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Abstract

Structure-based virtual screenings (SBVSs) play an important role in drug discovery projects.
However, it is still a challenge to accurately predict the binding affinity of an arbitrary molecule
binds to a drug target and prioritize top ligands from a SBVS. In this study, we developed a novel
method, using ligand-residue interaction profiles (IPs) to construct machine learning (ML)-based
prediction models, to significantly improve the screening performance in SBVSs. Such a kind of
the prediction model is called an IP scoring function (IP-SF). We systematically investigated how
to improve the performance of IP-SFs from many perspectives, including the sampling methods
before interaction energy calculation and different ML algorithms. Using six drug targets with
each having hundreds of known ligands, we conducted a critical evaluation on the developed IP-
SFs. The IP-SFs employing a gradient boosting decision tree (GBDT) algorithm in conjunction
with the MIN+GB simulation protocol achieved the best overall performance. Its scoring power,
ranking power and screening power significantly outperformed the Glide SF. First, compared to
Glide, the average values of mean absolute error and root mean square error of GBDT/MIN+GB
decreased about 38% and 36%, respectively. Second, the mean values of squared correlation
coefficient and predictive index increased about 225% and 73%, respectively. Third, more
encouragingly, the average value of the areas under the curve of receiver operating characteristic
(ROC) for six targets by GBDT, 0.87, is significantly better than that by Glide, which is only 0.71.

Thus, we expected IP-SFs to have broad and promising applications in SBVSs.
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Introduction

In the past decades, computer-aided drug design (CADD) has proven to be a powerful technique
to reduce the cost and accelerate the process in the development of drug candidates [1, 2]. As a
crucial step in CADD, structure-based virtual screenings (SBVSs) play an important role in drug
discovery projects. In a SBVS, a large library of compounds is screened by computational
techniques like molecular docking for the recognition of potential bioactive ligands [3-5].
Necessarily, to assist the process of compounds screening in SBVSs, a wide variety of scoring
functions (SFs) have been developed these years [6-26]. The SFs typically fulfill several different
desirable tasks and hence are usually evaluated by the following four criteria [27]: (1) the docking
power (the capability to detect near-native binding modes from computer-generated decoy poses),
(2) the screening power (the capacity to distinguish active binders from inactive or decoy
compounds), (3) the ranking power (the ability of ranking ligands of the same receptor correctly
according to their binding affinities), and (4) the scoring power (the capability to achieve a high
correlation between predicted and experimental binding affinities of different receptor-ligand
complexes). The former three powers (docking, screening, and ranking) are inherently correlated
to the scoring power. However, the predictive accuracy of SFs is still one of the most challenging
problems remained in the field of computational chemistry [9, 28, 29]. Typically, classical scoring
functions (CSFs) are classified into three categories: force field (FF)-based SF, knowledge-based
SF and empirical SF [30]. FF-based SFs are described as a sum of non-bonded and bonded
interactions energies computed from given FFs [14]. Since those FFs were mainly generated for
the modeling of intermolecular energies, some terms such as entropy and desolvation energy are
excluded in FF-based SFs [31]. Knowledge-based SFs use the 3D coordinates of a large set of

protein-ligand complex structures as a knowledge base to characterize a complex based on some



features, which is usually the occurrence frequencies of atom-atom pairwise contacts [32, 33].
Empirical SFs can be considered to compute the protein-ligand binding through the sum of
contribution terms [27]. They utilize similar function forms as FF-based SFs but contain additional
ones such as solvent accessibility surface area (SASA). Another difference between empirical SFs
and FF-based SFs is that for the former one, each energy term has its own weight, which can be
derived by linearly fitting terms to measured binding affinities. A fact is that CSFs are developed
based on some simplifications for the sake of efficiency, so it is difficult for them to completely
account for certain processes of protein-ligand recognition, which further affect their ability of
molecule ranking and selection [34]. The major limitations of CSFs include the lack of structural
flexibility of target protein and effects of solvation [35]. In addition to those SFs, there are other
more accurate computational methods based on the combination of molecular dynamics (MD) and
free-energy sampling algorithms, such as rigorous alchemical free energy methods (TI, FEP, etc.)
[36, 37] or end-point methods (MM-GBSA, MM-PBSA, LIE, etc.) [38, 39]. Without doubt, ones
can obtain the prediction of binding affinity with more accuracy by using these approaches.
However, considering the massive demands on computational resource and time, it is not practical

to screen large libraries of compounds by utilizing those expensive techniques.

