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We consider optimization problems with uncertain constraints that need to be satisfied probabilistically. When
data are available, a common method to obtain feasible solutions for such problems is to impose sampled
constraints, following the so-called scenario optimization approach. However, when the data size is small, the
sampled constraints may not support a guarantee on the feasibility of the obtained solution. This paper studies
how to leverage parametric information and the power of Monte Carlo simulation to obtain feasible solutions
for small-data situations. Our approach makes use of a distributionally robust optimization (DRO) formulation
that translates the data size requirement into a Monte Carlo sample size requirement drawn from what we call
a generating distribution. We show that, while the optimal choice of this generating distribution is the one
eliciting the data or the baseline distribution in a nonparametric divergence-based DRO, it is not necessarily
so in the parametric case. Correspondingly, we develop procedures to obtain generating distributions that
improve upon these basic choices. We support our findings with several numerical examples.
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1 INTRODUCTION

We consider optimization problems in the form
min ch,
x€XCR4 (1.1)
st. P(xeXg) >1-¢

where P is a probability measure governing the random variable £ on some space Y and Xy C
X C R?is a set depending on &. Problem (1.1) enforces a solution x to satisfy x € Xg with high
probability, namely at least 1 — €. This problem is often known as a probabilistically constrained or
chance-constrained program (CCP) [61]. It provides a natural framework for decision-making under
stochastic resource capacity or risk tolerance, and has been applied in various domains such as
production planning [55], inventory management [50], reservoir design [62, 63], communications
[65], and ranking and selection [35].

We focus on the situations where P is unknown, but some i.i.d. data, say &, ..., &,, are available.
One common approach to handle (1.1) in these situations is to use the so-called scenario optimization
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2 Lam and Li

(SO) or constraint sampling [11, 56]. This replaces the unknown constraint in (1.1) with x € Xy,,i =
1,...,n, namely, by considering
min ch,
xeXCR4 (1.2)

s.t. x€Xg, i=1,...,n

Note that CCP (1.1) is generally difficult to solve even when the set Xy is convex for any
given £ and the distribution P is known [61]. Thus, the sampled problem (1.2) offers a tractable
approximation for the difficult CCP even in non-data-driven situations, assuming the capability to
generate these samples.

Our goal is to find a good feasible solution for (1.1) by solving (1.2) under the availability of i.i.d.
data described above. Intuitively, as the sample size n increases, the number of constraints in (1.2)
increases and one expects them to sufficiently populate the safety set {& : x € X}, thus ultimately
give rise to a feasible solution for (1.1). To make this more precise, we first mention that because of
the statistical noise from the data, one must settle for finding a solution that is feasible with a high
confidence. More specifically, define, for any given solution x,

V(x,P) =P(x ¢ X;)

to be the violation probability of x under probability measure P that generates £. Obviously, x is
feasible for (1.1) if and only if

V(x,P) <e (1.3)
We would like to obtain a solution, say x, from the data such that
Paata(V(Z,P) <€) 2 1-a, (1.4)

where Py, is the distribution that generates the i.i.d. data &,i =1,..., n (each sampled from P),
and 1 — « is a given confidence level (e.g., & = 5%). In other words, we want x to satisfy the chance
constraint in (1.1) with the prescribed confidence.

Under the convexity of Xy and mild additional assumptions (namely, that every instance of (1.2)
has a feasible region with nonempty interior and a unique optimal solution), the seminal work [10]
provides a tight estimate on the required data size n to guarantee (1.4). They show that a solution x
obtained by solving (1.2) satisfies

d-1
Paara(V(%P) > €) < ) ('.’)e"(l - (1.5)
i \!
with equality held for the class of “fully-supported" optimization problems [10]. Thus, suppose we
have a sample size n large enough such that

d-1

B(e,d,n) = Z (',l)efu —e)"l < q, (1.6)

im0 \!
then from (1.5) we have Pyu;4(V(X,P) > €) < a or (1.4).

However, in small-sample situations in which the data size n is not large enough to support (1.6),
the feasibility guarantee described above may not hold. It can be shown [10] that the minimum
n that achieves (1.4) is linear in d and reciprocal in €, thus may impose challenges especially in
high-dimensional and low-tolerance problems. Similar dependence on the key problem parameters
also appears in other related methods such as [20], which uses the Vapnik-Chervonenkis dimension
to infer required sample sizes, the sampling-and-discarding approach in [11], and the closely related
approach using sample average approximation in [53]. Several recent lines of techniques have
been suggested to overcome these challenges and reduce sample size requirements, including the
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Parametric SO via DRO 3

use of support rank and solution-dependent support constraints [12, 64], regularization [9], and
sequential approaches [7, 8, 13, 14].

