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Abstract  23 

In this study, we developed a novel algorithm to improve the screening performance of an arbitrary 24 

docking scoring function by recalibrating the docking score of a query compound based on its 25 

structure similarity with a set of training compounds, while the extra computational cost is 26 

neglectable. Two popular docking methods, Glide and AutoDock Vina were adopted as the 27 

original scoring functions to be processed with our new algorithm and similar improvement 28 

performance was achieved. Predicted binding affinities were compared against experimental data 29 

from ChEMBL and DUD-E databases. 11 representative drug receptors from diverse drug target 30 

categories were applied to evaluate the hybrid scoring function. The effects of four different 31 

fingerprints (FP2, FP3, FP4, and MACCS) and the four different compound similarity effect (CSE) 32 

functions were explored. Encouragingly, the screening performance was significantly improved 33 

for all 11 drug targets especially when CSE=S4 (S is the Tanimoto structural similarity) and FP2 34 

fingerprint were applied. The average predictive index (PI) values increased from 0.34 to 0.66 and 35 

0.39 to 0.71 for the Glide and AutoDock vina scoring functions, respectively. To evaluate the 36 

performance of the calibration algorithm in drug lead identification, we also imposed an upper 37 

limit on the structural similarity to mimic the real scenario of screening diverse libraries for which 38 

query ligands are general-purpose screening compounds and they are not necessarily structurally 39 

similar to reference ligands. Encouragingly, we found our hybrid scoring function still 40 

outperformed the original docking scoring function. The hybrid scoring function was further 41 

evaluated using external datasets for two systems and we found the PI values increased from 0.24 42 

to 0.46 and 0.14 to 0.42 for A2AR and CFX systems, respectively. In a conclusion, our calibration 43 

algorithm can significantly improve the virtual screening performance in both drug lead 44 

optimization and identification phases with neglectable computational cost.  45 



 3 

Keywords: Scoring Function; Virtual Screening; Docking; Compound Similarity; Fingerprint; 46 

Protein-Ligand binding; Computer-Aided Drug Design 47 

 48 

Introduction 49 

 In order to save time and cost in drug discovery projects, various in silico approaches have 50 

been developed and applied to reduce the number of compounds which are to be experimentally 51 

synthesized and tested. Among these computer-aided drug design/discovery (CADD) methods, 52 

virtual screenings of large chemical databases for potential bioactive molecules are usually 53 

conducted at the very beginning stage to rapidly narrow down the candidates from millions of 54 

compounds to manageable numbers (thousands or hundreds). Depending on whether the 3D 55 

structural information of the target receptor is available and utilized, virtual screening (VS) 56 

methods can be broadly classified into structure-based (SBVS) and ligand-based (LBVS) [1]. 57 

Docking & scoring is a typical SBVS method, which predicts whether a ligand can favorably 58 

interact with a receptor (protein or nucleic acid) at its binding site, and if yes, the binding mode 59 

and binding affinity measured by the docking scoring function are determined. [1, 2]. Similarity 60 

search is a typical LBVS method, which predicts activity of query compounds depending on their 61 

similarities/dissimilarities to known reference ligands by utilizing numerical similarity descriptors 62 

(fingerprints) [3]. Both docking and similarity methods have been successfully carried out 63 

independently or hierarchically to screen out confidently inactive compounds for specific receptors 64 

of interest. Compared to docking, similarity search is even faster, and therefore it is suitable to 65 

filter super large database before docking takes place. However, both similarity search and docking 66 

suffer from poor accuracy to rank potentially active ligands and prioritize top candidates to be 67 

suggested for experiments. Similarity search is based on the Similarity Property Principle (SPP) 68 

[4],  i.e., structurally similar molecules are likely to possess similar biological properties and 69 
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activities. However, this hypothesis is not always true. Sometimes small chemical differences may 70 

arise highly different activity (‘activity cliffs’) [5]. Accuracy of docking methods is limited due to 71 

lack of modelling structural flexibility of target receptors, effects of solvation and entropy changes, 72 

etc. These limitations of docking & scoring methods may be overcome by more accurate 73 

methodologies, such as end-point methods (MM-PBSA, MM-GBSA, LIE, etc.) [6, 7], or rigorous 74 

alchemical free energy methods (FEP, TI, etc.) [8, 9], with the price of much higher computational 75 

cost and much longer time. But we cannot help wondering: is there a way to improve the accuracy 76 

of docking & scoring methods without much more extra computational cost? With the advances 77 

of high-throughput screening technique, more and more compounds were measured against a drug 78 

target. ChEMBL [10] is a curated database which collects binding affinities of bioactive molecules 79 

for a drug target. How can we utilize the information on the known structures and activities to 80 

improve screening performance? Secondly, can we combine docking & scoring methods with the 81 

extremely fast methods of similarity calculations to improve the accuracy of binding affinity 82 

estimation? If so, how can we incorporate the two types of scores into one hybrid scoring function? 83 

