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Natural products possess a wide range of bioactivities with potential for therapeutic usage. While the distribution
of these molecules can vary greatly there is some correlation that exists between the biodiversity of an envi-
ronment and the uniqueness and concentration of natural products found in that region or area. The Caribbean
and pan-Caribbean area is home to thousands of species of endemic fauna and flora providing huge potential for
natural product discovery and by way, potential leads for drug development. This can especially be said for

marine natural products as many of are rapidly diluted through diffusion once released and therefore are highly
potent to achieve long reaching effects. This review seeks to highlight a small selection of marine natural
products from the Caribbean region which possess antiproliferative, anti-inflammatory and antipathogenic
properties while highlighting any synthetic efforts towards bioactive analogs.

1. Introduction

Natural products (NPs) have been reported to exhibit a wide range of
medicinally relevant bioactivities and therefore play a dominant role in
the discovery and development process towards lead compounds for
human medicine. These pharmaceutically relevant small molecules
bridge an important gap in antipathogenic, anticancer, anti-
inflammatory and immunomodulatory efforts that nonchemical thera-
peutic practices would simply not be able to accomplish alone. Also
known as secondary metabolites due their mechanism of synthesis or
specialized metabolites due to their potential use in primary life sus-
taining roles, these compounds are synthesized mainly by bacteria, fungi
and plants and can be unique to an organism or a specific taxonomic
group. There are various reviews on NPs from these organisms in the
literature, in fact, there are over 326,000 known NPs to date according
to the SuperNatural 2 general database.! Even then, overlap in structural
similarity and rediscovery of known NPs may hint that existing dis-
covery models have been largely exhausted, prompting other areas for
drug discovery to arise.>® For instance, high-throughput screening
(HTS) has gained much popularity over the past few decades.* However,
while the advent of HTS has brought about the potential for faster
identification of biologically relevant molecules and even yielded some
new drugs,” there is an overall lack of pharmaceutical properties from
these synthetic compounds due to a lack of chemical diversity.® In many
cases NPs owe their success in drug discovery to their structural diversity
and therefore are still needed to increase the potential for the
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identification of biologically relevant molecules.”

There is some correlation that exists between the biodiversity of an
environment and the uniqueness of natural products found in that region
or area.® That said, further exploration of biologically rich areas with
large numbers of endemic species, better known as “biodiversity hot-
spots”, hold a better chance of changing the narrative that the existing
model of drug discovery through NPs may be exhausted.

Though most directly obtained through harvesting from their natural
sources, this process can at times be tedious, time consuming and
expensive.” Moreover, supply can be greatly outweighed by demand, or
can be inconsistent due to varied biosynthesis caused by conditions
differing from the ecological environment of the producing organism.
Total synthesis serves to fill in that gap. Throughout the years, a wide
variety of NPs with medicinally relevant bioactivities have been syn-
thesized in academic research labs and pharmaceutical companies
around the world.'*'! In many cases, total synthesis was combined with
a greater exploration of chemical space through the production of cor-
responding analogs of target NPs which, themselves, could increase the
number of bioactive compounds for therapeutic usage but also ulti-
mately expand understanding of the mechanism of action for their
respective Nps.!213

This review seeks to provide information on the combination of the
aforementioned by focusing on a small selection of synthesized natural
products with medicinally relevant biological activity originally isolated
from the Caribbean and pan Caribbean region along with respective
bioactive analog campaigns of select compounds. This region was
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chosen because many of the countries in this area rely heavily on
tourism and travel as a major contributor to their gross domestic product
(GDP), with many island nations dominating the top twenty spots
worldwide for the aforementioned.'* Recent unfortunate circumstances,
namely destruction of natural resources caused by hurricane Dorian, the
strongest Atlantic hurricane on record to directly impact landmass, and
travel restrictions due to COVID-19 related precautions, have greatly
impacted this major industry and, subsequently, variably affected
financial stability in this area. Thus, this review serves to highlight the
potential for lead drug discovery in this region towards investment in
industries orthogonal to tourism, to dilute its share on respective GDPs.

2. Isolation, to synthesis and beyond

While efforts in natural product isolation help to generate new lead
molecules for drug discovery and development, analog production offers
an alternative, as well as an extension, to the classical drug discovery
pipeline by providing a basis for further chemical and biological studies
on bioactive secondary metabolites. There can be many takeaways from
analog development. For instance, the creation of a dimensionally
similar minimized scaffold may maintain or even improve biological
activity while overcoming limitations of synthetic accessibility, viability
in approach, or analysis capabilities. Alternatively, one may discover or
introduce new and exciting biological properties through varied struc-
tural modifications. Herein, we present two such examples from our own
laboratory of the diversification and target identification of antimicro-
bial natural products enabled by total synthesis as an inspiration for
future work on lesser explored molecules below.

