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Abstract 

Structure-based virtual screenings (SBVSs) play an important role in drug discovery projects. 

However, it is still a challenge to accurately predict the binding affinity of an arbitrary molecule 

binds to a drug target and prioritize top ligands from a SBVS. In this study, we developed a novel 

method, using ligand-residue interaction profiles (IPs) to construct machine learning (ML)-based 

prediction models, to significantly improve the screening performance in SBVSs. Such a kind of 

the prediction model is called an IP scoring function (IP-SF). We systematically investigated how 

to improve the performance of IP-SFs from many perspectives, including the sampling methods 

before interaction energy calculation and different ML algorithms. Using six drug targets with 

each having hundreds of known ligands, we conducted a critical evaluation on the developed IP-

SFs. The IP-SFs employing a gradient boosting decision tree (GBDT) algorithm in conjunction 

with the MIN+GB simulation protocol achieved the best overall performance. Its scoring power, 

ranking power and screening power significantly outperformed the Glide SF. First, compared to 

Glide, the average values of mean absolute error and root mean square error of GBDT/MIN+GB 

decreased about 38% and 36%, respectively. Second, the mean values of squared correlation 

coefficient and predictive index increased about 225% and 73%, respectively. Third, more 

encouragingly, the average value of the areas under the curve of receiver operating characteristic 

(ROC) for six targets by GBDT, 0.87, is significantly better than that by Glide, which is only 0.71. 

Thus, we expected IP-SFs to have broad and promising applications in SBVSs. 
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Introduction 

In the past decades, computer-aided drug design (CADD) has proven to be a powerful technique 

to reduce the cost and accelerate the process in the development of drug candidates [1, 2]. As a 

crucial step in CADD, structure-based virtual screenings (SBVSs) play an important role in drug 

discovery projects. In a SBVS, a large library of compounds is screened by computational 

techniques like molecular docking for the recognition of potential bioactive ligands [3-5]. 

Necessarily, to assist the process of compounds screening in SBVSs, a wide variety of scoring 

functions (SFs) have been developed these years [6-26]. The SFs typically fulfill several different 

desirable tasks and hence are usually evaluated by the following four criteria [27]: (1) the docking 

power (the capability to detect near-native binding modes from computer-generated decoy poses), 

(2) the screening power (the capacity to distinguish active binders from inactive or decoy 

compounds), (3) the ranking power (the ability of ranking ligands of the same receptor correctly 

according to their binding affinities), and (4) the scoring power (the capability to achieve a high 

correlation between predicted and experimental binding affinities of different receptor-ligand 

complexes). The former three powers (docking, screening, and ranking) are inherently correlated 

to the scoring power. However, the predictive accuracy of SFs is still one of the most challenging 

problems remained in the field of computational chemistry [9, 28, 29]. Typically, classical scoring 

functions (CSFs) are classified into three categories: force field (FF)-based SF, knowledge-based 

SF and empirical SF [30]. FF-based SFs are described as a sum of non-bonded and bonded 

interactions energies computed from given FFs [14]. Since those FFs were mainly generated for 

the modeling of intermolecular energies, some terms such as entropy and desolvation energy are 

excluded in FF-based SFs [31]. Knowledge-based SFs use the 3D coordinates of a large set of 

protein-ligand complex structures as a knowledge base to characterize a complex based on some 
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features, which is usually the occurrence frequencies of atom-atom pairwise contacts [32, 33]. 

Empirical SFs can be considered to compute the protein-ligand binding through the sum of 

contribution terms [27]. They utilize similar function forms as FF-based SFs but contain additional 

ones such as solvent accessibility surface area (SASA). Another difference between empirical SFs 

and FF-based SFs is that for the former one, each energy term has its own weight, which can be 

derived by linearly fitting terms to measured binding affinities. A fact is that CSFs are developed 

based on some simplifications for the sake of efficiency, so it is difficult for them to completely 

account for certain processes of protein-ligand recognition, which further affect their ability of 

molecule ranking and selection [34]. The major limitations of CSFs include the lack of structural 

flexibility of target protein and effects of solvation [35]. In addition to those SFs, there are other 

more accurate computational methods based on the combination of molecular dynamics (MD) and 

free-energy sampling algorithms, such as rigorous alchemical free energy methods (TI, FEP, etc.) 

[36, 37] or end-point methods (MM-GBSA, MM-PBSA, LIE, etc.) [38, 39]. Without doubt, ones 

can obtain the prediction of binding affinity with more accuracy by using these approaches. 

However, considering the massive demands on computational resource and time, it is not practical 

to screen large libraries of compounds by utilizing those expensive techniques.  