In this work, we attempted to develop a novel algorithm to make a good use of those valuable 84 

information on known bioactive compounds.     85 

 Docking programs utilize scoring functions to estimate the binding affinities. Currently, 86 

scoring functions can be generally classified into following four categories based on how protein-87 

ligand energy is predicted: (1) force-field-based, (2) empirical, (3) knowledge-based, (4) 88 

descriptor-based [11]. Although the underlying mechanisms of four categories are different, all of 89 

those developed scoring functions are trying to pursue promising results in the protein-ligand 90 

binding prediction. Considering the progress and achievements that have already been made by 91 

the existing scoring functions during the past few decades, we believe it will be more valuable to 92 
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make some improvements based on current developed scoring functions. Therefore, in this work, 93 

instead of developing a completely novel scoring function for the binding affinity prediction, we 94 

introduced a more practical and universal approach that can improve the scoring power for an 95 

arbitrary docking scoring function. Our new scoring algorithm is suitable to the following scenario: 96 

the binding affinities against a specific receptor for a certain number of compounds (hereafter 97 

called reference compounds or reference ligands) have been experimentally measured, but many 98 

more compounds (hereafter called query compounds) need to be estimated in silico. Such a 99 

scenario is frequently encountered in real drug design projects. Two components were 100 

incorporated to compose our new algorithm: (1) the structural difference between the query 101 

compounds and reference ligands; (2) the deviation of the docking scores of those reference ligands 102 

and their experimental binding affinities. Both the above components can serve as weights to 103 

calibrate the original docking scores of ligands.  104 

Materials and Methods 105 

 Work outline. The outline of our work is shown in the flow chart of Fig. 1. To evaluate the 106 

feasibility and performance of our algorithm, we collected the X-ray crystal structures of 11 107 

receptors of various categories from the Protein Data Bank [12] (https://www.rcsb.org) and their 108 

available ligand data from the ChEMBL database [13, 14] (https://www.ebi.ac.uk/chembl/). 109 

Collected compounds for each receptor were divided into reference set (reference ligands) and 110 

validation set (query compounds). See Table 1 and Supplementary Information. Compounds were 111 

docked to their corresponding targets with a state-of-art docking program Glide, which was 112 

selected as the basic scoring function for further improvement [15, 16]. The Tanimoto Coefficient 113 

Tc [3] was calculated by utilizing the Open Babel program version 2.3.1 (http://openbabel.org) 114 

[17]. Four popular 2D fingerprints (FP2, FP3, FP4, MACCS) [17] available in the Open Babel 115 

https://www.rcsb.org)/
https://www.ebi.ac.uk/chembl/
https://openbabel.org/
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package were adopted and compared in this study. The proposed hybrid scoring function was 116 

applied to calibrate the Glide docking scores. The scoring and ranking power of the hybrid scoring 117 

function as well as the original Glide docking scoring function was measured by root-mean-square-118 

error (RMSE), mean-absolute-error (MAE), Pearson’s correlation coefficient (R2), and the 119 

predictive index (PI) between the docking scores and the experimental binding affinities [18-20]. 120 

In addition, we evaluated the screening power of the hybrid scoring function by using enrichment 121 

factor (EF) and the area under the curve (AUC) of receiver operating characteristic (ROC) curve 122 

[21]. We also explored the choice of fingerprint type and CSE function form to optimize the 123 

screening performance. More details about the preparation of receptors and ligand datasets, 124 

docking software and procedures, and methods of evaluations are described in the following 125 

sessions. 126 

 Preparation of receptor datasets. To test the developed algorithm in this study, 11 receptors 127 

were selected according to the experimental records in ChEMBL database. The receptors can be 128 

divided into three classes: (1) 6 top receptors from diverse categories; (2) 4 top receptors from 129 

GPCR family; (3) one RNA receptor. Coagulation factor X (CFX), dopamine D2 receptor (D2R), 130 

µ opioid receptor (MOR), Extracellular signal-regulated kinase 2 (ERK2), vascular endothelial 131 

growth factor receptor 2 (VEGFR2) and estrogen receptor (ER) are in class (1). Among them, CFX 132 

is a member of Protease. D2R and MOR are from family A GPCR. EKR2 and VEGFR2 are 133 

members of the kinase family, while ER is the nuclear receptor. In class (2), there are serotonin 134 

2A receptor (5HT2AR), adenosine A2A receptor (A2AR), cannabinoid receptor 1 (CB1) and 135 

muscarinic acetylcholine M1 receptor (M1R). Finally, in class (3), the ribosomal RNA (rRNA) A-136 

site was selected as the receptor. All the receptor categories were selected according to the rank of 137 

member amounts in their category families, while the receptors themselves were selected based on 138 
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the compound number recorded in binding assays. The above information was collected from 139 

ChEMBL database and is shown in Table 1. Then the X-ray crystal structures of the above 11 140 

target receptors were retrieved from Protein Data Bank (detail information was shown in Table 141 

S1). The sources of all targets are Homo sapiens.  142 

 Preparation of ligand datasets. To better compare the binding energy of each ligand that 143 

binds to the same receptor, we collected 3D structures (SDF format) of ligands with the inhibition 144 

constant (Ki) values recorded from binding assays in the ChEMBL database. For the ribosomal 145 

RNA receptor, because of the limited number of Ki activities, compounds with dissociation 146 

constant (Kd) values were collected. It is of note that the activities of those collected compounds 147 

for each receptor were measured using the same methods. To balance the distribution of Ki 148 

activities for each receptor, compounds were hierarchically classified into 4 levels according to 149 

their Ki values: Ki < 10 nM, 10 nM ≤ Ki < 1 µM, 1 µM ≤ Ki < 100 µM and Ki ≥ 100 µM. In 150 

each level, 300 or less than 300 compounds (if the number of compounds in the level does not 151 

reach 300) were randomly collected by utilizing numpy.random.choice in Python 3.7 program 152 

[22]. For one selected compound with 2 or more Ki values that came from various assays, the 153 

average Ki was used. To evaluate the screening power of our approach, we categorized the selected 154 

compounds into the active and inactive sets by the cutoff of Ki/Kd = 100 nM. This value is lower 155 

than normal threshold, 10 µM, but it can better balance the numbers of compounds in the active 156 

and inactive sets. The experimental Ki/Kd for each collected compound was then converted to the 157 

experimental ligand-receptor binding energy (kcal/mol) by the Equation 1.  158 

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  −𝑅𝑇𝑙𝑛𝐾𝑖 (𝑑)  (1) 159 
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where ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 is the binding energy of the ligand, R is the gas constant with a value of 8.314 160 

𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 and T is the room temperature under standard pressure with the value of 298.15 161 

K.  162 

 To exclude compounds with very weak binding affinities and make our evaluation more 163 

reliable, compounds for 11 receptors with experimental binding energy higher than -4 kcal/mol 164 

were removed from the selected datasets. Then we randomly separated compounds into training 165 

datasets and testing datasets by the proportion of 4:1. The number of compounds in training and 166 

testing sets for each receptor was listed in Table 1. The structures of compounds were not only 167 

stored in the mol2 format but also converted into different 2D fingerprints for the further 168 

exploration of our algorithm by Open Babel program, which is an expert chemical toolbox for the 169 

format interconversion of chemical data [23]. Four 2D fingerprints are available in OpenBabel 170 

according to its documentation (http://openbabel.org/docs/dev/Features/Fingerprints.html): (1) 171 

FP2, a path-based fingerprint stored in a 1024-bit vector; (2) FP3, s series of SMARTS queries 172 

stored in 55 bits; (3) FP4, s series of SMARTS queries stored 307 bits; (4) MACCS, a series of 173 

SMARTS patterns stored in 166 bits.  174 

To critically evaluate the performance of our calibration algorithm, we performed extra 175 

validation test on hundreds of compounds with activities (Ki) of A2AR and CFX from an additional 176 

database, DUD-E database [24, 25]. After excluding the compounds with binding energy higher 177 

than -4 kcal/mol and those already included in the reference datasets, two external test datasets 178 

which have 1973 and 1599 unique compounds were compiled for the A2AR and CFX systems, 179 

respectively. All compounds from DUD-E were treated as query molecules and their docking 180 

scores were calibrated with the compounds in the corresponding ChEMBL dataset as references.  181 
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 Docking software and procedure. We docked selected compounds (include training sets, test 182 

sets and external test sets) to their corresponding receptors utilizing the Glide docking program 183 

implemented in the Schrodinger software (Maestro 11.2). Before docking, the downloaded SDF 184 

files of ligands were processed with the LigPrep module in Maestro. The downloaded PDB files 185 

of receptors were processed with the module of Protein Preparation Wizard in Maestro: removing 186 

co-crystallized solvent and ions, adding hydrogen atoms and missing site-chain atoms, energy 187 

minimization on hydrogen atoms. Then we defined the binding site based on the geometric center 188 

of the native bound ligand without taking constraint or rotatable group into consideration. The 189 

flexible docking with post-docking minimization for 11 systems was conducted by the following 190 

settings: van der Waal radius scaling factor was 0.80, the partial charge cutoff for ligands was 0.15, 191 

the intramolecular hydrogen bond formation was rewarded, the number of poses per ligand to 192 

include was 10. The top binding pose with the best docking energy score was retained and stored.  193 

 To investigate the impact of different docking scoring function on our calibration algorithm, 194 

the performance of our hybrid scoring functions was also evaluated for the AutoDock Vina 195 

docking scoring function [26]. Again, selected compounds were docked to their corresponding 196 

receptors utilizing the AutoDock Vina docking program. The receptor preparation was performed 197 

following the same protocol in Glide docking program. The binding site and space were defined 198 

based on the geometric center and the size of the native bound ligand without taking constraint or 199 

rotatable group into consideration. Considering the different docking mechanisms of two docking 200 

programs, this time, compounds with experimental binding energy higher than -5 kcal/mol were 201 

removed from the selected datasets to exclude compounds with weak binding affinities. Then 202 

compounds were randomly separated into training datasets and testing datasets proportionally and 203 

the docking score was calibrated using our proposed calibration approach. The Glide docking 204 
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scores and AutoDock Vina docking scores as well as the experimental binding affinities (converted 205 

from Ki values) of compounds in the reference and validation sets were listed in Table S2. 206 

 Algorithm for docking score calibration. The new algorithm we proposed to calibrate the 207 

docking scores from a normal docking program is described as below: 208 

𝐷𝑆𝑗 = 𝐷𝑆𝑗
0 [

1

𝜔
∑ 𝑆𝑖𝑗

𝑝 ∆𝐺𝑖

𝐷𝑆𝑖

𝑛
𝑖≠𝑗 ] (2) 209 

𝜔 = ∑ 𝑆𝑖𝑗
𝑝𝑛

𝑖≠𝑗     (3) 210 

where 𝐷𝑆𝑗
0 and 𝐷𝑆𝑗  are the docking score of the 𝑗𝑡ℎ  query compound before and after the 211 

calibration. 𝑆𝑖𝑗 is the structural similarity between the 𝑗𝑡ℎ query compound and the 𝑖𝑡ℎ reference 212 

ligand. The exponent p is treated as an integer constant with its value varying from 1 to 4 in this 213 

study, for the exploration of the developed formula. We referred 𝑆𝑖𝑗
𝑝

 as compound similarity effect 214 

(CSE) function for convenience of discussion. n is the total number of reference ligands in the 215 

reference dataset. 𝐷𝑆𝑖  is the docking score of the 𝑖𝑡ℎ  reference ligand. ∆𝐺𝑖  is the experimental 216 

binding energy (kcal/mol) of the 𝑖𝑡ℎcompound in the reference dataset, which is converted from 217 

the experimental Ki/Kd by the Equation (1). 218 

 In this study, the structural similarity 𝑆𝑖𝑗  between two compounds is represented by the 219 