2.1. Carolacton

One specific example of the prior comes from our lab in the total
synthesis of the natural product Carolacton (1). Carolacton is a sec-
ondary metabolite isolated from the myxobacterium Sorangium cellulo-
sum, with the ability to affect Streptococcus mutans cells transitioning to a
biofilm at nanomolar concentrations. After completing the total syn-
thesis of this molecule in 2014,'° elucidation of the cause of biofilm-
specific activity in Streptococcus mutans was limited through molecular
genetic techniques as the bioactivity of carolacton was monitored by
LIVE/DEAD staining and CFU/mL counts which have to low throughput
analysis of carolacton-treated cells. We sought to promote further
analysis of the activity of carolacton by creating a simplified analog of 1
with quantifiable biofilm inhibitory activity. In 2017 we were able to
demonstrate that a simplified analog, named C3 (2), inhibited 50% of
biofilm formation with an ICsg of 63 pM. It is significant to note that this
initial observation of biofilm inhibition was the first instance of a
quantifiable ICs, value for carolacton or its analogs.'® This finding also
showed the importance of chain length and, in a follow up paper in
2019, we were able to simplify the carolacton side chain while over-
saturating the carolacton macrocycle to produce a drastically simplified
analog, (+)-2 (3).This analog not only maintained activity with an ICsg
of 44 pM but also allowed for the first observance of a minimum
inhibitory concentration (MIC) value for any compound structurally
related to carolacton at 250 pM.'” This analog effectuated the pre-
liminary screening of S. mutans mutants, aiding in the identification of a
carbon catabolite control protein (Ccpa) as the putative target of 3.
Hence, this analog provided an additional tool for which further bio-
logical data could be garnered in future assays. Though carolacton is not
from a particularly diverse region, much less so the Caribbean, it’s story
illustrates an important takeaway from analog development, namely the
production of a simplified scaffold which not only maintained bioac-
tivity, but also provided an additional means of analysis through that
simplification. (See Figure 1)
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Carolacton (1)
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Figure 1. Progression towards simplified Carolacton analog (++)-2.

2.2. Baulamycins

Another example from our group comes from our synthesis of bau-
lamycins A (4) and B (5). The baulamycins were isolated from an extract
derived from Streptomyces tempisquensis (Playa Grande, Costa Rica) and
were shown to inhibit in vitro bacterial iron acquisition.'® The initial
isolation paper of these compounds showed discrepancies in their broad
spectrum activity, particularly against Staphylococcus aureus in both iron
rich and iron depleted media (IRM and IDM respectively). This incon-
sistency, along with ambiguity in absolute and relative stereochemistry
of 4 and 5, prompted our efforts to leverage diverted total synthesis
(DTS) toward a better understanding of the biological mode of action of
these compounds. Through the total synthesis of the baulamycins along
with eight rationally designed analogs (8-16) (Figure 2), we were able
to identify a common chemotype as well as attribute broad spectrum
activity in iron-rich media to nonselective membrane lysis which was
further supported by uptake experiments.'® Moreover, the simplified
analog (-)-11 provided improved potency with an MIC of 8 pM in both
IRM and IDM when compared to values of 4 (125 pM and 125 pM) and 5
(500 pM and 250 pM). This ability to discern previously unknown
mechanisms of action represents yet another important takeaway from
analog development. These aspects, when applied to already potent
bioactive small molecules, can lead to the discovery of previously un-
known information regarding mechanism of action (MOA) or even the
discovery of more easily accessible natural product derivatives which
maintain necessary bioactivity. Not included in this short section, but of
equal importance, are methods and strategies to improve solubility,
stability, absorption, and dissolution of bioactive secondary metabolites
which are pertinent when it comes to the bioavailability of these NPs in
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Figure 2. Baulamycins A and B along with 8 analog derivatives used in MOA identification. The two MIC values (in pM) refer to iron rich media and iron depleted

media respectively (S. aureus SH1000).

human medicine. Indeed, when the above-mentioned is combined with
natural product isolation from biodiverse regions, a powerful method for
lead drug discovery emerges. Thus, this review seeks to not only high-
light secondary metabolites from the Caribbean region with interesting
bioactivities but also to prompt the future usage of methods like DTS,
diversity-oriented synthesis (DOS)/ function oriented synthesis (FOS),
and complexity-to-diversity strategies (CTD) towards the development
of bioactive NP analogs and thereby stimulate discovery.

