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ABSTRACT
Student procrastination, as the voluntary delay of intended
work despite expecting to be worse off for the delay, is an
important factor with potentially negative consequences in
student well-being and learning. In online educational set-
tings such as Massive Open Online Courses (MOOCs), the
effect of procrastination is considered to be even more preva-
lent and detrimental, as online courses are often self-paced
and self-directed, where higher levels of self-regulated learn-
ing are expected from the students. Past research has mainly
described students’ procrastination by either static time-
related measures (e.g. averaged starting time over all as-
signments per student), or by temporal models’ parameters,
under the assumptions that student activities take place at a
constant rate (e.g. Homogeneous Poisson models), and that
student interactions with one learning material are indepen-
dent of interactions with another. In this work, we propose
to consider the interdependence between the students’ tem-
poral activities while modeling their sequences in a continu-
ous time scale. To this end, we propose to model the interac-
tion sequence between each student and each course module,
i.e. each module-student pair, as Multi-dimensional Hawkes
processes, which not only capture the relationship between
students’ learning activities and their exogenous stimuli such
as assignment deadlines, but also capture the endogenous
responses within and between types of learning materials.
Our experiments show that not only there exists dependen-
cies between students’ historical activities and the future
ones when different types of learning materials are involved,
such dependencies also provide meaningful interpretations
in terms of students’ procrastination behaviors. Further-
more, our findings show that in addition to association with
delay, the parameters learned by multi-dimensional Hawkes
processes provide more procrastination-related information
and can improve our explanation of student grades.
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1. INTRODUCTION
Student academic procrastination has shown to have nega-
tive effects on students’ learning and well-being. Procrasti-
nation is prevalent in different academic settings like tra-
ditional classrooms, and could be even more widespread
in online learning environments, as higher levels of time-
management and self-regulated learning (SRL) skills are re-
quired [47, 3, 16]. To describe and measure student procras-
tination, past research has been mainly relying on either self-
reported surveys (e.g. [27]) or time-related features that are
associated with students dilatory behaviors (e.g. [10]). As
procrastination is inherently subjective, self-reported sur-
veys have been heavily used in earlier research, to differenti-
ate procrastinators and non-procrastinators by emphasizing
on measuring the perceptions of the students. Although
self-report survey measures capture students’ retrospective
reports of their studying and delaying behaviors, they are
administered in a cross-sectional manner, rely on students’
memory, and are usually static point estimates that summa-
rize students’ average degree of procrastination.

Considering the noises of self-reported data [37], in more re-
cent studies, more focus has been given to the behavioral side
of the procrastination, where time-related measures were
proposed and used as the representation of students’ pro-
crastination. For example, measures such as students’ av-
erage delays in starting coursework, the average time they
spent in doing assignments, students’ average paces of view-
ing lectures have been studied as factors of procrastina-
tion [2, 10, 15, 6, 22]. However, these measures lack the
ability to describe students’ continuous behaviors within a
period of time. An analogy to such methods is to describe
the entire distribution using the sample mean, without fully
knowing the distribution. To tackle this limitation, more
recently, emphasis has been on modeling the time points of
student activities that are extracted from students’ learning
trajectory data (e.g. log or click-streams of student histor-
ical actions), via stochastic models. For example in [33],
Park et al. modeled students’ per-day activity counts dur-
ing each week of the course via a Poisson mixture model,
which models the entire trajectory of each student activities
during a weekly module. Other factors that have been con-
sidered to be important in describing procrastination in the
past research are the effects of different learning materials
(e.g. forums and quizzes) as well as students’ interactions
with them (e.g.[1, 28]). However, to the best of our knowl-
edge, no past work has considered the possible time depen-
dencies within and between students’ interactions with dif-
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ferent learning material types. For example, viewing video
lectures more intensively mostly before the first attempt of
an assignment may suggest that a student prefer to learn the
materials first before trying the assignment. On the other
hand, watching lecture videos dominantly after the first at-
tempt of an assignment may suggest that the student prefer
to try the assignment first and then go through the video
lectures if they encountered any problems.

To summarize, past research has attempted to describe pro-
crastination using static time measures, or measures sum-
marized from more sophisticated temporal models, based
on students’ interactions with one or more learning materi-
als. However, two important factors of student behaviors
and their association with procrastination have not been
fully explored: (1) the dependencies between students’ past
and future interactions within each learning material type
(e.g. knowing a student has looked at lecture slides at some
time, how and when are they going to have the next ac-
tivity?) and (2) the dependencies between students’ inter-
actions with different types of learning materials (e.g. are
watching video lecture usually followed by a submission of
an assignment?) In this work, we aim to address these two
factors by answering the following questions: within each
learning module, that is the unit of a course that learn-
ing materials are provided, (Q1) are the past activities in-
dependent of future ones? Or some activities can trigger
other ones to arrive within a short period of time (i.e. time
dependencies between activities)? And (Q2), are students’
interactions with one type of learning material (e.g., video
lectures) independent from another type (e.g., discussion fo-
rums)? Furthermore, (Q3) if such dependencies exist, how
are they associated with student procrastination? (i.e. the
dependencies between a student’s past and future activities
as well as dependencies a student’s interactions with one
learning material with another.)

As a result, our goal is to find the missing link between stu-
dents’ procrastination and students’ activities within and
between different types of online learning materials. To
achieve this goal, we propose to use multi dimensional Hawkes
processes as a powerful tool that addresses the above men-
tioned concerns in student procrastination analysis. Par-
ticularly, we represent all activities on one type of learning
material as one dimension in the multi-dimensional Hawkes
model. We show that this model better fits our data, in
comparison to baseline temporal processes. Also, to answer
Q1 and Q2, we demonstrate that it can capture both stu-
dents’ reactions to the deadlines as action-triggering factors
that come externally (i.e. exogenous stimuli), and students’
responses to the previous interactions with different types of
learning materials, such as video lectures, assignments, and
discussions (i.e. self-excitement). By doing so, we can un-
derstand students’ procrastination behavior from a stochas-
tic process point of view, with two main stimuli: (1) some
of the students’ activities can be viewed as a response to
an external stimulus, e.g. deadlines of the assignments (2)
some other student activities can be viewed as the results of
previous interactions that the student had with the same or
other learning material types. Based on the model parame-
ters, to answer Q3, we also propose a measure that not only
describes student procrastination but also is able to explain
student performance better than the static delay measure.