In this paper, we offer a different path to alleviate the data size requirement than the above
methods, when P possesses known parametric structures. Namely, we assume P € {Pg}gcp for some
parametric family of distribution, where Py satisfies two basic requirements: It is estimatable, i.e., the
unknown quantity or parameter 6 can be estimated from data, and simulatable, i.e., given 0, samples
from Py can be drawn using Monte Carlo methods. Under these presumptions, our approach turns
the CCP (1.1), with an unknown parameter, into a CCP that has a definite parameter and a suitably
re-adjusted tolerance level, which then allows us to generate enough Monte Carlo samples and
consequently utilize the guarantee provided from (1.5). On a high level, this approach replaces the
data size requirement in using (1.2) (or, in fact, any of its variant methods) with a Monte Carlo size
requirement, the latter potentially more available given cheap modern computational power. Our
methodological contributions consist of the development of procedures, related statistical results
on their sample size requirement translations, and also showing some key differences between
parametric and nonparametric regimes.

Our approach starts with a distributionally robust optimization (DRO) to incorporate the data-
driven parametric uncertainty. The latter is a framework for decision-making under modeling
uncertainty on the underlying probability distributions in stochastic problems. It advocates the
search for decisions over the worst case, among all distributions contained in a so-called uncertainty
set or ambiguity set (e.g., [21, 30, 67]). In CCP, this entails a worst-case chance constraint over
this set (e.g., [15-17, 32, 33, 37, 39, 40, 51, 69-71]). When the uncertainty set covers the true
distribution with a high confidence (i.e., the set is a confidence region), then feasibility for the
distributionally robust CCP converts into a confidence guarantee on the feasibility for the original
CCP. We follow this viewpoint and utilize uncertainty sets in the form of a neighborhood ball
surrounding a baseline distribution, where the ball size is measured by a statistical distance (e.g.,
[1, 5, 6, 22, 23, 25, 27, 31, 34, 37, 44, 46, 52, 60]). In the parametric case, a suitable choice of this
distance (such as the ¢-divergence that we focus on) allows easy and meaningful calibration of the
ball size from the data, so that the resulting DRO provides a provable feasibility conversion to the
CCP.

Our next step is to combine this DRO with Monte Carlo sampling and scenario approximation.
The definition of DRO means that there are many possible candidate distributions that can govern
the truth, whereas the statistical guarantee for SO assumes a specific distribution that generates the
data or Monte Carlo samples. To resolve this discrepancy, we select a generating distribution that
draws the Monte Carlo samples, and develop a translation of the guarantee from a fixed distribution
into one on the DRO. We highlight the benefits in using SO to handle this DRO, as opposed to
other potential methods. While there exist many good results on tractable reformulations of DRO
for chance constraints (e.g., [32, 33, 39, 51, 69]), the reformulation tightness typically relies on
using moment-based uncertainty sets and particular forms of the safety condition. Compared to
moments, divergence-based uncertainty sets can be calibrated with data to consistently shrink to
the true distribution. Importantly, in the parametric case, the calibration of divergence-based sets is
especially convenient, and achieves a tight convergence rate by using maximum likelihood theory
that efficiently captures parametric information. Our condition for applying SO to this DRO is at
the same level of generality as applying SO to an unambiguous CCP, which, as mentioned before,
only requires the convexity of Xy and mild conditions.

To exploit the full capability of our approach, we investigate the optimal choice of the generating
distribution in relation to the target DRO, in the sense of requiring the least Monte Carlo size.
We show that, if there is no ambiguity on the distribution (i.e., a standard CCP), or when the
uncertainty set of a DRO is constructed via a divergence ball in the nonparametric space, the best

, Vol. 1, No. 1, Article . Publication date: May 2021.



4 Lam and Li

generating distribution is, in a certain sense, the true or the baseline distribution at the center of the
ball. However, if there is parametric information, the optimal choice of the generating distribution
can deviate from the baseline distribution in a divergence-based DRO. We derive these results
by casting the problem of selecting a generating distribution into a hypothesis testing problem,
which connects the sampling efficiency of the generating distribution with the power of the test
and the Neyman-Pearson lemma [48]. The results on DRO in particular combine this Neyman-
Pearson machinery with the established DRO reformulation of chance constraints in [37, 40],
with the discrepancy between the best generating distribution and the baseline distribution in the
parametric case stemming from the removal of the extremal distributions in the corresponding
nonparametric uncertainty set. These connections among hypothesis testing, SO and DRO are, to
our best knowledge, the first of its kind in the literature.