3. The Caribbean, the cradle of marine natural product research

The Caribbean is an archipelago of habitat rich tropical and semi-
tropical islands, comprised of nearly 30 nations and territories stretched
across 4 million square kilometers of ocean. Due to this region’s geog-
raphy and climate it is one of the world’s greatest centers of endemic
biodiversity, and hence one of the planet’s 35 biodiversity hotspots. In
fact, there are over 11,000 plant species on land and a further 12,046
species have been reported to occur in the Caribbean sea, many of which
are endemic to the region.’’ As said before, bioactive secondary me-
tabolites can have a variety of effects towards the survival of their parent
organisms by acting as necessitating factors to attract, deter, or kill other
organisms.”! In turn, one can assume that a greater variety of secondary
metabolites with novel structures are produced in environments with a
larger biodiversity, as to provide producers with a selective advantage
against competing organisms, induce antimicrobial effects against
pathogenic microbes, or even to act as an adaptation to nonbiological
impacts which bring about the aforementioned biodiversity such as light
or elevated temperature. While there is an abundance of natural prod-
ucts derived from the various common species of plants in this region,
many of which are endearingly referred to as “bush medicine” by locals
and natives (eg. love vine, cerasee, and arrowroot), this review will
focus on marine derived natural products (MNPs). This is because many
MNPs are released into the water, where they are rapidly diluted and
hence need to be highly potent to have any effect; though it should be
noted that there are other methods for these compounds to take effect as
well which may not require high potency (contact aversion, prediation
etc).?>?® In turn, it is widely accepted that a large number of natural
products and novel chemical entities exist in the ocean, particularly in
biodiverse areas, with biological activities that may be useful towards
lead drug discovery for the treatment of various human diseases.

Many MNPs are derived from various species of gorgonians, tuni-
cates, algae, mollusks, and sponges, and the Caribbean is home to a wide
variety of the aforementioned.?’ In fact, in the last 60 years there have
been over 1296 collections of specimens from these organisms from

around the world in search of new and novel MNPs.”* Remarkably, a
staggering 55% of these collections have been from the phylum porifera.
This preference may be because a great diversity of symbiotic organisms
often thrive inside or on the body of a sponge. This unique tolerance
towards symbiotic organisms combined with their simple body organi-
zation, allows for a plethora of evolutionary solutions along with pro-
duction of various bioactive secondary metabolites.?” Unfortunately,
prevalence of the necessary species for novel natural product biosyn-
thesis does not coincide with expanded efforts to retrieve them. In recent
years, collection for specimens for NP isolation towards development of
pharmacological products has slowed. In fact, from 2010 to 2014 there
were a total of seven collections worldwide yielding pharmacological
products from the ocean with zero collections occurring from 2012 to
2014.%* Though this may hint that marine natural product isolation may
be losing interest from federal funding industries and pharmaceutical
companies, recent reviews on the matter show otherwise. For instance,
there has been a steady increase in the number of new compounds and
papers regarding marine natural products over the years.%‘27 Moreover,
discovery efforts from isolation groups in some areas of the region
remain strong (e.g. Puerto Rico), however, efforts towards this method
of NP discovery across the region can improve. After all, MNP research
has its origin in the Caribbean with the discovery of two nucleosides,
spongothymidine and spongourdine isolated from the Caribbean sponge
Cryptotethya crypta in the 1950’s, which served as lead structures for the
development of the synthetic antivirals cytarabine and vidarabine,
however, this story has been extensively covered in other reviews and
will not be belabored here.?!

Though several NPs have been isolated in specific areas in this re-
gion, many of the species that the following natural products were
collected from can be found throughout the Caribbean. It must be noted
that because the vast majority of specimen collections were conducted
by academic researchers with limited resources as opposed to large
pharmaceutical corporations, a majority of the following have only been
tested in bioassays for cancer cytotoxicity or with narrow bioassays
overall for targeted effectiveness. That said, the potential for natural
products isolated in this area to have use in treating cardiovascular
diseases, central nervous system disorders, diabetes, immunological
disorders, and infections (e.g. bacterial, viral, parasitic etc.) remains
largely unexplored.”® What follows is a small sampling of natural
products isolated from this region which have some pharmaceutical
relevance and undergone analog development and yielded some success.
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4. Natural products which have benefited from analog
development