The outline of this paper can be summarized as follows:
In Section 2, we go over three main bodies of the related
work; in Section 4 we go over the details of the dataset
that we use; in Section 4, we provide the intuition of using
the Hawkes model, then statistically and visually show that
a Hawkes process is a proper choice for modeling module-
student interactions; in Section 5, we formally define our
problem and introduce the multi-dimensional Hawkes model
that we use in this study. We perform various experiments
in section 6, to analyze the model parameters, explain their
interpretation, and associate them with procrastination as
well as students’ assignment grades. Finally, the conclusion
of this work is summarized in Section 7.

2. RELATED WORK
Students’ procrastination In the past research on stu-
dent procrastination, the main focus has been on the mea-
sures that capture either students’ perceptions (e.g. self-
reported surveys on procrastination [35, 41, 40, 12, 23]),
or static measures that describe students’ dilatory behav-
iors as the representation of procrastination [15, 11, 44,
33]. For example, in [10], Cerezo et al. studied 140 un-
dergraduate and used measures such as students’ delay and
time-spent variables to describe procrastination. For an-
other example, in [2], Asarta and Schmidt studied students’
behaviors in accessing lecture notes of a blended-learning
course, and proposed to use features such as pacing, anti-
cramming, and consistency in reviewing course materials.
A few recent works have tried to model student activities
to provide a temporal perspective of procrastination behav-
ior. For example, Backhage et al. proposed a model that
captures procrastination-deadline cycles of all students in
the course using a stochastic temporal model [4]. However,
this model assumes that all students follow the same pro-
crastination behavior during the course and does not distin-
guish the differences between student behaviors. In [33],
Park et al. assumed that students’ daily activity counts
follow a mixture Poisson distribution, which is a mixture
of a procrastination component and a non-procrastination
component. Particularly, by assuming the independence be-
tween students’ past and future activities, they proposed to
model each day of the week by a Poisson with a constant
rate for all weeks. In the end, they described procrastina-
tors as the ones with a dominant procrastination component
versus the non-procrastination one, i.e. the students who
have a fast-increasing activity counts towards the end of the
week. Moon et al. assumed that procrastination behavior
over time can be described by a curvilinear growth curve
and modeled it using latent growth curve modeling. To val-
idate this assumption, they compared the curvilinear model
with a non-growth and a linear model and showed that their
model has a better goodness-of-fit than the baseline mod-
els [30]. In contrast with the existing research that either
uses summary variables or ignores the dependence between
different student activities, in this paper we aim to model
the temporal activity interrelationships and associate them
with student procrastination.

Modeling students’ engagement using their learning
trajectories. Other relevant studies to our work are the
ones that model student learning trajectories to understand
other aspects of their behaviors, such as student engage-
ment in online learning environments. While many past
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studies focused mostly on utilizing cumulative factors such
as frequency of watching videos or using discussion forums
[39, 17, 34, 13], more recent work attempted to build more
complex models of student behaviors. For example, in [46],
Zhu et al. constructed students’ social connection networks
based on students’ weekly post-reply dynamics, along with
node attributes, such as assignment scores. Particularly,
they used an exponential random graph model to compute
the structural features of the social connection networks,
to understand the relationship between students’ engage-
ment in the forums and their performances in the assign-
ments. In another example, Lan et al. proposed a sta-
tistical model, which consists of two components: a learn-
ing model and a response model [25]. These two models
represent nine behavioral features extracted from students’
video-watching clickstreams and in-video quiz responses in
one MOOC course, with the aim to find the behavioral fea-
tures that lead to high levels of student engagement. Simi-
larly, Kizilcec et al. classified students’ behaviors based on
binary features extracted from students’ log data (1 if a stu-
dent had any activities that are associated with a learning
material, 0 otherwise, for all learning materials) [24]. As a
result, they identified 4 behavioral types: completing, audit-
ing, disengaging, and sampling, from these binary features.
For another similar example, Gelman et al. extracted stu-
dent features from students’ log data as well and applied
Nonnegative Matrix Factorization to find 5 types of stu-
dent behaviors - deep, consistent, bursty, introduction, and
sampling [18]. Particularly, the authors used a procrastina-
tion indicator as a feature, that is, the average amount of
time left before the deadline when a student submits their
assignments. In summary, past research on modeling stu-
dent engagement is similar to our study in the sense that
the models utilize students’ activities that were extracted
from students’ log data. However, it differs to ours in the
following two ways: (1) the models usually define students’
engagement levels based on the counts of students’ historical
actives, without directly modeling students’ learning trajec-
tories as stochastic processes, (2) the aim is usually to model
or predict students’ future engagement levels, rather than
studying students’ procrastination and its association with
students’ performance.

Hawkes in education. Hawkes processes, a family of
stochastic point processes, have been frequently used to model
complicated time-stamped events in continuous time. Due
to Hawkes process’s capability to model scenarios where
historical events influence future activities, it has been fre-
quently used in finance [5] and seismology [32] and has been
gradually becoming a useful modeling tool in the domain
of social media [7, 36, 29], as well as recommendation sys-
tems [14, 43, 21, 38]. In the education domain, a few works
have used Hawkes processes so far, especially to model so-
cial and interaction data among students [19, 20, 26]. For
example, Lan et al. proposed a single-dimensional Hawkes
model to recommend relevant discussion threads to students
according to their historical interactions with course forums.
In a similar application, a Hawkes model is suggested by Von
Davier et al. to model the collaboration dynamics between
students within and between groups [42]. Along this line,
Halpin et al. used multi-dimensional Hawkes processes to
understand students’ collaboration with each other [19, 20].
Another interesting application of the Hawkes process in the

education domain is the work by Boerner et al. that ana-
lyzed the association between student skills and the skills
required by professional jobs [8]. In another recent work,
Cai et al. used Hawkes processes as a step in their model to
predict which video a student will watch next based on their
historical interactions with the videos in an edX course [9].
They use long and short multi-dimensional Hawkes processes
that differentiates the long-term and short-term temporal
dependencies between video-watching actions. None of the
above works uses the Hawkes processes to model the pro-
crastination behavior, nor considers course deadlines and
milestones in their application of the Hawkes process.