Recently, an alternative methodology for the binding affinity prediction has gradually emerged 

and gained more and more attention. Unlike CSFs with predetermined functional form, non-

parametric machine learning (ML)-based SFs can learn feature information from training data and 

adjust the parameters to further improve the performance of prediction. Since ML-based SFs are 

able to capture binding interactions between ligands and target receptors that are hard to be 

modeled by CSFs, they are considered to generate more accurate prediction of binding affinity. In 

addition, recently, a wide variety of ML algorithms have been developed, such as support vector 
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machine (SVM) [40], gradient boosting decision tree (GBDT) [41], adaptive boosting (Adaboost) 

[42], random forest (RF) [43] and artificial neural network (ANN) [44, 45], etc. In the last few 

years, there have been a surge to apply ML techniques in building SFs and researchers have made 

their efforts to explore the predictive effects of a number of ML algorithms by using different 

feature representations [14-20]. One of the common features used to characterize the protein-

ligand complex in a ML-based SF is geometrical features. For example, Ballester and Mitchell 

presented a ML-based SF, RF-Score, with the application of RF to predict protein-ligand binding 

affinity. In their study, the relationship between the structure of complex and the binding affinity 

was characterized by the intermolecular interaction features, which comprise the number of 

occurrences of interacting atom pairs within a specific distance threshold. The features they used 

to characterize the structure of complexes included several binding and geometrical characteristics. 

Knowledge-based pairwise potentials, such as SVR-KB and SVM-SP SFs developed by Li et al, 

are also a kind of feature descriptor that is commonly used. Another important feature 

representation that is considered in the binding affinity prediction can be categorized as physico-

chemical descriptors. SVR-EP, SFCscoreRF and B2BScore SFs were all developed by using 

physico-chemical features like ligand molecular weight, van der Waals energy, hydrogen bonds, 

hydrophobic effects, etc. There are also a number of ML-based SFs which were developed based 

on more complex features from a variety of categories. For instance, Khamis and Gomaa proposed 

ML-based SFs that depend on a wide range of features, including geometrical features, energy 

terms and pharmacophore features [20].  

Traditionally, the feature sources used to characterize the protein-ligand interactions in ML-based 

SFs are energy terms from CSFs [18, 46, 47], basic structural features [14, 48] or structural 

interaction fingerprints [49]. However, as a key step in the development of the ML-based SFs, the 
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study of feature descriptors is still on the way and which feature representations can better improve 

the performance remains a burning question. Here, to improve the scoring power of CSFs, we 

proposed a novel ML-based SF, IPscore, by incorporating the interaction profile (IP) described by 

ligand-residue interaction energies as the feature descriptor to predict the protein-ligand binding 

affinity. To derive this unique feature, our computational protocol consists of molecular docking, 

geometry minimization and/or molecular dynamics relaxation, and molecular mechanics-

Generalized Born surface area (MM-GBSA) free energy decomposition. Previously, Li and Hou 

at al. have improved the performance of MIEC-SVM SF by utilizing similar molecular modeling 

technique to derive the feature representation [50]. But they only emphasized to improve the 

screening power of SF, i.e., the ability to discriminate active molecules from non-actives [51]. 

Besides, their good performance relied on different combinations of energy components under the 

framework of MM-GBSA. More importantly, in our work, we evaluated the performance of seven 

ML algorithms under different scenarios, which were created based on different processes of free 

energy calculation, including molecular mechanics (MM) minimization using either an implicit 

water model of Generalized Born (GB) [52] or an explicit water model of TIP3P [53] to account 

for the solvent effect, and the application of MD to relax the docking complex prior to the 

minimization or not. By this way, we identified the best structure processing condition before 

binding profile generation to maximize the performance of our IP-SFs measured by both the 

scoring power and the ranking power. The essential steps of developing IP-SF for a protein target 

were demonstrated in Figure 1. In the following sessions, the detail of the model establishment 

and the performance evaluation were described. 

Materials and Methods 

Dataset preparation 
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To train and test the developed ML-based SFs in our work, six drug receptors that come from two 

large protein categories, G protein-coupled receptors (GPCR) and kinases, were cherry-picked due 

to not only their importance in drug discovery, but also their large amounts of reported compound 

activities in the binding assays from the ChEMBL database (https://www.ebi.ac.uk/chembl/) [54, 

55]. Among the six drug targets, serotonin 2A receptor (5HT2AR), adenosine A2A receptor 

(A2AR), cannabinoid receptor 1 (CB1), and muscarinic acetylcholine M1 receptor (M1R) belong 

to GPCRs, while extracellular signal-regulated kinase 2 (ERK2) and vascular endothelial growth 

factor receptor 2 (VEGFR2), are members of kinases. The X-ray crystal structures of all targets 

and their co-crystallized ligands were obtained from Protein Data Bank (https://www.rcsb.org/) 

[56, 57]. The crystal structures selected to participate in ligand-residue IP calculations meet the 

following conditions, listed in descending order of their importance: (1) the structure is for a 

protein that belongs to human (Homo sapiens); (2) the structure is in complex with a co-

crystallized modulator; (3) the structure has no missing segments; and (4) the X-ray diffraction 

resolution of the structure is low. The detail information and structures of receptors were listed in 

Table S1 and shown in Figure S1. 