Finally, given the non-optimality of the baseline distribution of a divergence-based DRO in gener-
ating Monte Carlo samples, we further develop procedures to search over generating distributions
that improve upon this baseline. On a high level, this can be achieved by increasing the sampling
variability to incorporate the uncertainty of the distributional parameters (one may intuit this
from the perspective of a posterior distribution in a Bayesian framework), which is implemented
by utilizing suitable mixture distributions. We provide several classes of mixture distributions
to attain such a variability enlargement, and study descent-type algorithms to search for good
distributions in these classes. In the experiments, we show our methods can be combined with SO
or other SO-based methods including FAST [13] to solve a variety of optimization problems and
data distributions, some of which are not amenable to RO, especially when the objective function
is non-linear or the feasible sets are jointly chance-constrained. Furthermore, we also demonstrate
how to search for more judicious choices of generating distributions that can significantly reduce
the required number of Monte Carlo samples.

We conclude this introduction by briefly discussing a few other lines of related literature. The
first is the so-called robust Monte Carlo or robust simulation that, like us, also considers using
Monte Carlo sampling together with DRO [28, 29, 36, 38, 42, 43]. However, this literature focuses
on approximating DRO with stochasticity in the objective function, and does not study the chance
constraint feasibility and SO that constitute our main focus. We also contrast our work with [44]
that also considers likelihood theory and utilizes simulation in tackling uncertain constraints. [44]
focuses on the nonparametric regime and uses the empirical likelihood to construct uncertainty
sets. Unlike our work, there is no parametric information there that can be leveraged to overcome
sample size requirements in SO. Moreover, the simulation used in [44] is for calibrating the un-
certainty set, instead of drawing sample constraints. Next, [24] considers a scenario approach to
distributionally robust CCP with an uncertainty set based on the Prohorov distance. Like [20], [24]
utilizes the Vapnik-Chervonenkis dimension in studying feasibility, in contrast to the convexity-
based argument in [10] that we utilize. More importantly, we aim to optimize the efficiency of
Monte Carlo sampling in handling limited-data CCP, thus motivating us to study the choice of
distance, calibration schemes, and selection of generating distributions that are different from
[24]. Finally, a preliminary conference version of this work has appeared in [45], which contains a
basic introduction of our framework, without detailed investigation of the optimality of generating
distributions, improvement strategies, and extensive numerical demonstrations.

To summarize, our main contributions of this paper are:

(1) We propose a framework to obtain good feasible solutions in data-driven CCPs in small-
sample situations, where the data size is insufficient to support the use of SO with valid
statistical guarantees. Focusing on the parametric regime, our framework operates by setting
up a DRO, with an uncertainty set constructed from parameter estimates using the data, that
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can in turn be tackled by using SO with Monte Carlo samples. In doing so, our framework
effectively leverages the parametric information to convert the SO requirement on the data
size into a requirement on the Monte Carlo size, the latter can be much more abundant
given cheap modern computational power. The overview of this framework and the DRO
construction are in Sections 2.1 and 2.3.

(2) We investigate and present the Monte Carlo size requirements needed to give statistically
feasible solutions to the divergence-based DRO used in our framework. This relies on devel-
oping an implementable mechanism to connect the sample size requirement for SO, which
attempts to solve a CCP with a fixed underlying distribution, to the sample size requirement
needed to solve a DRO, by selecting a suitable generating distribution to draw the Monte
Carlo samples. This contribution is presented in Section 2.2.

(3) We study the optimality of generating distributions, in a sense of minimizing the Monte Carlo
effort that we will describe precisely. In particular, we show that the optimal generating distri-
butions for an unambiguous CCP, and for a distributionally robust CCP with nonparametric
divergence-based uncertainty sets, are simply their respective natural choices, namely the
original underlying distribution and the baseline distribution (i.e., center of the divergence
ball). In contrast, the optimal generating distribution for a distributionally robust CCP in the
parametric case is more delicate, and the baseline distribution there can be readily dominated
by other generating distributions. These results are derived by bridging the Neyman-Pearson
lemma in statistical hypothesis testing with SO and DRO, which appears to be the first of its
kind in the literature as far as we know. This contribution is presented in Section 3.