3. DATASET
Our dataset is publicly collected from the Canvas Network1

MOOC platform [31], which is an online platform that hosts
various open online courses in different academic disciplines,
such as Computer science, Social Science, and Business man-
agement. These courses have multiple types of learning re-
sources, including Wiki pages, assignments (or quizzes), and
discussions. Assignments can be quiz-style or in a longer
format where students need to upload a file to complete the
submission. Each learning module is associated with one
Wiki page. In total, CANVAS data contains 389 anonymized
courses where the names of students and courses along with
the contents of discussions and assignment (or quiz) submis-
sions are not available.

In this work, we mainly focus on exploring the student learn-
ing trace data. Specifically, we select a computer science
course (course id: 770000832960058) that best fits the fol-
lowing criteria: (1) having a large number of students2;
(2) including multiple types of learning materials (such as
video lectures, assignments, discussions); and (3) containing
a large number of student historical learning activities. To
obtain student learning activity data, we use Canvas logs
files (Pageview requests). We divide the learning activities
into three types. Specifically, we consider viewing the lec-
tures, downloading the attached files, and previewing the
attached files as the activities associated with video lectures
(L). Activities that include viewing, creating, saving, up-
dating, and submitting each assignment attempt are asso-
ciated with assignments (A). Finally, we consider reading
(marking as read), subscribing, creating, replying, and edit-
ing discussion entries, discussion topics, and direct messages
as discussion-related activities (D).

We separate the data in module-student pairs, as we aim
to model each student’s interactions with each individual
learning module. As each module has its specific deadlines
according the course design, we choose each module rather
than the whole course as the unit of our study. Also, differ-
ent modules usually have different learning objectives, which
will possibly trigger different behaviors. By doing so, we are
able to capture a finer granularity of the data. Finally, we
have 731 students and ∼ 946K learning activities in the se-
lected course.

1http://canvas.net
2Enrolled students who have missed more than 50% of the
assignment submissions during the courses, along with those
who did not receive a final grade, are considered as dropouts
and are disregarded in this study.
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4. BACKGROUND: HAWKES PROCESS AS
A FIT TO STUDENT ACTIVITIES

Since we want to study the interactions between students
and modules from a temporal aspect, point processes are
one of the best choices for our application. Additionally, be-
cause of the interaction irregularities in our application, we
must select a point process that can handle this type of infor-
mation. Specifically, past studies have shown that students’
activities can take place in an irregular manner during var-
ious periods of a course, particularly affected by milestones
such as assignment deadlines and exam dates [16]. As a re-
sult, the point processes that follow a constant rate, such as
Poisson processes, are not the appropriate model for our ap-
plication. In Poisson processes, the main assumption is the
independence between past and future occurrences of the
events, which can not be met in student studying behaviors.
Not only some student activities happen in response to the
course milestones, but also a part of these activities can be
interrelated with each other. For example, a student whose
goal is to start discussing a topic in the discussion forum may
watch a video lecture about the same topic before posting
in the forum. To meet the temporality and interdependence
assumptions of our application, we choose to model student
activities during course modules with Hawkes processes.

One of the most important properties of the Hawkes pro-
cess is its ability to deal with the interrelationships between
future and past activities. This is in contrast with the mem-
oryless Poisson process where all activities are assumed to be
independent of each other. More importantly, the Hawkes
process allows the activities to be excited both exogenously
(by external stimuli, similar to the Poisson process) and en-
dogenously (self-excitement, by internal stimuli). In other
words, the Hawkes process has a branching process point of
view. It assumes that some activities arrive as a result of
exogenous stimuli (i.e. immigrant activities). Then, the im-
migrant activities can trigger their following activities (i.e.
offspring activities), and those offspring activities can fur-
ther trigger their own offspring activities, and so on. That
is, the offsprings of an immigrant activity are structured into
a latent cluster because they are all triggered by the same
immigrant and arrive more closely to each other than the
activities that are in other clusters.

As a result, the Hawkes process can capture more informa-
tion than the Poisson process or other point processes that
use the average base rate as the only model parameter. This
can be very helpful when modeling processes that have the
same number of activities, but with different activity occur-
rence distributions. To demonstrate this ability in Hawkes
processes, we show the event occurrence patterns of two sim-
ulated Hawkes processes with the same number of activities,
but different parameters in Figure 1. We can see that process
1 has more bursty but less regular occurrences compared to
process 2, in which less burstiness but a higher regularity is
observed. Since both simulated Hawkes processes have the
same number of activities in the history, a Poisson model is
not able to capture such differences because the base rates
of the two processes would be the same in a Poisson process.

For an educational application, there is a natural mapping
between student activity events and Hawkes processes. The
smaller student activity chunks toward a goal or deadline can

Figure 1: An illustration of two different processes
that have the same number of occurrences. The x-
axis is the time and the y-axis is the intensity of
event occurrences per time unit. Both processes
have 29 occurrences but with very different charac-
teristics that will be ignored by Poisson processes.

be examples of an immigrant’s offsprings: students break
down the big tasks (the whole process) into small sub-tasks
(latent clusters). The deadline (external stimuli) of a big
task, such as an assignment deadline, can trigger subsequent
activities that are associated with the small tasks. These ac-
tivities arrive closely one after another in a so-called bursty
manner (self-excitement) 3. We demonstrate that Hawkes
processes are a good fit to our application by showcasing
two examples. First, we show that the module-student pair
interactions can not be properly modeled by processes that
only model an average base rate, such as Poisson processes.
To do this, we conduct a goodness of fit test on the inter-
arrival times of module-student pairs in our dataset against
the inter-arrival time distribution of a Poisson process, which
is exp(1). We use the Kolmogorov-Smirnov test to evaluate
the fit’s significance. The mean p-value of this test among
all module-student pairs in our dataset is 2.77E − 6 with a
standard deviation of 6.41E − 5, which shows that module-
student pairs do not fit Poisson processes.