Recently, an alternative methodology for the binding affinity prediction has gradually emerged
and gained more and more attention. Unlike CSFs with predetermined functional form, non-
parametric machine learning (ML)-based SFs can learn feature information from training data and
adjust the parameters to further improve the performance of prediction. Since ML-based SFs are
able to capture binding interactions between ligands and target receptors that are hard to be
modeled by CSFs, they are considered to generate more accurate prediction of binding affinity. In

addition, recently, a wide variety of ML algorithms have been developed, such as support vector



machine (SVM) [40], gradient boosting decision tree (GBDT) [41], adaptive boosting (Adaboost)
[42], random forest (RF) [43] and artificial neural network (ANN) [44, 45], etc. In the last few
years, there have been a surge to apply ML techniques in building SFs and researchers have made
their efforts to explore the predictive effects of a number of ML algorithms by using different
feature representations [14-20]. One of the common features used to characterize the protein-
ligand complex in a ML-based SF is geometrical features. For example, Ballester and Mitchell
presented a ML-based SF, RF-Score, with the application of RF to predict protein-ligand binding
affinity. In their study, the relationship between the structure of complex and the binding affinity
was characterized by the intermolecular interaction features, which comprise the number of
occurrences of interacting atom pairs within a specific distance threshold. The features they used
to characterize the structure of complexes included several binding and geometrical characteristics.
Knowledge-based pairwise potentials, such as SVR-KB and SVM-SP SFs developed by Li et al,
are also a kind of feature descriptor that is commonly used. Another important feature
representation that is considered in the binding affinity prediction can be categorized as physico-
chemical descriptors. SVR-EP, SFCscore®" and B2BScore SFs were all developed by using
physico-chemical features like ligand molecular weight, van der Waals energy, hydrogen bonds,
hydrophobic effects, etc. There are also a number of ML-based SFs which were developed based
on more complex features from a variety of categories. For instance, Khamis and Gomaa proposed
ML-based SFs that depend on a wide range of features, including geometrical features, energy

terms and pharmacophore features [20].

Traditionally, the feature sources used to characterize the protein-ligand interactions in ML-based
SFs are energy terms from CSFs [18, 46, 47], basic structural features [14, 48] or structural

interaction fingerprints [49]. However, as a key step in the development of the ML-based SFs, the



study of feature descriptors is still on the way and which feature representations can better improve
the performance remains a burning question. Here, to improve the scoring power of CSFs, we
proposed a novel ML-based SF, IPscore, by incorporating the interaction profile (IP) described by
ligand-residue interaction energies as the feature descriptor to predict the protein-ligand binding
affinity. To derive this unique feature, our computational protocol consists of molecular docking,
geometry minimization and/or molecular dynamics relaxation, and molecular mechanics-
Generalized Born surface area (MM-GBSA) free energy decomposition. Previously, Li and Hou
at al. have improved the performance of MIEC-SVM SF by utilizing similar molecular modeling
technique to derive the feature representation [50]. But they only emphasized to improve the
screening power of SF, i.e., the ability to discriminate active molecules from non-actives [51].
Besides, their good performance relied on different combinations of energy components under the
framework of MM-GBSA. More importantly, in our work, we evaluated the performance of seven
ML algorithms under different scenarios, which were created based on different processes of free
energy calculation, including molecular mechanics (MM) minimization using either an implicit
water model of Generalized Born (GB) [52] or an explicit water model of TIP3P [53] to account
for the solvent effect, and the application of MD to relax the docking complex prior to the
minimization or not. By this way, we identified the best structure processing condition before
binding profile generation to maximize the performance of our IP-SFs measured by both the
scoring power and the ranking power. The essential steps of developing IP-SF for a protein target
were demonstrated in Figure 1. In the following sessions, the detail of the model establishment

and the performance evaluation were described.

Materials and Methods

Dataset preparation



To train and test the developed ML-based SFs in our work, six drug receptors that come from two
large protein categories, G protein-coupled receptors (GPCR) and kinases, were cherry-picked due
to not only their importance in drug discovery, but also their large amounts of reported compound

activities in the binding assays from the ChEMBL database (https://www.ebi.ac.uk/chembl/) [54,

55]. Among the six drug targets, serotonin 2A receptor (SHT2AR), adenosine A2A receptor
(A2AR), cannabinoid receptor 1 (CB1), and muscarinic acetylcholine M1 receptor (M1R) belong
to GPCRs, while extracellular signal-regulated kinase 2 (ERK?2) and vascular endothelial growth
factor receptor 2 (VEGFR2), are members of kinases. The X-ray crystal structures of all targets

and their co-crystallized ligands were obtained from Protein Data Bank (https://www.rcsb.org/)

[56, 57]. The crystal structures selected to participate in ligand-residue IP calculations meet the
following conditions, listed in descending order of their importance: (1) the structure is for a
protein that belongs to human (Homo sapiens); (2) the structure is in complex with a co-
crystallized modulator; (3) the structure has no missing segments; and (4) the X-ray diffraction
resolution of the structure is low. The detail information and structures of receptors were listed in

Table S1 and shown in Figure S1.