(4) Motivated by the non-optimality of the baseline distribution, we propose several approaches
to construct generating distributions that dominate the baseline distributions for parametric
DRO, by using mixture schemes that, on a high level, enlarge the variability of the generat-
ing distributions. We show how to use descent-type search procedures to construct these
distributions. This contribution is presented in Section 4.

Lastly, we also present in full detail our implementation algorithms in Section 5, numerically
demonstrate our approach and compare with other methods in Section 6, and conclude in Section 7.

2 FROM DATA-DRIVEN DRO TO SCENARIO OPTIMIZATION

This section introduces our overall framework. Recall our goal as to find a good feasible solution X
for (1.1), and suppose that we have an i.i.d. data size n possibly less than the requirement shown in
(1.6). As discussed in the introduction, we first formulate a DRO that incorporates the parametric
estimation noise and subsequently allows us to resort to Monte Carlo sampling to obtain a feasible
solution for (1.1). In the following, Section 2.1 first describes the basic guarantees from DRO. Section
2.2 investigates Monte Carlo sampling that provides guarantees on DRO. Section 2.3 discusses the
choice of the uncertainty set.

2.1 Overview of Data-Driven DRO

For concreteness, suppose the unknown true distribution P € P, the class of possible probability
distributions for & (to be specified later). Given the observed data &, ..., &,, the basic steps in our
data-driven DRO are:

e Step 1: Find a data-driven uncertainty set Uyarq = Ugara (&1, - .., &) C P such that
Piara(P € Ugara) 2 1 -, (2.1)

where Py,;, denotes the measure generating the data &,i =1,...,n.
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6 Lam and Li

o Step 2: Given Uy,yq, set up the distributionally robust CCP:
min ch,
xeXCR4
s.t. min Q(x € X¢) 21—,

€Udata

2.2)

where the probability measure Q is the decision variable in the minimization in the constraint.
e Step 3: Find a solution % feasible for (2.2).
It is straightforward to see that x obtained from the above procedure is feasible for (1.1) with
confidence at least 1 — a: If P € U 44,4, then any x feasible for (2.2) satisfies
P(x € Xy) > Qernﬂl;,a QxeXy) 21-¢
Thus
Pata (PO2 € X§) 21- 6) > Paata (P € 7/lal'at‘a) 21-a (2-3)
which gives our conclusion.

2.2 Monte Carlo Sampling for DRO

To use the above procedure, we need to provide a way to construct the depicted Uy, and to find
a (confidently) feasible solution for (2.2). We postpone the set construction to the next subsection
and focus on finding a feasible solution here. We resort to SO, via Monte Carlo sampling, to handle
(2.2). Note that, unlike in the standard SO discussed in the introduction, the distribution Q here
can be any candidate within the set U4, Thus, let us select a generating distribution, called Py

(which can depend on the data), to generate Monte Carlo samples §IMC, i=1,...,N,and solve
min ch,
xeXCR4 (24)
s.t. xEXEMc,iZI,...,N.

For convenience, denote, for any €, § > 0,

d-1
Nexact (€, ,d) = min {n : Z (r,l)ei(l )"l < /3} . (2.5)
i
i=0

From the result of [10] discussed in the introduction, using Neyq: (€, f, d) or more Monte Carlo
samples from Py in (2.4) would give a solution £MC that satisfies V (M€, P;) < e with confidence
level 1 — . This is not exactly the distributionally robust feasibility statement for problem (2.2). To

address this discrepancy, we consider, conditional on the data &, ..., &,,
max  V(zM€, Q)
Q€Uaata (26)

st.  V(EMC Py < 6.

This optimization problem serves to translate a guarantee on the violation probability under Py
to any Q in Uy,s,. If we can bound the optimal value in (2.6), then we can trace back the level of
§ that is required to ensure a chance constraint validity of tolerance level e. However, the event
involved in defining V(£M€, Py) and V(£ Q), namely {¢ : £MC ¢ X}, can be challenging to
handle in general. Thus, we relax (2.6) to

max QA
QeUgata ACY ( ) (27)
s.t. Po(A) < 6.
where the decision variables now include the set A in addition to the probability measure Q.
Conditional on the data &, . . ., &,, the optimal value of optimization problem (2.7), which we denote
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M(Po, Uyata, ), is clearly an upper bound for that of (2.6). In fact, it is also clear from (2.7) that
M(Po, Uyata, 8) is non-decreasing in § > 0 and

max V(M Q) < M(Po, Ugara, V(MC, By)), (2.8)
(ze(lédata

by simply taking A = {£ : £MC ¢ Xz} and 6 = V(M€ Py) in (2.7). We have the following guarantee:
THEOREM 2.2.1. Given Py, Uyq;, and € > 0, suppose there exists 5 > 0 small enough such that
M(Po, Ugara O¢) < €. (2.9)