For each drug target, up to 1200 compounds whose inhibition constants (Ki) collected by ChEMBL 

were randomly selected. To ensure the distribution of Ki values was not altered during the random 

selection, we grouped each compound into four activity categories: potent (Ki < 10 nM), less potent 

(10 nM ≤ Ki < 1 M), weak (1 µM ≤ Ki < 100 µM) and very weak (100 µM ≤ Ki < 1 M). For each 

category, up to 300 compounds were randomly selected by using numpy.random.choice built in 

Python 3.7 program [58]. If the number of compounds in a category is less than 300, then all 

compounds in that category are collected. For the collected compounds with two or more Ki 

activities from different binding assays, the averaged Ki values were adopted. To evaluate the 

https://www.ebi.ac.uk/chembl/
https://www.rcsb.org/
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screening power of IP-SF, we manually classified the selected compounds into the active set and 

decoy set by the cutoff of Ki = 100 nM, which is lower than normal threshold (10 µM), in order to 

better balance the numbers of compounds in the active and decoy sets. The selected compounds 

were then randomly allocated into the training set and test set with the ratio of 4:1. The number of 

compounds in the active and decoy sets as well as the training and test sets were listed in Table 1. 

Molecular docking 

Selected compounds were docked to their receptors using the Glide [59, 60] docking program built 

in the Schrodinger software (Maestro 11.2). Before docking, each protein target was first treated 

utilizing the Protein Structure Preparation Wizard module following the standard procedures, i.e., 

removing water and co-crystal solvent, filling in missing hydrogen atoms, etc. It is noted that only 

the added hydrogen was movable during the geometry optimized using the OPLS force field. Next, 

a grid file was generated for the drug target using the cocrystal ligand to define the center of the 

binding pocket, and no rotatable or constraint group was defined. We applied the default option to 

define the enclosing box size and the generated grid file is suitable to dock ligands that have similar 

sizes as that of the cocrystal ligand. Last, Glide flexible docking using the Glide SP scoring 

function was performed with the following settings: the partial charge cutoff for ligands was 0.15, 

van der Waal radius scaling factor was 0.80 and the formation of intramolecular hydrogen bonds 

was rewarded. For each ligand, the top docking pose that has the best docking score was subjected 

to minimizations and/or MD simulations, and subsequent ligand-residue interaction profile 

calculation as detailed below. 

System setup for MM calculations   
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Before MM minimization and MD simulations, AM1-BCC charges [61, 62] were computed for 

all ligands by the SQM and Antechamber modules in AMBER 18 [63]. The reason we chose AM1-

BCC instead of RESP charge method [64] was to reduce the computational cost. Other force field 

parameters for ligands came from GAFF [65], while the AMBER FF14SB [66] force field was 

assigned for the proteins. The residue topology of a ligand was generated by utilizing the 

Antechamber module [67] in the AMBER software package [68, 69]. For 5HT2A receptor, a Zn2+ 

complex was formed with two HIS and two GLU residues. We developed FF14SB/GAFF-

compatible force field parameters for the Zn2+ complex and the details was provided in the 

supporting information.     

MM minimization and MD simulations were performed using either an explicit water model or an 

implicit water model to account for solvent effect. For the formal, the protein complex was first 

immersed in a rectangle TIP3P water box with the shortest distance between any atom of the 

complex and box borders is at least 14 Å; then a certain number of Cl- and Na+ were added to the 

solvent box so that their concentration is about 0.15 M and the whole system was neutralized. The 

detailed computation protocol of adding ions was provided in the supporting information. Particle 

mesh Ewald (PME) was used to treat the long-range electrostatic interactions [70] and the 

nonbonded interaction cutoff was set to be 10 Å to handle the real-space interactions. For the latter, 

the "standard" pairwise generalized Born model by Hawkins, Cramer, and Truhlar [71] was 

employed. No count ions were added to neutralize the MD system. 

MM minimization and MD simulation 

We have two strategies to prepare the complex structures before the binding profile calculations.  

First, a complex was relaxed and optimized only through a set of minimization procedures. We 

constrained the main chain atoms of the receptor and the bound ligand by using a harmonic 
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potential. The harmonic potential force constant was reduced from 10 to 5, 2, 1 and 0 (kcal/mol)/Å2 

for the receptor, while it was decreased from 100 to 50, 20, 10 and 0 (kcal/mol)/Å2 for the ligand, 

progressively in five 1000-step minimizations. Second, after the 5000-step minimizations, the 

system was further relaxed by a set of 10,000-step MD simulations with the restraint settings the 

same as those for minimizations. All MD simulations were performed at 298 K and 1 atm with a 

time step of 2 femtoseconds. Finally, the whole system was relaxed without any restraint for 1000 

steps. All minimization and MD simulations were conducted using the PMEMD module in the 

AMBER 18 [72, 73].  