For each drug target, up to 1200 compounds whose inhibition constants (K;) collected by ChEMBL
were randomly selected. To ensure the distribution of K; values was not altered during the random
selection, we grouped each compound into four activity categories: potent (Ki < 10 nM), less potent
(10 nM <K <1 uM), weak (1 uM <K; < 100 uM) and very weak (100 uM < K; <1 M). For each
category, up to 300 compounds were randomly selected by using numpy.random.choice built in
Python 3.7 program [58]. If the number of compounds in a category is less than 300, then all
compounds in that category are collected. For the collected compounds with two or more K;

activities from different binding assays, the averaged K; values were adopted. To evaluate the
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screening power of IP-SF, we manually classified the selected compounds into the active set and
decoy set by the cutoff of Ki = 100 nM, which is lower than normal threshold (10 uM), in order to
better balance the numbers of compounds in the active and decoy sets. The selected compounds
were then randomly allocated into the training set and test set with the ratio of 4:1. The number of

compounds in the active and decoy sets as well as the training and test sets were listed in Table 1.

Molecular docking

Selected compounds were docked to their receptors using the Glide [59, 60] docking program built
in the Schrodinger software (Maestro 11.2). Before docking, each protein target was first treated
utilizing the Protein Structure Preparation Wizard module following the standard procedures, i.e.,
removing water and co-crystal solvent, filling in missing hydrogen atoms, etc. It is noted that only
the added hydrogen was movable during the geometry optimized using the OPLS force field. Next,
a grid file was generated for the drug target using the cocrystal ligand to define the center of the
binding pocket, and no rotatable or constraint group was defined. We applied the default option to
define the enclosing box size and the generated grid file is suitable to dock ligands that have similar
sizes as that of the cocrystal ligand. Last, Glide flexible docking using the Glide SP scoring
function was performed with the following settings: the partial charge cutoff for ligands was 0.15,
van der Waal radius scaling factor was 0.80 and the formation of intramolecular hydrogen bonds
was rewarded. For each ligand, the top docking pose that has the best docking score was subjected
to minimizations and/or MD simulations, and subsequent ligand-residue interaction profile

calculation as detailed below.

System setup for MM calculations



Before MM minimization and MD simulations, AM1-BCC charges [61, 62] were computed for
all ligands by the SQM and Antechamber modules in AMBER 18 [63]. The reason we chose AM1-
BCC instead of RESP charge method [64] was to reduce the computational cost. Other force field
parameters for ligands came from GAFF [65], while the AMBER FF14SB [66] force field was
assigned for the proteins. The residue topology of a ligand was generated by utilizing the
Antechamber module [67] in the AMBER software package [68, 69]. For SHT2A receptor, a Zn>"
complex was formed with two HIS and two GLU residues. We developed FF14SB/GAFF-
compatible force field parameters for the Zn>" complex and the details was provided in the

supporting information.

MM minimization and MD simulations were performed using either an explicit water model or an
implicit water model to account for solvent effect. For the formal, the protein complex was first
immersed in a rectangle TIP3P water box with the shortest distance between any atom of the
complex and box borders is at least 14 A; then a certain number of CI" and Na* were added to the
solvent box so that their concentration is about 0.15 M and the whole system was neutralized. The
detailed computation protocol of adding ions was provided in the supporting information. Particle
mesh Ewald (PME) was used to treat the long-range electrostatic interactions [70] and the
nonbonded interaction cutoff was set to be 10 A to handle the real-space interactions. For the latter,
the "standard" pairwise generalized Born model by Hawkins, Cramer, and Truhlar [71] was

employed. No count ions were added to neutralize the MD system.
MM minimization and MD simulation

We have two strategies to prepare the complex structures before the binding profile calculations.
First, a complex was relaxed and optimized only through a set of minimization procedures. We

constrained the main chain atoms of the receptor and the bound ligand by using a harmonic

10



potential. The harmonic potential force constant was reduced from 10 to 5, 2, 1 and 0 (kcal/mol)/A?
for the receptor, while it was decreased from 100 to 50, 20, 10 and 0 (kcal/mol)/A? for the ligand,
progressively in five 1000-step minimizations. Second, after the 5000-step minimizations, the
system was further relaxed by a set of 10,000-step MD simulations with the restraint settings the
same as those for minimizations. All MD simulations were performed at 298 K and 1 atm with a
time step of 2 femtoseconds. Finally, the whole system was relaxed without any restraint for 1000
steps. All minimization and MD simulations were conducted using the PMEMD module in the

AMBER 18 [72, 73].