Second, we empirically demonstrate the burstiness of module-
student interactions. To do this, we show that the Pois-
sonian property of only having a constant base rate is not
present in the observed activities of a sample module-student
pair from our dataset. Specifically, we use the 1-lag au-
tocorrelation of activity inter-arrival times to conduct our
test. The inter-arrival time is defined as the difference be-
tween the arrival times of two consecutive activity occur-
rences. We first simulate a Poisson process with the base
rate equal to the average number of activities in our sample
activity sequence. Then, we compare the 1-lag autocorrela-
tion in this simulated sequence with the autocorrelation of
our sample sequence. Since all inter-arrival times in Pois-
son processes follow exp(1), we expect the autocorrelation
of the simulated Poisson process to be 0 (no correlation).
In contrast, we expect to see a non-zero autocorrelation in

3It is worth noting that in regular applications of Hawkes
processes an activity at time t can trigger later activities at
times τ > t. However, in our application, student activities
are triggered by the upcoming deadlines in the future. Sim-
ilarly, earlier chunks of studying sub-tasks at times τ < t
can be offsprings of future studying tasks at time t towards
a deadline. As a result, to make the Hawkes process appli-
cable to our problem, we use a reversed activity timeline for
our data. This does not affect our model, optimization, or
learned parameters.
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a bursty self-exciting sequence. Figure. 2 shows the scatter
plot of activity inter-arrival times in the original sequence vs.
the sequence with lag 1 for each of the two sequences. As we
can see, little autocorrelation is spotted in the Poisson pro-
cess, whereas the pattern of autocorrelation in real data is
shown to be not random. Specifically, we can see that most
of the lag-1 vs. original inter-arrival times for the sample
sequence are scattered around the axes, meaning that dense
activities are often followed by long pauses, and vice versa.

Figure 2: A demonstration of burstiness presented
in the interactions of a sample module-student pair:
1-lag autocorrelation scatter plots shows that long
pauses are often observed after dense and bursty
activities.

It is worth mentioning that our goal is not to directly com-
pare to Poisson models. Rather, we are demonstrating here
that we must model the data in a way that captures long-
term temporal properties of the processes and their irreg-
ularities, rather than static measures such as the count or
average number of activities that only provide one facet of
the whole picture.

5. METHOD: MULTI-DIMENSIONAL
HAWKES PROCESSES TO MODEL
ACTIVITY-TYPE RELATIONS

In this section, we introduce the method we use in this study
to model student behaviors. More specifically, we illustrate
multi-dimensional Hawkes processes and how we apply them
to our application. The previous section illustrated how
Hawkes process is a good fit for student activities as fu-
ture activities in module-student pairs could be related to
the past activities. In those illustrations, all activities in a
module-student pair are considered to be homogeneous or
of one single type. In other words, the self-exciting prop-
erty of the interactions between students and module are
assumed to be uniform throughout different kinds of activ-
ities, whether it is watching a video lecture, participating
in a discussion, or attempting to submit a solution to an
assignment. However, in reality, students might exhibit dif-
ferent learning behaviors or use different learning strategies
towards different types of learning materials. For example,
some students may have more intense and frequent activities
when viewing module lectures but less frequent pace when
it comes to the discussions. Furthermore, when a student
is interacting with two different types of learning materials,
different time dependencies may exist between student’s in-

Figure 3: Hawkes processes in module-lecture di-
mension L, module-assignment dimension A, and
module-discussion D, and their mutual excitation.
A vertical bar is the representation of an activity
occurrence and a red arrow shows the influence of
one activity (head) on another (end).

teractions with the two. For example, a student may of-
ten visit discussion forums very closely after viewing lecture
slides, i.e. strong time dependency between lectures and
discussions (more specifically, discussion after lectures), but
such dependencies may be less obvious for another student.

To address this challenge, we model the students’ activities
on one type of learning material as an individual Hawkes
process, and model all such processes simultaneously as multi-
dimensional Hawkes Processes. In particular, in the rest of
this study, we refer the collection of activities that asso-
ciate with one type of learning material as a Hawkes process
dimension. A multi-dimensional Hawkes model not only al-
lows dependency between past and future activities within
each dimension (i.e. self-excitation) to be modeled, it is also
able to capture the possible dependencies between different
types of activities (i.e. excitation between dimensions). For
example, scenarios such as submitting the first attempt of
an assignment and then starting the second attempt (self-
excitation), or, posting a question in the discussion forum
after watching a video lecture (excitation between dimen-
sions) can be well described by multi-dimensional Hawkes
processes.

In this study, based on the learning material types presented
in our dataset, we consider 3 dimensions to analyze stu-
dents’ learning behaviors, namely video lecture dimension
L, assignments dimension A and discussions dimension D.
To illustrate how multi-dimensional Hawkes processes work
in modeling between-dimension excitation, in Figure 3, we
show 3 sample Hawkes processes that respectively comes
from dimensions L, A, and D. Within each dimension, we
use vertical dashed lines to represent the occurrences of ac-
tivities that take place in that dimension4. Activities in one
dimension can trigger other activities in another dimensions.
This constitutes the influence between different dimensions.
We indicate the between-dimension triggers by the red ar-
rows that point from the parent activity to the offspring.
For example, the third activity in dimension D in this figure
triggers the fifth activity in dimension A as well as the sixth
activity in dimension L.