In summary, we consider four computational protocols for processing a complex structure before 

the interaction profile generation: (a) MIN+GB (minimization only, using the GB model to account 

for solvent effect); (b) MIN+TIP3P (minimization only, using explicit the TIP3P water model); (c) 

MD+GB (minimization plus MD simulation, using the GB model); and (d) MD+TIP3P 

(minimization plus MD simulation, using the explicit TIP3P water model).        

MM-GBSA residue-ligand free energy decomposition 

For the two minimization protocols, the optimized complex at the end of a series of stepwise 

minimizations was employed for the residue-ligand binding free energy decomposition analysis. 

However, for the two MD protocols, we added an extra step to fully minimize the last MD snapshot, 

so that a high-quality conformation was used for the interaction profile calculation.  We calculated 

the MM-GBSA residue-ligand interaction energies using an internal program which analyzes the 

outputs of Sander and conduct statistics on each component of MM-GBSA free energy. The 

interior and exterior dielectric constants were set to 1.0 and 80, respectively. For each system, if a 

residue has its interaction energy with any ligand is lower than -0.1 kcal/mol, the residue is 

recognized as a key residue for charactering the binding profile. The MM-GBSA interaction 
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energies between all key residues and a ligand constitutes the binding profile of this ligand. The 

numbers of key residues using different structure processing protocols were listed in Table 2. The 

and the corresponding interaction profiles of each drug receptor are shown in Figures S2-S6.  For 

the sake of convenience, we adopted the new residue IDs generated by AMBER to label those key 

residues, and the correspondence between the new and the original residue IDs in the PDB files 

was presented in Table S2.   

ML algorithms 

Seven popular ML algorithms were applied and compared in this study. They are ordinary least 

squares (LS) regression [74], Bayesian regression [75], support vector regression (SVR) [76], RF 

[43], Adaboost [42], GBDT [41] and the neural network model, multi-layer perceptron (MLP) [77]. 

ML regression models were constructed utilizing the Scikit-learn [78] package implemented in the 

Python program, except for MLP which was performed using the Keras [79] module in Python. 

The feature matrix consisted of MM-GBSA interaction energies between ligands and key residues 

(< -0.1 kcal/mol) served as the input data for each ML algorithm. No extra processing was taken 

to the data as all input data was extracted following the same protocol and was at the same scale. 

The inputs, i.e., feature matrixes or IPs for training ML models were provided in the supplemental 

material (Tables S3-S6). The description of ML algorithms and their corresponding 

hyperparameters are displayed in Table S7. An example code for the training process is shown in 

Figure S6 

Additionally, the performance of deep neural network (DNN) [80], an effective and advanced 

technique evolved from ANN was also studied. However, considering it is more time-consuming 

to construct DNN model and it requires a large amount of data to avoid the overfitting issue, we 

only used it in the construction of SF models for the MIN+GB structure processing protocol. DNN 
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models were constructed using the Keras sequential model [79] in Python. For each target, 20 % 

of the training data was randomly selected to form a validation set. For each epoch, the 

performance of the model on the validation set was evaluated. The loss function during the learning 

process was mean squared error (MSE). Mean absolute error (MAE) was also calculated as a 

metric of performance during the training processes. The losses and MAE changes during 

processes are shown in Figures S7 and S8. The architectures of the DNN models for each system 

were described in Table S8. 

Performance metrics 

To evaluate the scoring and ranking power of IP-SFs, four metrics were adopted, i.e. root mean 

square error (RMSE), MAE, squared correlation coefficient (CORR2) and predictive index (PI) 

[81-83], to estimate the difference between predictive and experimental binding affinity of 

compounds in testing sets for each target. RMSE and MAE are measure of scoring power, while 

CORR2 and PI are measure of ranking power. The performance of Glide docking score was taken 

as the standard to evaluate whether the developed IP-SFs can improve the docking performance. 

Lower RMSE and MAE, and higher CORR2 and PI indicate better predictive performance.  

As for the assessment of screening power, we used the area under the curve (AUC) of receiver 

operating characteristic (ROC) curve, Accuracy, F1-score and enrichment factor (EF) at 10% 

(EF10%) and 40% levels (EF40%) [84] as the performance metrics. All of these three metrics range 

from 0 to 1, with 0 indicating the worst and 1 indicating the best scenarios. However, for ROC, a 

random model theoretically has an AUC value of 0.5 and a good classifier typically has AUC value 

of 0.8 or larger. EF is one of the commonly used metrics in virtual screening studies. It is defined 

as the proportion of the true active binders in the sampled subset relative to the proportion of true 
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active binders in the total dataset [85, 86]. Similar to the evaluation of scoring and ranking power, 

we adopted the performance of Glide SF as the reference.  

