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We consider optimization problems with uncertain constraints that need to be satisfied probabilistically. When

data are available, a common method to obtain feasible solutions for such problems is to impose sampled

constraints, following the so-called scenario optimization approach. However, when the data size is small, the

sampled constraints may not support a guarantee on the feasibility of the obtained solution. This paper studies

how to leverage parametric information and the power of Monte Carlo simulation to obtain feasible solutions

for small-data situations. Our approach makes use of a distributionally robust optimization (DRO) formulation

that translates the data size requirement into a Monte Carlo sample size requirement drawn from what we call

a generating distribution. We show that, while the optimal choice of this generating distribution is the one

eliciting the data or the baseline distribution in a nonparametric divergence-based DRO, it is not necessarily

so in the parametric case. Correspondingly, we develop procedures to obtain generating distributions that

improve upon these basic choices. We support our findings with several numerical examples.
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1 INTRODUCTION
We consider optimization problems in the form

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥,

s.t. P(𝑥 ∈ X𝜉 ) ≥ 1 − 𝜖,
(1.1)

where P is a probability measure governing the random variable 𝜉 on some space Y and X𝜉 ⊆
X ⊆ R𝑑 is a set depending on 𝜉 . Problem (1.1) enforces a solution 𝑥 to satisfy 𝑥 ∈ X𝜉 with high

probability, namely at least 1 − 𝜖 . This problem is often known as a probabilistically constrained or

chance-constrained program (CCP) [61]. It provides a natural framework for decision-making under

stochastic resource capacity or risk tolerance, and has been applied in various domains such as

production planning [55], inventory management [50], reservoir design [62, 63], communications

[65], and ranking and selection [35].

We focus on the situations where P is unknown, but some i.i.d. data, say 𝜉1, . . . , 𝜉𝑛 , are available.

One common approach to handle (1.1) in these situations is to use the so-called scenario optimization
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2 Lam and Li

(SO) or constraint sampling [11, 56]. This replaces the unknown constraint in (1.1) with 𝑥 ∈ X𝜉𝑖 , 𝑖 =
1, . . . , 𝑛, namely, by considering

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥,

s.t. 𝑥 ∈ X𝜉𝑖 , 𝑖 = 1, . . . , 𝑛.
(1.2)

Note that CCP (1.1) is generally difficult to solve even when the set X𝜉 is convex for any

given 𝜉 and the distribution P is known [61]. Thus, the sampled problem (1.2) offers a tractable

approximation for the difficult CCP even in non-data-driven situations, assuming the capability to

generate these samples.

Our goal is to find a good feasible solution for (1.1) by solving (1.2) under the availability of i.i.d.

data described above. Intuitively, as the sample size 𝑛 increases, the number of constraints in (1.2)

increases and one expects them to sufficiently populate the safety set {𝜉 : 𝑥 ∈ X𝜉 }, thus ultimately

give rise to a feasible solution for (1.1). To make this more precise, we first mention that because of

the statistical noise from the data, one must settle for finding a solution that is feasible with a high

confidence. More specifically, define, for any given solution 𝑥 ,

𝑉 (𝑥, P) = P(𝑥 ∉ X𝜉 )
to be the violation probability of 𝑥 under probability measure P that generates 𝜉 . Obviously, 𝑥 is

feasible for (1.1) if and only if

𝑉 (𝑥, P) ≤ 𝜖. (1.3)

We would like to obtain a solution, say 𝑥 , from the data such that

P𝑑𝑎𝑡𝑎 (𝑉 (𝑥, P) ≤ 𝜖) ≥ 1 − 𝛼, (1.4)

where P𝑑𝑎𝑡𝑎 is the distribution that generates the i.i.d. data 𝜉𝑖 , 𝑖 = 1, . . . , 𝑛 (each sampled from P),
and 1 − 𝛼 is a given confidence level (e.g., 𝛼 = 5%). In other words, we want 𝑥 to satisfy the chance

constraint in (1.1) with the prescribed confidence.

Under the convexity of X𝜉 and mild additional assumptions (namely, that every instance of (1.2)

has a feasible region with nonempty interior and a unique optimal solution), the seminal work [10]

provides a tight estimate on the required data size 𝑛 to guarantee (1.4). They show that a solution 𝑥

obtained by solving (1.2) satisfies

P𝑑𝑎𝑡𝑎 (𝑉 (𝑥, P) > 𝜖) ≤
𝑑−1∑
𝑖=0

(
𝑛

𝑖

)
𝜖𝑖 (1 − 𝜖)𝑛−𝑖 , (1.5)

with equality held for the class of “fully-supported" optimization problems [10]. Thus, suppose we

have a sample size 𝑛 large enough such that

𝐵(𝜖, 𝑑, 𝑛) =
𝑑−1∑
𝑖=0

(
𝑛

𝑖

)
𝜖𝑖 (1 − 𝜖)𝑛−𝑖 ≤ 𝛼, (1.6)

then from (1.5) we have P𝑑𝑎𝑡𝑎 (𝑉 (𝑥, P) > 𝜖) ≤ 𝛼 or (1.4).

However, in small-sample situations in which the data size 𝑛 is not large enough to support (1.6),

the feasibility guarantee described above may not hold. It can be shown [10] that the minimum

𝑛 that achieves (1.4) is linear in 𝑑 and reciprocal in 𝜖 , thus may impose challenges especially in

high-dimensional and low-tolerance problems. Similar dependence on the key problem parameters

also appears in other related methods such as [20], which uses the Vapnik-Chervonenkis dimension

to infer required sample sizes, the sampling-and-discarding approach in [11], and the closely related

approach using sample average approximation in [53]. Several recent lines of techniques have

been suggested to overcome these challenges and reduce sample size requirements, including the
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Parametric SO via DRO 3

use of support rank and solution-dependent support constraints [12, 64], regularization [9], and

sequential approaches [7, 8, 13, 14].

In this paper, we offer a different path to alleviate the data size requirement than the above

methods, when P possesses known parametric structures. Namely, we assume P ∈ {P𝜃 }𝜃 ∈Θ for some

parametric family of distribution, where P𝜃 satisfies two basic requirements: It is estimatable, i.e., the

unknown quantity or parameter 𝜃 can be estimated from data, and simulatable, i.e., given 𝜃 , samples

from P𝜃 can be drawn using Monte Carlo methods. Under these presumptions, our approach turns

the CCP (1.1), with an unknown parameter, into a CCP that has a definite parameter and a suitably

re-adjusted tolerance level, which then allows us to generate enough Monte Carlo samples and

consequently utilize the guarantee provided from (1.5). On a high level, this approach replaces the

data size requirement in using (1.2) (or, in fact, any of its variant methods) with a Monte Carlo size

requirement, the latter potentially more available given cheap modern computational power. Our

methodological contributions consist of the development of procedures, related statistical results

on their sample size requirement translations, and also showing some key differences between

parametric and nonparametric regimes.

Our approach starts with a distributionally robust optimization (DRO) to incorporate the data-

driven parametric uncertainty. The latter is a framework for decision-making under modeling

uncertainty on the underlying probability distributions in stochastic problems. It advocates the

search for decisions over the worst case, among all distributions contained in a so-called uncertainty

set or ambiguity set (e.g., [21, 30, 67]). In CCP, this entails a worst-case chance constraint over

this set (e.g., [15–17, 32, 33, 37, 39, 40, 51, 69–71]). When the uncertainty set covers the true

distribution with a high confidence (i.e., the set is a confidence region), then feasibility for the

distributionally robust CCP converts into a confidence guarantee on the feasibility for the original

CCP. We follow this viewpoint and utilize uncertainty sets in the form of a neighborhood ball

surrounding a baseline distribution, where the ball size is measured by a statistical distance (e.g.,

[1, 5, 6, 22, 23, 25, 27, 31, 34, 37, 44, 46, 52, 60]). In the parametric case, a suitable choice of this

distance (such as the 𝜙-divergence that we focus on) allows easy and meaningful calibration of the

ball size from the data, so that the resulting DRO provides a provable feasibility conversion to the

CCP.

Our next step is to combine this DRO with Monte Carlo sampling and scenario approximation.

The definition of DRO means that there are many possible candidate distributions that can govern

the truth, whereas the statistical guarantee for SO assumes a specific distribution that generates the

data or Monte Carlo samples. To resolve this discrepancy, we select a generating distribution that

draws the Monte Carlo samples, and develop a translation of the guarantee from a fixed distribution

into one on the DRO. We highlight the benefits in using SO to handle this DRO, as opposed to

other potential methods. While there exist many good results on tractable reformulations of DRO

for chance constraints (e.g., [32, 33, 39, 51, 69]), the reformulation tightness typically relies on

using moment-based uncertainty sets and particular forms of the safety condition. Compared to

moments, divergence-based uncertainty sets can be calibrated with data to consistently shrink to

the true distribution. Importantly, in the parametric case, the calibration of divergence-based sets is

especially convenient, and achieves a tight convergence rate by using maximum likelihood theory

that efficiently captures parametric information. Our condition for applying SO to this DRO is at

the same level of generality as applying SO to an unambiguous CCP, which, as mentioned before,

only requires the convexity of X𝜉 and mild conditions.

To exploit the full capability of our approach, we investigate the optimal choice of the generating

distribution in relation to the target DRO, in the sense of requiring the least Monte Carlo size.

We show that, if there is no ambiguity on the distribution (i.e., a standard CCP), or when the

uncertainty set of a DRO is constructed via a divergence ball in the nonparametric space, the best
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4 Lam and Li

generating distribution is, in a certain sense, the true or the baseline distribution at the center of the

ball. However, if there is parametric information, the optimal choice of the generating distribution

can deviate from the baseline distribution in a divergence-based DRO. We derive these results

by casting the problem of selecting a generating distribution into a hypothesis testing problem,

which connects the sampling efficiency of the generating distribution with the power of the test

and the Neyman-Pearson lemma [48]. The results on DRO in particular combine this Neyman-

Pearson machinery with the established DRO reformulation of chance constraints in [37, 40],

with the discrepancy between the best generating distribution and the baseline distribution in the

parametric case stemming from the removal of the extremal distributions in the corresponding

nonparametric uncertainty set. These connections among hypothesis testing, SO and DRO are, to

our best knowledge, the first of its kind in the literature.

Finally, given the non-optimality of the baseline distribution of a divergence-based DRO in gener-

ating Monte Carlo samples, we further develop procedures to search over generating distributions

that improve upon this baseline. On a high level, this can be achieved by increasing the sampling

variability to incorporate the uncertainty of the distributional parameters (one may intuit this

from the perspective of a posterior distribution in a Bayesian framework), which is implemented

by utilizing suitable mixture distributions. We provide several classes of mixture distributions

to attain such a variability enlargement, and study descent-type algorithms to search for good

distributions in these classes. In the experiments, we show our methods can be combined with SO

or other SO-based methods including FAST [13] to solve a variety of optimization problems and

data distributions, some of which are not amenable to RO, especially when the objective function

is non-linear or the feasible sets are jointly chance-constrained. Furthermore, we also demonstrate

how to search for more judicious choices of generating distributions that can significantly reduce

the required number of Monte Carlo samples.

We conclude this introduction by briefly discussing a few other lines of related literature. The

first is the so-called robust Monte Carlo or robust simulation that, like us, also considers using

Monte Carlo sampling together with DRO [28, 29, 36, 38, 42, 43]. However, this literature focuses

on approximating DRO with stochasticity in the objective function, and does not study the chance

constraint feasibility and SO that constitute our main focus. We also contrast our work with [44]

that also considers likelihood theory and utilizes simulation in tackling uncertain constraints. [44]

focuses on the nonparametric regime and uses the empirical likelihood to construct uncertainty

sets. Unlike our work, there is no parametric information there that can be leveraged to overcome

sample size requirements in SO. Moreover, the simulation used in [44] is for calibrating the un-

certainty set, instead of drawing sample constraints. Next, [24] considers a scenario approach to

distributionally robust CCP with an uncertainty set based on the Prohorov distance. Like [20], [24]

utilizes the Vapnik-Chervonenkis dimension in studying feasibility, in contrast to the convexity-

based argument in [10] that we utilize. More importantly, we aim to optimize the efficiency of

Monte Carlo sampling in handling limited-data CCP, thus motivating us to study the choice of

distance, calibration schemes, and selection of generating distributions that are different from

[24]. Finally, a preliminary conference version of this work has appeared in [45], which contains a

basic introduction of our framework, without detailed investigation of the optimality of generating

distributions, improvement strategies, and extensive numerical demonstrations.

To summarize, our main contributions of this paper are:

(1) We propose a framework to obtain good feasible solutions in data-driven CCPs in small-

sample situations, where the data size is insufficient to support the use of SO with valid

statistical guarantees. Focusing on the parametric regime, our framework operates by setting

up a DRO, with an uncertainty set constructed from parameter estimates using the data, that
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can in turn be tackled by using SO with Monte Carlo samples. In doing so, our framework

effectively leverages the parametric information to convert the SO requirement on the data

size into a requirement on the Monte Carlo size, the latter can be much more abundant

given cheap modern computational power. The overview of this framework and the DRO

construction are in Sections 2.1 and 2.3.

(2) We investigate and present the Monte Carlo size requirements needed to give statistically

feasible solutions to the divergence-based DRO used in our framework. This relies on devel-

oping an implementable mechanism to connect the sample size requirement for SO, which

attempts to solve a CCP with a fixed underlying distribution, to the sample size requirement

needed to solve a DRO, by selecting a suitable generating distribution to draw the Monte

Carlo samples. This contribution is presented in Section 2.2.

(3) We study the optimality of generating distributions, in a sense of minimizing the Monte Carlo

effort that we will describe precisely. In particular, we show that the optimal generating distri-

butions for an unambiguous CCP, and for a distributionally robust CCP with nonparametric

divergence-based uncertainty sets, are simply their respective natural choices, namely the

original underlying distribution and the baseline distribution (i.e., center of the divergence

ball). In contrast, the optimal generating distribution for a distributionally robust CCP in the

parametric case is more delicate, and the baseline distribution there can be readily dominated

by other generating distributions. These results are derived by bridging the Neyman-Pearson

lemma in statistical hypothesis testing with SO and DRO, which appears to be the first of its

kind in the literature as far as we know. This contribution is presented in Section 3.

(4) Motivated by the non-optimality of the baseline distribution, we propose several approaches

to construct generating distributions that dominate the baseline distributions for parametric

DRO, by using mixture schemes that, on a high level, enlarge the variability of the generat-

ing distributions. We show how to use descent-type search procedures to construct these

distributions. This contribution is presented in Section 4.

Lastly, we also present in full detail our implementation algorithms in Section 5, numerically

demonstrate our approach and compare with other methods in Section 6, and conclude in Section 7.

2 FROM DATA-DRIVEN DRO TO SCENARIO OPTIMIZATION
This section introduces our overall framework. Recall our goal as to find a good feasible solution 𝑥

for (1.1), and suppose that we have an i.i.d. data size 𝑛 possibly less than the requirement shown in

(1.6). As discussed in the introduction, we first formulate a DRO that incorporates the parametric

estimation noise and subsequently allows us to resort to Monte Carlo sampling to obtain a feasible

solution for (1.1). In the following, Section 2.1 first describes the basic guarantees from DRO. Section

2.2 investigates Monte Carlo sampling that provides guarantees on DRO. Section 2.3 discusses the

choice of the uncertainty set.

2.1 Overview of Data-Driven DRO
For concreteness, suppose the unknown true distribution P ∈ P, the class of possible probability
distributions for 𝜉 (to be specified later). Given the observed data 𝜉1, ..., 𝜉𝑛 , the basic steps in our

data-driven DRO are:

• Step 1: Find a data-driven uncertainty setU𝑑𝑎𝑡𝑎 = U𝑑𝑎𝑡𝑎 (𝜉1, . . . , 𝜉𝑛) ⊆ P such that

P𝑑𝑎𝑡𝑎 (P ∈ U𝑑𝑎𝑡𝑎) ≥ 1 − 𝛼, (2.1)

where P𝑑𝑎𝑡𝑎 denotes the measure generating the data 𝜉𝑖 , 𝑖 = 1, . . . , 𝑛.
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6 Lam and Li

• Step 2: GivenU𝑑𝑎𝑡𝑎 , set up the distributionally robust CCP:

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥,

s.t. min

Q∈U𝑑𝑎𝑡𝑎

Q(𝑥 ∈ X𝜉 ) ≥ 1 − 𝜖,
(2.2)

where the probability measureQ is the decision variable in the minimization in the constraint.

• Step 3: Find a solution 𝑥 feasible for (2.2).

It is straightforward to see that 𝑥 obtained from the above procedure is feasible for (1.1) with

confidence at least 1 − 𝛼 : If P ∈ U𝑑𝑎𝑡𝑎 , then any 𝑥 feasible for (2.2) satisfies

P(𝑥 ∈ X𝜉 ) ≥ min

Q∈U𝑑𝑎𝑡𝑎

Q(𝑥 ∈ X𝜉 ) ≥ 1 − 𝜖

Thus

P𝑑𝑎𝑡𝑎 (P(𝑥 ∈ X𝜉 ) ≥ 1 − 𝜖) ≥ P𝑑𝑎𝑡𝑎 (P ∈ U𝑑𝑎𝑡𝑎) ≥ 1 − 𝛼, (2.3)

which gives our conclusion.

2.2 Monte Carlo Sampling for DRO
To use the above procedure, we need to provide a way to construct the depictedU𝑑𝑎𝑡𝑎 and to find

a (confidently) feasible solution for (2.2). We postpone the set construction to the next subsection

and focus on finding a feasible solution here. We resort to SO, via Monte Carlo sampling, to handle

(2.2). Note that, unlike in the standard SO discussed in the introduction, the distribution Q here

can be any candidate within the setU𝑑𝑎𝑡𝑎 . Thus, let us select a generating distribution, called P0

(which can depend on the data), to generate Monte Carlo samples 𝜉𝑀𝐶𝑖 , 𝑖 = 1, . . . , 𝑁 , and solve

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥,

s.t. 𝑥 ∈ X𝜉𝑀𝐶
𝑖
, 𝑖 = 1, . . . , 𝑁 .

(2.4)

For convenience, denote, for any 𝜖, 𝛽 > 0,

𝑁𝑒𝑥𝑎𝑐𝑡 (𝜖, 𝛽, 𝑑) = min

{
𝑛 :

𝑑−1∑
𝑖=0

(
𝑛

𝑖

)
𝜖𝑖 (1 − 𝜖)𝑛−𝑖 ≤ 𝛽

}
. (2.5)

From the result of [10] discussed in the introduction, using 𝑁𝑒𝑥𝑎𝑐𝑡 (𝜖, 𝛽, 𝑑) or more Monte Carlo

samples from P0 in (2.4) would give a solution 𝑥𝑀𝐶 that satisfies 𝑉 (𝑥𝑀𝐶 , P0) ≤ 𝜖 with confidence

level 1 − 𝛽 . This is not exactly the distributionally robust feasibility statement for problem (2.2). To

address this discrepancy, we consider, conditional on the data 𝜉1, . . . , 𝜉𝑛 ,

max

Q∈U𝑑𝑎𝑡𝑎

𝑉 (𝑥𝑀𝐶 ,Q)

s.t. 𝑉 (𝑥𝑀𝐶 , P0) ≤ 𝛿.
(2.6)

This optimization problem serves to translate a guarantee on the violation probability under P0

to any Q inU𝑑𝑎𝑡𝑎 . If we can bound the optimal value in (2.6), then we can trace back the level of

𝛿 that is required to ensure a chance constraint validity of tolerance level 𝜖 . However, the event

involved in defining 𝑉 (𝑥𝑀𝐶 , P0) and 𝑉 (𝑥𝑀𝐶 ,Q), namely {𝜉 : 𝑥𝑀𝐶 ∉ X𝜉 }, can be challenging to

handle in general. Thus, we relax (2.6) to

max

Q∈U𝑑𝑎𝑡𝑎,𝐴⊂Y
Q(𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(2.7)

where the decision variables now include the set 𝐴 in addition to the probability measure Q.
Conditional on the data 𝜉1, . . . , 𝜉𝑛 , the optimal value of optimization problem (2.7), which we denote
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𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿), is clearly an upper bound for that of (2.6). In fact, it is also clear from (2.7) that

𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) is non-decreasing in 𝛿 > 0 and

max

Q∈U𝑑𝑎𝑡𝑎

𝑉 (𝑥𝑀𝐶 ,Q) ≤ 𝑀 (P0,U𝑑𝑎𝑡𝑎,𝑉 (𝑥𝑀𝐶 , P0)), (2.8)

by simply taking𝐴 = {𝜉 : 𝑥𝑀𝐶 ∉ X𝜉 } and 𝛿 = 𝑉 (𝑥𝑀𝐶 , P0) in (2.7). We have the following guarantee:

Theorem 2.2.1. Given P0,U𝑑𝑎𝑡𝑎 and 𝜖 > 0, suppose there exists 𝛿𝜖 > 0 small enough such that

𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿𝜖 ) ≤ 𝜖. (2.9)

If we solve (2.4) with 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) number of samples drawn from P0, then the obtained solution
𝑥𝑀𝐶 would be feasible for (2.2) with confidence at least 1 − 𝛽 . Furthermore, if

P𝑑𝑎𝑡𝑎 (P ∈ U𝑑𝑎𝑡𝑎) ≥ 1 − 𝛼, (2.10)

where P𝑑𝑎𝑡𝑎 is the measure governing the real-data generation under the true distribution P, then the
obtained solution 𝑥𝑀𝐶 would be feasible for (1.1) with confidence at least 1 − 𝛼 − 𝛽 .