In summary, we consider four computational protocols for processing a complex structure before
the interaction profile generation: (a) MIN+GB (minimization only, using the GB model to account
for solvent effect); (b) MIN+TIP3P (minimization only, using explicit the TIP3P water model); (c)
MD+GB (minimization plus MD simulation, using the GB model); and (d) MD-+TIP3P

(minimization plus MD simulation, using the explicit TIP3P water model).
MM-GBSA residue-ligand free energy decomposition

For the two minimization protocols, the optimized complex at the end of a series of stepwise
minimizations was employed for the residue-ligand binding free energy decomposition analysis.
However, for the two MD protocols, we added an extra step to fully minimize the last MD snapshot,
so that a high-quality conformation was used for the interaction profile calculation. We calculated
the MM-GBSA residue-ligand interaction energies using an internal program which analyzes the
outputs of Sander and conduct statistics on each component of MM-GBSA free energy. The
interior and exterior dielectric constants were set to 1.0 and 80, respectively. For each system, if a
residue has its interaction energy with any ligand is lower than -0.1 kcal/mol, the residue is

recognized as a key residue for charactering the binding profile. The MM-GBSA interaction
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energies between all key residues and a ligand constitutes the binding profile of this ligand. The
numbers of key residues using different structure processing protocols were listed in Table 2. The
and the corresponding interaction profiles of each drug receptor are shown in Figures S2-S6. For
the sake of convenience, we adopted the new residue IDs generated by AMBER to label those key
residues, and the correspondence between the new and the original residue IDs in the PDB files

was presented in Table S2.

ML algorithms

Seven popular ML algorithms were applied and compared in this study. They are ordinary least
squares (LS) regression [74], Bayesian regression [75], support vector regression (SVR) [76], RF
[43], Adaboost [42], GBDT [41] and the neural network model, multi-layer perceptron (MLP) [77].
ML regression models were constructed utilizing the Scikit-learn [78] package implemented in the
Python program, except for MLP which was performed using the Keras [79] module in Python.
The feature matrix consisted of MM-GBSA interaction energies between ligands and key residues
(<-0.1 kcal/mol) served as the input data for each ML algorithm. No extra processing was taken
to the data as all input data was extracted following the same protocol and was at the same scale.
The inputs, i.e., feature matrixes or IPs for training ML models were provided in the supplemental
material (Tables S3-S6). The description of ML algorithms and their corresponding
hyperparameters are displayed in Table S7. An example code for the training process is shown in

Figure S6

Additionally, the performance of deep neural network (DNN) [80], an effective and advanced
technique evolved from ANN was also studied. However, considering it is more time-consuming
to construct DNN model and it requires a large amount of data to avoid the overfitting issue, we

only used it in the construction of SF models for the MIN+GB structure processing protocol. DNN
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models were constructed using the Keras sequential model [79] in Python. For each target, 20 %
of the training data was randomly selected to form a validation set. For each epoch, the
performance of the model on the validation set was evaluated. The loss function during the learning
process was mean squared error (MSE). Mean absolute error (MAE) was also calculated as a
metric of performance during the training processes. The losses and MAE changes during
processes are shown in Figures S7 and S8. The architectures of the DNN models for each system

were described in Table S8.

Performance metrics

To evaluate the scoring and ranking power of IP-SFs, four metrics were adopted, i.e. root mean
square error (RMSE), MAE, squared correlation coefficient (CORR2) and predictive index (PI)
[81-83], to estimate the difference between predictive and experimental binding affinity of
compounds in testing sets for each target. RMSE and MAE are measure of scoring power, while
CORR2 and PI are measure of ranking power. The performance of Glide docking score was taken
as the standard to evaluate whether the developed IP-SFs can improve the docking performance.

Lower RMSE and MAE, and higher CORR2 and PI indicate better predictive performance.

As for the assessment of screening power, we used the area under the curve (AUC) of receiver
operating characteristic (ROC) curve, Accuracy, Fl-score and enrichment factor (EF) at 10%
(EF10%) and 40% levels (EF40%) [84] as the performance metrics. All of these three metrics range
from 0 to 1, with 0 indicating the worst and 1 indicating the best scenarios. However, for ROC, a
random model theoretically has an AUC value of 0.5 and a good classifier typically has AUC value
of 0.8 or larger. EF is one of the commonly used metrics in virtual screening studies. It is defined

as the proportion of the true active binders in the sampled subset relative to the proportion of true
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active binders in the total dataset [85, 86]. Similar to the evaluation of scoring and ranking power,

we adopted the performance of Glide SF as the reference.