If we solve (2.4) with Nexact (S, B, d) number of samples drawn from Py, then the obtained solution
#MC€ would be feasible for (2.2) with confidence at least 1 — f. Furthermore, if

Piara(P € Ugara) 2 1 -, (2.10)

where Py, is the measure governing the real-data generation under the true distribution P, then the
obtained solution M€ would be feasible for (1.1) with confidence at least 1 — & — .

Proor. By results in [10], we know that by solving (2.4) with Nexgct (Oe, S, d) number of samples
from Py, the obtained solution M€ would satisfy

Pamco(V(ZMC,B) > 8c) < B (2.11)

where Pyc, is the measure with respect to the Monte Carlo samples drawn from P;. Moreover,
based on the monotonicity property of M(-) and (2.8), we have

V(EME Py) < 6 = max V(EMC, Q) < M(Po, Uyara, 5e). (2.12)

€Udata

Thus (2.9) implies that

Pdata max V(X\'MC’ Q) >e€] < Pdata(v(fMCa PO) > 56) < ﬁ

data

and hence £MC is feasible for (2.2) with confidence at least 1 — . Furthermore, if P € Uy4;4, then a

*MC feasible for (2.2) is also feasible for (1.1) since Qmax V(£MC, Q) > V(%M€ P) and hence
€Ugata

max V(M€ Q) <e = VEMO,P) <e (2.13)
(ze(ltdutu

Thus, if we denote = = {&, ..., &, f{wc, . rf]A\}IC} to be entire sequence consisting of real data and
the generated Monte Carlo samples, it then follows that

{(E:VEMCP) > €} C{E:P ¢ Ugara} U{E : V(ZMC Py) > 6} (2.14)
It now follows by (2.10) and (2.11) that £MC is feasible for (1.1) with probability at least 1—a—f. O

Theorem 2.2.1 can be cast in terms of asymptotic instead of finite-sample guarantees by following
the same line of arguments. We summarize it as the following corollary.

COROLLARY 2.2.2. In Theorem 2.2.1, if the condition Pyu;, (P € Ugara) = 1 — a is substituted by the
asymptotic condition

liminf Pygra (P € Ugara) 21—, (2.15)
n—oo

then the feasibility of MC in the last conclusion of Theorem 2.2.1 holds with confidence asymptotically
tending to at least 1 — a — p.
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8 Lam and Li

To summarize, in the presence of data insufficiency, if we choose Uy,;, to satisfy the confidence
property (2.1), and are able to evaluate the bounding function M(Py, Uyas4, ) that translates the
violation probability under Py to a worst-case violation probability over Uy,;4, then we can run SO
with Nexaet (Oe, f, d) Monte Carlo samples from Py to obtain a solution for (1.1) with confidence
1-a-p

We also note that the above scheme still holds if the Neyqc: (€, B, d) in (2.5) is replaced by the
sample size requirements of other variants of SO (e.g., FAST [13]) that are potentially smaller. This
works as long as we stay with the same SO-based procedure in using the Monte Carlo samples. For
clarity, throughout most of our exposition we will focus on the sample size requirement depicted
in (2.5), but we will discuss other variants in our implementation and numerical sections.

Finally, let us take a step back and justify why we use SO to tackle (2.2), as opposed to other
potential means. Indeed, as pointed out in the introduction, there exist many good results on
tractable reformulations of DRO. As will be discussed in detail in the next subsection, in the present
context we will choose an uncertainty set that can leverage parametric information efficiently. Sets
based on the neighborhoods of distributions measured by ¢-divergences are particularly attractive
choices, as they can be calibrated easily (both the ball center and the size) in a way that efficiently
uses parametric information. The dependence on the parameter dimension in particular is reflected
in the degree of freedom in the y?-distribution used in the calibrating the ball size, which shrinks to
zero at a canonical rate as the data size increases. Other sets, such as moment-based ones, though
possibly amenable to tight tractable reformulations, do not enjoy these statistical properties in the
parametric context. Thus, in view of tackling ¢-divergence-based DRO, SO appears to be a natural
choice, and we have set up a framework to utilize it under conditions at the same level of generality
as required for the unambiguous counterpart. Sections 3 and 4 will study this framework in further
depth and enhance its efficiency. We caution, however, that the conservativeness in our proposed
uncertainty set (which affects the optimality of the obtained solution) relies on the dimensionality
of the distributional parameters. Our approach is expected to work well when this dimension is
moderate, but not in high-dimensional problems where other approaches could be better choices.