Proof. By results in [10], we know that by solving (2.4) with 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) number of samples

from P0, the obtained solution 𝑥𝑀𝐶 would satisfy

P𝑀𝐶,0 (𝑉 (𝑥𝑀𝐶 , P0) > 𝛿𝜖 ) ≤ 𝛽 (2.11)

where P𝑀𝐶,0 is the measure with respect to the Monte Carlo samples drawn from P0. Moreover,

based on the monotonicity property of𝑀 (·) and (2.8), we have

𝑉 (𝑥𝑀𝐶 , P0) ≤ 𝛿𝜖 =⇒ max

Q∈U𝑑𝑎𝑡𝑎

𝑉 (𝑥𝑀𝐶 ,Q) ≤ 𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿𝜖 ). (2.12)

Thus (2.9) implies that

P𝑑𝑎𝑡𝑎

(
max

Q∈U𝑑𝑎𝑡𝑎

𝑉 (𝑥𝑀𝐶 ,Q) > 𝜖
)
≤ P𝑑𝑎𝑡𝑎 (𝑉 (𝑥𝑀𝐶 , P0) > 𝛿𝜖 ) ≤ 𝛽

and hence 𝑥𝑀𝐶 is feasible for (2.2) with confidence at least 1 − 𝛽 . Furthermore, if P ∈ U𝑑𝑎𝑡𝑎 , then a

𝑥𝑀𝐶 feasible for (2.2) is also feasible for (1.1) since max

Q∈U𝑑𝑎𝑡𝑎

𝑉 (𝑥𝑀𝐶 ,Q) ≥ 𝑉 (𝑥𝑀𝐶 , P) and hence

max

Q∈U𝑑𝑎𝑡𝑎

𝑉 (𝑥𝑀𝐶 ,Q) ≤ 𝜖 =⇒ 𝑉 (𝑥𝑀𝐶 , P) ≤ 𝜖. (2.13)

Thus, if we denote Ξ = {𝜉1, ..., 𝜉𝑛, 𝜉
𝑀𝐶
1
, ..., 𝜉𝑀𝐶

𝑁
} to be entire sequence consisting of real data and

the generated Monte Carlo samples, it then follows that

{Ξ : 𝑉 (𝑥𝑀𝐶 , P) > 𝜖} ⊆ {Ξ : P ∉ U𝑑𝑎𝑡𝑎} ∪ {Ξ : 𝑉 (𝑥𝑀𝐶 , P0) > 𝛿𝜖 }. (2.14)

It now follows by (2.10) and (2.11) that 𝑥𝑀𝐶 is feasible for (1.1) with probability at least 1−𝛼 −𝛽 . □

Theorem 2.2.1 can be cast in terms of asymptotic instead of finite-sample guarantees by following

the same line of arguments. We summarize it as the following corollary.

Corollary 2.2.2. In Theorem 2.2.1, if the condition P𝑑𝑎𝑡𝑎 (P ∈ U𝑑𝑎𝑡𝑎) ≥ 1 − 𝛼 is substituted by the
asymptotic condition

lim inf

𝑛→∞
P𝑑𝑎𝑡𝑎 (P ∈ U𝑑𝑎𝑡𝑎) ≥ 1 − 𝛼, (2.15)

then the feasibility of 𝑥𝑀𝐶 in the last conclusion of Theorem 2.2.1 holds with confidence asymptotically
tending to at least 1 − 𝛼 − 𝛽 .
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To summarize, in the presence of data insufficiency, if we chooseU𝑑𝑎𝑡𝑎 to satisfy the confidence

property (2.1), and are able to evaluate the bounding function𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) that translates the
violation probability under P0 to a worst-case violation probability overU𝑑𝑎𝑡𝑎 , then we can run SO

with 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) Monte Carlo samples from P0 to obtain a solution for (1.1) with confidence

1 − 𝛼 − 𝛽 .
We also note that the above scheme still holds if the 𝑁𝑒𝑥𝑎𝑐𝑡 (𝜖, 𝛽, 𝑑) in (2.5) is replaced by the

sample size requirements of other variants of SO (e.g., FAST [13]) that are potentially smaller. This

works as long as we stay with the same SO-based procedure in using the Monte Carlo samples. For

clarity, throughout most of our exposition we will focus on the sample size requirement depicted

in (2.5), but we will discuss other variants in our implementation and numerical sections.

Finally, let us take a step back and justify why we use SO to tackle (2.2), as opposed to other

potential means. Indeed, as pointed out in the introduction, there exist many good results on

tractable reformulations of DRO. As will be discussed in detail in the next subsection, in the present

context we will choose an uncertainty set that can leverage parametric information efficiently. Sets

based on the neighborhoods of distributions measured by 𝜙-divergences are particularly attractive

choices, as they can be calibrated easily (both the ball center and the size) in a way that efficiently

uses parametric information. The dependence on the parameter dimension in particular is reflected

in the degree of freedom in the 𝜒2
-distribution used in the calibrating the ball size, which shrinks to

zero at a canonical rate as the data size increases. Other sets, such as moment-based ones, though

possibly amenable to tight tractable reformulations, do not enjoy these statistical properties in the

parametric context. Thus, in view of tackling 𝜙-divergence-based DRO, SO appears to be a natural

choice, and we have set up a framework to utilize it under conditions at the same level of generality

as required for the unambiguous counterpart. Sections 3 and 4 will study this framework in further

depth and enhance its efficiency. We caution, however, that the conservativeness in our proposed

uncertainty set (which affects the optimality of the obtained solution) relies on the dimensionality

of the distributional parameters. Our approach is expected to work well when this dimension is

moderate, but not in high-dimensional problems where other approaches could be better choices.

2.3 Constructing Uncertainty Sets
In this section we discuss the construction of the uncertainty setU𝑑𝑎𝑡𝑎 , using the 𝜙-divergence

approach [1]. We assume the true distribution P of 𝜉 lies in a parametric family. We denote the

true parameter as 𝜃𝑡𝑟𝑢𝑒 . To highlight the parametric dependence, we call the true distribution

P𝜃𝑡𝑟𝑢𝑒 ∈ P𝑝𝑎𝑟𝑎 = {P𝜃 }𝜃 ∈Θ⊂R𝐷 indexed by 𝜃 , where 𝐷 is the dimension of parameter space. Given

data 𝜉1, 𝜉2, ..., 𝜉𝑛 , we want to construct an uncertainty setU𝑑𝑎𝑡𝑎 satisfying
lim

𝑛→∞
P𝑑𝑎𝑡𝑎 (P𝜃𝑡𝑟𝑢𝑒 ∈ U𝑑𝑎𝑡𝑎) = 1 − 𝛼 (2.16)

so that Corollary 2.2.2 applies. To do so, we first estimate 𝜃𝑡𝑟𝑢𝑒 from the data. There are various

approaches to do so; here we apply the common maximum likelihood estimator (MLE)
ˆ𝜃𝑛 , and set

U𝑑𝑎𝑡𝑎 to be

U𝑑𝑎𝑡𝑎 =
{
Q ∈ P𝑝𝑎𝑟𝑎 : 𝑑𝜙 (P ˆ𝜃𝑛

,Q) ≤
𝜙 ′′(1)𝜒2

1−𝛼,𝐷
2𝑛

}
, (2.17)

where 𝜒2

1−𝛼,𝐷 is the 1 − 𝛼 quantile of 𝜒2

𝐷
, the 𝜒2

-distribution with degree of freedom 𝐷 , and 𝑑𝜙 (·, ·)
is the 𝜙-divergence between two probability measures, i.e., given a convex function 𝜙 : R+ → R+,
with 𝜙 (1) = 0, a distance between two probability measures P1 and P2 defined as

𝑑𝜙 (P1, P2) =
∫
Y
𝜙

(
𝑑P2

𝑑P1

)
P1 (𝑑𝑦), (2.18)
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assuming P2 is absolutely continuous with respect to P1 with Radon-Nikodym derivative
𝑑P2

𝑑P1

on Y.
Moreover, we assume that 𝜙 is twice continuously differentiable with 𝜙 ′′(1) ≠ 0, and if necessary

set the continuation of 𝜙 toR− as 𝜙 (𝑥) = +∞ for 𝑥 < 0. In (2.17), we call the center of the divergence

ball, P ˆ𝜃𝑛
, the baseline distribution.

To guarantee desirable asymptotic properties of our uncertainty set, we make the following

assumption:

A1. Let 𝜃𝑡𝑟𝑢𝑒 ∈ Θ be the true parameter and let
ˆ𝜃𝑛 be the MLE of 𝜃𝑡𝑟𝑢𝑒 estimated from 𝑛 i.i.d. data

points. Then, as 𝑛 →∞, ˆ𝜃𝑛 satisfies consistency and asymptotic normality condition:

ˆ𝜃𝑛
P−→ 𝜃𝑡𝑟𝑢𝑒 and

√
𝑛( ˆ𝜃𝑛 − 𝜃𝑡𝑟𝑢𝑒 )

D−−→ N(0,I−1 (𝜃𝑡𝑟𝑢𝑒 )), (2.19)

where I(𝜃 ) is the Fisher information for the parametric family P𝑝𝑎𝑟𝑎 with well-defined inverse

that is continuous in the domain 𝜃 ∈ Θ.

Assumption A1 of MLE estimator is known to hold under various regularity conditions [47, 66].

We list a set of such conditions in Appendix A.

Under Assumption A1, it can be shown [59, 66] that U𝑑𝑎𝑡𝑎 in (2.17) satisfies the confidence

guarantee (2.16). Furthermore, since we can identify each P𝜃 in P𝑑𝑎𝑡𝑎 with 𝜃 , we can equivalently

viewU𝑑𝑎𝑡𝑎 as a subset of 𝜃 ∈ Θ, and write it as

U𝑑𝑎𝑡𝑎 ≜
{
𝜃 ∈ Θ : 𝑑𝜙 (P ˆ𝜃

, P𝜃 ) ≤
𝜙 ′′(1)𝜒2

1−𝛼,𝐷
2𝑛

}
. (2.20)

For convenience, we shall use the two definitions of U𝑑𝑎𝑡𝑎 interchangeably depending on the

context. It is also known that the asymptotic confidence properties of (2.17) or (2.20) are the same

among different choices within the 𝜙-divergence class. These can be seen via a second order

expansion of the 𝜙-divergences. Moreover, they are asymptotically equivalent to{
𝜃 ∈ Θ : (𝜃 − ˆ𝜃𝑛)𝑇I( ˆ𝜃𝑛) (𝜃 − ˆ𝜃𝑛) ≤

𝜒2

1−𝛼,𝐷
𝑛

}
, (2.21)

where I( ˆ𝜃𝑛) is the estimated Fisher information, under the regularity conditions above [58, 59, 66].

In other words, under Assumption A1, both (2.20) and (2.21) satisfy

lim

𝑛→∞
P𝑑𝑎𝑡𝑎 (𝜃𝑡𝑟𝑢𝑒 ∈ U𝑑𝑎𝑡𝑎) = 1 − 𝛼. (2.22)

Note that the convergence rate of (2.16) or (2.22) depends on the higher-order properties of

the parametric model, which in turn can depend on the parameter dimension. Different from the

sample size requirements in SO, this convergence rate is a consequence of MLE properties. Some

details on finite-sample behaviors of MLE can be found in [41].

TheU𝑑𝑎𝑡𝑎 discussed above is a set over the parametric class of distributions (or parameter values).

Considering tractability, DRO over nonparametric space could be easier to handle than parametric,

which suggests a relaxation of the parametric constraint to estimate the bounding function𝑀 . This

also raises the question of whether one can possibly containU𝑑𝑎𝑡𝑎 in a nonparametric ball with a

shrunk radius and subsequently obtain a better𝑀 . These would be the main topics of Sections 3

and 4.

3 BOUNDING FUNCTIONS AND GENERATING DISTRIBUTIONS
Given the uncertainty setU𝑑𝑎𝑡𝑎 in (2.20), we turn to the choice of the generating measure P0 and

the bounding function 𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) which, as we recall, is the optimal value of optimization
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problem (2.7). In the discussed parametric setup, the latter becomes

max

𝜃 ∈U𝑑𝑎𝑡𝑎,𝐴⊂Y
P𝜃 (𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(3.1)

From Theorem 2.2.1 and the fact that𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) is non-decreasing in 𝛿 , we want to choose

P0 that minimizes𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) so that we can take the maximum 𝛿𝜖 and subsequently achieve

overall confident feasibility with the least Monte Carlo sample size. Note that 𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) is
a multi-input function depending on both P0 and 𝛿 , and so a priori it is not clear that a uniform

minimizer P0 can exist across all values of 𝛿 so that the described task is well-defined. It turns

out that this is possible in some cases, which we shall investigate in detail. In the following, we

discuss results along this line at three levels: The unambiguous case, namely whenU𝑑𝑎𝑡𝑎 in (3.1) is

a singleton (Section 3.1), the case whereU𝑑𝑎𝑡𝑎 is nonparametric (Section 3.2), and the case where

U𝑑𝑎𝑡𝑎 is parametric (Section 3.3). The first two cases pave the way to the last one, which is most

important to our development and also motivates Section 4. With these results in hand, we also

discuss the possibility of using other statistical distances in our framework in Section 3.4.

3.1 Neyman-Pearson Connections and A Least Powerful Null Hypothesis
We first consider, for a given 𝜃1 ∈ U𝑑𝑎𝑡𝑎 , the optimization problem

max

𝐴⊂Y
P𝜃1
(𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(3.2)

This problem can be viewed as choosing a most powerful decision rule in a statistical hypothesis

test. More precisely, one can think of 𝐴 as a rejection region for a simple test with null hypothesis

P0 and alternate hypothesis P𝜃1
. Subject to a tolerance of 𝛿 Type-I error, optimization problem (3.2)

looks for a decision rule that maximizes the power of the test. By the Neyman-Pearson lemma [48],

under mild regularity conditions on the parametric family, the optimal set 𝐴★
0,𝜃1,𝛿

of (3.2) takes the

form

𝐴★
0,𝜃1,𝛿

= {𝜉 ∈ Y :

𝑑P𝜃1

𝑑P0

(𝜉) > 𝐾★
0,𝜃1,𝛿
}, (3.3)

with 𝐾★
0,𝜃1,𝛿

chosen so that P0 (𝐴★
0,𝜃1,𝛿
) = 𝛿 . Also, then, the optimal value of (3.2) is P𝜃1

(𝐴★
0,𝜃1,𝛿
).

Generalizing the above analysis to all 𝜃 ∈ U𝑑𝑎𝑡𝑎 , we conclude that
𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) = sup

𝜃 ∈U𝑑𝑎𝑡𝑎

P𝜃 (𝐴★
0,𝜃,𝛿
), (3.4)

is the optimal value of (3.1). These observations will be useful for deriving our subsequent results.

Our goal is to choose P0 to minimize (3.4). To start our analysis, let us first consider the extreme

case where the uncertainty setU𝑑𝑎𝑡𝑎 consists of only one point Q. In this case, we look for P0 that

minimizes𝑀 (P0, {Q}, 𝛿), the optimal value of

max

𝐴⊂Y
Q(𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(3.5)

That is, for a given measure Q, we seek for the maximum discrepancy between Q and P0 over

all P0-measure sets that have 𝛿 or less content. This is similar to minimizing the total variation

distance between Q and P0, and hints that the optimal choice of P0 is Q. The following theorem,

utilizing the Neyman-Pearson lemma depicted above, confirms this intuition. We remark that the

assumptions of the theorem can be relaxed by using more general versions of the lemma, but the

presented version suffices for most purposes and also the subsequent examples we will give.

, Vol. 1, No. 1, Article . Publication date: May 2021.



Parametric SO via DRO 11

Theorem 3.1.1. Given a measureQ with continuous density onX, among all P0 such that
𝑑Q
𝑑P0

exists
and is continuous and positive almost surely, the minimum 𝑀 (P0, {Q}, 𝛿) is obtained by choosing
P0 = Q, giving𝑀 (P0, {Q}, 𝛿) = 𝛿 .

Proof. Under the assumptions, by the Neyman-Pearson lemma, for a fixed measure P0, the set

achieving the optimal value of (3.5) takes the form 𝐴★ = {𝜉 ∈ Y :
𝑑Q
𝑑P0

(𝜉) > 𝐾★} for some 𝐾★ ≥ 0

with P0 (𝐴★) = 𝛿 . It then follows that

𝑀 (P0, {Q}, 𝛿) − 𝛿 = Q(𝐴★) − P0 (𝐴★) =
∫

𝑑Q
𝑑P

0

(𝜉)>𝐾★

( 𝑑Q
𝑑P0

− 1)𝑑P0 (𝜉).

Under the absolute continuity assumption, we define

𝑔(𝐾) =
∫

𝑑Q
𝑑P

0

(𝜉)>𝐾
( 𝑑Q
𝑑P0

− 1)𝑑P0 (𝜉),

which can be seen to be a non-increasing function for 𝐾 ≥ 1 and a non-decreasing function for

𝐾 ≤ 1. To see this, take 𝐾1 ≥ 𝐾2, and we have

𝑔(𝐾2) = 𝑔(𝐾1) +
∫
𝐾1≥ 𝑑Q

𝑑P
0

(𝜉)>𝐾2

( 𝑑Q
𝑑P0

− 1)𝑑P0 (𝜉).

Thus, when 𝐾1 ≥ 𝐾2 ≥ 1, we have 𝑔(𝐾2) ≥ 𝑔(𝐾1) because∫
𝐾1≥ 𝑑Q

𝑑P
0

(𝜉)>𝐾2

( 𝑑Q
𝑑P0

− 1)𝑑P0 (𝜉) ≥ (𝐾2 − 1)P0 (𝐾1 ≥
𝑑Q

𝑑P0

(𝜉) > 𝐾2) ≥ 0,

while when 1 ≥ 𝐾1 ≥ 𝐾2, we have 𝑔(𝐾2) ≤ 𝑔(𝐾1) because∫
𝐾1≥ 𝑑Q

𝑑P
0

(𝜉)>𝐾2

( 𝑑Q
𝑑P0

− 1)𝑑P0 (𝜉) ≤ (𝐾1 − 1)P0 (𝐾1 ≥
𝑑Q

𝑑P0

(𝜉) > 𝐾2) ≤ 0.

Then, to identify the minimum of 𝑔(𝐾), we either decrease 𝐾 from 1 to 0 which gives

lim inf

𝐾→0

𝑔(𝐾) =
∫
( 𝑑Q
𝑑P0

− 1)𝑑P0 (𝜉) = 0, (3.6)

by using the dominated convergence theorem (e.g., by considering the set {1 > 𝑑Q/𝑑P0 (𝜉) > 𝐾})
or we increase 𝐾 from 1 to∞ which gives

lim inf

𝐾→∞
𝑔(𝐾) ≥ 0. (3.7)

by Fatou’s lemma. Observations (3.6) and (3.7) suggest that 𝑔(𝐾) ≥ 0 for all 𝐾 ≥ 0 and imply that

𝑔(𝐾★) ≥ 0. Thus, we must have 𝑀 (P0, {Q}, 𝛿) ≥ 𝛿 . Note that this holds for any P0. Now, since

choosing P0 = Q gives𝑀 (Q, {Q}, 𝛿) = 𝛿 , an optimal choice of P0 is Q. □

Theorem 3.1.1 shows that under mild regularity conditions, in terms of choosing the generating

distribution P0 and minimizing𝑀 (P0, {Q}, 𝛿), we cannot do better than simply choosing Q itself.