Results and Discussion

With the combination of different solvent models (implicit GB or explicit TIP3P) and structure
optimization approaches (minimization only or minimization plus MD), in total four structure
processing protocols were investigated. For each protocol, all developed ML-based SFs were first
trained on the training sets and then tested on the testing sets. The performance of Glide docking
score was utilized as the reference. The docking performance of newly developed ML-based SFs

by different ML algorithms under four scenarios were compared and discussed below.

Comparison of performance of ML-based scoring functions on different targets

The performance of several ML-based SFs versus CSF (Glide docking) was presented by the radar
chart (Figure 2) and Table S9. Their scoring power was evaluated by RMSE, MAE, and ranking
power by CORR2 and PI. Generally, the ranking power of Glide SP scoring function was poor and
it varies from target to target, e.g., CORR2 is only 0.05 for CB1 receptor. Even ERK has the best
CORR2 value, 0.27, its ranking power is still not satisfactory. Our IPscore significantly improved
the ranking power in most cases, regardless of different ML methods and structure processing
protocols. As shown in Table S9, there are 28 PI-SFs constructed for one drug target, so totally
there were 168 PI-SFs built in the study. Among all of 168 constructed models, only 18 models
have at least one metric worse than the Glide SF, and most of them were constructed using LS and
Bayesian algorithms. As far as the drug target is concerned, CB1 receptor and M1R have 7 and 9
less-satisfactory models. For all the drug targets, most PI-SFs outperformed the Glide SF in terms

of scoring and ranking power. The performance of best models for each metric and drug target is
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summarized in Table 3. The mean values calculated from the best models for the six drug targets
are 1.11 kcal/mol, 1.40 kcal/mol, 0.53 and 0.72, for MAE, RMSE, CORR2 and PI, respectively.
Compared to Glide SP docking SF, the MAE and RMSE dropped about 40% and 38%, respectively,
while CORR2 and PI increased about 231% and 76%, respectively. Of note, this excellent
performance was achieved using different machine learning methods with different structure
processing protocols. In the next section, we will identify the best ML method and computational

protocol which produce the best overall performance.

Interestingly, the performance of our developed models varied on different targets. Taking the
performance of GBDT models for the six targets as an example, the CORR2 values using GBDT
models varied from 0.29 to 0.74 according to Table 3. Such a difference in performance of GBDT
for different targets may be caused by the quality of Glide docking poses varied from a system to
another. For example, the CORR2 for SHT2AR using Glide SF is 0.06, whereas it is much higher
(0.27) for ERK2. In our approach, traditional docking SF is utilized as the initial step, followed by
a series of molecular modeling and ML/DL methods. Because the best docking pose for each
compound was selected as the starting structure for the following MM minimizations or MD
simulations, the performance of GBDT models can be affected by the initial results of docking
method. However, as we emphasized previously, the essential performance of our models was
significantly superior to Glide SF on all tested protein targets. It is pointed out that the differences
in the GBDT performance may also be caused by other various reasons, such as the quality of
bioassays, the quality of crystal structures used for study, and the range of measured activities of

the ligands.

Impacts of ML algorithms on performance
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To compare the performance of different ML methods, we ranked them according to four metrics.
Figure 3 shows the ranking results of seven ML approaches for all receptors with four structure
preparation protocols. With the scoring power changing from best to worst, the color of grid turned
from red to green. An overview from Figure 3 indicates that the GBDT model contains most red
grids, illustrating its best predictive performance among all ML algorithms. Other than GBDT,
most red grids concentrated at RF, AdaBoost and MLP, demonstrating their relatively better
performance than the rest of ML methods. Meanwhile, LS and Bayesian have most green grids,
indicating IP-SFs constructed using linear regression algorithms perform poorly. These results
suggested that the relationship between ligand-residue interaction energies and binding affinity is
not simple additive, as such machine learning algorithms which can bring nonlinearity to the input

data can generate better predictive models.

Based on the ranking results, we created a frequency distribution histogram for each structure
processing protocol. The rank of a ML algorithm, which varies from 1 to 7, represents the ML
algorithm’s ranking measured by a specific metric for a specific drug target. In total, there are 24
ranks for each ML algorithm as there are six drug targets and four measuring metrics. The
distribution of the ranks of all ML algorithms are demonstrated in Figure 4. The histograms were
colored according to the following rule: the smaller the rank, the darker the color it is. Thus,
according to Figure 4, the SF that was built based on GBDT obtained the best predictive
performance among all ML algorithms as it has the darkest columns no matter what structure

processing protocol was applied.