We now formally explain the multi-dimensional Hawkes model
and how it can be interpreted according to our application.
Suppose that for each module-student pair (m,u), we are

4The height of each bar does not represent intensity and
does not have any particular meaning in this figure
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given a sequence of arrival times for Nmu number of activi-
ties that are associated with module m and student u. We
represent the sequence of each module student pair as in
(m,u) = {τi}Nmu

i=1 , where τi = (ti, di) corresponds to the ar-
rival time of ith activity and the dimension (activity type) di
to which activity i belongs. For example, suppose student u
has 3 total activities in module m. If u submitted an assign-
ment at time 1, then checked a lecture’s slides at time 5, and
had some discussion posted at time 8, then (m,u) = {(t1 =
1, d1 = A), (t2 = 5, d2 = L), (t3 = 8, d3 = D)}, with A,
L and D representing assignments, video lectures, and dis-
cussions respectively. For each dimension d ∈ [L,A,D] and
each module-student pair (m,u), we further use the sequence
Td(τi) = {ti ∈ τi|τi ∈ (m,u), di = d}, to represent the type
d learning activities that student u performs in module m
as a process. According to the multi-dimensional Hawkes
model, we can explain the intensity of Td(τj) according to
the following function:

λd(t) = µd +
∑

d′,tj<t

φdd′(t− tj), (1)

where µd describes the average number of activities occurred
per unit time that are triggered by exogenous stimuli (the
process’s base rate in dimension d); and φ (the kernel func-
tion) represents the function that explains the endogenous
stimuli, or the triggering effects from the previous (tj < t)
activities in the same dimension or another dimension (d′).
In other words, φdd′ controls the total influence that dimen-
sion d exerts on dimension d′, as a function of activity inter-
arrival times (t − tj). Using an exponential kernel function
for φ, the multi-dimensional Hawkes model can be rewritten
as in Equation 2.

λd(t) = µd +
∑
d′

αdd′
∑
tj<t

β exp(−β(t− tj)). (2)

The term αdd′ and the term β exp(−β(t − tj)) can be con-
sidered as the decomposition of kernel function φdd′ , which
respectively describe the influence weight of dimension d
on dimension d′ (including αdd, the self-excitation of di-
mension d itself) and an exponential decay function g(t) =
β exp(−β(t)). Putting together all activity types’ parame-
ters, we use a d-dimensional vector µ = [µd] to represent the
base rates of the processes in all dimensions, and a d×d ma-
trix Φ = [φdd′ ] to represent the between and within dimen-
sion triggering effects. From here, we can write Φ = I ◦ G,
where we have influence matrix I = [αdd′ ] and exponen-
tial decay kernel G = [

∑
tj<t

(−β exp(−β(t − tj))]. Based

on that, we can also describe the aggregated influence of di-
mension d on other dimensions using the following equation:

αd =
1

|{d}|
∑
d′

αdd′ , (3)

which is simply the average influence of dimension d over
all dimensions. A summary of all notations used so far are
shown in Table 1.

This intensity function λd(t) has an intuitive meaning: all
the future activities in dimension d, apart from those that
are triggered by external stimuli, can be triggered by the
previous activities that belong to each of the dimensions d′

(including d itself) according to the influence weight αdd′
(the outer summation). The ones that are triggered by ex-

Notation Description Formula
L Dimension module lectures
A Dimension module assignments
D Dimension module discussions

(tj , di) activity j in dimension di
τi arrival time (ti, di)

(m,u) module m, student u pair {ti}
Td(τi) activities in dimension d {ti ∈ τi|di = d}
µd base rate in dimension d
αdd′ influence of d to d′

αd Influence of dimension d 1
|{d}|

∑
d′ αdd′

β decay parameter
g(t) decay kernel function β exp(−β(t))
φdd′(t) Hawkes kernal function αdd′g(t)
I influence matrix [αdd′ ]
G decay kernel matrix [

∑
tj

(−β exp(−β(t− tj))]
Φ Hawkes kernel matrix I ◦G
λd intensity in d Equation 1

Table 1: Notations and their descriptions.

ternal stimuli take places with rate µd. Furthermore, as a
past activity becomes distant (larger t − tj), its effect on
the occurrence probability of a new event decreases expo-
nentially (i.e. the inner summation). From the branching
process point of view, the kernel function φdd′ is designed in
this way so that αdd′ is the branching ratio. By computing

1
1−αdd′

, we can obtain the expected number of future activ-

ities in dimension d′ that are triggered by an immigrant in
dimension d. This represents the size of an offspring cluster.

To avoid possible confusions, we also want to clarify that by
saying one activity i in dimension d′ triggers another activity
j in dimension d, we mean that the probability of activity j
in the result of activity i is higher than j coming from base
rate µd or triggered by other activities. To see this, one can
interpret Equation 1 as follows: in dimension d, a sequence
of activities come from the base rate µd and each summation
leads to a sequence of activities with parameter φdd′ . Then,
the probability of j being triggered by i is

P (j child of i) =
φdd′(tj − ti)

µd +
∑
ti<tj

φdd′(tj − ti)
. (4)

Parameter Estimation. A common way to find the best
parameters of Hawkes model, given the observed activity ar-
rival times, is to minimize the negative log-likelihood of the
data. Particularly, given the sequence {(ti, di), ...(tN , dN )}
till some time T , the log-likelihood of having influence ma-
trix I and base rate vector µ is of the following form:

L(I, µ) =

N∑
i=1

log
(
µd +

∑
tj<t

αdd′g(ti − tj)
)
− T

n∑
d=1

µd−

∑
d

∑
d′

αdd′

∫ T−tj

0

φ(T − tj)dtj . (5)

In order to find Hawkes parameters that models each module-
student pair, we adopted algorithm ADM4 [45], which made
use of a mix of Lasso and nuclear regularization on top of
the negative log-likelihood. Specifically, Accelerated Pro-
jected Gradient Descend method was used to meet the non-
negative constraints on I and µ as Hawkes parameters only
have realistic meanings when the parameters are non-negative5.
When it comes to the selection of global parameter β, for

5We made our implementation available at
https://github.com/ssahebi/EDM2020-Hawkes.
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each module-student pair, we use grid search with cross val-
idation on the interval [0, 10] with step size 1.