2.3 Constructing Uncertainty Sets

In this section we discuss the construction of the uncertainty set Uy, using the ¢-divergence
approach [1]. We assume the true distribution P of ¢ lies in a parametric family. We denote the
true parameter as ;... To highlight the parametric dependence, we call the true distribution
Po,,.. € Ppara = {Po}gecocrp indexed by 0, where D is the dimension of parameter space. Given
data &, &, ..., &, we want to construct an uncertainty set Uy,  satisfying

nhj)rolo Pyata (PB,WE € (L{data) =1l-a (2'16)

so that Corollary 2.2.2 applies. To do so, we first estimate 6y, from the data. There are various
approaches to do so; here we apply the common maximum likelihood estimator (MLE) 6,,, and set

U jata to be
/1(1) 2_a
w , (2.17)

Ugata = {Q € Ppara : d¢ (Pén’ Q) < on

where x> is the 1 — a quantile of %, the y-distribution with degree of freedom D, and d (-, -)
is the ¢-divergence between two probability measures, i.e., given a convex function ¢ : R, — Ry,
with ¢(1) = 0, a distance between two probability measures P; and P, defined as

dP,

ds(P1,P) = /y ¢ (dTE) B (dy). (218)
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Parametric SO via DRO 9

assuming P, is absolutely continuous with respect to P; with Radon-Nikodym derivative % onY.
Moreover, we assume that ¢ is twice continuously differentiable with ¢”’(1) # 0, and if necessary
set the continuation of ¢ to R_ as ¢(x) = +oo for x < 0.In (2.17), we call the center of the divergence
ball, ]P’én, the baseline distribution.

To guarantee desirable asymptotic properties of our uncertainty set, we make the following
assumption:

A1. Let 04y € O be the true parameter and let én be the MLE of 0;,,. estimated from n i.i.d. data
points. Then, as n — oo, 8, satisfies consistency and asymptotic normality condition:

én E) etrue and \/E(én - etrue) g N(O: I_l(gtrue))> (219)
where 7 (0) is the Fisher information for the parametric family #p,,, with well-defined inverse
that is continuous in the domain 0 € ©.

Assumption Al of MLE estimator is known to hold under various regularity conditions [47, 66].
We list a set of such conditions in Appendix A.

Under Assumption Al, it can be shown [59, 66] that Uy, in (2.17) satisfies the confidence
guarantee (2.16). Furthermore, since we can identify each Py in Py,;, with 6, we can equivalently
view Ugq:q as a subset of 6 € ©, and write it as

o (2.20)

¢" () x7_
Ugara = {9 €0 :dy(PsPy) < — 221
For convenience, we shall use the two definitions of U;,;, interchangeably depending on the
context. It is also known that the asymptotic confidence properties of (2.17) or (2.20) are the same
among different choices within the ¢-divergence class. These can be seen via a second order

expansion of the ¢-divergences. Moreover, they are asymptotically equivalent to

2
{9 €0:(0-0,)"1(0,)(0-06, < Xi-a.D } (2.21)

n

where I (én) is the estimated Fisher information, under the regularity conditions above [58, 59, 66].
In other words, under Assumption A1, both (2.20) and (2.21) satisfy

nlgr.}o Paata(Otrue € Ugara) =1 - a. (2.22)

Note that the convergence rate of (2.16) or (2.22) depends on the higher-order properties of
the parametric model, which in turn can depend on the parameter dimension. Different from the
sample size requirements in SO, this convergence rate is a consequence of MLE properties. Some
details on finite-sample behaviors of MLE can be found in [41].

The Uy,:4 discussed above is a set over the parametric class of distributions (or parameter values).
Considering tractability, DRO over nonparametric space could be easier to handle than parametric,
which suggests a relaxation of the parametric constraint to estimate the bounding function M. This
also raises the question of whether one can possibly contain U4, in a nonparametric ball with a
shrunk radius and subsequently obtain a better M. These would be the main topics of Sections 3
and 4.