Tanimoto Coefficient (Tc) calculated from their 2D fingerprints: [3] 220 

𝑇𝑐(𝑋, 𝑌) =
𝑧

x+y−z
   (4) 221 

Where x and y are the number of bits in the fingerprints of compounds X and Y, z is the number 222 

of bits set shared by compounds X and Y. Tc has a range between 0 to 1 and a larger value means 223 

higher structural similarity between two compounds. The Tc calculation was carried out by 224 

utilizing Open Babel under a Python 3.7 environment.  225 
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 Given a simple example to demonstrate how the algorithm works, we assume there are only 226 

two reference compounds, i and j, whose docking scores are -8.0 and -10.0 kcal/mol and their 227 

experimental values are -7.0 and -8.0 kcal/mol, respectively. The docking score of the query 228 

compound is -9.0 and the similarity between the query compound and reference compound i and j 229 

are 0.9 and 0.5, respectively. Assuming p is 4, then after the calibration, the new docking score for 230 

the query compound becomes: 231 

𝐷𝑆𝑐𝑎𝑙𝑖 = −9.0
1

0.94 + 0.54
[0.94

−7.0

−8.0
+ 0.54

−8.0

−10.0
] = −7.82 232 

Apparently, reference compound i has more impact than j in the docking score calibration for this 233 

query compound. It is noted that our algorithm may not always improve the performance of 234 

docking score. There is a possibility that the docking score becomes worse after the calibration. 235 

However, we expect the similarity-based calibration can improve the binding affinity prediction 236 

in most scenarios with a certain size of the reference set.     237 

 Performance evaluation. To reduce the systematic error during the calculation, the random 238 

separation of compounds into training and testing sets before the calibration was repeated for ten 239 

times for each target. The mean value and 95% CI for all performance metrics were then calculated. 240 

To evaluate the scoring and ranking performance of our algorithm, for each receptor, the docking 241 

score of compounds in the test set was compared to their experimental energies individually 242 

utilizing four different measurements, RMSE, MAE, R2 and PI. By comparing the mean calibrated 243 

docking score with the original docking score, the scoring function was considered to be improved 244 

if RMSE and MAE reduced, while R2 and PI increased. We also calculated the difference between 245 

the calibrated docking score and the original one. The difference is respectively represented by 246 

dRMSE, dMAE, dR2 and dPI. For the evaluation of screening power, the area under the curve 247 

(AUC) of receiver operating characteristic (ROC) curve and enrichment factor (EF) at 10% 248 
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(EF10%) and 40% (EF40%) levels were adopted as the performance metrics. In comparison to the 249 

simple docking scoring function, our new calibration algorithm on docking score was considered 250 

to have better screening power if AUC and EF increased. We applied the same protocols to 251 

evaluate the performance of the calibration algorithm on the datasets of A2AR and CFX targets 252 

from the DUD-E database, except that the enrichment factors were calculated with different hit 253 

rates. Considering the sample sizes of datasets for these two targets are relatively large in the DUE-254 

E database, we utilized EF1% and EF10% to evaluate the screening power. The equations for the 255 

calculation of metrics PI and EF were described in detail in Supplementary Information.  256 

 We defined two scenarios, “focus library” and “diverse library”, which are respectively 257 

appliable to drug lead optimization and lead identification in drug discovery, to evaluate the 258 

algorithm by limiting the range of Tc. In other words, the training compounds which did not meet 259 

the criterion of Tc range were excluded from calculations for the calibration. In the “focus library” 260 

scenario, for each system, we set up a lower bound Tc value. Below this threshold, Tc will be too 261 

low to improve the performance of the scoring function. In the “diverse library” scenario, besides 262 

the lower bound Tc value, we also set up an upper bound for Tc. We randomly collected 10,000 263 

screening compounds from ZINC database [27] (https://zinc.docking.org/) and calculated the 264 

structural similarity between testing compounds and screening compounds individually. The Tc 265 

value at which more than a half of screening compounds are lower than is selected as the upper 266 

bound Tc value. It is noted that this is a very stringent method to determine the Tc upper bound 267 

value. 268 

Results and Discussion 269 

 The impact of fingerprint and CSE function. We first studied the calibration performance 270 

using the Glide scoring function. For all 11 systems, the scoring power measured by RMSE and 271 

https://zinc.docking.org/
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MAE and ranking power measured by R2 and PI of the original docking scoring function and the 272 

hybrid scoring functions applying different fingerprints and CSE function are shown in Tables 273 

S3-S4 and Fig. 2. According to Tables S3-S4, the developed algorithm can improve the accuracy 274 

of original docking score for most of systems, no matter what fingerprint was used or what CSE 275 

function was adopted. Specifically, when FP2 fingerprint was used for the similarity calculation 276 

between compounds in our algorithm, the docking scores can improve, regardless of types of 277 

systems or CSE function. Similarly, when 𝐶𝑆𝐸 = 𝑆𝑖𝑗
4 , the performance of the scoring function 278 

enhanced for all 4 fingerprints. The comparison among the performance of the algorithms when 279 

employing different fingerprints and CSE functions is clearly illustrated in Fig. 2. For most 280 

systems, the enhanced effect of the algorithms with different calibrating functions can be ranked 281 

from the largest to the smallest when the p value varied from 4 to 1. As to fingerprint type, Fig. 2 282 

also demonstrated that FP2 stands out as it mostly has lower RMSE and MAE, higher R2 and PI 283 

than other fingerprints.  284 

 To test the generalizability of our calibration algorithm, we also studied the calibration 285 

performance using docking scores generated by another commonly-used docking program, 286 

AutoDock Vina. As shown in Table S5 and Fig. S1, the same conclusion was reached for this 287 

docking program, i.e., the S4 outperforms other CES functions and FP2 outperforms other 288 

fingerprint types.  289 

 It is easy to understand why the performance of the algorithm became better when p value 290 

increased. As p value rises, the impact of the reference compounds that are structurally similar to 291 

the query compounds increases, meanwhile the impact of the reference compounds with low 292 

similarity reduces. As such, the weight of the similarity contribution will boost if the power of the 293 

similarity increases in the formula. It can be expected if the p value is higher than 4, the algorithm 294 