This means that if we had known the true distribution was Q, and without additional knowledge of
the event of interest, the safest choice (in the minimax sense) for sampling would be Q, a quite
intuitive result. In the language of hypothesis testing, given the simple alternate hypothesis Q,
the null hypothesis P0 that provides the least power for the test, i.e., makes it most difficult to

distinguish between the two hypotheses, is Q.
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3.2 Nonparametric DRO
Building on the discussion in Section 3.1, we now consider the choice of generating distribution P0

to minimize the bounding function obtained from (3.1). Before so, we first discuss the nonparametric

case, where the analog of (3.1) is in the form:

max

𝑑𝜙 (P ˆ𝜃
,Q) ≤𝜆,𝐴⊂Y

Q(𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(3.8)

for some ball radius 𝜆 > 0, where the decision variables are Q in the space of all distributions

absolutely continuous with respect to P ˆ𝜃
, and 𝐴.

We show that the above setting can be effectively reduced to the unambiguous case, i.e., when Q
lies in a singleton discussed in Section 3.1. This comes from an established equivalence between

a distributionally robust chance constraint and an unambiguous chance constraint evaluated by

the center of the divergence ball, when the event 𝐴 is fixed [37, 40]. In particular, suppose the

stochasticity space is Y = R𝑘 , and P ˆ𝜃
admits a density 𝑝 ˆ𝜃

. Theorem 1 in [40] shows that for any 𝐴,

max

𝑑𝜙 (P ˆ𝜃
,Q) ≤𝜆
Q(𝐴) ≤ 𝜖 ⇐⇒ P ˆ𝜃

(𝐴) ≤ 𝜖 ′, (3.9)

where 𝜖 ′ = 𝜖 ′(𝜖, 𝜆, 𝜙) > 0 can be explicitly determined by 𝜖 , 𝜆 and 𝜙 as

𝜖 ′(𝜖, 𝜆, 𝜙) = max

1 − inf

𝑧>0,𝑧+𝜋𝑧≤ℓ𝜙
𝑚 (𝜙∗) ≤𝑧0+𝑧≤𝑚 (𝜙∗)

{
𝜙∗ (𝑧0 + 𝑧) − 𝑧0 − 𝜖𝑧 + 𝜆
𝜙∗ (𝑧0 + 𝑧) − 𝜙∗ (𝑧0)

}
, 0

 (3.10)

with 𝜙∗ (𝑡) = sup𝑥 {𝑡𝑥 − 𝑔(𝑥)} being the conjugate function of 𝜙 and 𝑚(𝜙∗) = sup{𝑚 ∈ R :

𝜙∗ is a finite constant on (−∞,𝑚]}, 𝑚(𝜙∗) = inf{𝑚 ∈ R : 𝜙∗ (𝑚) = +∞}, ℓ𝜙 = lim𝑥→+∞ 𝜙 (𝑥)/𝑥 ,
and 𝜋 = −∞ if 𝐿𝑒𝑏{[𝑝 ˆ𝜃

= 0]} = 0, 0 if 𝐿𝑒𝑏{[𝑝 ˆ𝜃
= 0]} > 0 and 𝐿𝑒𝑏{[𝑝 ˆ𝜃

= 0] \ 𝐴} = 0, and 1

otherwise, where 𝐿𝑒𝑏{·} is the Lebesgue measure on R𝑘 .
The above equivalence can be used to obtain the following result.

Theorem 3.2.1. Suppose Y = R𝑘 and P ˆ𝜃
admits a density. Among all P0 such that

𝑑P ˆ𝜃

𝑑P0

exists and
is continuous, positive almost surely, an optimal choice of P0 that minimizes𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤
𝜆}, 𝛿), namely the optimal value of (3.8), is the center of the 𝜙-divergence ball P ˆ𝜃

. Moreover, this
gives 𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆}, 𝛿) = 𝜖 ′−1 (𝛿, 𝜆, 𝜙), where 𝜖 ′−1 (·, 𝜆, 𝜙) is the inverse of the function
𝜖 ′ = 𝜖 ′(𝜖, 𝜆, 𝜙) defined in (3.10) with respect to 𝜖 , given by

𝜖 ′−1 (𝑥, 𝜆, 𝜙) ≜ min{𝜖 ≥ 0 : 𝜖 ′(𝜖, 𝜆, 𝜙) ≥ 𝑥} (3.11)

Proof. From Theorem 1 in [40], we know that, for any 𝐴 ⊂ Y and 0 ≤ 𝜖 ≤ 1, (3.9) holds. We

can rewrite the optimal value of problem (3.8) in the form:

min

𝜖≥0

𝜖

s.t. max

𝑑𝜙 (P ˆ𝜃
,Q) ≤𝜆
Q(𝐴) ≤ 𝜖 for all 𝐴 ⊂ Y such that P0 (𝐴) ≤ 𝛿, (3.12)

which, according to (3.9), has the same optimal value as

min

𝜖≥0

𝜖

s.t. P ˆ𝜃
(𝐴) ≤ 𝜖 ′ for all 𝐴 ⊂ Y such that P0 (𝐴) ≤ 𝛿.

(3.13)
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Since, fixing 𝜙 and 𝜆, 𝜖 ′ is a non-decreasing function of 𝜖 , we see that minimizing 𝜖 is equivalent to

minimizing 𝜖 ′. Denoting 𝜈★ as the optimal value of the optimization problem

max

𝐴⊂Y
P ˆ𝜃
(𝐴)

s.t. P0 (𝐴) ≤ 𝛿,
(3.14)

then the optimal value of (3.13) is 𝜖 ′−1 (𝜈∗, 𝜆, 𝜙). Moreover, this is achievable by setting P0 = P ˆ𝜃

that gives the optimal value 𝜈∗ = 𝛿 to (3.14) by Theorem 3.1.1.

□

An implication of Theorem 3.2.1 is that, by noting that a parametric divergence ball lies inside a

corresponding nonparametric ball, we can compute a bound for𝑀 to obtain a required Monte Carlo

size, drawn from the baseline P ˆ𝜃
, to get a feasible solution for the distributionally robust CCP (2.2)

and subsequently the CCP (1.1). More precisely, recall the bounding function 𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿) =
𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) with 𝜆 = 𝜙 ′′(1)𝜒2

1−𝛼,𝐷/(2𝑛), given by (3.1), as the optimal

value of

max

𝑑𝜙 (P ˆ𝜃
,Q) ≤𝜆,Q∈P𝑝𝑎𝑟𝑎,𝐴⊂Y

Q(𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(3.15)

We have:

Corollary 3.2.2. Given a data size 𝑛, suppose Y = R𝑘 and P ˆ𝜃
admits a density, where ˆ𝜃 is the

MLE under Assumption A1. If we choose 𝛿𝜖 = 𝜖 ′(𝜖, 𝜙 ′′(1)𝜒2

1−𝛼,𝐷/(2𝑛), 𝜙) and draw 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑)
Monte Carlo samples from the generating distribution P ˆ𝜃

to construct the sampled problem (2.4), then
the obtained solution will be feasible for (1.1) with asymptotic confidence level at least 1 − 𝛼 − 𝛽 .

Proof. Note that a parametric divergence ball lies inside a corresponding nonparametric ball in

the sense that

{Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎} ⊆ {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆}
Thus, by the definition of𝑀 , we have

𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) ≤ 𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆}, 𝛿)
In particular,

𝑀 (P ˆ𝜃
, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) ≤ 𝑀 (P ˆ𝜃
, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆}, 𝛿) = 𝜖 ′−1 (𝛿, 𝜆, 𝜙)

where the equality follows from Theorem 3.2.1. Thus, if we choose 𝛿𝜖 such that 𝜖 ′−1 (𝛿𝜖 , 𝜆, 𝜙) ≤ 𝜖 , or
𝛿𝜖 = 𝜖

′(𝜖, 𝜆, 𝜙), where 𝜆 = 𝜙 ′′(1)𝜒2

1−𝛼,𝐷/(2𝑛) as presented in (2.17), and the generating distribution

as P ˆ𝜃
, then Corollary 2.2.2 guarantees that running SO on 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) Monte Carlo samples

gives a feasible solution for (1.1) with confidence asymptotically at least 1 − 𝛼 − 𝛽 . □

Corollary 3.2.2 thus provides an implementable procedure to handle (1.1) through (2.2).

3.3 Parametric DRO
Next we discuss further the choice of generating distributions in parametric DRO beyond P ˆ𝜃

. While

the ball center P ˆ𝜃
is a valid choice, the equivalence relation (3.9) does not apply when the divergence

ball is in a parametric class, and the optimal choice of the generating distribution may no longer be

P ˆ𝜃
, as shown in the next result.

Theorem 3.3.1. In terms of selecting a generating distributionP0 tominimize𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤

𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿), the optimal value of (3.15), the choice P ˆ𝜃
can be strictly dominated by other distri-

butions.
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14 Lam and Li

Intuitively, Theorem 3.3.1 arises because the extreme distribution that achieves the equivalence

relation (3.9) may not be in the considered parametric family. It implies more flexibility in choosing

the generating measure P0, in the sense of requiring less Monte Carlo samples than using P ˆ𝜃
.

From the standpoint of hypothesis testing in Section 3.1, the imposed minimax problem (3.15)

in searching for the best P0 can be viewed as finding a simple null hypothesis that is uniformly

least powerful across the uncertainty set. This question is related and appears more general than

finding the least favorable or powerful prior in testing against composite null hypothesis [48]. In

the latter context, given a set Θ1, one aims to find a distribution 𝜇★(𝑑𝜃0) such that Γ(𝜇★) ≤ Γ(𝜇)
for all distributions 𝜇 (𝑑𝜃0) on Θ0, where Γ(𝜇) is the optimal value of

max

𝜃1∈Θ1

P𝜃1
(𝐴)

s.t.

∫
Θ0

P𝜃0
(𝐴)𝜇 (𝑑𝜃0) ≤ 𝛿.

(3.16)

The distribution 𝜇 (𝑑𝜃0) is interpreted as a prior on a composite null hypothesis parametrized by 𝜃0,

and 𝜇∗ (𝑑𝜃0) is the least favorable prior. The difference between (3.16) and our formulation (3.15)

lies in the restriction to measures of the form P0 =
∫
Θ0

P𝜃0
𝜇 (𝑑𝜃0) for the former, leading to a smaller

search space than ours. This mixture-type P0 and the Bayesian connection will partly motivate our

investigation in Section 4.

To prove Theorem 3.3.1, we present a counter example and also some related discussion.

Example 3.3.2. Consider the uncertainty setU𝑑𝑎𝑡𝑎 = {P𝜃 , : −1 ≤ 𝜃 ≤ 1} within Gaussian location

family on R with P𝜃 (𝑑𝑦) = 1√
2𝜋
𝑒−
(𝑦−𝜃 )2

2 . This can be thought of, e.g., as an uncertainty set based on

the 𝜒2-distance, the latter defined between two probability measures P1 and P2 as

𝜒2 (P1, P2) =
∫
Y
(𝑑P2

𝑑P1

− 1)2P1 (𝑑𝑦). (3.17)

Note that the 𝜒2-distance is in the family of 𝜙-divergences, by choosing 𝜙 = (𝑥 − 1)2. We aim to find a
generating distribution P0 to minimize𝑀 (P, {P𝜃 : 𝜃 ∈ U𝑑𝑎𝑡𝑎}, 𝛿), the optimal value of

max
𝜃 ∈U𝑑𝑎𝑡𝑎,𝐴⊂R

P𝜃 (𝐴)

s.t. P0 (𝐴) ≤ 𝛿.
(3.18)

We consider several symmetric distributions as P0 (symmetry is reasonably conjectured as a good
property since an imbalanced shift might increase the power for the alternative hypothesis on one side
and the worst case overall). We list these symmetric distributions in increasing variability:

P1

0
(𝑑𝑦) = 1

√
2𝜋
𝑒−

𝑦2

2

P2

0
(𝑑𝑦) = 1

√
2𝜋 · 2

𝑒−
𝑦2

2·2

P3

0
(𝑑𝑦) = 1

2

√
2𝜋

(
𝑒−
(𝑦−1)2

2 + 𝑒−
(𝑦+1)2

2

)
.

(3.19)

Given 0 ≤ 𝜃 ≤ 1, it can be shown by the Neyman-Pearson lemma that the rejection region 𝐴★ (i.e. the
set giving the optimal value of (3.18) for a given 𝜃 ) for P1

0
has the form {𝑦 : 𝑦 > 𝑐1}, for P2

0
the form

{𝑦 : |𝑦 − 2𝜃 | ≤ 𝑐2} and for P3

0
the form {𝑦 :

𝑒𝜃𝑦

𝑒𝑦+𝑒−𝑦 > 𝑐3}, for some 𝑐1, 𝑐2 and 𝑐3. Let 𝛿 = 0.05 be the
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tolerance level, it can be shown through numerical verification that

𝑀 (P1

0
, {P𝜃 : 𝜃 ∈ U𝑑𝑎𝑡𝑎}, 0.05) = 0.2595

𝑀 (P2

0
, {P𝜃 : 𝜃 ∈ U𝑑𝑎𝑡𝑎}, 0.05) = 0.1160

𝑀 (P3

0
, {P𝜃 : 𝜃 ∈ U𝑑𝑎𝑡𝑎}, 0.05) = 0.0995.

(3.20)

Thus, the natural choice P ˆ𝜃
= P1

0
based on relaxing to nonparametric DRO yields a bounding function

𝑀 (·) that is outperformed by P2

0
or P3

0
. Later in Section 4 we will see numerically how P2

0
and P3

0
can

lead to a smaller sample size requirements.

Although Theorem 3.3.1 reveals room to search for the best generating distribution, the involved

optimization, or even just finding an improved distribution over P ˆ𝜃
, appears to be nontrivial. In

particular, the maximization problem in (3.15) depends on the computation of𝐴★
for each alternative

of 𝜃 ∈ U𝑑𝑎𝑡𝑎 . Section 4 discusses some approaches to search for improvements. We conclude the

current section with some discussion on the choice of statistical distances used in the uncertainty

set.

3.4 Choice of Statistical Distance
We have chosen to use 𝜙-divergence to construct our uncertainty set U𝑑𝑎𝑡𝑎 , and we have seen

how this allows us to effectively translate sample size requirements from the data to Monte Carlo.

Note that another common type of distance is the Wasserstein distance (e.g., [6, 25, 27]). If one can

translate the violation probability under a generating distribution into the worst-case violation

probability over a Wasserstein ball, then the same line of arguments in Section 2 applies to using

SO on this DRO. Presuming that the size of a parametric Wasserstein-based confidence region

can be properly calibrated from data, it is conceivable that the above can give rise to an alternate

solution route. It is known (Theorem 3 in [6]), under suitable regularity conditions, that one can

equate a Wasserstein-ambiguous probability sup

𝑑𝑊 (Q,P ˆ𝜃
) ≤𝜆
Q(𝜉 ∈ 𝐴), where 𝑑𝑊 denotes a Wasserstein

distance of order 1 and cost function 𝑐 , and 𝐴 is an event, to P ˆ𝜃
(𝑐 (𝜉, 𝐴) ≤ 1/𝜈∗) where 𝜈∗ ≥ 0 is

a dual multiplier for the associated optimization problem, and 𝑐 (𝜉, 𝐴) denotes the cost-induced
distance between a point 𝜉 and a set 𝐴. Thus,𝑀 (P0, {Q : 𝑑𝑊 (P ˆ𝜃

,Q) ≤ 𝜆}, 𝛿) can be written as

max

𝐴⊂Y
P ˆ𝜃
(𝑐 (𝜉, 𝐴) ≤ 1/𝜈∗)

s.t. P0 (𝐴) ≤ 𝛿.
(3.21)

Compared to the evaluation of𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆}, 𝛿) in Theorem 3.2.1, the tightening of the

tolerance level from 𝜖 to 𝜖 ′ is now replaced by the set inflation from 𝐴 to the (1/𝜈∗)-neighborhood
of 𝐴 given by {𝜉 : 𝑐 (𝜉, 𝐴) ≤ 1/𝜈∗}. Note that, regardless of the distance used, one could reduce the

conservativeness of our analysis by focusing on 𝐴 in the form {𝑥 ∉ X𝜉 }, but this would require

looking at the specific form of the safety set X𝜉 .

4 IMPROVING GENERATING DISTRIBUTIONS
This section discusses some approaches to search for better generating distributions beyond the

baseline distribution in a divergence ball of DRO. Section 4.1 first states a general result to create

better generating distributions. Section 4.2 then specializes to using a mixture distribution on

𝜃 to exploit this result. Sections 4.3 and 4.4 then provide two specific ways to construct these

mixtures. Finally, Section 4.5 demonstrates some numerical comparisons in using these new mixing

generating distributions and also simply using the baseline.
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4.1 A Framework to Reduce Divergence Ball Size by Incorporating Parametric
Information

The reason why the best choice of generating distribution P0 is not the baseline of the divergence

ball, P ˆ𝜃
, in minimizing 𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) is that the equivalence relation
(3.9) does not hold when Q is restricted to a parametric class. In some sense the reduction to the

unambiguous chance constraint in the right hand side of (3.9) is over-conservative as it does not

account for parametric information. Suppose we would still like to use the analytically tractable

relation (3.9), but at the same time be less conservative. Then, one approach is to find a new baseline

distribution, say
˜P, such that the parametrically restricted divergence ball {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆,Q ∈
P𝑝𝑎𝑟𝑎} lies inside a new nonparametric divergence ball at the center

˜P, namely {Q : 𝑑𝜙 ( ˜P,Q) ≤ ˜𝜆}.
If we can obtain a nonparametric ball size

˜𝜆 such that
˜𝜆 < 𝜆 and the set inclusion holds, then this

new ball is also a valid uncertainty set, and, when simply setting the generating distribution as

P0 = ˜P and applying Theorem 3.2.1, we have a smaller upper bound for 𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤

𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) than 𝜖 ′−1 (𝛿, 𝜆, 𝜙) obtained from using Theorem 3.2.1 directly with the parametric

constraint relaxed.

To above mechanism can be executed as follows. LetU𝑑𝑎𝑡𝑎 = {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}.

For any P0, let

D𝑑𝑎𝑡𝑎 (P0, 𝜙) ≜ sup

Q∈U𝑑𝑎𝑡𝑎

𝑑𝜙 (P0,Q). (4.1)

Then we clearly have

U𝑑𝑎𝑡𝑎 ⊆ {Q : 𝑑𝜙 (P0,Q) ≤ D𝑑𝑎𝑡𝑎 (P0, 𝜙)}, (4.2)

since the right-hand-side set includes distributions outside of the parametric family as well.

Our goal is to find P0 to minimize D𝑑𝑎𝑡𝑎 (P0, 𝜙) or any upper bound of D𝑑𝑎𝑡𝑎 (P0, 𝜙) so that it is

smaller than the ball size 𝜆 appearing in the original parametric divergence ballU𝑑𝑎𝑡𝑎 . We state

the implication of this as follows:

Theorem 4.1.1. Suppose Y = R𝑘 and P ˆ𝜃
admits a density. Consider the parametric divergence ball

U𝑑𝑎𝑡𝑎 = {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}. Suppose we can find P0 such that D𝑑𝑎𝑡𝑎 (P0, 𝜙) defined in

(4.1) satisfies D𝑑𝑎𝑡𝑎 (P0, 𝜙) < 𝜆. Then we have

min

P1

𝑀 (P1, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) ≤ min

P1

𝑀 (P1, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ D𝑑𝑎𝑡𝑎 (P0, 𝜙)}, 𝛿)

≤ min

P1

𝑀 (P1, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆}, 𝛿) (4.3)

and

min

P1

𝑀 (P1, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿) ≤ 𝜖 ′−1 (𝛿,D𝑑𝑎𝑡𝑎 (P0, 𝜙), 𝜙) ≤ 𝜖 ′−1 (𝛿, 𝜆, 𝜙) (4.4)

where 𝜖 ′−1 (𝜖, 𝜆, 𝜙) is defined in (3.11).