Natural products greatly contribute to the discovery and develop-
ment of cancer chemotherapy drugs as over 70% of compounds in
clinical use have some origin in a bioactive secondary metabolite.”® In
fact, from the 1940’s to the end of 2014, of the 175 small molecules
approved, 49% were either directly derived from natural products or
natural products themselves.”” It should come as no surprise then, that
several compounds with cytotoxic activity against various cancer cell
lines have been isolated from the Caribbean region. Most notably, Tra-
bectedin (14) (Figure 3) was isolated from the Caribbean ascidian
Esteinascidia turbinata by Wright et al.>* and Rinehart et al.>'. Acting as a
novel DNA alkylator with broad spectrum antineoplastic activity, Tra-
bectedin (ET-743, Ecteinascidin 743, Yondelis®) was the first anticancer
marine natural product approved for clinical use in cancer
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chemotherapy and is utilized in the treatment of advanced soft tissue
sarcoma as well as relapsed ovarian cancer when used in combination
with pegylated liposomal doxorubicin. > Though first synthesized by the
Corey group in 1996, 14 is now commercially made through a semi-
synthetic process starting from cyanosafracin B, a readily available
antibiotic from the bacterium Pseudomonas fluorescens, to coincide with
demand.** In terms of analogs, lurbinectedin (PM1183, ZEPZELCA™)
(15) was recently FDA approved for the treatment of metastatic small
cell lung cancer®® while zalypsis (16) is in phase II studies for the
treatment of endometrial and cervical cancer.*®

(+)-Curcuphenol (17) was originally isolated from the marine
sponge Didiscus flavus (Long Island, Bahamas)®’ but was later isolated
from several marine sponges Didiscus oxeata, Epipolasis sp., and Myr-
mekioderma styx throughout the Caribbean.®”>° The compound appears
to have a wide range of activity. While also showing some cancer tar-
geting activity in an independent manner of a p53 mechanism, both 17
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Figure 3. Examples of MNPs isolated from the Caribbean and pan-Caribbean region with pharmaceutical relevance along with notable analogs.
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and 18 have reported activity against MRSA, with 17 also showing ac-
tivity against Candida albicans and Cryptococcus neoformans.’® 17 even
possessed antimalarial activity against Palsmodium falciparium D6 and
W2 clones (MIC = 3.6 pg/mL and 1.8 pg/mL respectively). These en-
antiomers have been synthesized several times’' *° and due to their
wide range of activity have also underwent analog studies. Most notably,
Gul et al. produced a pyridine analog 19 (ICso = 0.6 pM) which was
shows more potent in vitro against Leishamania donovani than pentami-
dine, the drug of choice for the treatment of Leishmaniasis, a mosquito
borne protozoan disease that occurs in over 88 countries.*® Successful
studies like this show the potential for the identification of the varied
bioactivities of NPs though analog development.

Salinosporamide A (NPI-0052, Marizomib) (20) is a unique beta
lactone which was isolated from a culture of Salinospora tropica (Un-
specified, Bahamas) and exhibited potent activity against the human
colon adenocarcinoma tumor cell line (HCT-116) (ICso = ~2 ng/mL) as
a 20S proteasome inhibitor. This activity prompted rapid clinical
development eventually leading to this compounds evaluation in Phase I
human clinical studies as well as a wide range of non-clinical studies
(myeloma, colon, pancreatic, non-Hodgkin’s Lymphoma etc).”” 20 is
now in phase II clinical trials and through optimization studies by
Nguyen et al. ultimately lead to the development of a synthetic deriva-
tive (-)-homosalinosporamide A (21) which maintained both
chymotrypsin-like and caspase-like activity to that of 20.*®