 14 

might continue improving the scoring function even in a more positive way. However, to balance 295 

the contributions from both the original docking scores and compound similarity effect, we let the 296 

maximal p value stop at 4.  297 

 Another interesting factor that can affect the performance of the algorithm is the type of 298 

fingerprints. The different underlying mechanisms of those fingerprints are likely to explain their 299 

different effects. Unlike FP3, FP4 and MACCS that are substructure-based fingerprints based on 300 

sets of SMARTS patterns, FP2 is a path-based fingerprint that indexes small molecules fragments 301 

based on linear segments of up to 7 atoms, which might elucidate why FP2 performed better in our 302 

algorithm [28]. As FP2 is more specific and can be used in any initial chemical searches, we 303 

assume the similarity calculation based on FP2 is able to amplify the weights of those structurally 304 

similar references to a greater extent and better offset the shortage of traditional scoring function. 305 

For example, the traditional docking score is always averagely high even for those ligands with 306 

relatively low binding affinity, leading to insufficient differentiation of docking results. On the 307 

other hand, the different performances of those three substructure-based fingerprints (FP3, FP4 308 

and MACCS), are likely caused by more complicated reasons. One probable reason is their 309 

different number of descriptors. For example, utilizing FP3 improved the scoring function very 310 

limitedly, which might be explained by its limited number of bits of 55 versus FP4 with 307 bits 311 

and MACCS with 166 bits stored in Open Babel [29].  312 

 The calibration performance using the best hybrid function is similar for the two docking 313 

scoring functions. As shown in Table 2, for the tested 11 receptors with related thousands of 314 

ligands, on average, MAE decreased from 2.05 (Glide) to 1.34, 1.74 (AutoDock Vina) to 1.15; 315 

RMSE decreased from 2.53 (Glide) to 1.69, 2.11 (AutoDock Vina) to 1.47; while R2 increased 316 

from 0.14 (Glide) to 0.44, and from 0.16 (AutoDock Vina) to 0.50; PI increased from 0.34 (Glide) 317 
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to 0.66, and from 0.39 (AutoDock Vina) to 0.71. In other words, the improvement for average 318 

values of mean MAE, RMSE, R2 and PI over 11 receptors are 0.71 kcal/mol, 0.84 kcal/mol, 0.30, 319 

and 0.32 respectively for the Glide docking scoring function, and the corresponding values are 320 

0.59 kcal/mol, 0.64 kcal/mol, 0.34 and 0.32 for the AutoDock Vina scoring function. Interestingly, 321 

the boost performance on scoring power (RMSE and MAE) is better for Glide docking scoring 322 

function, while the ranking power (R2 and PI) is better for AutoDock Vina. 323 

 On the other hand, the improvement of performance on screening power by using our 324 

calibration algorithm further validated our approach. As shown in Table 3, EF10% and EF40% of 325 

the docking results after the calibration are better than the results before the calibration for all the 326 

scenarios except for EF10% of VEGFR2, for which the value before the calibration is slightly better 327 

(2.18 vs 2.15). Considering the small sample size for rRNA receptor, it is reasonable to find 328 

significant larger enrichment factor values in the calculated metrics. After excluding the rRNA 329 

target, on average the mean EF10% and EF40% increased about 25% and 22% after the calibration 330 

of docking scores. Similarly, mean AUC of the docking results after the calibration is significantly 331 

improved for all the targets, as shown in Table 3 and illustrated in Fig. 4. Without considering the 332 

performance on rRNA target, on average the AUC improved approximately 20% for the docking 333 

results after the calibration. Of note that the measurement of screening power may be biased for 334 

some drug target due to the imbalance between the number of actives and inactives, such as the 335 

actives only account for about 12% of the total compounds in the test sets.   336 

 The impact from receptor categories on the calibration performance. As shown in Table 337 

2 and Figs. 2 and S1, the basic performance of docking score for all systems is different. Take the 338 

Glide docking scoring function as an example, for ERK2 drug target, the performance of original 339 

docking results is acceptable with a low mean MAE (1.20 kcal/mol) and RMSE (1.55 kcal/mol), 340 
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and a relatively high mean R2 (0.35) and PI (0.74). On the other hand, for some receptors such as 341 

MOR, the performance of the original docking results is not satisfying with a high mean MAE 342 

(3.28 kcal/mol) and RMSE (3.94 kcal/mol), and a low mean R2 (0.02) and PI (0.11). Therefore, in 343 

order to further compare the improved effect of the algorithm between different systems by 344 

excluding the impact from initial baselines of various systems, we quantitatively estimated the 345 

difference between the calibrated docking score and original docking score using parameters 346 

dRMSE, dMAE, dR2 and dPI which quantitively measure the difference of those measurements 347 

before and after the calibration (Table S4 and Fig. 3). It is observed that the extent of the 348 

improvement by using this algorithm varied from system to system, which indicates that although 349 

the developed algorithm can be adaptable for various receptors, its enhanced effect can still differ 350 

and depends on the receptor to some extent. The improvement on the scoring power and ranking 351 

power is more prominently for those systems with poor docking performance, such as D2R, MOR, 352 