Proof. By the definition ofD𝑑𝑎𝑡𝑎 (P0, 𝜙), (4.2) holds. Together with the conditionD𝑑𝑎𝑡𝑎 (P0, 𝜙) <
𝜆, we have the set inclusions

{Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎} ⊆ {Q : 𝑑𝜙 (P0,Q) ≤ D𝑑𝑎𝑡𝑎 (P0, 𝜙)} ⊆ {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆} (4.5)

The inequalities (4.3) then follow from the definition of 𝑀 . The inequalities (4.4) in turn follow

immediately from Theorem 3.2.1. □

Theorem 4.1.1 stipulates that choosing P0 depicted in the theorem as the generating distribution,

and setting 𝜖 ′−1 (𝛿,D𝑑𝑎𝑡𝑎 (P0, 𝜙), 𝜙) as an upper bound for𝑀 (P0, {Q : 𝑑𝜙 (P ˆ𝜃
,Q) ≤ 𝜆,Q ∈ P𝑝𝑎𝑟𝑎}, 𝛿)

to obtain the required Monte Carlo size 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) implied by Corollary 2.2.2, will give a
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lighter Monte Carlo requirement than using the bound 𝜖 ′−1 (𝛿, 𝜆, 𝜙) directly obtained by relaxing

the parametric constraint and using P ˆ𝜃
as the generating distribution as in Corollary 3.2.2.

4.2 Mixture as Generating Distribution
Since optimization (4.1) can be difficult to solve generally, we focus on finding improved generating

distribution P0 so that the implication of Theorem 4.1.1 holds, instead of fully optimizing (4.1). In

this and the next subsections, we design a search space P0 for P0 that allows the construction of

tractable procedures to achieve such improvements, while at the same time ensures the obtained

P0 are amenable to Monte Carlo simulation.

From now on we will focus on 𝜒2
-distance as our choice of 𝜙 for convenience (as will be seen).

Suppose that P𝜃 has density 𝑝 (𝑦;𝜃 ). We then set P0 to be the collection of distributions with

densities in the form

𝑝0 (𝑦) =
∫
Θ
𝑝 (𝑦;𝜃 )𝜇 (𝑑𝜃 ), (4.6)

for some probability measure 𝜇 on Θ. This class of distributions is easy to sample assuming 𝑝 (𝑦;𝜃 )
and 𝜇 are, as one can first sample 𝜃 ∼ 𝜇 (𝑑𝜃 ) and then 𝜉 ∼ P𝜃 given 𝜃 .

Searching for the best 𝑝0 (𝑦) requires minimizingD𝑑𝑎𝑡𝑎 (P0) over P0 ∈ P0 (where for convenience

we denote D𝑑𝑎𝑡𝑎 (P0) as D𝑑𝑎𝑡𝑎 (P0, 𝜙) with 𝜙 representing the 𝜒2
-distance). We first use (3.17) to

write

D𝑑𝑎𝑡𝑎 (P0) = sup

𝜃 ∈U𝑑𝑎𝑡𝑎

∫
Y

(𝑝 (𝑦;𝜃 )
𝑝0 (𝑦)

− 1

)
2

𝑝0 (𝑦)𝑑𝑦

= sup

𝜃 ∈U𝑑𝑎𝑡𝑎

∫
Y

(𝑝 (𝑦;𝜃 ))2
𝑝0 (𝑦)

𝑑𝑦 − 1

= sup

𝜃 ∈U𝑑𝑎𝑡𝑎

∫
Y

(𝑝 (𝑦;𝜃 ))2∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇 (𝑑𝜃 ′)

𝑑𝑦 − 1. (4.7)

Denoting P(Θ) as the space of probability measures onΘ, we define the function 𝐿 : P(Θ)×Θ→ R
to be

𝐿(𝜇, 𝜃 ) ≜
∫
Y

(𝑝 (𝑦;𝜃 ))2∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇 (𝑑𝜃 ′)

𝑑𝑦, (4.8)

assuming the integral is well-defined for P(Θ) × Θ and further define

𝑙 (𝜇) ≜ sup

𝜃 ∈U𝑑𝑎𝑡𝑎

𝐿(𝜇, 𝜃 ). (4.9)

Thus (4.7) can be written as D𝑑𝑎𝑡𝑎 (P0) = 𝑙 (𝜇) − 1, and minimizing D𝑑𝑎𝑡𝑎 (P0) is equivalent to
solving

min

𝜇∈P(Θ)
𝑙 (𝜇) = min

𝜇∈P(Θ)
max

𝜃 ∈U𝑑𝑎𝑡𝑎

𝐿(𝜇, 𝜃 ). (4.10)

Optimization (4.10) has the following convexity property:

Lemma 4.2.1. The outer minimization in problem (4.10) is convex.

Lemma 4.2.1 can be proved by direct verification, which is shown in Appendix C. Note also that,

if 𝜇 is the point mass 𝛿𝜃 for 𝜃 ∈ Θ, then the mixture distribution would recover the parametric

distribution P𝜃 . Hence the proposed family P0 includes {P𝜃 }𝜃 ∈Θ, and in particular the original

baseline distribution P ˆ𝜃
. Although the outer minimization of (4.10) is a convex problem, computing

𝑙 (𝜇) involves a non-convex optimization and is difficult in general. Our approach is to search for a

descent direction for the convex function 𝑙 (·) from 𝛿 ˆ𝜃
. In the following, we will study two types of
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search directions, each using its own version of Danskin’s Theorem [3, 4]. To proceed, we introduce

the following definition:

Definition 4.2.2. Define Θ∗ (𝜇) to be the set of optimal points for the maximization problem in

𝑙 (𝜇) = sup

𝜃 ∈U𝑑𝑎𝑡𝑎

𝐿(𝜇, 𝜃 ) given 𝜇 ∈ P(Θ) :

Θ∗ (𝜇) = argmax𝜃 ∈U𝑑𝑎𝑡𝑎
𝐿(𝜇, 𝜃 ) (4.11)

It can be shown that Θ∗ (𝜇) is non-empty and Θ∗ (𝜇) ⊆ U𝑑𝑎𝑡𝑎 because U𝑑𝑎𝑡𝑎 is compact and

𝐿(𝜇, 𝜃 ) is continuous in 𝜃 .

4.3 Mixing with a Proposed Distribution
We consider mixing distributions in the form (1 − 𝑡)𝛿 ˆ𝜃

+ 𝑡𝜇𝑝𝑟𝑜𝑝 for some proposed distribution

𝜇𝑝𝑟𝑜𝑝 , and look for a descent direction by varying 𝑡 from 0 to 1. We have the following result that

is a consequence of Danskin’s Theorem that involves a one-sided derivative. We provide proofs

both for this theorem and our following result in Appendix C.

Theorem 4.3.1. Fix any 𝜇1, 𝜇2 ∈ P(Θ) and 𝜃 ∈ Θ. Under the assumptions that 𝜓 (𝑡) = 𝐿((1 −
𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) is well defined for 0 ≤ 𝑡 ≤ 1, we know that the function 𝑔(𝑦, 𝑡)

𝑔(𝑦, 𝑡) : Y × [0, 1] ≜ (𝑝 (𝑦;𝜃 ))2

(1 − 𝑡)
∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇1 (𝑑𝜃 ′) + 𝑡

∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇2 (𝑑𝜃 ′)

is integrable for 𝑡 ∈ [0, 1]. If we further assume that there exists a integrable function 𝑔0 (𝑦) such that���� (𝑝 (𝑦;𝜃 ))2 ·
∫
Θ
𝑝 (𝑦;𝜃 ′) (𝜇1 − 𝜇2) (𝑑𝜃 ′)

(
∫
Θ
𝑝 (𝑦;𝜃 ′) ((1 − 𝑡)𝜇1 + 𝑡𝜇2) (𝑑𝜃 ′))2

���� ≤ 𝑔0 (𝑦),

then we have the right derivative of𝜓 (𝑡) at 𝑡 = 0 given by

𝜓+ (0) = sup

𝜃 ∈Θ∗ (𝜇1)
lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) − 𝐿(𝜇1, 𝜃 )
𝑡

= sup

𝜃 ∈Θ∗ (𝜇1)

∫
Y

(𝑝 (𝑦;𝜃 ))2 ·
∫
Θ
𝑝 (𝑦;𝜃 ′) (𝜇1 − 𝜇2) (𝑑𝜃 ′)

(
∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇1 (𝑑𝜃 ′))2

𝑑𝑦. (4.12)

The quantity 𝜓+ (0) is the directional derivative of 𝐿(𝜇1) in the direction 𝜇2 − 𝜇1. Thus, to

improve on D𝑑𝑎𝑡𝑎 (P ˆ𝜃
), we can propose a mixing distribution 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′), and substitute 𝜇1 = 𝛿 ˆ𝜃

and 𝜇2 = 𝜇𝑝𝑟𝑜𝑝 in (4.12) to check if

sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

∫
Y

(𝑝 (𝑦;𝜃 ))2 ·
∫
Θ
𝑝 (𝑦;𝜃 ′) (𝛿 ˆ𝜃

− 𝜇𝑝𝑟𝑜𝑝 ) (𝑑𝜃 ′)
𝑝 (𝑦;

ˆ𝜃 )2
𝑑𝑦 < 0, (4.13)

which indicates a strict descent for 𝑙 (·) from 𝛿 ˆ𝜃
to 𝜇𝑝𝑟𝑜𝑝 . In this case, it follows from the convexity

of 𝑙 (·) that we can find some 0 < 𝑡 ≤ 1 such that 𝑙 ((1 − 𝑡)𝛿 ˆ𝜃
+ 𝑡𝜇𝑝𝑟𝑜𝑝 ) < 𝑙 (𝛿 ˆ𝜃

), so that

𝑝𝑡 (𝑦) =
∫
Θ
𝑝 (𝑦;𝜃 ′) ((1 − 𝑡)𝛿 ˆ𝜃

+ 𝑡𝜇𝑝𝑟𝑜𝑝 ) (𝑑𝜃 ′), (4.14)

gives rise to D𝑑𝑎𝑡𝑎 (P0) < D𝑑𝑎𝑡𝑎 (P ˆ𝜃
). Finding such a 𝑡 can be done by a bisection search or

enumerating D𝑑𝑎𝑡𝑎 (P0) on 𝑝𝑡 over a grid of 𝑡 . Note that the above can be implemented only if

(4.13) can be verified and also if D𝑑𝑎𝑡𝑎 (P0) is computable. We will show that both properties are

satisfied for the case of multivariate Gaussian when 𝜇𝑝𝑟𝑜𝑝 is properly chosen. In particular, we will

identify general sufficient conditions for 𝜇𝑝𝑟𝑜𝑝 to guarantee (4.13), and also find 𝜇𝑝𝑟𝑜𝑝 such that
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the maximization involved in computing D𝑑𝑎𝑡𝑎 (P0) in (4.7) can be reduced to a one-dimensional

problem.

Consider a multivariate Gaussian distribution with unknown mean Θ ⊂ R𝐷 in an open convex

set with density

𝑝 (𝑦;𝜃 ) = 1√
(2𝜋)𝐷 |Σ|

· 𝑒− 1

2
(𝑦−𝜃 )⊺Σ−1 (𝑦−𝜃 ) , (4.15)

where Σ is a fixed positive semi-definite covariance matrix. Direct verification (in Appendix C)

shows that

U𝑑𝑎𝑡𝑎 ≜
{
𝜃 ∈ Θ : 𝜒2 (P ˆ𝜃

, P𝜃 ) ≤
𝜒2

1−𝛼,𝐷
𝑛

}
=

{
𝜃 ∈ Θ : 𝑒 (𝜃−

ˆ𝜃 )⊺Σ−1 (𝜃− ˆ𝜃 ) − 1 ≤
𝜒2

1−𝛼,𝐷
𝑛

}
=

{
𝜃 :

ˆ𝜃 + Σ 1

2 𝑣, for ∥𝑣 ∥2
2
≤ log(1 +

𝜒2

1−𝛼,𝐷
𝑛
)
}
, (4.16)

and thus

Θ∗ (𝛿 ˆ𝜃
) =argmax𝜃 ∈U𝑑𝑎𝑡𝑎

𝑒 (𝜃−
ˆ𝜃 )⊺Σ−1 (𝜃− ˆ𝜃 ) =

{
𝜃 :

ˆ𝜃 + Σ 1

2 𝑣, for ∥𝑣 ∥2
2
= log(1 +

𝜒2

1−𝛼,𝐷
𝑛
)
}
. (4.17)

We propose the following 𝜇𝑝𝑟𝑜𝑝 . First, we call a distribution on Θ symmetrical around 𝜃 ∈ Θ if

its probability density or mass function has the same value for any 𝜃1, 𝜃2 ∈ Θ such that 𝜃 =
𝜃1+𝜃2

2
.

Proposition 4.3.2. Let 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′) be any symmetrical distribution around ˆ𝜃 . Given 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
),

we define 𝑌𝜃 = (𝜃 − ˆ𝜃 )⊺Σ−1 (𝜃 ′ − ˆ𝜃 ) with 𝜃 ′ ∼ 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′). Suppose there exists an integrable random
variable 𝑌 under the measure 𝜇𝑝𝑟𝑜𝑝 such that 𝑒2𝑌𝜃 ≤ 𝑌 for all 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃

). If, for each 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
),

𝑌𝜃 does not equal to 0 with probability 1, then (4.13) holds and the mixture distribution produced by
𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ) would result in a descent direction on D𝑑𝑎𝑡𝑎 (P ˆ𝜃

).

One can check that any Gaussian distribution with mean
ˆ𝜃 satisfies the conditions of Proposition

4.3.2, and so does any 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′) that is discrete, symmetrical around
ˆ𝜃 , whose outcome directions

𝜃 ′ − 𝜃 constitute a basis of R𝐷 . Alternately, we also consider the following continuous 𝜇𝑝𝑟𝑜𝑝 . We

set 𝜃 ′ ∼ ˆ𝜃 +
√
𝜒2

1−𝛼,𝐷
𝑛
· Σ1/2𝜂 where 𝜂 is a random vector uniformly distributed on the surface of the

𝐷-dimension unit ball. Note that this 𝜃 ′ can be efficiently simulated by sampling 𝐷 independent

standard Gaussian random variables and scaling their norm to unit length to obtain 𝜂. While this

𝜇𝑝𝑟𝑜𝑝 can be readily checked to satisfy the conditions in Proposition 4.3.2, we also provide an

alternate proof on the validity of this 𝜇𝑝𝑟𝑜𝑝 in achieving a descent direction in Lemma C.0.5 in

the Appendix, as results proven therein provide important reference to calculations in numerical

experiments regarding 𝜇𝑝𝑟𝑜𝑝 .

Next, we discuss the computation of D𝑑𝑎𝑡𝑎 (P0) for a given P0. First, we call a random variable

𝑌 on Y ⊂ R𝑘 rotationally invariant if 𝑌
D
=𝑄⊺𝑌 for any rotational matrix 𝑄 ∈ R𝑘×𝑘 . Using this

notion, the following shows how one can reduce the 𝐷-dimensional maximization problem in the

definition of D𝑑𝑎𝑡𝑎 (P0) into a one-dimensional problem.

Proposition 4.3.3. Given a nominal distribution 𝑌 ∼ P0 and a multivariate Gaussian family with
known covariance Σ denoted P𝜃 = N(𝜃, Σ). If the nominal distribution 𝑌 ∼ P0 satisfies the condition
that the random variable 𝑍 = Σ−1/2 (𝑌 − ˆ𝜃 ) is rotationally invariant, then for any 𝜃1, 𝜃2 satisfying
(𝜃1 − ˆ𝜃 )⊺Σ−1 (𝜃1 − ˆ𝜃 ) = (𝜃2 − ˆ𝜃 )⊺Σ−1 (𝜃2 − ˆ𝜃 ), we have

𝜒2 (P0, P𝜃1
) = 𝜒2 (P0, P𝜃2

). (4.18)
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Thus, for D𝑑𝑎𝑡𝑎 (P0) = max𝜃 ∈U𝑑𝑎𝑡𝑎
𝜒2 (P0, P𝜃 ) withU𝑑𝑎𝑡𝑎 = {𝜃 ∈ Θ : (𝜃 − ˆ𝜃 )⊺Σ−1 (𝜃 − ˆ𝜃 ) ≤ 𝜆} as in

(4.16), we have
D𝑑𝑎𝑡𝑎 (P0) = max

0≤𝑡 ≤1

𝜒2 (P0, P(1−𝑡 ) ˆ𝜃+𝑡𝜃★), (4.19)

given any 𝜃★ satisfying (𝜃★ − ˆ𝜃 )⊺Σ−1 (𝜃★ − ˆ𝜃 ) = 𝜆.

Proposition 4.3.4. Given 0 ≤ 𝑡 ≤ 1 and 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ) = ˆ𝜃 +
√
𝜒2

1−𝛼,𝐷
𝑛
· Σ1/2𝜂, where 𝜂 is a random

vector uniformly distributed on the surface of the 𝐷-dimension unit ball, the nominal measure P𝑡 with
density

𝑝𝑡 (𝑦) =
∫
Θ
𝑝 (𝑦;𝜃 ′) ((1 − 𝑡)𝛿 ˆ𝜃

+ 𝑡𝜇𝑝𝑟𝑜𝑝 ) (𝑑𝜃 ′) = (1 − 𝑡)P ˆ𝜃
+ 𝑡

∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′),

satisfies the conditions in Proposition 4.3.3.

Therefore, in computing D𝑑𝑎𝑡𝑎 (P0) derived from the proposed distribution 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ) = ˆ𝜃 +√
𝜒2

1−𝛼,𝐷
𝑛
· Σ1/2𝜂, using Propositions 4.3.3 and 4.3.4 we can change the domain of the involved

maximization from Θ ⊂ R𝐷 into R, leading to a substantial reduction in the search space and a

tractable problem.

4.4 Enlarging Mixture Variability
Our next proposal is to consider a continuous mixing distribution 𝜇𝑟 (𝑑𝜃 ′) onΘwhere 𝑟 ≥ 0 controls

the variability of the distribution, so that 𝑟 = 0 corresponds to 𝛿 ˆ𝜃
. Here, we can parametrize the

density of the generating distribution as

𝑝𝑟 (𝑦) =
∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇𝑟 (𝑑𝜃 ′), (4.20)

and our search direction is along 𝑟 starting from 𝑟 = 0. We propose two possible ways to define

𝜇𝑟 (𝑑𝜃 ′). First is to let 𝜇1

𝑟 (𝑑𝜃 ′) follow the distribution of 𝜃 ′ ∼ ˆ𝜃 + Σ 1

2 · 𝜂√𝑟 where 𝜂√𝑟 is the uniform
distribution inside the 𝐷-dimensional unit ball with radius

√
𝑟 . Second is to let 𝜇2

𝑟 (𝑑𝜃 ′) follow
N( ˆ𝜃, 𝑟Σ). The second approach in particular can be intuited as the posterior distribution of the

parameter from a Bayesian perspective. In both cases, we notice that letting 𝑟 = 0 would recover

the original baseline distribution 𝑝 (𝑦;
ˆ𝜃 ).

To analyze these schemes, we abuse notation slightly and now define 𝐿 : R+ × Θ→ R to be

𝐿(𝑟, 𝜃 ) ≜
∫
Y

(𝑝 (𝑦;𝜃 ))2
𝑝𝑟 (𝑦)

𝑑𝑦, (4.21)

and

𝑙 (𝑟 ) ≜ sup

𝜃 ∈U𝑑𝑎𝑡𝑎

𝐿(𝑟, 𝜃 ). (4.22)

We show that increasing 𝑟 to positive values would produce a descent direction for 𝑙 (𝑟 ) at 𝑟 = 0,

when the underlying distribution is Gaussian. Recall that in this case Θ∗ (𝛿 ˆ𝜃
) can be expressed by

(4.17). As 𝑙 (𝑟 ) is not necessarily convex in this situation, we use a generalized version of Danskin’s

Theorem [18] for non-convex problems to get the following result:

Theorem 4.4.1. With 𝑙 (𝑟 ) and 𝐿(𝑟, 𝜃 ) defined in (4.21) and (4.22), and 𝑝 (𝑦;𝜃 )multivariate Gaussian
with mean 𝜃 and known positive definite covariance Σ, we have

𝑙+ (0) = lim

𝑟 ↓0

𝑙 (𝑟 ) − 𝑙 (0)
𝑟

= (1 +
𝜒2

1−𝛼,𝐷
𝑛
) · lim

𝑟 ↓0

1

𝑟

(
1 − inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑟 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
(4.23)

, Vol. 1, No. 1, Article . Publication date: May 2021.



