field of cardiovascular biomechanics.
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