5HT2AR, and CB1. After the calibration using the best hybrid scoring function, the PI increases 353 

by 356%, 273%, 174% and 220% for the four systems correspondingly (Table 2). After the 354 

calibration, not only the docking performance is enhanced, but also the standard deviations and 355 

the CIs of the metrics measuring the docking performance are decreased among different drug 356 

receptors.      357 

 Application of calibration in drug lead identification. In above, we discussed our hybrid 358 

scoring function can enhance screening performance for focused compound libraries in drug lead 359 

optimization. Next, we evaluated how well the best hybrid function (FP2 fingerprint and CSE=S4) 360 

performs for diverse compound libraries in drug lead identification using two studies. First, we 361 

created “diverse libraries” by imposing an upper limit of Tc as described in Methods section. When 362 

we calibrated the docking score of a query compound, we applied an upper limit of Tc value to 363 
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exclude reference compounds which are structurally similar to the query compound to participate 364 

calibration. Encouragingly, even applying relatively low upper bound Tc values, our best hybrid 365 

scoring function can still enhance the docking performance for all receptors as shown in Table 4, 366 

even though the extend of the enhancement becomes much smaller as expected. The average 367 

values of mean MAE and RMSE decreased by 14.1%, 14.7%, respectively; and R2 and PI 368 

increased by 26.7% and 17.1%, respectively, after the calibration. In a real situation, the 369 

enhancement may be significantly larger as demonstrated in the second study. 370 

 In the second study, we recalculated docking scores of the Glide scoring function for a set of 371 

external test compound libraries collected by DUDE-E database for two drug targets, A2AR and 372 

CFX. Unlike the first study, we did not impose an upper bound of Tc in selecting reference 373 

compounds to mimic the real situation in virtual screening studies, however, for the test compound 374 

libraries, we eliminated all the entries which were duplicated with reference compounds. The 375 

performance of the best hybrid docking scoring function is summarized in Tables S6-S7 and 376 

shown in Figs. S2-S3. The MAE and RMSE were respectively dropped from 1.44 to 1.05, and 377 

1.78 to 1.37 kcal/mol for A2AR; and the two scoring power metrics were decreased from 2.71 to 378 

1.66 and 3.25 to 2.13 kcal/mol for CFX.  Similarly, the ranking power metrics R2 and PI were also 379 

significantly increased for both systems. For A2AR, R2 changed from 0.05 to 0.19 and PI changed 380 

from 0.24 to 0.46 (a 92% increase); and for CFX, R2 changed from 0.02 to 0.16, and PI changed 381 

from 0.14 to 0.42 (a 200% increase). As for the screening power, the EF1% and EF10% respectively 382 

enhanced from 1.18 to 1.35 and from 1.12 to 1.32 for CFX, while these two metrics 383 

correspondingly increased from 0.98 to 1.06 and 1.13 to 1.28 for A2AR. Last, the AUC values 384 

were increased from 0.58 to 0.71 for CFX and from 0.61 to 0.71 for A2AR. 385 
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 Taken together, in the scenario of drug lead identification, our calibration algorithm can still 386 

significantly improve the docking performance measured by MAE and RMSE for scoring power, 387 

R2 and PI for the ranking power and EF and AUC for screening power. On the other hand, we 388 

pointed out that our method is based on docking results, hence the final performance on ranking 389 

compounds after our calibration algorithm may not meet the high standards of correctly ranking 390 

and prioritizing top compounds in the next stage of lead optimization, for which the more rigorous 391 

but much more expensive methods, such as alchemical free energy calculation using free energy 392 

perturbation [30] and thermodynamic integration [31, 32], are usually adopted. 393 

 394 

Conclusion 395 

 In summary, we developed a novel algorithm for quickly improving the scoring power and 396 

ranking power of a general scoring function used in a docking program by calibrating the docking 397 

score according to the structural similarities between the query compound and a set of reference 398 

compounds, whose experimental binding affinities have been measured. To evaluate the 399 

performance of the algorithm, we collected 11 receptors from different categories and estimated 400 

the enhanced effect of our algorithm on the Glide docking score by utilizing merit metrics of 401 

RMSE, MAE, R2, PI, EF and AUC. Fingerprint type and structural similarity effect function, the 402 

two factors which can significantly impact the performance of the calibration algorithm were 403 

systematically explored. The results showed that our algorithm could enhance the performance of 404 

the original docking scoring function in both the focused-library and diverse-library scenarios. We 405 

found that a combination of using FP2 fingerprint and a S4 CSE function can maximize the 406 

calibration performance for most systems. For the scenario of using the hybrid scoring function in 407 

drug lead optimization, the PI increased by 0.32 for both the Glide and AutoDock Vina scoring 408 
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functions; for the scenario of using the hybrid scoring function in drug lead identification, the PI 409 

values of docking screenings using external test sets increased by 0.22 and 0.28 for A2AR and 410 

CFX systems, respectively. Thus, we successfully developed an algorithm which integrates 411 

structure-based docking scores and ligand-based structural similarity scores into a hybrid scoring 412 

function and make a good use of known experimental values. With more and more measured 413 

binding affinity data collected by public databases like ChEMBL, our calibration algorithm could 414 

have more and more broad applications in structure-based drug design. Afterall, the significantly 415 

enhanced performance is achieved by a simple calibration algorithm whose computational cost is 416 

neglectable.     417 

 418 

Supplementary Information 419 

Supplementary Information. Table S1 lists the name, entry code, resolution, released date and 420 

deposition author for each receptor studied in this paper. Table S2 lists the Glide docking scores 421 

(Table S2A) and AutoDock Vina docking scores (Table S2B) as well as the experimental binding 422 

affinities of compounds in the reference and validation sets. Table S3 lists the RMSE, MAE, R2 423 

and PI values before and after calibration of the Glide docking scores under the conditions of 424 

different CSE function and fingerprint. Table S4 lists the difference of metrics for the 425 

measurement of docking performance before and after the calibration, i.e., dRMSE, dMAE, dR2 426 

and dPI for the Glide scoring function. Table S5 lists and Fig. S1 shows the RMSE, MAE, R2 and 427 