Parametric SO via DRO 21

The proof is in Appendix C. With Theorem 4.4.1, we can show that both 𝜇1

𝑟 and 𝜇
2

𝑟 proposed

above are valid choices to produce descent directions. Moreover, we can also show that they allow

tractable computation of D𝑑𝑎𝑡𝑎 (P0). These are depicted as follows.

Corollary 4.4.2. Under the assumptions in Theorem 4.4.1, 𝑙+ (0) < 0 for both 𝜇1

𝑟 and 𝜇
2

𝑟 .

Corollary 4.4.3. Given 𝑟 ≥ 0 and 𝜇𝑝𝑟𝑜𝑝 being 𝜇1

𝑟 (𝑑𝜃 ) or 𝜇2

𝑟 (𝑑𝜃 ), the nominal measure P𝑟 with
density given by (4.20) satisfies the conditions in Proposition 4.3.3.

The proofs of Corollaries 4.4.2 and 4.3.4 are in Appendix C.

4.5 Numerical Demonstrations
To confirm our findings in Section 4.3 and 4.4, we perform several numerical experiments. Consider

P𝜃 to be multivariate Gaussian N(𝜃, 𝐼𝐷 ) with 𝑘 = 𝐷 = 10. We set 𝜖 = 𝛼 = 0.05 while 𝛽 = 0.01 and

data size 𝑛 = 10 or 5. Notice in this case, the dimension 𝐷 is high but the available sample 𝑛 is

low and we would actually need 𝑁𝑒𝑥𝑎𝑐𝑡 = 371 data points to perform standard SO. Based on our

discussion, we compare three choices of 𝜇𝑝𝑟𝑜𝑝 :

• 𝜇1 = 𝛿 ˆ𝜃
, the point mass at

ˆ𝜃 .

• 𝜇2 ∼ ˆ𝜃 +
√
𝜒2

1−𝛼,𝐷
𝑛
· 𝜂, where 𝜂 is the uniform random vector on the surface of a 𝐷-dimension

unit ball, discussed in Section 4.3.

• 𝜇3 ∼ N( ˆ𝜃, 𝐼𝐷/𝑛), the Gaussian distributionwithmean
ˆ𝜃 and covariancematrix 𝐼𝐷/𝑛, discussed

in Section 4.4.

For 𝜇1, 𝜇2 and 𝜇3, the calculation of D𝑑𝑎𝑡𝑎 (P0) is tractable. We leave the details in the Appendix as

remarks following Lemma C.0.5 and summarize the results in Table 1 and 2. We use 𝑁 to denote

the number of Monte Carlo samples needed. Moreover, we use both algorithms Extended SO and

Extended FAST discussed in Section 5 for demonstration. As we can see, the decrease in 𝑁 under a

better sampling distribution can be considerable, down to less than a third compared to using the

baseline in some cases. Mixing with a proposed uniform distribution (𝜇2) appears to reduce 𝑁 more

than applying a Gaussian mixture (𝜇3). As a side note, we also observe Extended FAST requires

significantly less sample size than Extended SO in this example.

Table 1. Comparisons among choices of P0 for 10 dimensional multivariate Gaussian when 𝑛 = 5.

D𝑑𝑎𝑡𝑎 (P0) 𝛿𝜖 𝑁 for Extended SO 𝑁 for Extended FAST

𝜇1 (𝛿 ˆ𝜃
) 37.9161 6.5766 × 10

−5
285601 70221

𝜇2 11.0368 2.2454 × 10
−4

83649 20707

𝜇3 14.7391 1.6850 × 10
−4

111465 27528

5 PROCEDURAL DESCRIPTION
This section presents our procedures to find solutions for CCP (1.1) using SO-based methods, when

the direct use of data 𝜉1, ..., 𝜉𝑛 from P is possibly insufficient to achieve feasibility with a given

confidence. Algorithm 1, which we call “Extended SO", first presents the basic and most easily

applicable procedure arising from Corollary 3.2.2. Notice that, given an overall target confidence

level, say 𝑐 , we have flexibility in choosing 𝛼 and 𝛽 such that 𝛼 + 𝛽 = 𝑐 . In our experiments, we

simply choose 𝛼 = 𝛽 = 𝑐/2. However, if the requirement for confidence level is high, it is a more
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Table 2. Comparisons among choices of P0 for 10 dimensional multivariate Gaussian when 𝑛 = 10.

D𝑑𝑎𝑡𝑎 (P0) 𝛿𝜖 𝑁 for Extended SO 𝑁 for Extended FAST

𝜇1 (𝛿 ˆ𝜃
) 5.2383 4.6857 × 10

−4
40081 10026

𝜇2 3.3139 7.3298 × 10
−4

25621 6481

𝜇3 3.7926 6.4275 × 10
−4

29219 7363

beneficial to choose a relatively small 𝛽 , since the required Monte Carlo sample size depends only

logarithmically on 𝛽 (i.e., required sample size is of 𝑂 (log
1

𝛽
) ) [10]. However, as the confidence

level 1 − 𝛼 grows larger, the size of uncertaintyU𝑑𝑎𝑡𝑎 would grow and cause the tolerance level 𝜖

for the SO (under the baseline P0) to decrease. On the other hand, the dependence of Monte Carlo

sample size on 𝜖 is less favorable, typically of 𝑂 ( 1

𝜖
) [10].

Algorithm 1 Extended SO to obtain a feasible solution 𝑥 for (1.1) with asymptotic confidence

1 − 𝛼 − 𝛽
1: Inputs: data points 𝜉1, . . . , 𝜉𝑛 , a 𝜙-divergence, parametric information P𝑝𝑎𝑟𝑎 = {P𝜃 }𝜃 ∈Θ⊂R𝐷 .
2: Find the MLE

ˆ𝜃 from the data 𝜉1, . . . , 𝜉𝑛 for parameter 𝜃 .

3: Set 𝜆 ← 𝜙′′ (1)𝜒2

1−𝛼,𝐷
2𝑛

where 𝜒2

1−𝛼,𝐷 is the 1 − 𝛼 quantile of a 𝜒2

𝐷
distribution.

4: Set 𝛿𝜖 ← 𝜖 ′(𝜖, 𝜆, 𝜙) where 𝜖 ′ is defined in (3.10).

5: Set 𝑁 ← 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) where 𝑁𝑒𝑥𝑎𝑐𝑡 is defined in (2.5).

6: Generate 𝜉𝑀𝐶
1
, ..., 𝜉𝑀𝐶

𝑁
from P ˆ𝜃

to construct (2.4) and obtain a solution 𝑥 .

There are several variants of Algorithm 1. First, we have discussed the use of plain SO and that the

required sample size is (2.5), while on the other hand, as mentioned at the end of Section 2.2, we can

use other variants of SO such as FAST that requires a smaller sample size for either the data or the

Monte Carlo samples we generate. In the case of FAST, we would have𝑁𝑒𝑥𝑎𝑐𝑡 (𝜖, 𝛽, 𝑑) = 20𝑑+ 1

𝜖
log

1

𝛽
,

as suggested by [13]. Thus, a variant of Algorithm 1 is to replace 𝑁𝑒𝑥𝑎𝑐𝑡 with this latter quantity,

and replace (2.4) with the FAST procedure in [13] for the last step of Algorithm 1 (we call this

algorithm “Extended FAST" which will also be used in the next section).

The explicit expression for 𝜖 ′(𝜖, 𝜆, 𝜙) for different 𝜙, 𝜖 and 𝜆 can be found in [40]. For example,

if we choose 𝜙 = (𝑥 − 1)2 which corresponds to the 𝜒2
-distance, then for 𝜖 < 1/2, we have

𝜖 ′ = max{0, 𝜖 −
√
𝜆2+4𝜆 (𝜖−𝜖2)−(1−2𝜖)𝜆

2𝜆+2 }. We can also replace 𝜖 ′(𝜖, 𝜆, 𝜙) by any 𝛿𝜖 that achieves

𝑀 (P ˆ𝜃
, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆}, 𝛿𝜖 ) ≤ 𝜖 . In Appendix B, we derive a self-contained easy upper bound

for𝑀 (P ˆ𝜃
, {Q : 𝑑𝜙 (P ˆ𝜃

,Q) ≤ 𝜆}, 𝛿) in the case of 𝜒2
-distance and use it to find such a 𝛿𝜖 . This easy

computation of 𝛿𝜖 will also be used in our numerics in the next section.

Section 4.1 has investigated some proposals to improve the generating distributions. Algorithm

2 depicts these proposals in a general form. The main difference of Algorithm 2 compared to

Algorithm 1 is the introduction of D𝑑𝑎𝑡𝑎 (P0, 𝜙) that one can attempt to minimize over a class

of generating distribution P0 or evaluate for trial-and-error choices of P0, so that at the end we

have D𝑑𝑎𝑡𝑎 (P0, 𝜙) < 𝜙 ′′(1)𝜒2

1−𝛼,𝐷/(2𝑛). As discussed in Section 4.1, using this P0 allows us to

obtain a smaller Monte Carlo size requirement than simple relaxation of the parametric constraint.

Sections 4.3 and 4.4 describe the possibilities of achieving such a reduction, in the case of Gaussian

underlying distributions and using 𝜒2
-distance. Note that, just like in Algorithm 1, we can consider
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other variants such as incorporating FAST and using alternate bounds for 𝑀 instead of 𝜖 ′, by
undertaking the same modifications as in Algorithm 1.

Algorithm 2 Extended SO with improved generating distribution to obtain a feasible solution 𝑥 for

(1.1) with asymptotic confidence 1 − 𝛼 − 𝛽
1: Inputs: data points 𝜉1, . . . , 𝜉𝑛 , a 𝜙-divergence, parametric information P𝑝𝑎𝑟𝑎 = {P𝜃 }𝜃 ∈Θ⊂R𝐷 .
2: Find the MLE

ˆ𝜃 from the data 𝜉1, . . . , 𝜉𝑛 for parameter 𝜃 .

3: Set 𝜆 ← 𝜙′′ (1)𝜒2

1−𝛼,𝐷
2𝑛

where 𝜒2

1−𝛼,𝐷 is the 1 − 𝛼 quantile of a 𝜒2

𝐷
distribution.

4: Obtain P0 by minimizing D𝑑𝑎𝑡𝑎 (P0, 𝜙) defined in (4.1) over a class of distributions or simple

trial-and-error search so that D𝑑𝑎𝑡𝑎 (P0, 𝜙) < 𝜆.
5: Set 𝛿𝜖 ← 𝜖 ′(𝜖,D𝑑𝑎𝑡𝑎 (P0, 𝜙), 𝜙) where 𝜖 ′ is defined in (3.10).

6: Set 𝑁 ← 𝑁𝑒𝑥𝑎𝑐𝑡 (𝛿𝜖 , 𝛽, 𝑑) where 𝑁𝑒𝑥𝑎𝑐𝑡 is defined in (2.5).

7: Generate 𝜉𝑀𝐶
1
, ..., 𝜉𝑀𝐶

𝑁
from P0 to construct (2.4) and obtain a solution 𝑥 .

6 NUMERICAL EXPERIMENTS
This section presents some numerical examples to support our theoretical findings and illustrate the

performance of our proposed procedures for data-driven CCPs. We focus on Algorithm 1 (Extended

SO) and its FAST variant discussed in Section 5 (Extended FAST). We consider both single and joint

CCPs (i.e., one and multiple inequalities respectively in the safety condition of the probability)

as well as quadratic optimization problems. Moreover, we compare numerically with methods of

robust optimization (RO) in [2, 54]. The experimental outputs that we report include:

• Under each setting, we repeat the experiment 1000 times with new data generated each time.

For the solution 𝑥 obtained in each trial from a given algorithm, we evaluate the violation

probability 𝑉 (𝑥, P) under the true probability measure P (under 𝜃𝑡𝑟𝑢𝑒 ) either through exact

calculation or Monte Carlo simulation with sample size 10000. Moreover, using the empirical

distribution for the violation probabilities, we report 𝜖 as the average violation probability

𝑉 (𝑥, P) as well as 𝑄95, the 95-percentile. Finally, we report and compare “𝑓𝑣𝑎𝑙 ”, the average

objective value for the optimization problem across all 1000 runs.

• We fix 𝛼 = 0.05 and 𝛽 = 0.01 across different values of 𝜖 and 𝑑 . However, when we compare

our methods with robust optimization approaches, we set 𝛼 = 0.05 and 𝛽 = 0.001, since

RO approaches essentially guarantee 𝛽 = 0. On the other hand, the sample size chosen for

FAST is taken with default values 𝑁1 = 20𝑑 in stage 1 and 𝑁2 =
log 𝛽−log(𝐵𝑁

1
,𝑑

𝜖 )
log(1−𝜖) in stage 2 as

discussed in [13].

• For given 𝜖 and 𝑑 , we denote 𝑁𝑒𝑥𝑎𝑐𝑡 as the required sample size if we can directly sample

from P and use standard SO. We denote 𝑛 as the available data size (𝑛 < 𝑁𝑒𝑥𝑎𝑐𝑡 ) and 𝑁 as the

Monte Carlo size needed for the our DRO-based methods. In DRO-based methods, we fix our

generating distribution P0 as P ˆ𝜃
and use the 𝜒2

-distance across the experiments.

6.1 Single Linear Chance Constraint Problem
We first consider a single linear CCP

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥

s.t. P((𝑎 + 𝜉)𝑇𝑥 ≤ 𝑏) ≥ 1 − 𝜖, 𝑥 ≥ 0

(6.1)

where 𝑥 ∈ R𝑑 is the decision variable, 𝑎, 𝑐 ∈ R𝑑 and 𝑏 ∈ R are fixed and 𝜉 ∈ R𝑑 is a random vector

following some parametric distribution. We fix 𝑎 = [5, 5, ..., 5] ∈ R𝑑 , 𝑏 = 5 and 𝑐 = [−1,−1, ...,−1] ∈
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R𝑑 and the problem would have a non-empty feasible region with high probability for 𝜉 considered

here. Moreover, a robustly feasible point for FAST [13] is chosen to be 𝑥 = 0 ∈ R𝑑 and an explicit

U𝑑𝑎𝑡𝑎 is constructed as (2.21) for our DRO.

6.1.1 Multivariate Gaussian . We conduct experiments when 𝜉 ∼ N(𝜃, Σ) with fixed but a priori

randomly generated positive definite covariance matrix Σ ∈ R𝑑×𝑑 and unknown 𝜃 ∈ R𝑑 . Due to the
normality of 𝜉 , for any given 𝜃 , we can reformulate the chance constraint exactly as a second-order

cone constraint, which can be robustified straightforwardly in the ambiguous chance constraint

case. The underlying true parameter is taken to be 𝜃𝑡𝑟𝑢𝑒 = 0 ∈ R𝑑 and the results are summarized

in Table 3 and 4.

Table 3. Single linear CCP under Gaussian with unknown mean for different 𝜖 and 𝑑 .

𝜖 = 0.1 𝜖 = 0.1 𝜖 = 0.1 𝜖 = 0.05 𝜖 = 0.05 𝜖 = 0.05

𝑑 = 5 𝑑 = 10 𝑑 = 20 𝑑 = 5 𝑑 = 10 𝑑 = 20

𝑛 50 80 200 50 80 200

𝑁𝑒𝑥𝑎𝑐𝑡 113 183 312 229 371 631

𝑁 449 743 1016 1443 2349 3118

𝜖 0.0050 0.0041 0.0041 0.0015 0.0015 0.0014

𝑄95 0.0136 0.0103 0.0088 0.0045 0.0037 0.0031

𝑓𝑣𝑎𝑙 -0.7577 -0.7447 -0.7360 -0.7353 -0.7243 -0.7128

Table 4. Comparisons for single linear CCP under Gaussian: 𝜖 = 0.05, 𝑑 = 10 and 𝛽 = 0.001.

RO Extended SO Extended FAST

𝑛 80 80 80

𝑁𝑒𝑥𝑎𝑐𝑡 NA 447 447

𝑁 NA 2887 1079

𝜖 0.0180 0.0011 0.00069

𝑄95 0.0272 0.0029 0.0019

𝑓𝑣𝑎𝑙 -0.8008 -0.7212 -0.7093

6.1.2 Exponential Distribution. We conduct experiment when each coordinate 𝜉𝑖 of 𝜉 ∈ R𝑑 indepen-
dently follows exponential distribution with rate 𝜆𝑖 . Since 𝜉 is no longer Gaussian and the domain of

the moment generating moment function for exponential distribution depends on 𝜆 = (𝜆1, . . . , 𝜆𝑑 ),
for convenience we use RO constructed from a convex approximation using Chebyshev’s inequality:

P𝜆

(
𝜉𝑇𝑥 −

𝑑∑
𝑖=1

𝑥𝑖

𝜆𝑖
> 𝜖−1/2

√
𝑉𝑎𝑟 (𝜉𝑇𝑥)

)
≤ 𝜖

which, combined withU𝑑𝑎𝑡𝑎 as in (2.21), reduces the ambiguous chance constraint into a robust

conic quadratic constraint

𝜖−1/2

√√√
𝑑∑
𝑖=1

(𝑥𝑖
𝜆𝑖
)2 + 𝑎𝑇𝑥 + 𝜖−1/2

𝑑∑
𝑖=1

𝑥𝑖

𝜆𝑖
− 𝑏 ≤ 0, ∀𝜆 :

𝑑∑
𝑖=1

(1 − 𝜆𝑖
ˆ𝜆𝑖
)2 ≤

𝜒2

1−𝛼,𝑑
𝑛

,
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The above can be tractably reformulated as in Section 5 of [54] on problems in the form of 5(b),

with Ω = (min𝑖 ( ˆ𝜆𝑖 ) (1 −
𝜒2

1−𝛼,𝑑
𝑛
))−1

where
ˆ𝜆𝑖 represents the MLE estimate. Finally, the underlying

true parameters are taken as 𝜆𝑖 = 1,∀𝑖 , and results are summarized in Table 5.

Table 5. Comparisons for single linear CCP under Exponential: 𝜖 = 0.05, 𝑑 = 10 and 𝛽 = 0.001.

RO Extended SO Extended FAST

𝑛 80 80 80

𝑁𝑒𝑥𝑎𝑐𝑡 NA 447 447

𝑁 NA 2887 1079

𝜖 0.0045 0.0047 0.0016

𝑄95 0.0094 0.0100 0.0050

𝑓𝑣𝑎𝑙 -0.6978 -0.6981 -0.6701

From the results of the experiments, we can see the vast majority of solutions produced by

three methods satisfy statistical feasibility. In fact, all methods are conservative with respect to the

violation probability 𝜖 , although some are more conservative than the other. In particular, when 𝜉

is Gaussian, RO takes advantage of an exact formulation to produce less conservative solution with

lower objective value (closer to the optimal value). This can be seen in Table 4, where 𝜖 = 0.018

𝑓𝑣𝑎𝑙 = −0.80 for RO and 𝜖 = 0.0011 𝑓𝑣𝑎𝑙 = −0.72 only for Extended SO.When 𝜉 is no longer Gaussian,

RO appears to produce similar-quality solutions as Extended SO in terms of feasibility or optimality.

For example in Table 5, we have 𝜖 = 0.0045 𝑓𝑣𝑎𝑙 = −0.6978 for RO and 𝜖 = 0.0047 𝑓𝑣𝑎𝑙 = −0.6981 for

Extended SO. Note that while the validity of RO depends crucially on the applicability and accuracy

of convex approximation, the validity of Extended SO or Extended FAST is not restricted by the

distributions of 𝜉 , and they also do not require intensive, case-specific analysis as RO. In general,

we observe consistent performances of our methods in both experiments.