3 BOUNDING FUNCTIONS AND GENERATING DISTRIBUTIONS

Given the uncertainty set Uyq;, in (2.20), we turn to the choice of the generating measure Py and
the bounding function M(Py, Uy,z4, §) which, as we recall, is the optimal value of optimization
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10 Lam and Li

problem (2.7). In the discussed parametric setup, the latter becomes
max Py(A
0eUyqra,ACY 9( ) (31)
s.t. Po(A) <.

From Theorem 2.2.1 and the fact that M(Py, Uy,:4, 6) is non-decreasing in §, we want to choose
Py that minimizes M(Po, Uyqs4, 6) so that we can take the maximum J,. and subsequently achieve
overall confident feasibility with the least Monte Carlo sample size. Note that M(Po, Uyazq, 0) is
a multi-input function depending on both Py and §, and so a priori it is not clear that a uniform
minimizer Py can exist across all values of 6 so that the described task is well-defined. It turns
out that this is possible in some cases, which we shall investigate in detail. In the following, we
discuss results along this line at three levels: The unambiguous case, namely when U4, in (3.1) is
a singleton (Section 3.1), the case where Uy, is nonparametric (Section 3.2), and the case where
U gara is parametric (Section 3.3). The first two cases pave the way to the last one, which is most
important to our development and also motivates Section 4. With these results in hand, we also
discuss the possibility of using other statistical distances in our framework in Section 3.4.

3.1 Neyman-Pearson Connections and A Least Powerful Null Hypothesis
We first consider, for a given 6; € Uy 44, the optimization problem

max Py (A
ey Fd (3.2)
s.t. P() (A) < d.

This problem can be viewed as choosing a most powerful decision rule in a statistical hypothesis
test. More precisely, one can think of A as a rejection region for a simple test with null hypothesis
P, and alternate hypothesis Py, . Subject to a tolerance of § Type-I error, optimization problem (3.2)
looks for a decision rule that maximizes the power of the test. By the Neyman-Pearson lemma [48],
under mild regularity conditions on the parametric family, the optimal set Aa 0,5 of (3.2) takes the

form

dPg,

Ao = €Y 2 (8) > Ky o), (33)
with K(fel,a chosen so that Py (Ao*,el,s) = J. Also, then, the optimal value of (3.2) is Py, (Ao*,el,a)'
Generalizing the above analysis to all 8 € Uy,;4, We conclude that

M(Po, Ugata: 6) = sup PQ(AO*,Q,(S)’ (3.4)

GE(L{d.’lta

is the optimal value of (3.1). These observations will be useful for deriving our subsequent results.

Our goal is to choose Py to minimize (3.4). To start our analysis, let us first consider the extreme
case where the uncertainty set Uy,;, consists of only one point Q. In this case, we look for Py that
minimizes M (P, {Q}, §), the optimal value of

max Q(A)

AcY (35)
s.t. PO (A) <94.

That is, for a given measure Q, we seek for the maximum discrepancy between Q and Py over
all Po-measure sets that have § or less content. This is similar to minimizing the total variation
distance between Q and Py, and hints that the optimal choice of Py is Q. The following theorem,
utilizing the Neyman-Pearson lemma depicted above, confirms this intuition. We remark that the
assumptions of the theorem can be relaxed by using more general versions of the lemma, but the
presented version suffices for most purposes and also the subsequent examples we will give.
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THEOREM 3.1.1. Given a measure Q with continuous density on X, among all Py such that 5% exists
and is continuous and positive almost surely, the minimum M(Py, {Q}, d) is obtained by choosing

Py = Q, giving M(Py, {Q}, 6) = 6.

Proor. Under the assumptions, by the Neyman-Pearson lemma, for a fixed measure Py, the set
achieving the optimal value of (3.5) takes the form A* = {{ € Y/ : ST%(@ > K*} for some K* > 0
with Py(A*) = &. It then follows that

M(Bo (@).0) -5 =04 ~Roah) = [, (G- D)

ar,
Under the absolute continuity assumption, we define

_ aQ
9(K) = /;P%(M( - DR

which can be seen to be a non-increasing function for K > 1 and a non-decreasing function for
K < 1. To see this, take K; > K5, and we have

9(K:) = g(Ky) + / (22 _1)apy 2.