6. EXPERIMENTS
6.1 Testing the Goodness of Fit
To test the goodness-of-fit of the model, in Table 2, we com-
pare the RMSE of the intensity for all dimensions, com-
puted based on the observed module-assignment pairs, for
multi-dimensional Hawkes model (i.e. Equation 1), single-
dimensional Hawkes model and a Poisson model. Specif-
ically, for single-dimensional Hawkes, we treat all activi-
ties as in one dimension, and estimate the intensity of each
dimension using the uni-variate parameters α, β, and µ.
For the Poisson model, in each dimension, we use the aver-
age activity arrival rate as the base rate, and compute the
RMSE for each dimension respectively. As we can see in

L A D
Hawkes (Multi) 0.56 2.34 1.37
Hawkes (Single) 0.71 2.57 1.95

Poisson 3.22 6.91 3.73

Table 2: The goodness of fit to true data for each
model in terms of intensity RMSE.

Table 2, Poisson has the worst fit in all dimensions, possi-
bly caused by the non-Poissonian nature we showed from
the real data. Single-dimensional Hawkes has comparable
but slightly worse performance. One possible reason is that
there might exist differences in terms of base rate and bursti-
ness between dimensions and by modeling all types of learn-
ing materials as one activity type, the model can only cap-
ture the average trend in all dimensions. To visualize how
the multi-dimensional Hawkes processes fit the real data, we
also present in Figure 4 the estimated intensity (blue) and
true intensity (black) of a sample module-student pair. As
we can see in this figure, the model mostly has a good fit to
the real data Only at some time points, it underestimates
the expected number of activities that are about to happen.

6.2 Model Parameter Analysis: Trends and
Differences Between Dimensions

In this section, we analyze the estimated Hawkes parame-
ters within and between different dimensions, to show their
general trends and differences across different dimensions.

We start this part with a correlation analysis of all Hawkes
Parameters, to show the general trends and possible differ-
ences between dimensions. Particularly, we calculate the
Spearman rank correlation coefficients between the parame-
ters that are learned for all module-student pairs as is shown
in Figure 5. Recall that parameters αdd′ , µd, β and αd re-
spectively is the between-dimension (or within if d = d′ ex-
citation, base rate, decay rate (Equation 2) and aggregated
influence of dimension d (Equation 3) for d ∈ [L,A,D].

We can see that self-excitation within dimensions (i.e.αdd)
are generally negatively correlated with base rates µd of the
same dimensions and decays β. This means that as the ex-
ternal stimuli leads to more and more expected arrivals, i.e.
when regular activities come from the base rate, the effect
of each previous activity on the future ones tends to de-
crease, i.e. self-excitation gets weaker. In other words, in

Figure 4: Estimated and true intensity of a sample
module-student pair, modeled by multi-dimensional
Hawkes.

sequences with higher regularity, less burstiness is observed.
Also, it means that activities that have a slower decay rate
usually arrive in a more bursty manner. Mapping to our
application of students interacting with learning modules,
by using the branching process point of view, higher α sug-
gests higher expected number of activities in a latent cluster
as sub tasks. On the other hand, the negative correlation
also means a lower base rate and lower number of immi-
grants. In other words, the number of such latent clusters
are also fewer. One possible interpretation is that in each
dimension, students divide their big learning task into sub
tasks and work for each individual sub task in a relatively
bursty manner. This also suggests that students barely have
behaviors that are both highly intense and highly frequent
(i.e. large µd and αdd). Similarly, both highly sparse and
highly mediated activities (i.e. small µd and αdd) are rarely
observed neither, as the correlation between µd and αdd is
positive for all d ∈ [L,A,D].

Comparing the parameter correlations across different ac-
tivity types, we can see that dimensions L and D, have
high within and between-dimension influence correlations.
For example, the correlation between αLL and αLA is 0.97
in dimension L and correlation between αDL and αDA is
0.96. This implies that the influence of discussion and video
lecture activities on other dimensions are almost consistent.
For example, if the influence of video lectures on assignments
is high, it is likely that the influence of video lectures on dis-
cussions is high too. Similarly, if the pattern of interacting
with video lectures in a module is bursty (high αLL), it is
likely that other activity types triggered by video lectures
are also bursty. However, the influence of assignment activ-
ities on discussions and video lectures are not significantly
associated with assignment activity’s self-excitement. That
could mean that after a student has a bursty set of assign-
ment activities in a module, the student is less likely to have
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a bursty video lecture activities. Similarly, the influence of
assignment activities on discussions has a low correlation
with the influence of assignment activities on video lectures.
For instance, if a student starts an assignment intensively
very closely after some intensive watching of video lectures,
the student is less likely to have high intense discussion ac-
tivities after assignments. We can also see that assignment-
triggered activities’ burstinesses are less correlated with the
base rates (i.e. αAD vs. µd). This means that the frequency
of activities that come from external stimuli does not affect
the influence of assignment activities on consequent activi-
ties in other dimensions. Taken altogether, it is interesting
to see that activities that are associated with assignments
tend to have different exciting patterns compared to video
lectures and discussions. This can show the influence of
deadlines, as the assignments are the only activity type that
have deadlines and are going to reflect student grades in this
dataset.

Figure 5: Spearsman Rank Correlation Coefficients
between Hawkes Paramters.

6.3 Student Behaviors Characterized by Model
Parameters

In the previous part, we were interested in showing the cor-
relation between Hawkes parameters that represented within
and the between-dimension relationships. In this part of the
analysis, we focus on the different behaviors that are ob-
served according to the learned parameters for each module-
student pair. Additionally, we are interested to see if these
learned Hawkes parameters are proper representatives for
student procrastination. To do so, we first define a measure
that can represent student procrastination in the absence of
self-reported data. In the following, we go over some impor-
tant assumptions, definitions and time measures that we use
for procrastination.