Impacts of simulation protocols on performance

Four different structure processing protocols were tested to generate ideal complex structures prior

MM-GBSA binding free energy decomposition analysis. To better explore the influence of
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different structure processing protocols on model performance, we evaluated the performance of
IP-SFs generated by using GBDT, the ML algorithm that was found to have the best overall
performance. Then we compared the performance of four protocols, MD+GB, MD+TIP3P,
MIN+GB, MIN+TIP3P by using the average performance of six targets. See Figure 5. Overall,
there was no dramatic difference observed among those four protocols. Interestingly, we found
that the performance of MIN+GB and MIN+TIP3P were slightly better than that of MD+GB and
MD+TIP3P, suggesting that the additional structural relaxation using MD simulations may not be
necessary. However, it is pointed out that for some drug targets, especially those do not have high
resolution structures, additional structural relaxation using MD simulations may still be needed.
As to the two types of water models, there was no big difference in the performance of IP-SFs
between MIN+GB and MIN+TIP3P either. As shown in Figure 5, MIN+GB outperformed
MIN+TIP3P slightly on the metrics of CORR2 and PI, while MIN+TIP3P has slightly better

performance on MAE and RMSE.

Besides the performance, the computational efficiency of the four structure processing protocols
is also a key criterion to be considered in practice. For docking scoring function, we conducted
Glide docking in this study using Central Processing Unit (CPU). For MM minimization and MD
simulation processes, to balance the calculated accuracy and timing, we used GTX 1080 Graphical
Processing Unit (GPU) to accelerate the calculation procedure. In recent years, GPU MD is
routinely conducted in both academia and industry. Considering the two minimization protocols
perform better than the ones utilizing MD simulations, here we only compared the timings of the
MIN+GB and MIN+TIP3P protocols. For instance, the average CPU time for docking each
compound to the CBI target with Glide is 11.1 s. The average GPU time for MM minimization

for each compound in CB1 is 11.9 s with GB implicit water model, and 33.8 s with TIP3P explicit
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water model. The average time cost by using GB model is less than using more complexed TIP3P
water model, and more similar to Glide docking. Similarly, as to the ERK2 target, the average time
for each ligand is 8.5 s for Glide docking, but 15.3 s and 61.6 s for minimizations with GB implicit
water and TIP3P explicit water, respectively. Overall, the wall time of running Glide docking and
MIN+GB are comparable, suggesting the IP-SF calculation using the MIN+GB protocol is very

efficient.

Taken together, we concluded that the simplest structure processing protocol, MIN+GB has not
only the best overall performance but also the best computational efficiency. Hence it should be
first applied to generate ligand-residue interactions profiles for most drug targets. Therefore, the
ideal combination of ML-based IP-SF and structure processing protocol, GBDT in conjunction
with MIN+GB, was identified. Compared to Glide SF, averagely the MAE decreased around 38%

and 36%, while CORR2 and PI can increase about 225% and 73%.

Assessment the performance of IP-SFs constructed by using deep learning

Deep learning is a part of a big family of ML techniques. DNN evolves from the traditional ANN,
where multiple layers are involved in the construction of models to extract higher level of features
hidden in the input data [87]. Recently, DNN has gained considerable attention from computer-
aided drug design community and has been widely applied in a variety of fields, such as drug
repurposing [88, 89], structure prediction [90], etc. It is of interest to evaluate the performance of
IP-SFs constructed using DNN. We only assessed and compared the performance of DNN-based
IP-SFs following the MIN+GB structure processing protocol due to relatively large computational
cost. As shown in Table 3 and Figure 6, the docking performance of DNN-based IP-SFs is

superior to Glide docking SF, but inferior to GBDT-based IP-SFs. This result although
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disappointing, is understandable. The interaction profile data used to train predictive models is

quite small and DNN usually performs better with big data.

Screening power of the best-performed IP-SF in SBVSs

Besides ranking power, another widely used metric for evaluating virtual screening performance
is the screening power, which measures the ability of a SF to recognize active ligands as hits. As
we have identified GBDT with MIN+GB has the best overall performance on scoring power and
ranking power, the screening power evaluation was only conducted for this IP-SF. Several
commonly-used metrics, including AUC of ROC curves, Accuracy, F1-score and EF, were applied
to compare the screening power of GBDT and Glide SF. For EF, we calculated the EFj¢, and
EFa0%, for screenings which enriched 10% and 40% of the total compounds, respectively. It is
obvious that GBDT achieved better performance than Glide SF as measured by all the metrics as
listed in Table 4. Particularly, the mean AUC of ROCs, 0.87, is significantly better than that of
Glide SF, which is only 0.71. On average the AUC of IP-SF for six targets improved approximately
22.5% in comparison with the AUC of Glide docking, however, if we excluded ERK2 target for
which the difference between two SFs is minimal due to the imbalance between the numbers of
actives (758) and inactives (92), the improvement of AUC value increased to 31%. The ROC plots
were illustrated in Figure 7. It is worth to pointing out that the inactives defined in this study are
those having measured activities larger than 0.1 puM. We used a relatively low threshold to achieve
a good balance between the numbers of actives and inactives. If we introduced real decoys, the

screening power measured by the above metrics, especially EF and AUC, could be much better.
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Conclusion