PI values before and after calibration of the AutoDock Vina docking scores under the conditions 428 

of different CSE functions and fingerprints. Table S6 shows RMSE, MAE, R2 and PI values before 429 

and after calibration of Glide docking scores for compounds in the external test sets from DUD-E 430 

database. Fig. S2 shows the comparison of RMSE, MAE, R2 and PI values before and after the 431 

calibration of the Glide docking scores for A2AR and CFX external test sets using the best hybrid 432 
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scoring function (FP2 fingerprint with CSE=S4). Table S7 displays AUC, EF1% and EF10% values 433 

before and after calibration of Glide docking scores for compounds in the external test sets from 434 

DUD-E database. Fig. S3 shows ROC curves before and after calibration of the Glide docking 435 

scores for A2AR and CFX external test sets. 436 
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FIGURES  535 

 536 

Fig. 1 The flowchart of the calibration algorithm. 537 

 538 

 539 

 540 

 541 
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 542 

Fig. 2 The comparison of RMSE, MAE, R2 and PI values before and after the calibration for 11 543 

drug receptors under the conditions of different fingerprint type and chemical similarity effect 544 

function. “orig” refers to original docking scores before the calibration. 545 
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  546 

Fig. 3 The changes of RMSE, MAE, R2 and PI values between the calibrated docking scores and 547 

the original docking scores using the Glide docking scoring function under the conditions of 548 

different fingerprint type and chemical similarity effect function, Sp, where p takes a value of 1, 2, 549 

3 or 4.  550 
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 551 
Fig. 4 The mean ROC curves of screening results before and after calibration of Glide docking 552 

scores using the best hybrid scoring function (FP2 fingerprint with CSE=S4) for 11 receptors. 553 

“cali” and “orig” represent the calibrated and original docking scores, respectively. 554 

 555 

 556 

 557 
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TABLES 558 

Table 1. The information data of compounds for 11 receptors.  559 

Receptor Total Compounds Activities (Ki/Kd) Reference set Validation set 

CFX 7084 4521 581 144 

D2R 9897 10473 635 161 

ERK2 19729 1767 690 171 

ER 6561 1452 191 51 

MOR 7939 5796 362 110 

VEGFR2 12497 1521 509 121 

5HT2AR 6524 5130 619 150 

A2AR 9015 7172 723 166 

CB1 8907 5544 529 117 

M1R 4858 2196 469 108 

rRNA 79 77 57 14 
 560 

 561 

 562 

 563 

 564 

 565 
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 567 

 568 

 569 

 570 

 571 

 572 

 573 
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Table 2. Mean RMSE (kcal/mol), MAE (kcal/mol), R2 and PI before and after calibration using 574 

the best hybrid scoring function (FP2 fingerprint with CSE=S4) for 11 receptors. “cali” and 575 

“orig” represent the calibrated and original docking scores, respectively.  576 

Receptor Glide AutoDock Vina 

MAE RMSE R2 PI MAE RMSE R2 PI 

cali orig cali orig cali orig cali orig cali orig cali orig cali orig cali orig 

CFX 1.50 2.10 1.89 2.60 0.52 0.18 0.72 0.41 1.40 1.96 1.76 2.35 0.50 0.12 0.72 0.33 

D2R 1.60 2.49 2.03 3.02 0.17 0.01 0.41 0.09 1.35 1.85 1.71 2.23 0.26 0.03 0.52 0.14 

ERK2 0.88 1.20 1.16 1.55 0.57 0.35 0.81 0.74 0.67 1.48 0.89 1.78 0.70 0.11 0.87 0.54 

ER 1.28 2.01 1.59 2.45 0.69 0.36 0.82 0.63 1.30 1.76 1.70 2.17 0.51 0.14 0.71 0.36 

MOR 1.87 3.28 2.33 3.94 0.18 0.02 0.41 0.11 1.42 1.73 1.78 2.10 0.38 0.10 0.64 0.31 

VEGFR2 1.71 1.80 2.08 2.33 0.39 0.25 0.64 0.51 1.02 1.43 1.32 1.80 0.67 0.42 0.83 0.66 

5HT2AR 1.28 2.38 1.61 2.88 0.39 0.05 0.63 0.23 1.27 1.59 1.62 1.98 0.32 0.11 0.58 0.36 

A2AR 1.32 1.88 1.74 2.32 0.46 0.08 0.68 0.29 1.30 1.89 1.70 2.33 0.44 0.03 0.67 0.14 

CB1 1.23 1.76 1.59 2.15 0.39 0.04 0.64 0.20 1.12 1.99 1.41 2.38 0.49 0.15 0.71 0.39 

M1R 1.36 1.83 1.72 2.27 0.49 0.14 0.72 0.33 1.18 1.62 1.48 1.99 0.58 0.31 0.77 0.54 

rRNA 0.70 1.86 0.85 2.35 0.58 0.08 0.74 0.19 0.63 1.88 0.80 2.10 0.70 0.26 0.78 0.48 

Average 1.34 2.05 1.69 2.53 0.44 0.14 0.66 0.34 1.15 1.74 1.47 2.11 0.50 0.16 0.71 0.39 

 577 
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Table 3. Mean AUC, EF10% and EF40% of screening results before and after calibration of Glide 591 

docking scores using the best hybrid scoring function (FP2 fingerprint with CSE=S4) for 11 592 

receptors. “cali” and “orig” represent the calibrated and original docking scores, respectively. The 593 

average numbers of compounds allocated in the active and inactive sets are shown in the table. 95% 594 