Defining Delay as a Procrastination Measure. We
assume that each student works on one module at a time,
meaning that they do not work on several modules at the
same time. Furthermore, we assume that submitting the last
attempt of the module’s assignment marks the end of study-

Figure 6: Illustration of delay measures. As in Fig-
ure 3, we use blue, green and yellow dashed lines
to represents activities from dimension L, A and D
respectively.

ing this module. According to these assumptions, we define
module i’s end time for student j, teij as the time stamp
when the last module assignment was submitted. We then
define the start time tsij as the earlier time stamp between
tei−1,j and the available time for module i. In other words,
when student j finishes learning module i−1, if module i has
already been made available, then their end time on module
i−1 is defined as the start time for module i. Otherwise, the
start time is going to be the time when module i becomes
available or is published online. In each dimension d, we use
tdij to denote action time, which is defined as the time that
the first activity in dimension d takes place between start
time tsij and end time teij .

Having the module start time and student action time in
dimension d, we can calculate how late a student started
working on activity of type d in the module using tdij − tsij .
To factor in the duration differences between different mod-
ules, we normalize this value by the module duration. Even-
tually, we define the following measure to quantify student
j’s normalized delay in dimension d that is associated with
module i:

delayd =
tdij − tsij
teij − tsij

(6)

One of the motivations to define the delay according to start
time tsij is that, sometimes module i + 1 is available before
the assignment deadline in module i. By this time, student
j might still be working on module i. So, it would be un-
fair to count the time after module i + 1 is available and
before student j’s assignment submission as the procrasti-
nating time for student j on starting module i+ 1. On the
other hand, if student j finishes the assignment in module i
earlier than the deadline of the assignment, this extra time
they earned from the early submission can be used toward
the next available module. If the student does not use this
time, it will be considered as a cramming behavior toward
the next module i+ 1. An illustration of these definitions is
presented in Figure 6.

Observing Two Behavior Groups. We now focus on
the distribution of the learned Hawkes parameters to see
if we can observe any behavioral patterns across different
student-module pairs. Specifically, in Figure 7 we present
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the distribution of the learned αLL, αAA, and αDD. We
can clearly observe two spikes in the density distribution of
influence parameters, more prominently in αLL and αAA.
Combining this observation with the correlation analysis
in previous section, we can see that there are two types
of module-student interactions: the ones with higher fre-
quency and lower burstiness versus the ones with lower fre-
quency and higher burstiness. To statistically show the dif-

Figure 7: Density distribution of αM , αA, αD.

ference between these two types of interactions, we first clus-
ter student-modules according to their αLL and αAA, into
two groups using the K-means clustering algorithm. Then,
we test to see if the learned Hawkes parameters, i.e. ex-
citation parameters αdd′ , base rate µd, decay β and aggre-
gated influence αd for d ∈ [L,A,D], are statistically different
across the two groups. Particularly, we conduct the Kruskal-
Wallis test on each learned parameter between the two clus-
ters. The average values of the parameters for each of the
two clusters are shown in Table 3. Since the p-values for all
tests are smaller than 0.0001, we do not show them in the
table. These small p-values suggest that the differences be-
tween clusters are statistically significant for all parameters
between the two types. This indicate that the differences
between the two types are meaningful.

Examining both groups more closely, we can see that, the
aggregated influence of dimension A, i.e. αA, is the high-
est among all 3 for both type 1 and type 2 groups. With
that being said, this influence majorly comes from the self-
excitement in dimension A, i.e. αAA. µA is also the highest
among all 3 dimensions. Combining these observations, we
can see that assignment-related activities arrives more fre-
quently and are highly influential in triggering consequent
activities, especially the assignment-related ones. Also, we
can see that on average type 2 group has a much smaller base
rate for video lectures (µL) and discussions (µD), meaning
less density and regularity in those activities compared to
type 1. However, In assignment-related activities, the base
rate (µA) as well as aggregated influence in dimension A
(αA), are higher in type 2 group, which suggests an over-
all denser and more intense assignment-related activities ar-
rivals comparing to type 1 group.

Now if we look at the differences between two groups in
terms of between-dimension relationships, we can see that
αAL, i.e. the triggering effect of assignment to consequent
video lecture activities (and similarly, αAD: the assignment-
triggered discussion activities) is much lower in type 1 group
compared to type 2 group. This difference is also notable

in other between-dimension αs. For example, the influence
of assignments on video lectures (αAL) is way less than the
influence of video lectures on discussions (αLD) in type 2
group, while this difference is less in the type 1 group. This
suggests that the interaction patterns with assignments in
type 2 group are almost inconsistent with other dimensions.
We note that, although the type 1 and type 2 clusters are
created according to αLL and αAA parameters only, we see
significant differences in all other parameters of the two
groups.

Delay in the Discovered Groups. Here, we aim to
understand if the two behavior types that we discovered in
the previous part are associated with measures of procras-
tination. Particularly, we evaluate the differences observed
in the delay measures defined in Equation 6 for the two
clusters. The results are presented in Table 4. Again, all
p-values are smaller than 0.0001. A major observation is
that type 1 and type 2 have very different delays in all di-
mensions. Specifically, the delay of each dimension in type
1 group is much less than the corresponding delays in type
2 group. As a result, we can call type 2 group as the de-
lay group and type 1 group as the non-delay group. Given
that the type 1 and type 2 behavioral clusters are formed
based on Hawkes model parameters only, this important ob-
servation demonstrates that the learned Hawkes parameters
can clearly represent delay as a procrastination measure.
Also, we can see that in delay (type 2) group, on average,
students start the first discussion way after the first assign-
ment activity takes place (delayD > delayA). However, in
the non-delay (type 1) group, on average the first assignment
activity happens after some discussion (delayD < delayA).
We can see that in both groups, the video lecture activities
come before discussions or assignments.

Combined with our observations from the previous analysis,
we see that not only the delay group start the first activity
in each dimension much later than the other group, they also
have a much less base rate µL and µD. Consequently, we
can see that the delay group (type 2) has less frequent but
more bursty discussion and lecture-related activities, while
the non-delay group activities arrive in a less bursty but
more frequent manner in these two dimensions. On the
other hand, assignment activities are denser and more in-
tense for the delay group. This combined observation shows
that the Hawkes parameters can represent more informa-
tion about student procrastination, compared to the delay
measure alone.