(+)-Discodermolide (22) was isolated from the deep water Carib-
bean sea sponge Discodermia dissoluta (Lucay, Grand Bahama Island,
Bahamas) and was found to inhibit in vitro proliferation of cultures
murine P388 leukemia cells (ICsg = 0.5 pg/mL).*’ This compound was
found to attack cancer cells in a similar manner to the successful cancer
drug Taxol® by stabilizing microtubules involved in many aspects of
cellular biology, and thus, showed promise as a potent anticancer drug.
This MOA prompted several total syntheses of this molecule and even-
tually analog studies by several groups°’>, even including a commer-
cial scale total synthesis by Novartis °° Though initial clinical trials were
not successful, this is still a promising lead structure. An example of
successful analog development comes from, Smith et al. who produced
several analogs of (22) with one analog 51 (23) sharing similar in vitro
ICsp values against A549 (1.8 nM) and SKOV3 ovarian carcinoma cells
(6.1 nM) to that of Taxol® (1.4 nM and 3.3 nM respectively) improving
on the potency of the parent molecule (3.8 nM and 31.3 nM respectively)
and providing a potent, synthetically accessible potential alternative to
Taxol®.°
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In 2009 Ammosamides A and B (24 and 25) were isolated from a
culture of Streptomyces strain CNR-698 collected at a depth of 1618 m
(Little San Salvador, Bahamas). These compounds were originally found
to possess activity against HCT-116 cells by targeting the cellular cyto-
kinetic protein myosin, each with ICsq = 320 nM.°”-°® Throughout the
next few years 25 would be synthesized several times by notable
groups®”°?, however, in 2012 Reddy et al. synthesized several analogs
and tested for their quinone reductase 2 (QR2) activity. Though many of
the analogs showed decreased activity the most potent of the bunch, a
derivative methylated at the 8-amino group (26), resulted in an increase
in QR2 inhibitory activity from an ICsy of 61 nM to an ICsq of 4.1 nM.%
Though there are other examples of ammosamide analogs®” this specific
case efficiently demonstrates that small changes in structure can effec-
tively improve potency of an already potent natural product.

(+)-Neopeltolide (27) is a macrolide isolated from the deep-water
sponge of the Neopeltidae family, (442 m off Northwest Coast, Ja-
maica). 27 was found to be a potent inhibitor of the in vitro proliferation
of A549 human lung adenocarcinoma, NCI-ADR-RES human ovarian
sarcoma, and the P388 murine leukemia cell lines, with ICso values of
1.2, 5.1, and 0.56 nM, respectively by targeting mitochondrial complex
I11.°>%° There have been several syntheses of 27 since its isolation and
numerous analogs have been produced for SAR studies.®”” 7 Most
notably, Fuwa and coworkers developed (-)-8,9-dehydroneopeltolide
(28), an analog which was more potent against A549 (0.5 nM) cells, and
maintained activity against MCF-7 (33 nM) and P388 (0.72 nM)
compared to the parent macrolide (ICsg values of 1.6, 19 and 0.50 nM
respectively).”! 29 is a further structurally simplified analog by Fuwa
et al. which showed general retention of activity when tested against
A549 cells (IC5p = 43.9 nM) while noticeably reducing step count for a
potent cancer cell line inhibitor while identifying tolerate areas for
structural modification in future SAR studies.

Lastly, Carmaphycins A and B (30 and 31) were isolated from the
cyanobacterium Symploca sp. (Unspecified, Curacao) and exhibited
potent proteasome inhibition (ICsg = 2.5 and 2.6 nM, respectively) and
potent cytotoxicity against lung (H-460: EC59 = 9.0 and 6.0 nM,
respectively) and colon (HTC-116: EC59 = 19 nM and 43 nM, respec-
tively) cancers.”? Though excellent potential anticancer agents, these
compounds are included, instead, for the analog development of potent
antimalarial compounds based off of the structure of 31. Lamonte et al.
sought to produce an antimalarial proteasome inhibitor with low host
cytotoxicity and improved antimalarial potency. This was done by
leveraging the known cytotoxic effects and potency of 31 on cancer cell
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Figure 4. MNPs targeting cancer isolated from the Caribbean and pan-Caribbean region with activity against various cancer cells lines.
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lines by inferring antimalarial properties derived from structural simi-
larity to known epoxyketone containing compounds epoxomicin and
carfilzomib, known for their potent antiprotozoal and antimalarial ac-
tivities against P. falciparum. The result was derivative of 31, named
analog 18 (32) (ICs5p = 3.27 nM), with a 100-fold wider therapeutic
window than 31.”° Examples like these demonstrate the power that
analog synthesis can have in the discovery of compounds for medicinal
use through modification of bioactive secondary metabolites.

This section contained just a brief overlook of some natural products
isolated from the Caribbean and pan-Caribbean region which have had
some success in lead drug discovery due to their potent activity, novel
mechanisms of action or unique structures. The following sections will
highlight other natural products isolated from this region which possess
cancer targeting, antipathogenic, or other medicinal capabilities and
may show potential for future drug development. These compounds will
also illustrate the structural variation of natural products which can be
found in this region, which further lends to drug discovery.