Results and Discussion 

With the combination of different solvent models (implicit GB or explicit TIP3P) and structure 

optimization approaches (minimization only or minimization plus MD), in total four structure 

processing protocols were investigated. For each protocol, all developed ML-based SFs were first 

trained on the training sets and then tested on the testing sets. The performance of Glide docking 

score was utilized as the reference. The docking performance of newly developed ML-based SFs 

by different ML algorithms under four scenarios were compared and discussed below. 

Comparison of performance of ML-based scoring functions on different targets 

The performance of several ML-based SFs versus CSF (Glide docking) was presented by the radar 

chart (Figure 2) and Table S9. Their scoring power was evaluated by RMSE, MAE, and ranking 

power by CORR2 and PI. Generally, the ranking power of Glide SP scoring function was poor and 

it varies from target to target, e.g., CORR2 is only 0.05 for CB1 receptor. Even ERK has the best 

CORR2 value, 0.27, its ranking power is still not satisfactory. Our IPscore significantly improved 

the ranking power in most cases, regardless of different ML methods and structure processing 

protocols. As shown in Table S9, there are 28 PI-SFs constructed for one drug target, so totally 

there were 168 PI-SFs built in the study. Among all of 168 constructed models, only 18 models 

have at least one metric worse than the Glide SF, and most of them were constructed using LS and 

Bayesian algorithms. As far as the drug target is concerned, CB1 receptor and M1R have 7 and 9 

less-satisfactory models. For all the drug targets, most PI-SFs outperformed the Glide SF in terms 

of scoring and ranking power. The performance of best models for each metric and drug target is 
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summarized in Table 3. The mean values calculated from the best models for the six drug targets 

are 1.11 kcal/mol, 1.40 kcal/mol, 0.53 and 0.72, for MAE, RMSE, CORR2 and PI, respectively. 

Compared to Glide SP docking SF, the MAE and RMSE dropped about 40% and 38%, respectively, 

while CORR2 and PI increased about 231% and 76%, respectively. Of note, this excellent 

performance was achieved using different machine learning methods with different structure 

processing protocols. In the next section, we will identify the best ML method and computational 

protocol which produce the best overall performance. 

Interestingly, the performance of our developed models varied on different targets. Taking the 

performance of GBDT models for the six targets as an example, the CORR2 values using GBDT 

models varied from 0.29 to 0.74 according to Table 3. Such a difference in performance of GBDT 

for different targets may be caused by the quality of Glide docking poses varied from a system to 

another. For example, the CORR2 for 5HT2AR using Glide SF is 0.06, whereas it is much higher 

(0.27) for ERK2. In our approach, traditional docking SF is utilized as the initial step, followed by 

a series of molecular modeling and ML/DL methods. Because the best docking pose for each 

compound was selected as the starting structure for the following MM minimizations or MD 

simulations, the performance of GBDT models can be affected by the initial results of docking 

method. However, as we emphasized previously, the essential performance of our models was 

significantly superior to Glide SF on all tested protein targets. It is pointed out that the differences 

in the GBDT performance may also be caused by other various reasons, such as the quality of 

bioassays, the quality of crystal structures used for study, and the range of measured activities of 

the ligands. 

Impacts of ML algorithms on performance 
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To compare the performance of different ML methods, we ranked them according to four metrics. 

Figure 3 shows the ranking results of seven ML approaches for all receptors with four structure 

preparation protocols. With the scoring power changing from best to worst, the color of grid turned 

from red to green. An overview from Figure 3 indicates that the GBDT model contains most red 

grids, illustrating its best predictive performance among all ML algorithms. Other than GBDT, 

most red grids concentrated at RF, AdaBoost and MLP, demonstrating their relatively better 

performance than the rest of ML methods. Meanwhile, LS and Bayesian have most green grids, 

indicating IP-SFs constructed using linear regression algorithms perform poorly. These results 

suggested that the relationship between ligand-residue interaction energies and binding affinity is 

not simple additive, as such machine learning algorithms which can bring nonlinearity to the input 

data can generate better predictive models.  

Based on the ranking results, we created a frequency distribution histogram for each structure 

processing protocol. The rank of a ML algorithm, which varies from 1 to 7, represents the ML 

algorithm’s ranking measured by a specific metric for a specific drug target. In total, there are 24 

ranks for each ML algorithm as there are six drug targets and four measuring metrics. The 

distribution of the ranks of all ML algorithms are demonstrated in Figure 4. The histograms were 

colored according to the following rule: the smaller the rank, the darker the color it is. Thus, 

according to Figure 4, the SF that was built based on GBDT obtained the best predictive 

performance among all ML algorithms as it has the darkest columns no matter what structure 

processing protocol was applied.  