6.4 Student Grades Associated with Model Pa-
rameters

In the previous section, we concluded that the learned Hawkes
model parameters not only represent delays, but also can
capture more procrastination-related behaviors. In the rest
of this section, we are interested in exploring if the additional
trends captured by the Hawkes model can be more mean-
ingful in association with student grades, compared to the
delay parameter. In particular, we are interested in the asso-
ciation between delay and student grades from the Hawkes
processes point of view.

Recall that delayd defined in Equation 6 measures the nor-
malized delay of the first activity in dimension d of the
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d αdL αdA αdD αd µd β

Type 1
L 0.558±0.149 0.263±0.178 0.289±0.185 0.381±0.524 0.0003±0.0006
A 0.107±0.272 0.820±0.125 0.101±0.264 0.462±0.459 0.0003±0.002 0.663±0.692
D 0.322±0.393 0.305±0.393 0.790±0.151 0.394±0.325 5.52E-5±1.8E-4

Type 2
L 0.874±0.108 0.823±0.135 0.816±0.134 0.795±0.582 4.82E-5±9.86E-5
A 0.019±0.124 0.864±0.061 0.018±0.124 0.799±0.582 0.0004±0.004 0.425±0.249
D 0.699±0.429 0.696±0.430 0.936±0.092 0.590±0.238 1.19E-5±5.92E-5

Table 3: Statistics of Hakwes parameters αdd′ , µd, β and αd for d ∈ [L,A,D] in the two clusters.

delayL delayA delayD
Type 1 0.08±0.228 0.575±0.411 0.338± 0.385
Type 2 0.108±0.274 0.722±0.360 0.819±0.337

Table 4: Statistics of delay measures delayL, delayA
and delayD in two clusters identified by Hawkes pa-
rameters.

student-module pair. Here, we define a new delay measure
based on both learned parameters of the Hawkes process and
delayd. We then study if this newly defined delay measure
performs better in association with student grades, com-
pared to delayd. Specifically, after showing the between-
dimension excitation interrelationships, it is reasonable to
assume that these interrelationships are important in the ac-
tivity delays as well. For example, knowing that assignment-
related activities can trigger followup activities in all 3 di-
mensions, delaying the assignment-related activities also po-
tentially causes consequent delays in other dimensions. Mo-
tivated by this, we propose delayHd by combining delayd and
between-dimension Hawkes parameters as follows:

delayHd = delayd +
1∑

d′ 6=d
1

1−αdd′

(7)

As we mentioned in Section 5, 1
1−αdd′

can be seen as the

statistically expected number of activities in a latent cluster
that are triggered by an immigrant. The second term in
Equation 7 basically quantifies the potential loss per time
unit in terms of triggering other dimensions’ activities by
delaying in dimension d. Taken altogether, delayHd describes
the total delays in all 3 dimension that are associated with
delay in dimension d.

To see if delayHd provides more grade-related information
compared to delayd, we look at the Spearman’s correla-
tion between these two measures and students’ assignment
grades. The result of this correlation analysis is presented
in Table 5. Our first observation is that the correlations
between both delay measures with student grade are neg-
ative. However, this correlation is not as significant for
delayd, compared to delayHd . This is specially stronger in
the assignment dimension. The reason for this can be two-
fold: (1) comparing to delayd, delay

H
d not only captures

how late the action was taken in each dimension, it also pro-
vides some insights on the student behavior trends through-
out their learning process, and (2) as delayHd describes the
time-dependencies between dimensions, it is more power-
ful in explaining student activities in all dimensions as a
whole, compared to the point estimate summaries of pro-
crastination. Particularly, one may overlook the importance
of delaying the discussion-related activities on assignment
grades when considering the delayD measure only. However,
a stronger correlation between delayHD and grades suggests
that early start of the discussion-related activities is almost
equally important as starting the video lectures early, prob-
ably because of the triggering effect of dimension D and the

d L A D avg.

delayHd -0.339*** -0.125* -0.329*** -0.264**
delayd -0.240** -0.070. -0.114* -0.141*

Table 5: Spearman’s correlation with respect to as-
signment score for each delay measure. Significance
level is denoted as follows: p<0.001*** p<0.01 **
p<0.05* p<0.1.

potential loss that its delay causes to all 3 dimensions.

7. CONCLUSION
In this work, we proposed to use the multi-dimensional Hawkes
processes to model procrastination in student learning be-
havior. We showed that multi-dimensional Hawkes processes
have a better fit to student activity counts in comparison
with their single-dimensional version and the Poisson pro-
cesses. By analyzing the correlations between the learned
parameters in the Hawkes processes, we concluded that more
bursty student sequences have less regular activities in them,
the burstiness of video lecture and discussion-related activ-
ities vary similar to each other, and the deadlines highly
affect the arrival times of assignment-related activities. We
showed that Hawkes parameters can reveal two types of be-
haviors in the data that are associated with different delays
- the delay group tends to have high within and between-
dimension excitation but low base rate, and the non-delay
group have a high base rate and a lower excitation in all
dimensions. According to the branching processes point of
view, we gave a realistic interpretation on these types of
behaviors: non-delay group divide big tasks into many sub-
tasks (high base rate) which leads to more frequent and less
dense activities throughout the learning process. On the
other hand, delay group tend to intensively work in one di-
mension for a shorter period of time, followed by long pauses
(high excitation but low base rate). We also showed that the
Hawkes model parameters represent richer information com-
pared to the delay measure alone by defining a new Hawkes-
based delay measure and associating it with student grades.
Our experiments demonstrated that the between-dimension
dependencies in the multi-dimensional Hawkes model better
explain student grades.

This study is limited in the number and variety of the datasets
that we have experimented on. In the future, we plan to ex-
plore more datasets from various disciplines and platforms.
Another limitation is the single measure that we use to eval-
uate procrastination (delayd). As a followup to this study,
we aim to define and use more procrastination indicators,
including the self-reported procrastination measures.
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