5. Natural products targeting cancer

There is great therapeutic potential for many structurally diverse
natural products found in this region with modest activity. In fact,
several natural products have been isolated with specific activity against
colon cancer cell lines (Figure 4). For instance, Lucentamycins A-D
(33-36) are structurally unique tripeptides isolated from the marine
derived actinomycete Nocardiopsis lucentensis (saline pond, Little San
Salvador, Bahamas) with cytotoxicity towards HCT-116 cell line.”* Most
of the in vitro activity from this extract was found to be derived from 33
(MIC = 0.2 pM), with 34 (MIC = 11 pM) also having modest activity.
This potency, along with novelty of its 3-methyl-4-ethylideneproline
unit, prompted several synthetic efforts towards the total synthesis of
337° eventually leading to revision of the geometry of the proline olefin
to the E-isomer from the putative structure.”®”” Other than the isolation
of another metabolite in this family, Lucentamycin E, there have been
little analog studies on this family.”®

Peridinin (37) is a carotenoid recently isolated and characterized
from Pseudopterogorgia acerosa (North Coast, Tobago), though it was
originally isolated over 100 years earlier from various dinoflagellates.
Although the main compound responsible for photosynthesis in the sea,
37 was also found to have antitumor and anticarcinogenic properties
later identified to be through up-regulation of DR5 expression.” " Total
syntheses of this compound have been carried out but the Katsumara
and de Lera groups.®"*?

Another group of natural products which has activity against HTC-
116 cells are the cyclic peptides Microsporins A and B (38 and 39).
These metabolites were isolated from culture extracts of the marine-
derived fungus Microsporum cf. gypseum obtained from the bryozoan
Bugula sp. (U.S. Virgin Islands) and possessed potent (A: ICs5o = 0.6 pg/
mL) and modest (B: ICsy = 8.5 pg/mL) in vitro activity against HCT-116
by acting as histone deacetylase (HDAC) inhibitors.®® In addition, 38
exhibited greater in vitro inhibition against both a mixture of HDACs
from HeLa cell nuclear extract and HDAC8 (which is implicated as a
therapeutic target in various diseases, including cancer, X-linked intel-
lectual disability, and parasitic infections) than the known anticancer
HDAC agent vorinostat. To date, there have been few syntheses and little
analog development for these molecules apart from a solid phase syn-
thesis of 38 by Silverman et al. *>%4,

Kalkitoxin (40) was isolated from the cyanobacterium Lyngbya
masjusula (now Moorea producens) (Playa Kalki, Curacao) and was later
found to potently and selectively inhibit hypoxia-induced activation of
hypoxia-inducible factor-1 (HIF-1) in T47D breast tumor cells (ICso =
5.6 nM) by suppression of mitochondrial oxygen consumption at elec-
tron transport chain complex 1.°°%° Though 40 has been synthesized
several times,*>%” analogs were proposed by Umezawa et al. in 2012.%8
Though only isomers of 40, these compounds managed to maintain
cytotoxic activity in biological assays (brine shrimp) and analogs of this
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compound have yet to be tested against human cancer cell lines.

Lastly, Epoxyphomalin A and B (41 and 42) were isolated from the
facultative marine fungus Phoma sp. obtained from the marine sponge
Ectyplasia perox (Caribbean Sea, Dominica). 41 and 42 are structurally
related to a small family of sesquiterpene cyclohexenones, however an
epoxydon moiety linked to a decalin ring system is unique chemical
entity only shared by macrophorins.®’ 41 showed superior cytotoxicity
at nanomolar concentrations towards 12 of a panel of 36 human tumor
cells lines with a mean ICsq value of 114 ng/mL with notable activity in
breast (MAXF 401NL, IC5o = 10 ng/mL), bladder (BXF 1218 L; IC59 = 17
ng/mL) and ovary (OVXF OVCARS3; ICso = 17 ng/mL) cancer cell lines.””
These compounds were found to exert their potent cytotoxic effects
through inhibition of the 20S proteasome.’! Though epoxydon and it’s
congeners are well studies, there have been no total syntheses of these
molecules to date.

6. Antipathogenic natural products

There are numerous global health challenges involving pathogenic
diseases which are caused by various species of viruses, bacteria, fungi,
protozoa, and worms. Natural products have played a crucial role in the
treatment of such diseases like HIV/AIDS, tuberculosis, pneumonia, and
malaria. Though not well studied or as thoroughly tested for their cancer
targeting properties, several natural products have been isolated from
the Caribbean and pan-Caribbean region which possess antipathogenic
properties (Figure 5).