6.2 Joint Linear Chance Constraint Problem
Next, we consider a joint chance-constrained linear problem:

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥

s.t. P((𝐴 + Ξ)𝑥 ≤ 𝑏) ≥ 1 − 𝜖, 𝑥 ≥ 0

(6.2)

where 𝑥 ∈ R𝑑 is the decision variable, 𝐴 ∈ R𝑚×𝑑 , 𝑐 ∈ R𝑑 and 𝑏 ∈ R𝑚 are fixed and Ξ ∈ R𝑚×𝑑 is a
random matrix following some parametric distribution. We set 𝑐 , each row of 𝐴 and 𝑏 to be the

same as in the single linear CCP. We treat Ξ ∈ R𝑚×𝑑 as a matrix concatenated from a random

vector 𝜉 ∈ R𝑚𝑑 ∼ N(𝜃, Σ) with fixed but a priori randomly generated positive definite covariance

matrix Σ ∈ R𝑚𝑑×𝑚𝑑 and unknown 𝜃 ∈ R𝑚𝑑 . To solve RO, we use Bonferroni’s inequality as in [57]

to first divide the violation probability 𝜖 uniformly across𝑚 individual chance constraints and then

follow the procedure as in single linear CCP. The results are summarized in Table 6.

In this joint linear example, Extended FAST provides the least conservative solution in terms

of the achieved tolerance level (𝜖 = 0.0226, which is closer to 0.05, compared to 0.0003 in RO and

0.0012 in Extended SO), and Extended SO is the least conservative in terms of the objective value

(𝑓𝑣𝑎𝑙 = −0.6626 compared to −0.6448 in RO and −0.6466 in Extended FAST). RO appears to be the

most conservative in terms of both the achieved tolerance level and objective value. Note that this

occurs even though the underlying randomness is Gaussian, which allows exact reformulation in
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Table 6. Comparisons for Joint linear CCP under Gaussian: 𝜖 = 0.05,𝑚 = 3, 𝑑 = 10 and 𝛽 = 0.001.

RO Extended SO Extended FAST

𝑛 80 80 80

𝑁𝑒𝑥𝑎𝑐𝑡 NA 291 291

𝑁 NA 2388 1214

𝜖 0.0003 0.0012 0.0226

𝑄95 0.0007 0.0033 0.0564

𝑓𝑣𝑎𝑙 -0.6448 -0.6626 -0.6466

the single chance constraint case. The conservative performance here is likely (and unsurprisingly)

due to the crude Bonferroni’s correction. Note that other alternatives to using Bonferroni, if one

considers tractable reformulation, would be to use moment-based DRO where tractability can be

achieved (e.g., [69]). However, it is unclear if using moment-based DRO would be more or less

conservative than using Bonferroni correction along with exact reformulation for the individualized

constraints, which could comprise an interesting comparison for a future study. Nonetheless, our

Extended SO/FAST, being purely sampled-based, avoids the additional conservativeness coming

from the Bonferroni correction. However, we note that a large number of Monte Carlo samples are

required due to the large size ofU𝑑𝑎𝑡𝑎 in this high-dimensional problem.

6.3 Non-Linear Chance Constrained Problems
In this section, we conduct numerical experiments for non-linear CCP. We consider two examples.

First is a quadratic objective with joint linear chance constraints, and second is a linear objective

with a quadratic chance constraint, similar as the QM problem considered in [49].

6.3.1 Quadratic Objective with Joint Linear Chance Constraint. We adopt the same setup (thus the

robust feasibility condition remains the same) as in (6.2) except we modify the objective with a

quadratic term

min

𝑥 ∈X⊆R𝑑
1

2

𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥

s.t. P((𝐴 + Ξ)𝑥 ≤ 𝑏) ≥ 1 − 𝜖, 𝑥 ≥ 0

(6.3)

for a fixed but a priori randomly generated positive definite matrix 𝐻 . We use 𝜖 = 0.05. Results are

summarized in Table 7. As we can see, feasibility in terms of violation probability is satisfied by

all methods, though RO suffers from higher conservativeness compared to Extended SO/FAST in

terms of the objective value (𝑓𝑣𝑎𝑙 = −0.48 compared to −0.5547 and −0.5476 for Extended SO and

FAST respectively). Like the previous example, this could be attributed to the Bonferroni correction

used in the RO. Extended FAST gives the least conservative solution in terms of the tolerance level

(𝜖 = 0.0096), using only one third of the samples compared to Extended SO (3888 vs 1384). On

the other hand, Extended SO gives the least conservative solution in terms of the objective value

(𝑓𝑣𝑎𝑙 = −0.5547).

6.3.2 Linear Objective with Quadratic Chance Constraint. We consider the following setup:

min

𝑥 ∈X⊆R𝑑
𝑐𝑇𝑥

s.t. P(𝑥𝑇Ξ𝑥 + 𝑎𝑇𝑥 ≤ 𝑏) ≥ 1 − 𝜖, 𝑥 ≥ 0

(6.4)

, Vol. 1, No. 1, Article . Publication date: May 2021.



Parametric SO via DRO 27

Table 7. Comparisons for quadratic objective with joint linear chance constraint under Gaussian: 𝜖 = 0.05,
𝑚 = 5, 𝑑 = 10 and 𝛽 = 0.001.

RO Extended SO Extended FAST

𝑛 200 200 200

𝑁𝑒𝑥𝑎𝑐𝑡 NA 447 447

𝑁 NA 3888 1384

𝜖 0 0.0006 0.0096

𝑄95 0 0.0017 0.0253

𝑓𝑣𝑎𝑙 -0.4800 -0.5547 -0.5476

We set Ξ = 1

𝑚

∑𝑚
𝑖=1
𝜉𝑖𝜉

𝑇
𝑖 and 𝜉𝑖 ∈ R𝑑 ∼ N(𝜃, Σ) are i.i.d. with unknown 𝜃 . We set 𝜃𝑡𝑟𝑢𝑒 = 0 ∈ R𝑑

and consequently 𝑚Ξ follows a Wishart distributionW(Σ,𝑚) with 𝑚 degrees of freedom and

covariance matrix Σ under P. We use 𝜖 = 0.05. The RO formulation for this problem is not readily

available while our sampling-basedmethods are still directly applicable.We thus focus on evaluating

the performance of Extended FAST under different hyper-parameters. The results are summarized in

Table 8. As we can see, the high dimensions of the problem do not affect the sample size requirement

of Extended FAST dramatically, as it increases moderately form 𝑁 = 154 when 𝑑 = 5 to 𝑁 = 334

when 𝑑 = 10 and to 𝑁 = 422 when 𝑑 = 15. Moreover, the average optimal value 𝑓𝑣𝑎𝑙 is around −0.85

and feasibility is satisfied (𝜖 all within 0.05), showing the consistent effectiveness of our method.

Table 8. Linear objective with quadratic chance constraint for different 𝜖 ,𝑚 and 𝑑 .

𝜖 = 0.1, 𝑑 = 5,𝑚 = 5 𝜖 = 0.05, 𝑑 = 10,𝑚 = 10 𝜖 = 0.05, 𝑑 = 15,𝑚 = 15

𝑛 80 200 300

𝑁𝑒𝑥𝑎𝑐𝑡 113 371 504

𝑁 154 334 422

𝜖 0.0092 0.0050 0.0048

𝑄95 0.0263 0.0133 0.0128

𝑓𝑣𝑎𝑙 -0.8393 -0.8576 -0.8672

7 CONCLUSION
We consider data-driven chance constrained problems with limited data. In such situation, standard

approaches in SO may not be able to generate statistically feasible solutions. We investigate

an approach that uses divergence-based DRO to efficiently incorporate parametric information

through a data-driven uncertainty set, and subsequently uses Monte Carlo sampling to generate

enough samples to handle the distributionally robust chance constraint. In this way our framework

translates the data size requirement in SO into a Monte Carlo requirement, the latter could be much

more abundant thanks to cheap modern computational power.

To exploit the full capability of our framework, we have investigated the optimality of the

generating distribution in drawing the Monte Carlo samples in the sense of minimizing its re-

quired sample size. We have shown that, while the optimal choice is the baseline distribution in

the unambiguous and nonparametric DRO cases, this natural choice can be dominated by other
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distributions in the parametric DRO case. We proved this by connecting the Neyman-Pearson

lemma in statistical hypothesis testing to DRO and SO, which comprises the first such results of its

kind as far as we know. We then studied several ways to find better generating distributions by

searching for mixtures that enhance distributional variability. Lastly, we showed some numerical

results to demonstrate how our approach can give rise to feasible solutions in a wide range of

settings where other methods such as RO cannot be utilized directly or give more conservative

solutions.
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A REGULAR CONDITIONS FOR VERIFYING ASSUMPTION A1
We consider the following conditions:

(C1) 𝑝 (𝑥, 𝜃1) = 𝑝 (𝑥, 𝜃2) for all 𝑥 implies 𝜃1 = 𝜃2.

(C2) 𝜃𝑡𝑟𝑢𝑒 is an inner point of Θ ⊆ R𝐷 .
(C3) The support of distribution {𝑥 : 𝑝 (𝑥, 𝜃 ) > 0} does not depend on 𝜃 .

(C4) There exists a measurable function 𝐿1 (𝑥) such that E𝜃𝑡𝑟𝑢𝑒𝐿
2

1
< ∞ and

| log𝑝 (𝑥, 𝜃1) − log𝑝 (𝑥, 𝜃2) | ≤ 𝐿1 (𝑥)∥𝜃1 − 𝜃2∥2 (A.1)

for all 𝜃1, 𝜃2 in a neighborhood of 𝜃𝑡𝑟𝑢𝑒 .

(C5) 𝐼 (𝜃𝑡𝑟𝑢𝑒 ) is non-singular.
(C6) The density family {P𝜃 }𝜃 ∈Θ is differentiable in quadratic mean at 𝜃𝑡𝑟𝑢𝑒 , i.e., there exists a

measurable function 𝐿2 (𝑥) : X → 𝑅𝐷 such that for any ℎ ∈ R𝐷 that converges to 0,∫ (√
𝑝 (𝑥, 𝜃𝑡𝑟𝑢𝑒 + ℎ) −

√
𝑝 (𝑥, 𝜃𝑡𝑟𝑢𝑒 ) −

1

2

ℎ𝑇𝐿2 (𝑥)
√
𝑝 (𝑥, 𝜃𝑡𝑟𝑢𝑒 )

)
2

𝑑𝑥 = 𝑜 (∥ℎ∥2
2
). (A.2)
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The consistency and asymptotic normality of MLE in Assumption A1 is guaranteed under

conditions (C1)-(C6). See [47, 66].

B ALTERNATE BOUNDS USING 𝜒2 DISTANCE
Consider the 𝜒2

-based uncertainty setU𝑑𝑎𝑡𝑎 = {Q ∈ P𝑝𝑎𝑟𝑎 : 𝜒2 (P ˆ𝜃
,Q) ≤ 𝜆}. Here we provide an

alternate upper bound for the function𝑀 (P0,U𝑑𝑎𝑡𝑎, 𝛿), which we call 𝑀̃ (P0,U𝑑𝑎𝑡𝑎, 𝛿). That is, we
find 𝑀̃ (P0,U𝑑𝑎𝑡𝑎, 𝛿) that satisfies

sup

Q∈U𝑑𝑎𝑡𝑎

Q(𝜉 ∈ 𝐴) ≤ 𝑀̃ (P0,U𝑑𝑎𝑡𝑎, 𝛿), for all 𝐴 such that P0 (𝐴) ≤ 𝛿.

For any Q absolutely continuous with respect to P0, we have

sup

Q∈U𝑑𝑎𝑡𝑎

Q(𝜉 ∈ 𝐴) = P0 (𝜉 ∈ 𝐴) +
(

sup

Q∈U𝑑𝑎𝑡𝑎

Q(𝜉 ∈ 𝐴) − P0 (𝜉 ∈ 𝐴)
)

= P0 (𝜉 ∈ 𝐴) + sup

Q∈U𝑑𝑎𝑡𝑎

∫
1{𝜉 ∈ 𝐴}

( 𝑑Q
𝑑P0

− 1

)
𝑑P0 (𝜉)

≤ P0 (𝜉 ∈ 𝐴) + sup

Q∈U𝑑𝑎𝑡𝑎

( ∫
1{𝜉 ∈ 𝐴}𝑑P0 (𝜉)

)
1/2
·
( ∫ ( 𝑑Q

𝑑P0

− 1

)
2

𝑑P0 (𝜉)
)

1/2

≤ 𝛿 + 𝛿1/2 · ( sup

Q∈U𝑑𝑎𝑡𝑎

𝜒2 (P0,Q))1/2, (B.1)

where the fourth line follows from the Cauchy-Schwarz inequality. Thus, we can set

𝑀̃ (P0,U𝑑𝑎𝑡𝑎, 𝛿) = 𝛿 + 𝛿1/2 · ( sup

Q∈U𝑑𝑎𝑡𝑎

𝜒2 (P0,Q))1/2 = 𝛿 + 𝛿1/2 · (D𝑑𝑎𝑡𝑎 (P0))1/2,

which is non-decreasing in 𝛿 . By (2.9), we can choose 𝛿𝜖 such that 𝛿𝜖 + 𝛿1/2
𝜖 (D𝑑𝑎𝑡𝑎 (P0))1/2 ≤ 𝜖 , or

equivalently,

𝛿𝜖 ≤ 𝜖 +
D𝑑𝑎𝑡𝑎 (P0)

2

−
√
𝜖 · D𝑑𝑎𝑡𝑎 (P0) +

1

4

(D𝑑𝑎𝑡𝑎 (P0))2, (B.2)

by solving the quadratic equation. In the case where we relax the parametric constraint completely,

we have D𝑑𝑎𝑡𝑎 (P0) = 𝜆. Compared to the bound obtained from Theorem 3.2.1 and Corollary 3.2.2,

(B.2) is less tight, but the gap can be shown to asymptotically vanish when 𝜖,
𝜒2

1−𝛼,𝐷
𝑛
→ 0.

C PROOFS AND OTHER TECHNICAL RESULTS
Proof of Lemma 4.2.1. First, by definition P(Θ) is a convex set and, for any 𝜇1, 𝜇2 ∈ P(Θ) and

0 < 𝑡 < 1, we have

(1 − 𝑡)𝜇1 + 𝑡𝜇2 ∈ P(Θ).
Next, fixing 𝜃 ∈ U𝑑𝑎𝑡𝑎 , the function 𝐿(·, 𝜃 ) is convex since:

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) =
∫
Y

(𝑝 (𝑦;𝜃 ))2∫
Θ
𝑝 (𝑦;𝜃 ′) ((1 − 𝑡)𝜇1 + 𝑡𝜇2) (𝑑𝜃 ′)

𝑑𝑦

=

∫
Y

(𝑝 (𝑦;𝜃 ))2

(1 − 𝑡)
∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇1 (𝑑𝜃 ′) + 𝑡

∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇2 (𝑑𝜃 ′)

𝑑𝑦

≤(1 − 𝑡)
∫
Y

(𝑝 (𝑦;𝜃 ))2∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇1 (𝑑𝜃 ′)

𝑑𝑦 + 𝑡
∫
Y

(𝑝 (𝑦;𝜃 ))2∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇2 (𝑑𝜃 ′)

𝑑𝑦

=(1 − 𝑡)𝐿(𝜇1, 𝜃 ) + 𝑡𝐿(𝜇2, 𝜃 )
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for any 0 < 𝑡 < 1 where the inequality follows from the convexity of the function 1/𝑥 for 𝑥 > 0.

Thus, as the supremum of convex functions, 𝑙 (𝜇) ≜ sup

𝜃 ∈U𝑑𝑎𝑡𝑎

𝐿(𝜇, 𝜃 ) is also convex. □

We provide a version of Danskin’ Theorem needed to prove Theorem 4.3.1. Alternately, one can

also resort to a generalized version in [18] by verifying the conditions there. Here we opt for the

former and provide a self-contained proof, which mostly relies on the techniques from Proposition

4.5.1 of [4] but with some slight modification to handle issues regarding the domain of the involved

function. We have:

Lemma C.0.1. Fix probability measures 𝜇1, 𝜇2 ∈ P(Θ). Suppose 𝑡𝑘 ↓ 0 is a positive sequence such
that (1− 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2 ∈ P(Θ) for all 𝑘 and 𝜃𝑘 ∈ Θ∗ ((1− 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2) is a sequence such that 𝜃𝑘 → 𝜃0

for some 𝜃0 ∈ U𝑑𝑎𝑡𝑎 , then we have

lim sup

𝑘→∞

𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃𝑘 )
𝑡𝑘

≤ lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑡

,

if we assume 𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) is jointly continuous in 0 ≤ 𝑡 ≤ 1 and 𝜃 ∈ Θ.

Proof. It is known that if 𝑓 : I→ R is a convex function with I being an open interval containing
some point 𝑥 , we then have the following results [4]:

𝑓 + (𝑥) = lim

𝑡↓0

𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥)
𝑡

= inf

𝑡>0

𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥)
𝑡

, (C.1)

𝑓 − (𝑥) = lim

𝑡↓0

𝑓 (𝑥) − 𝑓 (𝑥 − 𝑡)
𝑡

= sup

𝑡>0

𝑓 (𝑥) − 𝑓 (𝑥 − 𝑡)
𝑡

, (C.2)

and

𝑓 + (𝑥) ≥ 𝑓 − (𝑥). (C.3)

In other words, these limits exist and satisfy the above relations for convex functions. Thus, if

we define 𝑓𝑘 (𝑡) = 𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2 + 𝑡 (𝜇2 − 𝜇1), 𝜃𝑘 ), it follows from the convexity of P(Θ) and
𝐿(·, 𝜃𝑘 ) that 𝑓𝑘 (𝑡) is convex and well-defined for −𝑡𝑘 ≤ 𝑡 ≤ 1 − 𝑡𝑘 . Using the above results in (C.1),

(C.2) and (C.3), we then have

𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃𝑘 )
𝑡𝑘

=
𝑓𝑘 (0) − 𝑓𝑘 (−𝑡𝑘 )

𝑡𝑘

≤ sup

𝑡>0

𝑓𝑘 (0) − 𝑓𝑘 (−𝑡)
𝑡

= 𝑓 −
𝑘
(0) ≤ 𝑓 +

𝑘
(0) = inf

𝑡>0

𝑓𝑘 (𝑡) − 𝑓𝑘 (0)
𝑡

.

(C.4)

On the other hand, if we define 𝑓0 (𝑡) = 𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0), it also follows that 𝑓0 (𝑡) is convex
and well-defined for 0 ≤ 𝑡 ≤ 1. It follows from the convexity of 𝑓0 (·) as well as (C.1) that

lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑡

= lim

𝑡↓0

𝑓0 (𝑡) − 𝑓0 (0)
𝑡

= inf

𝑡>0

𝑓0 (𝑡) − 𝑓0 (0)
𝑡

= 𝑓 +
0
(0). (C.5)

Then, it again follows from the convexity of 𝑓0 (·) that, given any 𝜏 > 0, we can find some 𝜂 > 0

such that

𝑓0 (𝑠) − 𝑓0 (0)
𝑠

≤ 𝑓 +
0
(0) + 𝜏, (C.6)
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for all 0 < 𝑠 < 𝜂. It then follows from definitions and (C.6) that

𝐿((1 − 𝑠)𝜇1 + 𝑠𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑠

=
𝐿((𝜇1 + 𝑠 (𝜇2 − 𝜇1), 𝜃0) − 𝐿(𝜇1, 𝜃0)

𝑠

=
𝑓0 (𝑠) − 𝑓0 (0)

𝑠
≤ 𝑓 +

0
(0) + 𝜏, (C.7)

for all 0 < 𝑠 < 𝜂. Fixing one such 𝑠 , since the function 𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) is jointly continuous in

0 ≤ 𝑡 ≤ 1 and 𝜃 ∈ Θ, and the sequence satisfies 𝜃𝑘 → 𝜃0, we have

lim

𝑘→∞

𝑓𝑘 (𝑠) − 𝑓𝑘 (0)
𝑠

= lim

𝑘→∞

𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2 + 𝑠 (𝜇2 − 𝜇1), 𝜃𝑘 ) − 𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 )
𝑠

=
𝐿((𝜇1 + 𝑠 (𝜇2 − 𝜇1), 𝜃0) − 𝐿(𝜇1, 𝜃0)

𝑠
=
𝑓0 (𝑠) − 𝑓0 (0)

𝑠
≤ 𝑓 +

0
(0) + 2𝜏,

as long as we make 𝜂 > 𝑠 > 0 small enough so that 𝜂 ≤ 1 − 𝑡𝑘 for all 𝑘 . Then, for 𝑘 large enough,

we have

inf

𝑡>0

𝑓𝑘 (𝑡) − 𝑓𝑘 (0)
𝑡

≤ 𝑓𝑘 (𝑠) − 𝑓𝑘 (0)
𝑠

≤ 𝑓 +
0
(0) + 2𝜏 . (C.8)

Combining (C.4), (C.5) and (C.8), we have that, for 𝑘 large enough,

𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃𝑘 )
𝑡𝑘

≤ lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑡

+ 2𝜏 .