Impacts of simulation protocols on performance 

Four different structure processing protocols were tested to generate ideal complex structures prior 

MM-GBSA binding free energy decomposition analysis. To better explore the influence of 
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different structure processing protocols on model performance, we evaluated the performance of 

IP-SFs generated by using GBDT, the ML algorithm that was found to have the best overall 

performance. Then we compared the performance of four protocols, MD+GB, MD+TIP3P, 

MIN+GB, MIN+TIP3P by using the average performance of six targets. See Figure 5. Overall, 

there was no dramatic difference observed among those four protocols. Interestingly, we found 

that the performance of MIN+GB and MIN+TIP3P were slightly better than that of MD+GB and 

MD+TIP3P, suggesting that the additional structural relaxation using MD simulations may not be 

necessary. However, it is pointed out that for some drug targets, especially those do not have high 

resolution structures, additional structural relaxation using MD simulations may still be needed. 

As to the two types of water models, there was no big difference in the performance of IP-SFs 

between MIN+GB and MIN+TIP3P either. As shown in Figure 5, MIN+GB outperformed 

MIN+TIP3P slightly on the metrics of CORR2 and PI, while MIN+TIP3P has slightly better 

performance on MAE and RMSE.  

Besides the performance, the computational efficiency of the four structure processing protocols 

is also a key criterion to be considered in practice. For docking scoring function, we conducted 

Glide docking in this study using Central Processing Unit (CPU). For MM minimization and MD 

simulation processes, to balance the calculated accuracy and timing, we used GTX 1080 Graphical 

Processing Unit (GPU) to accelerate the calculation procedure. In recent years, GPU MD is 

routinely conducted in both academia and industry. Considering the two minimization protocols 

perform better than the ones utilizing MD simulations, here we only compared the timings of the 

MIN+GB and MIN+TIP3P protocols. For instance, the average CPU time for docking each 

compound to the CB1 target with Glide is 11.1 s. The average GPU time for MM minimization 

for each compound in CB1 is 11.9 s with GB implicit water model, and 33.8 s with TIP3P explicit 
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water model. The average time cost by using GB model is less than using more complexed TIP3P 

water model, and more similar to Glide docking. Similarly, as to the ERK2 target, the average time 

for each ligand is 8.5 s for Glide docking, but 15.3 s and 61.6 s for minimizations with GB implicit 

water and TIP3P explicit water, respectively. Overall, the wall time of running Glide docking and 

MIN+GB are comparable, suggesting the IP-SF calculation using the MIN+GB protocol is very 

efficient.   

 Taken together, we concluded that the simplest structure processing protocol, MIN+GB has not 

only the best overall performance but also the best computational efficiency. Hence it should be 

first applied to generate ligand-residue interactions profiles for most drug targets. Therefore, the 

ideal combination of ML-based IP-SF and structure processing protocol, GBDT in conjunction 

with MIN+GB, was identified. Compared to Glide SF, averagely the MAE decreased around 38% 

and 36%, while CORR2 and PI can increase about 225% and 73%.  

Assessment the performance of IP-SFs constructed by using deep learning   

Deep learning is a part of a big family of ML techniques. DNN evolves from the traditional ANN, 

where multiple layers are involved in the construction of models to extract higher level of features 

hidden in the input data [87]. Recently, DNN has gained considerable attention from computer-

aided drug design community and has been widely applied in a variety of fields, such as drug 

repurposing [88, 89], structure prediction [90], etc. It is of interest to evaluate the performance of 

IP-SFs constructed using DNN. We only assessed and compared the performance of DNN-based 

IP-SFs following the MIN+GB structure processing protocol due to relatively large computational 

cost. As shown in Table 3 and Figure 6, the docking performance of DNN-based IP-SFs is 

superior to Glide docking SF, but inferior to GBDT-based IP-SFs. This result although 
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disappointing, is understandable. The interaction profile data used to train predictive models is 

quite small and DNN usually performs better with big data.  

Screening power of the best-performed IP-SF in SBVSs 

Besides ranking power, another widely used metric for evaluating virtual screening performance 

is the screening power, which measures the ability of a SF to recognize active ligands as hits. As 

we have identified GBDT with MIN+GB has the best overall performance on scoring power and 

ranking power, the screening power evaluation was only conducted for this IP-SF. Several 

commonly-used metrics, including AUC of ROC curves, Accuracy, F1-score and EF, were applied 

to compare the screening power of GBDT and Glide SF. For EF, we calculated the EF10% and 

EF40%, for screenings which enriched 10% and 40% of the total compounds, respectively. It is 

obvious that GBDT achieved better performance than Glide SF as measured by all the metrics as 

listed in Table 4. Particularly, the mean AUC of ROCs, 0.87, is significantly better than that of 

Glide SF, which is only 0.71. On average the AUC of IP-SF for six targets improved approximately 

22.5% in comparison with the AUC of Glide docking, however, if we excluded ERK2 target for 

which the difference between two SFs is minimal due to the imbalance between the numbers of 

actives (758) and inactives (92), the improvement of AUC value increased to 31%. The ROC plots 

were illustrated in Figure 7. It is worth to pointing out that the inactives defined in this study are 

those having measured activities larger than 0.1 M. We used a relatively low threshold to achieve 

a good balance between the numbers of actives and inactives. If we introduced real decoys, the 

screening power measured by the above metrics, especially EF and AUC, could be much better.      