CI for each metrics is displayed in the parenthesis. 595 

Receptor EF10% EF40% AUC Actives Inactives 

cali orig cali orig cali orig 

CFX 2.24 (0.13) 1.85 (0.15) 1.72 (0.08) 1.46 (0.08) 0.85 (0.02) 0.72 (0.03) 84 (6) 62 (3) 

D2R 1.96 (0.31) 1.34 (0.15) 1.48 (0.14) 1.14 (0.12) 0.68 (0.05) 0.53 (0.05) 55 (4) 104 (6) 

ERK2 7.73 (0.43) 6.26 (0.41) 2.44 (0.07) 2.40 (0.09) 0.97 (0.02) 0.93 (0.02) 20 (2) 151 (7) 

ER 2.67 (0.25) 1.91 (0.42) 2.24 (0.09) 1.90 (0.16) 0.95 (0.01) 0.86 (0.03) 18 (3) 32 (4) 

MOR 1.52 (0.33) 1.19 (0.31) 1.36 (0.13) 1.13 (0.10) 0.72 (0.05) 0.59 (0.04) 45 (4) 51 (8) 

VEGFR2 2.15 (0.12) 2.18 (0.10) 1.75 (0.06)  1.64 (0.06) 0.86 (0.03) 0.79 (0.03) 59 (6) 70 (4) 

5HT2AR 1.81 (0.15) 1.20 (0.18) 1.54 (0.08) 1.13 (0.04) 0.81 (0.02) 0.58 (0.02) 77 (5) 85 (5) 

A2AR 2.45 (0.13) 1.66 (0.22) 1.87 (0.06) 1.37 (0.05) 0.86 (0.01) 0.66 (0.02) 67 (5) 109 (6) 

CB1 2.09 (0.15) 1.67 (0.21) 1.83 (0.08) 1.32 (0.12) 0.84 (0.02) 0.63 (0.03) 54 (4) 76 (4) 

M1R 2.39 (0.24)  2.33 (0.28) 1.90 (0.08) 1.33 (0.11) 0.87 (0.02) 0.67 (0.03) 42 (5) 73 (6) 

rRNA 11.50 (2.99) 0.00 2.59 (0.20) 2.59 (0.20) 1.00 0.86 (0.03) 1 13 (2) 
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 597 
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Table 4. Mean RMSE (kcal/mol), MAE (kcal/mol), R2 and PI before and after calibration of 599 

Glide docking scores for 11 receptors by giving similarity a range with lower and upper bound in 600 

diverse library. “Cali” and “Orig” represent the calibrated and original docking scores, 601 

respectively. 95% CI for each metrics is displayed in the parenthesis. 602 

Receptor Tc range MAE RMSE R2 PI 

Cali Orig Cali Orig Cali Orig Cali Orig 

CFX [0.30,0.45] 1.96 

(0.06) 

2.01 

(0.07) 

2.40 

(0.07) 

2.52 

(0.07) 

0.20 

(0.04) 

0.20 

(0.04)  

0.46 

(0.04) 

0.45 

(0.04) 

D2R [0.30,0.40] 1.92 

(0.05) 

2.47 

(0.05) 

2.41 

(0.07) 

3.01 

(0.06) 

0.01 

(0.01) 

0.01 

(0.01) 

0.10 

(0.04) 

0.09 

(0.04) 

ERK2 [0.30,0.40] 1.09 

(0.03) 

1.19 

(0.04) 

1.38 

(0.07)  

1.54 

(0.05) 

0.43 

(0.05) 

0.36 

(0.04) 

0.77 

(0.04) 

0.76 

(0.04) 

ER [0.20,0.35] 1.79 

(0.09) 

2.11 

(0.08) 

2.15 

(0.07) 

2.53 

(0.06) 

0.43 

(0.06) 

0.37 

(0.05) 

0.69 

(0.05) 

0.65 

(0.04) 

MOR [0.35,0.40] 2.19 

(0.10) 

3.11 

(0.15) 

2.70 

(0.10) 

3.77 

(0.17) 

0.07 

(0.02) 

0.03 

(0.02) 

0.23 

(0.06) 

0.14 

(0.07) 

VEGFR2 [0.25,0.40] 1.89 

(0.08) 

1.78 

(0.08) 

2.34 

(0.11) 

2.33 

(0.09) 

0.25 

(0.05) 

0.24 

(0.04) 

0.51 

(0.05) 

0.49 

(0.05) 

5HT2AR [0.30,0.45] 1.69 

(0.07) 

2.36 

(0.09) 

2.09 

(0.08) 

2.87 

(0.09) 

0.09 

(0.04) 

0.07 

(0.03) 

0.25 

(0.06) 

0.24 

(0.08) 

A2AR [0.35,0.40] 1.84 

(0.08) 

1.84 

(0.09) 

2.29 

(0.08) 

2.27 

(0.09) 

0.13 

(0.03) 

0.09 

(0.03) 

0.36 

(0.05) 

0.29 

(0.06) 

CB1 [0.25,0.40] 1.65 

(0.05) 

1.78 

(0.05) 

2.08 

(0.05) 

2.19 

(0.06) 

0.09 

(0.03) 

0.04 

(0.02) 

0.30 

(0.06) 

0.21 

(0.06) 

M1R [0.35,0.40] 1.80 

(0.10) 

1.83 

(0.07) 

2.20 

(0.12) 

2.25 

(0.08) 

0.24 

(0.04) 

0.13 

(0.03) 

0.47 

(0.04) 

0.32 

(0.04) 

rRNA [0.30,0.35] 1.64 

(0.11) 

1.78 

(0.23) 

1.93 

(0.11) 

2.24 

(0.25) 

0.14 

(0.06) 

0.11 

(0.06) 

0.41 

(0.10) 

0.22 

(0.18) 

Average 1.77 2.02 2.18 2.50 0.19 0.15 0.41 0.35 
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