An example of potential antibiotics from this region comes from
Caminosides A- D (43-46). These are novel antimicrobial glycolipids
isolated from the marine sponge Caminus sphaeroconia (Toucari Caves,
Dominica) found to have activity against E. coli by thwarting pathoge-
nicity through inhibiting their type III secretory system, without killing
the bacteria (IC5o = 20 pM).92 43 was also found to have traditional
antimicrobial activity against gram-positive bacteria such as methicillin-
resistant Staphylococcus aureus (MRSA) (MIC = 12 pg/mLl) and
vancomycin-resistant Enterococcus (VRE) (MIC = 12 pg/mL)92 while 44
and 46 were later found to be the more potent compounds of the family
with stronger activity against MRSA (B: MIC = 6.3 pg/mL; D: MIC = 6.3
pg/mL) and VRE (B: MIC = 6.3 pg/mL; D: MIC = 3.1 pg/mL) respec-
tively.’® 43 has been synthesized by Sun et al.”* and 44 was synthesized
by Zhang et al.”®, however there are limited studies in the synthesis and
testing of analogs based off of this family.

Forazoline A (47) was isolated from an Actinomadura sp. culture from
the ascidian Ecteinascidia turbinata (Unspecified, Florida Keys) and was
found to activity against the fungal pathogen Candida albicans via a
putative novel mechanism.’® 47 demonstrated in vitro activity (MIC =
16 pg/mL) through either directly affecting phospholipids or through
interaction with a protein target complimenting the activity of knockout
protein complex Lem3p. Though this compound possesses the ability to
be an excellent antifungal drug lead, the total synthesis of this molecule
has yet to be completed, however this may be due to recent revisions to
the putative structure.”’”

Another natural product with activity against C. albicans along with
several other disease fungi is hectochlorin (48). This unique lipopeptide
was originally isolated from a cultured strain of the cyanobacterium
M. producens (Hector Bay, Jamaica) and was found to act on actin
component of the fungal cytoskeleton through hyperpolymerization of
the aforementioned (ICso = 20 nM). This potent activity prompted the
agrochemical company Dow to complete the total synthesis of this
compound in 2002.%%

Carmabin A (49) was also isolated from the marine cyanobacterium
M. producens (costa Coast, Panama) in 1998 and exhibited some anti-
malarial activity towards the W2 chloroquine-resistant malaria strain
(ICs0 = 4.3 pM) and cytotoxic activity towards mammalian vero cells
(IC50 = 9.8 pM).gg‘w” Years later, this compound was reisolated along
with three new linear tetrapeptides Dragomabin and Dragonamides A
and B (50-52).The prior two metabolites also exhibited good
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antimalarial activities (ICsgp = 6.0 and 7.7 pM, respectively), however 52
lacked activity suggesting that an aromatic amino acid at the carboxy
terminus is necessary for antimalarial activity in this compound se-
ries.'?® Additionally, 50 was found to exhibit a better differential
toxicity between parasite and mammalian cells (ICsgp = 182.3 pM) hy-
pothesized to be caused by the removal of three carbons in the aliphatic
chain. Total synthesis of 49 and 50 was carried out by Ye et al. in 2018'°!
and synthesis of 51 was completed by Chen et al. in 2005.'%?

7. Other compounds with notable activity/medicinal use

As said before, NPs isolated from this region have been known to
have a variety of uses and bioactivities. Though not quite falling under a

broad genre of medicine a few compounds isolated from this region
which exhibit notable activity (Figure 6). The Jamaicamides (53-55)
were isolated from a collection of M. producens (Hector’s Bay, Jamaica)
and were found to have sodium channel blocking activity (LCsgp = 5
uM). %% Though not extremely potent, these compounds still hold some
potential in analog development, as sodium channel blockers are an
important class of drugs, and are the molecular targets for drugs used in
the prevention of acute and chronic pain, cardiac arrhythmias, epilepsy,
and bipolar disorder. To date, only a partial synthesis of 55 has been
completed.'**

Continuing with sodium channels, Antillatoxin A and B (56 and 57)
are structurally unique highly methylated lipopeptides that were also
isolated from extracts acquired from M. producens (Collado Reef, Puerto
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Rico; and Bush Key, Dry Tortugas). The latter of the two exhibited sig-
nificant sodium channel activating properties (ECso = 1.7 pM).w5
Though not a medicinal use, the potent ichthyotoxic activity of 56 along
with it’s unique structure prompted efforts towards it’s total synthesis
by Yokokawa et al. in 1998 and again by Lee et al. in 2006.'°° 19

In a separate vein of activity, the Kempopeptides (58-60) were also
isolated from Moorea producens (Summerland Keys, Florida) and were
found to have an array of serine protease inhibitory activities.'?!*°
Molassamide (61) was later isolated from a sample of Dichothrix uta-
hensis (Key Largo, Florida; and Brewer’s Bay, U.S. Virgin Islands) and
was found to be ten times more potent than 58. Despite having excellent
activity against elastase and chymotrypsin (ICs¢ = 0.032-0.32 pM and
0.23 - 2.6 M, respectively) there are no published total syntheses of any
of the previously mentioned cyclodesipeptides.