Finally, since 𝜏 is arbitrary, we conclude that

lim sup

𝑘→∞

𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃𝑘 )
𝑡𝑘

≤ lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑡

.

□

We now prove the following version of Danskins’ Theorem:

Theorem C.0.2. Fix 𝜇1, 𝜇2 ∈ P(U𝑑𝑎𝑡𝑎). Suppose 𝑡𝑘 ↓ 0 is a positive sequence such that (1− 𝑡𝑘 )𝜇1 +
𝑡𝑘𝜇2 ∈ P(Θ) for all 𝑘 and 𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) is jointly continuous in 0 ≤ 𝑡 ≤ 1 and 𝜃 ∈ Θ. Then, if
we let𝜓 (𝑡) = 𝑙 ((1 − 𝑡)𝜇1 + 𝑡𝜇2) for 0 ≤ 𝑡 ≤ 1 with 𝑙 (·) = sup

𝜃 ∈U𝑑𝑎𝑡𝑎

𝐿(·, 𝜃 ) defined as (4.9), we have

𝜓+ (0) = sup

𝜃 ∈Θ∗ (𝜇1)
lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) − 𝐿(𝜇1, 𝜃 )
𝑡

(C.9)

Proof. For any 𝜃0 ∈ Θ∗ (𝜇1) and 𝜃𝑡 ∈ Θ∗ ((1 − 𝑡)𝜇1 + 𝑡𝜇2), we have

𝜓 (𝑡) −𝜓 (0)
𝑡

=
𝑙 ((1 − 𝑡)𝜇1 + 𝑡𝜇2) − 𝑙 (𝜇1)

𝑡
=
𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃𝑡 ) − 𝐿̃(𝜇1, 𝜃0)

𝑡

≥𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑡

.

Thus, by taking 𝑡 ↓ 0 and taking the supremum over all 𝜃0 ∈ Θ∗ (𝜇1), we have

𝜓+ (0) ≥ sup

𝜃 ∈Θ∗ (𝜇1)
lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) − 𝐿(𝜇1, 𝜃 )
𝑡

. (C.10)

Notice that the existence of the several limits above follows from the convexity of related functions.

To prove the reverse inequality, we consider a sequence {𝑡𝑘 } with 0 < 𝑡𝑘 < 1 and 𝑡𝑘 ↓ 0. Then,

we pick another sequence {𝜃𝑘 } ⊆ U𝑑𝑎𝑡𝑎 with 𝜃𝑘 ∈ Θ∗ ((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2) for all 𝑘 . SinceU𝑑𝑎𝑡𝑎 is
compact, there exist a subsequence of {𝜃𝑘 } converge to some 𝜃0 ∈ U𝑑𝑎𝑡𝑎 . Without loss of generality,
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we drop the subsequence and simply assume 𝜃𝑘 → 𝜃0. We first show 𝜃0 ∈ Θ∗ (𝜇1). To do this, pick

any
˜𝜃0 ∈ Θ∗ (𝜇1). Since 𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) is jointly continous in 𝑡 and 𝜃 , we have

𝐿(𝜇1, 𝜃0) = lim

𝑘→∞
𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) ≥ lim

𝑘→∞
𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, ˜𝜃0) = 𝐿(𝜇1, ˜𝜃0),

where the inequality follows from the definition of 𝜃𝑘 . Now, since
˜𝜃0 ∈ Θ∗ (𝜇1) and 𝐿(𝜇1, 𝜃0) ≥

𝐿(𝜇1, ˜𝜃0), we must have

𝐿(𝜇1, 𝜃0) = 𝐿(𝜇1, ˜𝜃0) and 𝜃0 ∈ Θ∗ (𝜇1).
Now, using the definition of Θ∗ (𝜇1), we can write

𝜓+ (0) = inf

0<𝑡

𝜓 (𝑡) −𝜓 (0)
𝑡

≤ 𝜓 (𝑡𝑘 ) −𝜓 (0)
𝑡𝑘

=
𝑙 ((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2) − 𝑙 (𝜇1)

𝑡𝑘

=
𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃0)

𝑡𝑘

≤𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃𝑘 )
𝑡𝑘

. (C.11)

Now we use Lemma C.0.1 to conclude that

𝜓+ (0) ≤ lim sup

𝑘→∞

𝐿((1 − 𝑡𝑘 )𝜇1 + 𝑡𝑘𝜇2, 𝜃𝑘 ) − 𝐿(𝜇1, 𝜃𝑘 )
𝑡𝑘

≤ lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃0) − 𝐿(𝜇1, 𝜃0)
𝑡

≤ sup

𝜃 ∈Θ∗ (𝜇1)
lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) − 𝐿(𝜇1, 𝜃 )
𝑡

(C.12)

Finally, we combine (C.10) and (C.12) to conclude the proof

𝜓+ (0) = sup

𝜃 ∈Θ∗ (𝜇1)
lim

𝑡↓0

𝐿((1 − 𝑡)𝜇1 + 𝑡𝜇2, 𝜃 ) − 𝐿(𝜇1, 𝜃 )
𝑡

□

Proof of Theorem 4.3.1. The result can be obtained from Leibniz’s integral rule (i.e. differenti-

ation under the integral sign). See, for example, Theorem 2.27 in [26]. □

Next we prove Proposition 4.3.2. For convenience, we note that (4.15) can be written in a compact

form for exponential family [58]:

𝑝 (𝑦;𝜃 ) = 𝑒 ⟨𝑡 (𝑦),𝜃 ⟩−𝐹 (𝜃 )+𝑘 (𝑦) , (C.13)

where ⟨𝑎, 𝑏⟩ = 𝑎⊺𝑏 represents the usual inner product in the Euclidean space, and 𝑡 (·), 𝐹 (·) and
𝑘 (·) are known functions. In particular, we have

𝐹 (𝜃 ) = 𝜃⊺Σ−1𝜃

2

(C.14)

To facilitate the calculation, we first introduce two lemmas involving the exponential parametric

family based on [58].

Lemma C.0.3. Pick 𝜃1, 𝜃2 ∈ Θ. If 2𝜃2 − 𝜃1 ∈ Θ, then we have∫
Y

(𝑝 (𝑦;𝜃2))2
𝑝 (𝑦;𝜃1)

𝑑𝑦 = 𝑒𝐹 (2𝜃2−𝜃1)−(2𝐹 (𝜃2)−𝐹 (𝜃1)) .

In particular, if 𝐹 (𝜃 ) = 𝜃⊺Σ−1𝜃
2

, then
∫
Y
(𝑝 (𝑦;𝜃2))2
𝑝 (𝑦;𝜃1) 𝑑𝑦 = 𝑒 (𝜃2−𝜃1)⊺Σ−1 (𝜃2−𝜃1) .

, Vol. 1, No. 1, Article . Publication date: May 2021.



Parametric SO via DRO 35

Proof. It follows from (C.13) that∫
Y

(𝑝 (𝑦;𝜃2))2
𝑝 (𝑦;𝜃1)

𝑑𝑦 =𝑒<𝑡 (𝑦),2𝜃2−𝜃1>−(2𝐹 (𝜃2)−𝐹 (𝜃1))+𝑘 (𝑦)𝑑𝑦

=𝑒𝐹 (2𝜃2−𝜃1)−(2𝐹 (𝜃2)−𝐹 (𝜃1)) ·
∫
Y
𝑝 (𝑦; 2𝜃2 − 𝜃1)𝑑𝑦

=𝑒𝐹 (2𝜃2−𝜃1)−(2𝐹 (𝜃2)−𝐹 (𝜃1)) .

□

Lemma C.0.4. Pick 𝜃1,𝜃2 and 𝜃3 ∈ Θ. If 2𝜃2 − 2𝜃1 + 𝜃3 ∈ Θ, then we have∫
Y

(𝑝 (𝑦;𝜃2))2𝑝 (𝑦;𝜃3)
(𝑝 (𝑦;𝜃1))2

𝑑𝑦 = 𝑒𝐹 (2𝜃2−2𝜃1+𝜃3)−2𝐹 (𝜃2)+2𝐹 (𝜃1)−𝐹 (𝜃3) .

In particular, if 𝐹 (𝜃 ) = 𝜃⊺Σ−1𝜃
2

, then
∫
Y
(𝑝 (𝑦;𝜃2))2𝑝 (𝑦;𝜃3)
(𝑝 (𝑦;𝜃1))2 𝑑𝑦 = 𝑒 (𝜃2−𝜃1)⊺Σ−1 (𝜃2−𝜃1)+2(𝜃2−𝜃1)Σ−1 (𝜃3−𝜃1) .

Proof. The proof follows from the same techniques as in Lemma C.0.3. □

Then (4.16) follows from (2.20), (C.14) and Lemma C.0.3 so that

U𝑑𝑎𝑡𝑎 ≜
{
𝜃 ∈ Θ : 𝜒2 (P ˆ𝜃

, P𝜃 ) ≤
𝜒2

1−𝛼,𝐷
𝑛

}
=

{
𝜃 ∈ Θ : 𝑒𝐹 (2𝜃−

ˆ𝜃 )−(2𝐹 (𝜃 )−𝐹 ( ˆ𝜃 )) − 1 ≤
𝜒2

1−𝛼,𝐷
𝑛

}
=

{
𝜃 ∈ Θ : 𝑒 (𝜃−

ˆ𝜃 )⊺Σ−1 (𝜃− ˆ𝜃 ) − 1 ≤
𝜒2

1−𝛼,𝐷
𝑛

}
=

{
𝜃 :

ˆ𝜃 + Σ 1

2 𝑣, for all ∥𝑣 ∥2
2
≤ log(1 +

𝜒2

1−𝛼,𝐷
𝑛
)
}
,

and (4.17) follows. We now prove Proposition 4.3.2:

Proof of Proposition 4.3.2. Following Theorem 4.3.1, Lemma C.0.3 and Lemma C.0.4, we have

sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

∫
Y

(𝑝 (𝑦;𝜃 ))2 ·
∫
Θ
𝑝 (𝑦;𝜃 ′) (𝛿 ˆ𝜃

− 𝜇𝑝𝑟𝑜𝑝 ) (𝑑𝜃 ′)
(
∫
Θ
𝑝 (𝑦;𝜃 ′)𝛿 ˆ𝜃

(𝑑𝜃 ′))2
𝑑𝑦

= sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

( ∫
Y

(𝑝 (𝑦;𝜃 ))2

𝑝 (𝑦;
ˆ𝜃 )

𝑑𝑦 −
∫
Y

(𝑝 (𝑦;𝜃 ))2 ·
∫
Θ
𝑝 (𝑦;𝜃 ′) (𝜇𝑝𝑟𝑜𝑝 ) (𝑑𝜃 ′)
(𝑝 (𝑦;

ˆ𝜃 ))2
𝑑𝑦

)
= sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

( ∫
Y

(𝑝 (𝑦;𝜃 ))2

𝑝 (𝑦;
ˆ𝜃 )

𝑑𝑦 −
∫
Θ

∫
Y

(𝑝 (𝑦;𝜃 ))2 · 𝑝 (𝑦;𝜃 ′)
(𝑝 (𝑦;

ˆ𝜃 ))2
𝑑𝑦 · 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′)

)
= sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

(
𝑒 (𝜃−

ˆ𝜃 )⊺Σ−1 (𝜃− ˆ𝜃 ) −
∫
Θ
𝑒 (𝜃−

ˆ𝜃 )⊺Σ−1 (𝜃− ˆ𝜃 )+2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 )𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′)
)

=(1 +
𝜒2

1−𝛼,𝐷
𝑛
) · sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

(
1 − E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
=(1 +

𝜒2

1−𝛼,𝐷
𝑛
) ·

(
1 − inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
. (C.15)
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Notice the second equality follows from Fubini’s theorem. The third equality follows fromLemmaC.0.3

and Lemma C.0.4. The fourth equality follows from (4.17). Now, following the last line (C.15), for

the search of descent direction, it is sufficient to prove

inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] > 1.

However, since 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′) is a symmetrical distribution around
ˆ𝜃 , we know that

E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [2(𝜃 − ˆ𝜃 )⊺Σ−1 (𝜃 ′ − ˆ𝜃 )] = 0.

for any 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
). Then, it follows from Jensen’s inequality that

inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] ≥ 1.

Now suppose for the sake of contradiction that

inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] = 1.

Then, let {𝜃𝑘 }𝑘 ⊆ Θ∗ (𝛿 ˆ𝜃
) be a subsequence such that E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃𝑘− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] → 1. Due to the

compactness of Θ∗ (𝛿 ˆ𝜃
), we can find a subsequence of {𝜃𝑘 }𝑘 converging to some 𝜃0 ∈ Θ∗ (𝛿 ˆ𝜃

). For
convenience we drop the subsequence and suppose 𝜃𝑘 → 𝜃0 . Then the existence of 𝑌 allows us to

use dominated convergence theorem:

E[𝑒2𝑌𝜃
0 ] = E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃0− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] = lim

𝑘→∞
E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃𝑘− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] = 1.

However, Jensen’s inequality would indicate that E[𝑒2𝑌𝜃
0 ] = 1 if and only P(𝑌𝜃0

= 0) = 1, which

contradicts our assumption. Thus, we know that

inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] > 1,

as claimed. □

Proof of Proposition 4.3.3. First we prove (4.18). Letting 𝑐 = 1

(2𝜋 )𝐷 |Σ | , we know that

𝜒2 (P0, P𝜃 ) =
∫

𝑝2 (𝑦;𝜃 )
𝑝0 (𝑦)

𝑑𝑦 − 1

=𝑐

∫
𝑒−(𝑦−𝜃 )

𝑇 Σ−1 (𝑦−𝜃 )

𝑝0 (𝑦)
𝑑𝑦 − 1

=𝑐𝑒−∥Σ
−1/2 (𝜃− ˆ𝜃 ) ∥2

2

∫
𝑒−(𝑦−

ˆ𝜃 )𝑇 Σ−1 (𝑦− ˆ𝜃 ) · 𝑒−2(𝑦− ˆ𝜃 )𝑇 Σ−1 ( ˆ𝜃−𝜃 )

𝑝0 (𝑦)
𝑑𝑦 − 1

=𝑐 |Σ1/2 |𝑒−∥Σ−1/2 (𝜃− ˆ𝜃 ) ∥2
2

∫
𝑒−𝑧

𝑇 𝑧 · 𝑒−2𝑧𝑇 Σ−1/2 ( ˆ𝜃−𝜃 )

𝑝0 (Σ1/2𝑧 + ˆ𝜃 )
𝑑𝑧 − 1

=𝑐 |Σ|𝑒−∥Σ−1/2 (𝜃− ˆ𝜃 ) ∥2
2

∫
𝑒−𝑧

𝑇 𝑧 · 𝑒−2𝑧𝑇 Σ−1/2 ( ˆ𝜃−𝜃 )

𝑝𝑍 (𝑧)
𝑑𝑧 − 1 (C.16)

where we denote 𝑝𝑍 (·) to be the density function of random variable 𝑍 = Σ−1/2 (𝑌 − ˆ𝜃 ) with
𝑌 ∼ P0 and the last two lines follow from a change of variable 𝑧 = Σ−1/2 (𝑦 − ˆ𝜃 ). Now, since
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∥Σ−1/2 (𝜃1 − ˆ𝜃 )∥2
2
= ∥Σ−1/2 (𝜃2 − ˆ𝜃 )∥2

2
= 𝑟 for some 𝑟 by assumption, it follows from (C.16) that

𝜒2 (P0, P𝜃1
) = 𝜒2 (P0, P𝜃2

) if we can show∫
𝑒−𝑧

𝑇 𝑧 · 𝑒−2𝑧𝑇 Σ−1/2 ( ˆ𝜃−𝜃1)

𝑝𝑍 (𝑧)
𝑑𝑧 =

∫
𝑒−𝑧

𝑇 𝑧 · 𝑒−2𝑧𝑇 Σ−1/2 ( ˆ𝜃−𝜃2)

𝑝𝑍 (𝑧)
𝑑𝑧.

However, since 𝑝𝑍 (𝑧) and 𝑒−𝑧
𝑇 𝑧

are both rotationally invariant functions (i.e. 𝑓 (𝑧) = 𝑓 (𝑄⊺𝑧) for all
𝑧 and rotational matrix 𝑄 , with |𝑄 | = 1), it can be shown that

∫
𝑒−𝑧

𝑇 𝑧 ·𝑒−2𝑧𝑇 𝜈

𝑝𝑍 (𝑧) 𝑑𝑧 holds the same value

for any 𝜈 such that ∥𝜈 ∥2
2
= 𝑟 . Notice the rotational invariance of 𝑝𝑍 (𝑧) follows from the rotational

invariance of 𝑍 . This proves (4.18). To prove (4.19), notice that for any 𝜃 ∈ U𝑑𝑎𝑡𝑎 , we can find some

0 ≤ 𝑡 ≤ 1 such that

(((1 − 𝑡) ˆ𝜃 + 𝑡𝜃★) − ˆ𝜃 )⊺Σ−1 (((1 − 𝑡) ˆ𝜃 + 𝑡𝜃★) − ˆ𝜃 ) = (𝜃 − ˆ𝜃 )⊺Σ−1 (𝜃 − ˆ𝜃 )
and hence 𝜒2 (P0, P( (1−𝑡 ) ˆ𝜃+𝑡𝜃 ∗) ) = 𝜒2 (P0, P𝜃 ) by (4.18). □

Proof of Proposition 4.3.4. To check that 𝑌 ∼ P𝑡 with density

𝑝𝑡 (𝑦) =
∫
Θ
𝑝 (𝑦;𝜃 ′) ((1 − 𝑡)𝛿 ˆ𝜃

+ 𝑡𝜇𝑝𝑟𝑜𝑝 ) (𝑑𝜃 ′) = (1 − 𝑡)P ˆ𝜃
+
∫
Θ
𝑝 (𝑦;𝜃 ′)𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ′),

leads to rotationally invariant 𝑍 = Σ−1/2 (𝑌 − ˆ𝜃 ), simply notice that

𝑌
D
= (1 −𝑈𝑡 ) ( ˆ𝜃 + 𝑋1) +𝑈𝑡 ( ˆ𝜃 +

√
𝜒2

1−𝛼,𝐷
𝑛
· Σ1/2𝜂 + 𝑋2),

where𝑈𝑡 is an independent Bernoulli variable with success rate 𝑡 , 𝜂 is a random vector uniformly

distributed on the surface of the 𝐷-dimensional unit ball and 𝑋1, 𝑋2 are independentN(0, Σ). Then,
it follows that

Σ−1/2 (𝑌 − ˆ𝜃 )D= (1 −𝑈𝑡 )𝑍1 +𝑈𝑡 (

√
𝜒2

1−𝛼,𝐷
𝑛

𝜂 + 𝑍2)

where 𝑍1, 𝑍2 are now independent N(0, 𝐼𝐷 ). Consequently, the rotational invariance of 𝑍 now

follows from the rotational invariance of 𝑍1, 𝑍2, 𝜂 and their independence. □

Following the comments after Proposition 4.3.2, we show that 𝜃 ∼ 𝜇𝑝𝑟𝑜𝑝 with 𝜃
D
= ˆ𝜃 +

√
𝜒2

1−𝛼,𝐷
𝑛
·

Σ1/2 · 𝜂 provides a descent direction, with an alternate proof using the following lemma and the

last line of (C.15).