To improve the screening performance of traditional SFs, we applied a novel approach to construct
ML-based SFs using residue-ligand interaction energies as input. The construction process and
evaluation of IP-SFs were presented. The interaction profile of a ligand binding to a receptor was
calculated after a set of structure preparation processes including molecular docking, molecular
mechanics minimization and/or molecular dynamics simulation to relax and optimize the complex,
and MM-GBSA free energy decomposition. Key residues were identified for each drug target by
analyzing the interaction profiles of its ligands. Predictive models were then constructed using a
variety of machine learning methods. Several evaluation tests on six protein targets were
conducted to assess the IP-SPs. 150 out of 168 IP-SPs outperformed the original Glide docking SF
measured by all four metrics, and only 18 IP-SPs models constructed using LS, Bayesian and SVR
performed less ideal with the value of at least one measuring metric worse than that of Glide SF,
nevertheless, the overall performance of those 18 IP-SPs may still be better than Glide SF. We
have also identified an ideal combination of ML-based IP-SF and structure processing protocol,
i.e., GBDT with MIN+GB, which achieved the best overall performance for all the six drug targets.
Compared to Glide SF, on average the MAE and RMSE decreased about 38% and 36%,
respectively; while CORR2 and PI increased about 225% and 73%. As to AUC, the mean value
increased from 0.71 for Glide SF to 0.87 for the best IP-SF. Therefore, for a given drug target, we
recommend to first construct predictive model using the GBDT method after the docking
complexes are minimized using the implicit GB model. In conclusion, we have successfully
developed a novel method to construct the predictive model with high scoring, ranking and
screening power using ligand-residue interaction profiles by machine learning methods. We expect

this approach to have broad and promising applications in SBVSs.
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Key Points

e To improve the performance of traditional scoring functions (SFs), we developed a novel
approach by incorporating ligand-residue interaction profile (IP) into machine learning (ML)
algorithms to construct SFs. A SF developed using IP is therefore called an IP-SF.

e Several evaluation tests were conducted to assess the IP-SPs for six protein targets, and the
newly developed SFs significantly outperformed Glide SF in terms of scoring power, ranking
power and screening power.

e An ideal computational protocol of preparing protein-ligand structures for IP calculations was
developed. The performance of the IP-SF generated by employing GBDT algorithm in
conjunction with the MIN+GB simulation protocol achieved the best overall performance for
six drug targets.

e Besides high scoring, ranking and screening powers, the calculating cost of the IP-SF is
minimal compared to more rigorous methods including the end-point MM-PBSA and the path-
based methods like free energy perturbation and thermodynamic integration. Thus, the

developed IP-SFs are expected to have broad and promising applications in SBVSs.

Supplementary Data

The descriptions about targets and compounds, feature representations, the processes of model
construction and values of performance metrics for each model were listed in the supplementary
data. Table S1 describes entry codes, resolutions, released dates and deposition authors for six
receptors. Table S2 shows the correspondence between the AMBER-generated and the original
residue IDs in PDB for six receptors. Tables S3-S6 show the input feature representations for each
target using four simulation protocols. Table S7 is the description and hyperparameters of ML

algorithms. Table S8 shows the architectures of the DNN models for each system using MIN+GB
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protocol. Table S9 lists RMSE, MAE, CORR2 and PI values for IP-SFs versus Glide SF for each
target using different ML algorithms and simulation protocols. Table S10 lists the residue
topology and force field parameters for the Zn** complex in SHT2A receptor. Figure S1 shows
the structures and binding sites of six targets. Figures S2-S5 show the distribution of key residues
in six targets using four simulation protocols. Figure S6 demonstrates an example code of ML
training process for SHT2AR target using MD+GB protocol. Figures S7-S8 display the losses and

MAE changes for each system during processes.
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Tables

Table 1. The number of actives and decoys and number of compounds in the training and test

sets.
Receptor Actives Decoys GB TIP3P
Training Test Training Test
SHT2AR 377 395 617 155 570 143
A2AR 342 547 711 178 700 176
CB1 265 383 518 130 501 126
MI1R 217 364 464 117 438 110
ERK2 758 92 680 170 664 167
VEGFR2 287 343 504 126 500 126