The Pseudopterosins (62 and 63) are a class (over 17 members) of
marine diterpene glycosides isolated from the gorgonian soft coral
Pseudopterogorgia elisabethae (Unspecified, Bahamas) known to possess
superior anti-inflammatory and analgesic properties compared to the
commercial drug indomethacin.''' Not only have the pseudopterosins
(A-D) been licensed to OsteoArthritis Sciences Inc. for medicinal use as
anti-inflammatory drugs, but 64, a synthetic derivative of 62, completed
Phase I and II clinical trials as a wound healing agent, however faced
difficulty in a lack of aqueous solubility and effectiveness.''”> Never-
theless, these compounds have found their way to the marketplace as
partially purified extracts from P. elisabethae, which primarily contain
63, are used as an additive to prevent irritation in the Estee Lauder
cosmetic skin care product Resilience®.''® Though 64 was first syn-
thesized by Broka et al. in 1988, recently Ramella et al. published a
concise total synthesis of the pseudopterosins through an anionic oxy
cope and transannular Michael addition cascade which seems powerful
for analog development of this class of natural products.’"*

8. Summary and conclusion

Natural products play a critical role in the lead drug discovery and
development process. Mohammad R. Seyedsayamdost, a giant in the
field of natural product discovery from Princeton University, summed
up this notion best in a statement from a recent seminar: “for every
discovery of a new natural product comes a new opportunity for ther-
apeutic usage”. Here we have included a small selection of natural
products from across the Caribbean region with varied bioactivities to
showcase the potential application of small molecules collected from
this biosphere.

While highlighting synthetic efforts and analog development for
some of these compounds, we have also illuminated on several gaps
which currently hinder this process. First, there is a lack of new families
of isolated MNPs over the past few years, in addition to an overall lack of
collections from marine species in search of secondary metabolites with
novel structures. Though there has been in increase in isolation recently,
greater exploration into areas of these biodiverse regions is needed.
Toward this end, there is a vital need to increase funding to this area of
research, which recently has been dwindling. Additionally, countries in
this region should take note from territories like Puerto Rico and strive
to further establish and promote research facilities geared towards
natural product isolation, and increase the study of this practice in local
universities; however, separate issues in funding may exist here as well.
Moreover, a close study of the literature reveals that many of the current
lead or promising NPs from this region are isolated from the same spe-
cies (eg. Moorena producens). A greater distribution in species collection
may lead to identification of more diverse MNPs, and hence further drug
discovery. While recent and future isolation efforts may somewhat be
hindered by the Nagoya protocol,''® which was established in 2014 and
requires every party (generally a country) to establish their own national
legislation governing access to genetic resources, parties of this region
should strive to create amicable laws amidst the search for alternative
resources to alleviate the hold that travel and tourism have on the
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regional GDP.

Second, many of the natural products from this review are from
marine environments. Though there is some research into NPs derived
from the various endemic plants from this region there remains a
noticeable gap in natural products isolated from this region’s rhizo-
sphere. Biodiversity in macroorganisms coincides with biodiversity in
microorganisms and this can be labelled true for both land and sea.
Further research into NPs from the rhizosphere of this fertile biosphere
are also needed and will most likely advance the discovery of novel
bioactive compounds from this region.'*®

Third, many of the NPs isolated from the Caribbean are only tested
for their cytotoxicity against paneled cancer cell lines. This issue hints to
a more widespread problem regarding a lack of more extensive bio-
assays. A broader array of testing would, almost certainly, increase the
applications of these natural products across the region.

Lastly, an increase in the development of analogs of these bioactive
compounds has the potential to not only overcome limitations of syn-
thetic accessibility or viability in approach through the creation of
dimensionally similar minimized scaffolds, with maintained or even
improve biological activity, but also reveal or introduce new and
exciting biological properties through varied structural modifications.
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