20 
 

Conclusion 

To improve the screening performance of traditional SFs, we applied a novel approach to construct 

ML-based SFs using residue-ligand interaction energies as input. The construction process and 

evaluation of IP-SFs were presented. The interaction profile of a ligand binding to a receptor was 

calculated after a set of structure preparation processes including molecular docking, molecular 

mechanics minimization and/or molecular dynamics simulation to relax and optimize the complex, 

and MM-GBSA free energy decomposition. Key residues were identified for each drug target by 

analyzing the interaction profiles of its ligands. Predictive models were then constructed using a 

variety of machine learning methods. Several evaluation tests on six protein targets were 

conducted to assess the IP-SPs. 150 out of 168 IP-SPs outperformed the original Glide docking SF 

measured by all four metrics, and only 18 IP-SPs models constructed using LS, Bayesian and SVR 

performed less ideal with the value of at least one measuring metric worse than that of Glide SF, 

nevertheless, the overall performance of those 18 IP-SPs may still be better than Glide SF. We 

have also identified an ideal combination of ML-based IP-SF and structure processing protocol, 

i.e., GBDT with MIN+GB, which achieved the best overall performance for all the six drug targets.  

Compared to Glide SF, on average the MAE and RMSE decreased about 38% and 36%, 

respectively; while CORR2 and PI increased about 225% and 73%. As to AUC, the mean value 

increased from 0.71 for Glide SF to 0.87 for the best IP-SF. Therefore, for a given drug target, we 

recommend to first construct predictive model using the GBDT method after the docking 

complexes are minimized using the implicit GB model. In conclusion, we have successfully 

developed a novel method to construct the predictive model with high scoring, ranking and 

screening power using ligand-residue interaction profiles by machine learning methods. We expect 

this approach to have broad and promising applications in SBVSs. 
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Key Points 

• To improve the performance of traditional scoring functions (SFs), we developed a novel 

approach by incorporating ligand-residue interaction profile (IP) into machine learning (ML) 

algorithms to construct SFs. A SF developed using IP is therefore called an IP-SF. 

• Several evaluation tests were conducted to assess the IP-SPs for six protein targets, and the 

newly developed SFs significantly outperformed Glide SF in terms of scoring power, ranking 

power and screening power. 

• An ideal computational protocol of preparing protein-ligand structures for IP calculations was 

developed. The performance of the IP-SF generated by employing GBDT algorithm in 

conjunction with the MIN+GB simulation protocol achieved the best overall performance for 

six drug targets.   

• Besides high scoring, ranking and screening powers, the calculating cost of the IP-SF is 

minimal compared to more rigorous methods including the end-point MM-PBSA and the path-

based methods like free energy perturbation and thermodynamic integration. Thus, the 

developed IP-SFs are expected to have broad and promising applications in SBVSs. 

Supplementary Data 

The descriptions about targets and compounds, feature representations, the processes of model 

construction and values of performance metrics for each model were listed in the supplementary 

data. Table S1 describes entry codes, resolutions, released dates and deposition authors for six 

receptors. Table S2 shows the correspondence between the AMBER-generated and the original 

residue IDs in PDB for six receptors. Tables S3-S6 show the input feature representations for each 

target using four simulation protocols. Table S7 is the description and hyperparameters of ML 

algorithms. Table S8 shows the architectures of the DNN models for each system using MIN+GB 
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protocol. Table S9 lists RMSE, MAE, CORR2 and PI values for IP-SFs versus Glide SF for each 

target using different ML algorithms and simulation protocols. Table S10 lists the residue 

topology and force field parameters for the Zn2+ complex in 5HT2A receptor. Figure S1 shows 

the structures and binding sites of six targets. Figures S2-S5 show the distribution of key residues 

in six targets using four simulation protocols. Figure S6 demonstrates an example code of ML 

training process for 5HT2AR target using MD+GB protocol. Figures S7-S8 display the losses and 

MAE changes for each system during processes. 
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Tables 
Table 1. The number of actives and decoys and number of compounds in the training and test 

sets. 