Lemma C.0.5. Fixing 𝜃1 ∈ Θ∗ (𝛿 ˆ𝜃
), we have

E𝜃2∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃1− ˆ𝜃 )𝑇 Σ−1 (𝜃2− ˆ𝜃 ) ] > 1,

for 𝜃2 ∼ 𝜇𝑝𝑟𝑜𝑝 (𝑑𝜃 ) where 𝜃2

D
= ˆ𝜃 +

√
𝜒2

1−𝛼,𝐷
𝑛
· Σ1/2 · 𝜂 with 𝜂 following the uniform distribution on the

surface of the 𝐷-dimensional unit ball.

Proof of Lemma C.0.5. Let 𝑢1 ∈ R𝐷 denote an arbitary point on the surface of 𝐷 dimensional

unit ball ( ∥𝑢1∥22 = 1) and let 𝜂 = [𝜂1, 𝜂2, ..., 𝜂𝐷 ] be the random vector in R𝐷 uniformly distributed

on the surface of 𝐷 dimensional unit ball. Then we claim that

𝜇𝑇
1
𝜂+1
2
∼ 𝐵𝑒𝑡𝑎(𝐷−1

2
, 𝐷−1

2
).

To show this, assume without loss of generality that 𝑢1 = [1, 0, ..., 0] ∈ R𝐷 . Then for any

𝑡 ∈ [−1, 1], it follows that P(𝑢𝑇
1
𝜂 ∈ 𝑑𝑡) is proportional to the infinitesimal surface area on the ball

corresponding to 𝜂1 ∈ 𝑑𝑡 , which is in turn proportional to the product of the sub-dimension 𝐷 − 2

surface area on the belt𝑥2

2
+𝑥2

3
+...+𝑥2

𝐷
= 1−𝑡2

with the infinitesimal width of this belt. Specifically, the
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sub-dimension 𝐷 − 2 surface area around the belt is proportional to (
√

1 − 𝑡2)𝐷−2
. This follows from

the fact that points of the form [0,
√

1 − 𝑡2, 0, ..., 0], [0, 0,
√

1 − 𝑡2, 0, ..., 0], ..., [0, 0, ..., 0,
√

1 − 𝑡2] are on
this belt. Also, the width of this belt, according to the Pythagorean theorem, is 𝑑𝑡 ·

√
( 𝑑
√

1−𝑡2

𝑑𝑡
)2 + 1 =

𝑑𝑡√
1−𝑡2

. Thus,

P(𝑢𝑇
1
𝜂 ∈ 𝑑𝑡) ∝ (

√
1 − 𝑡2)𝐷−2

√
1 − 𝑡2

𝑑𝑡 = (1 − 𝑡2) 𝐷−3

2 𝑑𝑡 .

Now, we can substitute
𝑡+1

2
= 𝑠 with 𝑠 ∈ [0, 1] to get

P(
𝑢𝑇

1
𝜂 + 1

2

∈ 𝑑𝑠) ∝ (𝑠) 𝐷−1

2
−1 (1 − 𝑠) 𝐷−1

2
−1𝑑𝑠,

which can only be the density function for 𝐵𝑒𝑡𝑎(𝐷−1

2
, 𝐷−1

2
). It now follows from [68] that

𝑢𝑇
1
𝜂+1
2

has

moment generating function

𝑀 (𝑡) ≜E[𝑒𝑡 ·
𝑢𝑇

1
𝜂+1
2 ]

=1𝐹1 (
𝐷 − 1

2

, 𝐷 − 1, 𝑡) = 𝑒 (𝑡/2) 0𝐹1 (;
𝐷

2

,
𝑡2

16

) ≥ 𝑒𝑡/2 (1 + 𝑐𝑡2) > 𝑒 (𝑡/2) . (C.17)

for some 𝑐 > 0 where 1𝐹1 (·, ·, ·) and 0𝐹1 (; , ·, ·) are the confluent hypergeometric function with

identity 1𝐹1 (𝑎, 2𝑎, 𝑥) = 𝑒𝑥/2
0
𝐹1 (;𝑎 + 1/2, 𝑥2/16) (see [19]),

0𝐹1 (;𝛼, 𝑡) ≜
∞∑
𝑘=0

𝑡𝑘

(𝛼)𝑘𝑘!

and 1𝐹1 (𝛼, 𝛽, 𝑡) ≜
∞∑
𝑘=0

(𝛼)𝑘𝑡𝑘
(𝛽)𝑘𝑘!

,

with (𝛾)𝑘 =
Γ (𝛾+𝑘)
Γ (𝛾 ) being the Pochhammer symbol [68]. To conclude the proof, denote 𝜌𝑛 =√

log(1 + 𝜒2

1−𝛼,𝐷
𝑛
) ·

√
𝜒2

1−𝛼,𝐷
𝑛

and use (4.16), (4.17) and (C.17) to write

E𝜃2∼𝜇𝑝𝑟𝑜𝑝 [𝑒2(𝜃1− ˆ𝜃 )𝑇 Σ−1 (𝜃2− ˆ𝜃 ) ]

=E𝜈∼𝜂 [𝑒2𝜌𝑛 ·𝜇𝑇
1
𝜈 ] = E𝑋∼𝐵𝑒𝑡𝑎 ( 𝐷−1

2
,𝐷−1

2
) [𝑒

2𝜌𝑛 · (2𝑋−1) ] = 𝑀 (4𝜌𝑛)/𝑒2𝜌𝑛 ≥ (1 + 16𝑐𝜌2

𝑛) > 1.

□

Remark. Following Lemma C.0.5, we discuss the numerical calculations ofD(P0) following Proposi-
tion 4.3.4.We useU𝑑𝑎𝑡𝑎 = {P𝜃 : ∥𝜃− ˆ𝜃 ∥2

2
≤ 𝜒2

1−𝛼,𝐷
𝑛
}where 𝑝 (𝑦;𝜃 ) = (2𝜋)−𝐷

2 𝑒−
1

2
∥ (𝑦−𝜃 ) ∥2

2 . Then, for 𝜇1,

the nominal 𝑝0 (𝑦) is simply 𝑝 (𝑦;
ˆ𝜃 ) andD𝑑𝑎𝑡𝑎 (P0) = D𝑑𝑎𝑡𝑎 (P ˆ𝜃

) = max𝜃 ∈U 𝑒
∥𝜃− ˆ𝜃 ∥2

2 −1 = 𝑒
𝜒2

1−𝛼,𝐷
𝑛 −1

according to (4.16) and Lemma C.0.3. For 𝜇2, it can be shown that the nominal P0 followsN( ˆ𝜃, (1 +
1

𝑛
) · 𝐼𝐷 ), and a direct computation would show thatD𝑑𝑎𝑡𝑎 (P0) = max𝜃 ∈U ( (𝑛+1)

2

𝑛 (𝑛+2) )
𝑑
2 𝑒

𝑛
𝑛+2 ∥𝜃− ˆ𝜃 ∥2

2 − 1 =

( (𝑛+1)
2

𝑛 (𝑛+2) )
𝑑
2 𝑒

𝑛
𝑛+2

𝜒2

1−𝛼,𝐷
𝑛 − 1. Finally, for 𝜇3, assume w.l.o.g that

ˆ𝜃 = 0. Then we use the derivation in

Lemma C.0.5 that

𝜇𝑇
1
𝜂+1
2
∼ 𝐵𝑒𝑡𝑎(𝐷−1

2
, 𝐷−1

2
) for any 𝑢1 on the 𝐷-dimensional unit ball surface to

show that, for any 𝑣 ∈ R𝐷 ,

E𝜂 [𝑒𝜂
𝑇 𝑣] = 𝑒−∥𝑣 ∥2 1𝐹1 (

𝐷 − 1

2

, 𝐷 − 1, 2∥𝑣 ∥2), (C.18)

and consequently

𝑝0 (𝑦) = (2𝜋)
−𝐷

2

1
𝐹1 (

𝑑 − 1

2

, 𝑑 − 1, 2(
𝜒2

1−𝛼,𝐷
𝑛
)1/2∥𝑦∥2)𝑒−

1

2
( ∥𝑦 ∥2+

𝜒2

1−𝛼,𝐷
𝑛
)2 .
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Then, to calculate D𝑑𝑎𝑡𝑎 (P0), we note that

D𝑑𝑎𝑡𝑎 (P0) + 1 = max

∥𝜃 ∥2
2
≤

𝜒2

1−𝛼,𝐷
𝑛

∫
𝑝2 (𝑦;𝜃 )
𝑝0 (𝑦)

𝑑𝑦

= max

∥𝜃 ∥2
2
≤

𝜒2

1−𝛼,𝐷
𝑛

(2𝜋)−𝐷
2 𝑒−

1

2
∥𝑦 ∥2

2

𝑒−∥𝜃 ∥
2

2
+2𝜃𝑇 𝑦+

𝜒2

1−𝛼,𝐷
2𝑛
+(

𝜒2

1−𝛼,𝐷
𝑛
)

1

2 ∥𝑦 ∥2

1𝐹1 ( 𝑑−1

2
, 𝑑 − 1, 2( 𝜒

2

1−𝛼,𝐷
𝑛
) 1

2 ∥𝑦∥2)

= max

∥𝜃 ∥2
2
≤

𝜒2

1−𝛼,𝐷
𝑛

E𝑌∼N(0,𝐼𝐷 )

[
𝑒−∥𝜃 ∥

2

2
+2𝜃𝑇𝑌+

𝜒2

1−𝛼,𝐷
2𝑛
+(

𝜒2

1−𝛼,𝐷
𝑛
)

1

2 ∥𝑌 ∥2

1𝐹1 ( 𝑑−1

2
, 𝑑 − 1, 2( 𝜒

2

1−𝛼,𝐷
𝑛
) 1

2 ∥𝑌 ∥2)

]
. (C.19)

Furthermore, through either direct verification or analysis similar to those in Lemma C.0.5, we note

that𝑌 ∼ N(0, 𝐼𝐷 ) shares the same distribution of 𝐿𝜂 where 𝐿 ∈ R+ and 𝜂 ∈ R𝐷 are two independent

random variables with 𝐿 being the norm of N(0, 𝐼𝐷 ) bearing density 𝑓𝐿 (𝑙) = 1{𝑙≥0}
2

1−𝐷
2

Γ ( 𝐷
2
) 𝑙
𝑑−1𝑒−

𝑙2

2

and 𝜂 being the random vector on the 𝐷-dimensional unit ball surface. Thus, it follows from (C.19)

that (C.19) equals

max

∥𝜃 ∥2
2
≤

𝜒2

1−𝛼,𝐷
𝑛

E𝐿

[
E𝜂

[
𝑒−∥𝜃 ∥

2

2
+2𝐿𝜃𝑇𝜂+

𝜒2

1−𝛼,𝐷
2𝑛
+(

𝜒2

1−𝛼,𝐷
𝑛
)

1

2 𝐿

1𝐹1 ( 𝑑−1

2
, 𝑑 − 1, 2( 𝜒

2

1−𝛼,𝐷
𝑛
) 1

2𝐿)

����𝐿] ]
= max

∥𝜃 ∥2
2
≤

𝜒2

1−𝛼,𝐷
𝑛

E𝐿

[
𝑒−∥𝜃 ∥

2

2
+

𝜒2

1−𝛼,𝐷
2𝑛
+(

𝜒2

1−𝛼,𝐷
𝑛
)

1

2 𝐿−2𝐿 ∥𝜃 ∥2 1𝐹1 (𝐷−1

2
, 𝐷 − 1, 4𝐿∥𝜃 ∥2)

1𝐹1 (𝐷−1

2
, 𝐷 − 1, 2( 𝜒

2

1−𝛼,𝐷
𝑛
) 1

2𝐿)

]
= max

∥𝜃 ∥2
2
≤

𝜒2

1−𝛼,𝐷
𝑛

E𝐿

[
𝑒−∥𝜃 ∥

2

2
+

𝜒2

1−𝛼,𝐷
2𝑛

0𝐹1 (; 𝐷
2
, 𝐿2∥𝜃 ∥2

2
)

0𝐹1 (; 𝐷
2
, 𝐿2 ( 𝜒

2

1−𝛼,𝐷
4𝑛
)

]
= max

𝑡 ≤
𝜒2

1−𝛼,𝐷
𝑛

𝑒−𝑡+
𝜒2

1−𝛼,𝐷
2𝑛

∫
𝑙≥0

0𝐹1 (; 𝐷
2
, 𝑙2𝑡)

0𝐹1 (; 𝐷
2
, 𝑙2 ( 𝜒

2

1−𝛼,𝐷
4𝑛
)

2
1−𝐷

2

Γ(𝐷
2
)
𝑙𝑑−1𝑒−

𝑙2

2 𝑑𝑙

which is numerically tractable.

Proof of Theorem 4.4.1. It follows from routine calculation that we can find a compact neigh-

borhood of 𝑟 around 0 such that ∇𝑟𝐿(𝑟, 𝜃 ) exists and is continuous. Thus we can use the main

theorem in [18] to show that

lim

𝑟 ↓0

𝑙 (𝑟 ) − 𝑙 (0)
𝑟

= sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)

∫
Y
−
(𝑝 (𝑦;𝜃 ))2 · lim𝑟 ↓0

𝑝𝑟 (𝑦)−𝑝 (𝑦;
ˆ𝜃 )

𝑟

(𝑝 (𝑦;
ˆ𝜃 ′))2

𝑑𝑦

= sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
lim

𝑟 ↓0

1

𝑟

∫
Y

(𝑝 (𝑦;𝜃 ))2 (𝑝 (𝑦;
ˆ𝜃 ) − 𝑝𝑟 (𝑦))

(𝑝 (𝑦;
ˆ𝜃 ′))2

𝑑𝑦

= sup

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
lim

𝑟 ↓0

1

𝑟

∫
Y

(𝑝 (𝑦;𝜃 ))2

𝑝 (𝑦;
ˆ𝜃 ′)
−
(𝑝 (𝑦;𝜃 ))2

∫
𝜃 ′∈Θ 𝑝 (𝑦;𝜃 ′)𝜇𝑟 (𝑑𝜃 ′)

(𝑝 (𝑦;
ˆ𝜃 ′))2

𝑑𝑦

=(1 +
𝜒2

1−𝛼,𝐷
𝑛
) · lim

𝑟 ↓0

1

𝑟

(
1 − inf

𝜃 ∈Θ∗ (𝛿 ˆ𝜃
)
E𝜃 ′∼𝜇𝑟 [𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
.

□
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To prove Corollary 4.4.2, we present two technical Lemmas C.0.6 and C.0.7.

Lemma C.0.6. For any 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
), lim𝑟 ↓0

1

𝑟

(
1−E𝜃 ′∼𝜇1

𝑟
[𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
is a fixed negative value.

Proof of Lemma C.0.6. For any 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
), we have ∥Σ−1/2 (𝜃− ˆ𝜃 )∥2 =

√
log(1 + 𝜒2

1−𝛼,𝐷
𝑛
). Denote

𝜌𝑛 =

√
log(1 + 𝜒2

1−𝛼,𝐷
𝑛
). Furthermore, under 𝜃 ′ ∼ 𝜇1

𝑟 (𝑑𝜃 ′), we have Σ−1/2 (𝜃 ′ − ˆ𝜃 ) ∼ 𝜂√𝑟 , the uniform
distribution inside the 𝐷-dimensional unit ball with radius

√
𝑟 , which can be viewed as the product

of two independent random variables

𝜂√𝑟 ∼ 𝑈 · 𝑅,
where 𝑈 is the uniform distribution on the surface of the 𝐷-dimensional unit ball and 𝑅 is the

norm of the random vector ranged from 0 to

√
𝑟 . For any 0 ≤ 𝑠 ≤

√
𝑟 , since 𝜂√𝑟 follows a uniform

distribution inside a 𝐷-dimensional unit ball, and the volume of a 𝐷-dimensional ball with radius 𝑠

is proportional to 𝑠𝐷 , then 𝑓𝑅 (𝑠), the density of 𝑅, must satisfy

𝑓𝑅 (𝑠) ∼
𝑑𝑠𝐷

𝑑𝑠
∼ 𝑠𝐷−1,

which is equivalent to saying

𝑓𝑅 (𝑠) =
𝐷

(
√
𝑟 )𝐷

𝑠𝐷−1, for 0 ≤ 𝑠 ≤
√
𝑟 .

Thus, we have that E[𝑅2] = 𝑐1𝑟 for some 𝑐1 > 0. Now we let 𝑢1 = [1, 0, ..., 0] ∈ R𝐷 . We utilize the

proof in Lemma C.0.5 as well as the independence of 𝑅,𝑈 to show that

E𝜃 ′∼𝜇1

𝑟
[𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] =E𝑈 ,𝑅 [𝑒2𝜌𝑛 ·𝑅 ·𝑢⊺

1
𝑈 ]

=E𝑅 [E[𝑒2𝜌𝑛 ·𝑅 ·𝑢⊺
1
𝑈 |𝑅]]

=E𝑅 [𝑀 (4𝜌𝑛𝑅)/𝑒2𝜌𝑛𝑅]
≥E[1 + 16𝑐𝜌2

𝑛𝑅
2] ≥ 1 + 16𝑐𝜌2

𝑛𝑐1𝑟 .

Now it follows that

lim

𝑟 ↓0

1

𝑟

(
1 − E𝜃 ′∼𝜇1

𝑟
[𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
≤ −16𝑐𝜌2

𝑛𝑐1.

□

Lemma C.0.7. For any 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
), lim𝑟 ↓0

1

𝑟

(
1−E𝜃 ′∼𝜇2

𝑟
[𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
is a fixed negative value.

Proof of Lemma C.0.7. For any 𝜃 ∈ Θ∗ (𝛿 ˆ𝜃
), we have ∥Σ−1/2 (𝜃− ˆ𝜃 )∥2 =

√
log(1 + 𝜒2

1−𝛼,𝐷
𝑛
). Denote

𝜌𝑛 =

√
log(1 + 𝜒2

1−𝛼,𝐷
𝑛
). Furthermore, under 𝜃 ′ ∼ 𝜇2

𝑟 (𝑑𝜃 ′), we have Σ−1/2 (𝜃 ′ − ˆ𝜃 ) ∼ N (0, 𝑟 𝐼𝐷 ). Using
the moment generating function for Gaussian random variables, we have

E𝜃 ′∼𝜇2

𝑟
[𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ] = 𝑒 (2𝑟 · (𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 )) = 𝑒2𝑟𝜌2

𝑛 ≥ 1 + 2𝑟𝜌2

𝑛 .

Now it follows that

lim

𝑟 ↓0

1

𝑟

(
1 − E𝜃 ′∼𝜇1

𝑟
[𝑒2(𝜃− ˆ𝜃 )⊺Σ−1 (𝜃 ′− ˆ𝜃 ) ]

)
≤ −2𝜌2

𝑛 .

□

Proof of Corollary 4.4.2. Lemmas C.0.6 and C.0.7 combined with (4.23) indicate that increas-

ing 𝑟 to positive value would produce a descent direction for 𝑙 (𝑟 ) at 𝑟 = 0. □
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Proof of Corollary 4.4.3. We proceed the proof as in Proposition 4.3.4. The proof for the case

of 𝜇1

𝑟 (𝑑𝜃 ) is entirely similar. For the proof of the case 𝜇2

𝑟 (𝑑𝜃 ), we simply notice that if 𝑌 ∼ P𝑡 , then

𝑌
D
= (1 −𝑈𝑡 ) ( ˆ𝜃 + 𝑋1) +𝑈𝑡 ( ˆ𝜃 +

√
𝑟𝑋2 + 𝑋3),

where 𝑈𝑡 is an independent Bernoulli variable with success rate 𝑡 and 𝑋1, 𝑋2, 𝑋3 are independent

N(0, Σ). Then, it follows that

Σ−1/2 (𝑌 − ˆ𝜃 )D= (1 −𝑈𝑡 )𝑍1 +𝑈𝑡 (
√
𝑟𝑍2 + 𝑍3)

where 𝑍1, 𝑍2, 𝑍3 are now independent N(0, 𝐼𝐷 ). Consequently, the rotational invariance of 𝑍 now

follows from the rotational invariance of 𝑍1, 𝑍2, 𝑍3 and their independence.

□
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