Table 2. Numbers of Key Residues Participating Modeling with Machine Learning Methods

Receptor  Total No. of Key Residues
Residues ~ MD + MD + MIN + MIN +
GB TIP3P GB TIP3P
SHT2AR 370 90 92 90 91
A2AR 448 84 84 84 83
CB1 281 86 90 90 93
MI1R 451 80 83 81 &3
ERK2 337 82 83 83 87
VEGFR2 299 85 86 88 92

Table 3. The performance of IP-SFs in docking screenings. Each drug target has 28 IP-SFs models
constructed using 7 different machine learning algorithms with four structure processing protocols.
“Best” represents the best value achieved by 28 IP-SFs for a specific metric and a given drug target;
“GBDT” and “DNN” represent the IP-SFs constructed using GBDT and DNN methods in

conjunction with the MIN+GB structure processing protocol.

32



Metrics/Receptor SHT2AR A2AR CBl1 MI1R ERK2 VEGFR2 Average

(ki\;[f?nlfol) Glide 2.57 1.83 1.77 1.52 1.24 2.11 1.84
Best 1.35 1.37 1.13 1.30 0.49 1.00 1.11

GBDT 1.35 1.37 1.24 1.34 0.54 1.00 1.14

DNN 1.58 1.55 1.59 1.53 0.77 1.21 1.37
(klc‘;‘llhsnlzl) Glide 3.01 2.25 2.17 1.95 1.61 2.65 2.27
Best 1.68 1.70 1.41 1.63 0.73 1.26 1.40

GBDT 1.75 1.70 1.53 1.65 0.81 1.26 1.45

DNN 1.99 1.88 1.91 1.91 1.03 1.51 1.71

CORR2  Glide 0.06 0.10 0.05 0.26 0.27 0.22 0.16
Best 0.29 0.36 0.44 0.55 0.81 0.72 0.53

GBDT 0.29 0.36 0.44 0.54 0.74 0.72 0.52

DNN 0.12 0.27 0.14 0.42 0.60 0.58 0.36

PI Glide 0.22 0.32 0.26 0.45 0.69 0.50 0.41
Best 0.55 0.64 0.65 0.75 0.88 0.86 0.72

GBDT 0.55 0.58 0.65 0.74 0.85 0.86 0.71

DNN 0.33 0.52 0.33 0.66 0.78 0.77 0.57

Table 4. Comparison of AUC, Accuracy, Fl-score, EF10y and EF40¢, between Glide docking and
IP-SF with the ideal combination of ML method and simulation protocol (GBDT with MIN+GB)

on six targets.

Metrics/Receptor SHT2AR A2AR CB1 MI1R ERK2 VEGFR2

Glide AUC 0.60 0.68 0.55 0.68 0.97 0.76
Accuracy 0.51 0.65 0.50 0.61 0.90 0.68
F1-score 0.53 0.60 0.44 0.53 0.65 0.69
EF10% 1.27 1.70 1.20 2.72 7.22 1.91
EF40% 1.10 1.54 1.15 1.45 2.50 1.41
GBDT AUC 0.81 0.79 0.86 0.86 0.98 0.94
Accuracy 0.72 0.72 0.78 0.77 0.93 0.84
F1-score 0.73 0.68 0.74 0.70 0.74 0.85
EF10% 1.85 2.54 2.60 2.72 9.44 1.91
EF40% 1.85 2.51 2.50 2.49 2.50 1.91
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Figure 1. The workflow of the IP-SFs model construction and model evaluation.
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Figure 2. The performance of ML-based SFs versus Glide docking based on different simulation

protocols. (A) SHT2AR; (B) A2AR; (C) CB1; (D) MIR; (E) ERK2; (F) VEGFR2; 1-Glide; 2-

LS; 3-Bayesian; 4-SVR; 5-RF; 6-AdaBoost; 7-GBDT; 8-MLP.
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Figure 3. Ranks of seven ML approaches for all receptors with four simulation protocols: (A)

MD+GB, (B) MD+TIP3P, (C) MN+GB, (D) MIN+GB.
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Figure 4. The frequency distribution histogram on ranks for all ML algorithms for all drug

targets. (A) MD+GB, (B) MD+TIP3P, (C) MN+GB, (D) MIN+GB.
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Figure 5. The comparison of the scoring power of GBDT-based SFs following four simulation
protocols, MD+GB, MD+TIP3P, MIN+GB, MIN+TIP3P by using the average performance of

six targets.
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Figure 6. The comparison of performance of SFs by using Glide docking, DNN, and GBDT

methods.
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Figure 7. ROC curves of using Glide docking and GBDT method in conjunction with the

MIN+GB structure processing protocol on six targets.
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