Receptor Actives Decoys GB  TIP3P 

Training Test Training Test 

5HT2AR 377 395 617 155 570 143 

A2AR 342 547 711 178 700 176 

CB1 265 383 518 130 501 126 

M1R 217 364 464 117 438 110 

ERK2 758 92 680 170 664 167 

VEGFR2 287 343 504 126 500 126 

 

Table 2. Numbers of Key Residues Participating Modeling with Machine Learning Methods    

Receptor Total 

Residues 

No. of Key Residues 

MD + 

GB 

MD + 

TIP3P 

MIN + 

GB 

MIN + 

TIP3P 

5HT2AR 370 90 92 90 91 

A2AR 448 84 84 84 83 

CB1 281 86 90 90 93 

M1R 451 80 83 81 83 

ERK2 337 82 83 83 87 

VEGFR2 299 85 86 88 92 

 

Table 3. The performance of IP-SFs in docking screenings. Each drug target has 28 IP-SFs models 

constructed using 7 different machine learning algorithms with four structure processing protocols. 

“Best” represents the best value achieved by 28 IP-SFs for a specific metric and a given drug target; 

“GBDT” and “DNN” represent the IP-SFs constructed using GBDT and DNN methods in 

conjunction with the MIN+GB structure processing protocol.      
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Metrics/Receptor 5HT2AR A2AR CB1 M1R ERK2 VEGFR2 Average 
MAE 

(kcal/mol) 
Glide 2.57 1.83 1.77 1.52 1.24 2.11 1.84 

Best 1.35 1.37 1.13 1.30 0.49 1.00 1.11 

GBDT 1.35 1.37 1.24 1.34 0.54 1.00 1.14 

DNN 1.58 1.55 1.59 1.53 0.77 1.21 1.37 
RMSE 

(kcal/mol) 
Glide 3.01 2.25 2.17 1.95 1.61 2.65 2.27 

Best 1.68 1.70 1.41 1.63 0.73 1.26 1.40 

GBDT 1.75 1.70 1.53 1.65 0.81 1.26 1.45 

DNN 1.99 1.88 1.91 1.91 1.03 1.51 1.71 
CORR2 Glide 0.06 0.10 0.05 0.26 0.27 0.22 0.16 

Best 0.29 0.36 0.44 0.55 0.81 0.72 0.53 

GBDT 0.29 0.36 0.44 0.54 0.74 0.72 0.52 

DNN 0.12 0.27 0.14 0.42 0.60 0.58 0.36 
PI Glide 0.22 0.32 0.26 0.45 0.69 0.50 0.41 

Best 0.55 0.64 0.65 0.75 0.88 0.86 0.72 

GBDT 0.55 0.58 0.65 0.74 0.85 0.86 0.71 

DNN 0.33 0.52 0.33 0.66 0.78 0.77 0.57 

 

Table 4. Comparison of AUC, Accuracy, F1-score, EF10% and EF40% between Glide docking and 

IP-SF with the ideal combination of ML method and simulation protocol (GBDT with MIN+GB) 

on six targets.  

Metrics/Receptor 5HT2AR A2AR CB1 M1R ERK2 VEGFR2 

Glide AUC 0.60 0.68 0.55 0.68 0.97 0.76 

Accuracy 0.51 0.65 0.50 0.61 0.90 0.68 

F1-score 0.53 0.60 0.44 0.53 0.65 0.69 

EF10% 1.27 1.70 1.20 2.72 7.22 1.91 

EF40% 1.10 1.54 1.15 1.45 2.50 1.41 

GBDT AUC 0.81 0.79 0.86 0.86 0.98 0.94 

Accuracy 0.72 0.72 0.78 0.77 0.93 0.84 

F1-score 0.73 0.68 0.74 0.70 0.74 0.85 

EF10% 1.85 2.54 2.60 2.72 9.44 1.91 

EF40% 1.85 2.51 2.50 2.49 2.50 1.91 
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Figures 

 

 

Figure 1. The workflow of the IP-SFs model construction and model evaluation. 
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Figure 2. The performance of ML-based SFs versus Glide docking based on different simulation 

protocols. (A) 5HT2AR; (B) A2AR; (C) CB1; (D) M1R; (E) ERK2; (F) VEGFR2; 1-Glide; 2-

LS; 3-Bayesian; 4-SVR; 5-RF; 6-AdaBoost; 7-GBDT; 8-MLP.  
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Figure 3. Ranks of seven ML approaches for all receptors with four simulation protocols: (A) 

MD+GB, (B) MD+TIP3P, (C) MN+GB, (D) MIN+GB. 
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Figure 4. The frequency distribution histogram on ranks for all ML algorithms for all drug 

targets. (A) MD+GB, (B) MD+TIP3P, (C) MN+GB, (D) MIN+GB. 

 

 

 

 

 

 

 



38 
 

 

Figure 5. The comparison of the scoring power of GBDT-based SFs following four simulation 

protocols, MD+GB, MD+TIP3P, MIN+GB, MIN+TIP3P by using the average performance of 

six targets. 
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Figure 6. The comparison of performance of SFs by using Glide docking, DNN, and GBDT 

methods. 
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Figure 7. ROC curves of using Glide docking and GBDT method in conjunction with the 

MIN+GB structure processing protocol on six targets.      

 

 