K zj—% (H>k, APo

Thus, when K; > K; > 1, we have g(K3) > g(K;) because

/ (G = DB = (K~ DPo(Ks 2 T2 (8) > K) 2 0,
Ki 0

>R (5)>K, dP,

while when 1 > K; > Kj, we have g(K;) < g(K;) because

/ (L2 1)ary(®) < (K - VoK > ;%9('5) > Kz) < 0.
% 0

28 5>k, dPo

Then, to identify the minimum of g(K), we either decrease K from 1 to 0 which gives
li 'f(K)—/(dQ—l)dP(g)—O (3.6)
ipigfo(i) = [ (g, = VRO =0 -

by using the dominated convergence theorem (e.g., by considering the set {1 > dQ/dP,(¢) > K})
or we increase K from 1 to co which gives

li}(n inf g(K) > 0. (3.7)

by Fatou’s lemma. Observations (3.6) and (3.7) suggest that g(K) > 0 for all K > 0 and imply that
g(K*) > 0. Thus, we must have M(Py, {Q}, §) > 8. Note that this holds for any Py. Now, since
choosing Py = Q gives M(Q, {Q}, §) = J, an optimal choice of P, is Q. O

Theorem 3.1.1 shows that under mild regularity conditions, in terms of choosing the generating
distribution Py and minimizing M(Po, {Q}, §), we cannot do better than simply choosing Q itself.
This means that if we had known the true distribution was Q, and without additional knowledge of
the event of interest, the safest choice (in the minimax sense) for sampling would be Q, a quite
intuitive result. In the language of hypothesis testing, given the simple alternate hypothesis Q,
the null hypothesis Py that provides the least power for the test, i.e., makes it most difficult to
distinguish between the two hypotheses, is Q.
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3.2 Nonparametric DRO

Building on the discussion in Section 3.1, we now consider the choice of generating distribution P
to minimize the bounding function obtained from (3.1). Before so, we first discuss the nonparametric
case, where the analog of (3.1) is in the form:

A
d¢(]Pé,(QIT})aS)i,Acy Q( )
s.t. Po(A) <.

(3.8

for some ball radius A > 0, where the decision variables are Q in the space of all distributions
absolutely continuous with respect to P, and A.

We show that the above setting can be effectively reduced to the unambiguous case, i.e., when Q
lies in a singleton discussed in Section 3.1. This comes from an established equivalence between
a distributionally robust chance constraint and an unambiguous chance constraint evaluated by
the center of the divergence ball, when the event A is fixed [37, 40]. In particular, suppose the
stochasticity space is ¥ = R¥, and P, admits a density p;. Theorem 1 in [40] shows that for any A,

max A) <e & P;(A) <€, 3.9
d(ﬁ(Pé’Q)SAQ( ) 5(A) (3.9)

where €’ = €’(€, A, ¢p) > 0 can be explicitly determined by €, A and ¢ as

€'(e,A,¢) =max 41— inf

z>0,z+7m2<{y
m($*) <zo+z<m(¢")

{¢*(zo+z)—zo—ez+/1},0 (3.10)

$* (20 +2) — ¢*(20)

with ¢*(t) = sup,{tx — g(x)} being the conjugate function of ¢ and m(¢*) = sup{m € R :
¢* is a finite constant on (—co, m]}, m(¢*) = inf{m € R : ¢*(m) = +oo}, £y = limy 100 P(x)/x,
and 7 = —oo if Leb{[p; = 0]} = 0, 0 if Leb{[p; = 0]} > 0 and Leb{[p; = 0] \ A} = 0, and 1
otherwise, where Leb{-} is the Lebesgue measure on R¥.

The above equivalence can be used to obtain the following result.

THEOREM 3.2.1. Suppose Y = RF and P4 admits a density. Among all Py such that %‘j exists and
is continuous, positive almost surely, an optimal choice of Py that minimizes M(Po, {Q : dy(Py, Q) <
A}, 8), namely the optimal value of (3.8), is the center of the ¢-divergence ball P;. Moreover, this
gives M(Py,{Q : dy(Py, Q) < 1},9) = € 71(8,A, ¢), where €’ "1 (-, A, ¢) is the inverse of the function
€’ = €’(e, A, @) defined in (3.10) with respect to €, given by

€ (x, A ¢) £ min{e > 0: € (e, ¢) > x} (3.11)

Proor. From Theorem 1 in [40], we know that, for any A € M and 0 < € < 1, (3.9) holds. We
can rewrite the optimal value of problem (3.8) in the form:

min €
€0
s.t. max Q(A) < eforall A Cc Y such that Py(A) < 6, (3.12)
dy(Py,Q) <A
which, according to (3.9), has the same optimal value as
min €
= (3.13)

st.  Py(A) < € forall A C Y such that Py(A) < 6.
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Since, fixing ¢ and A, €’ is a non-decreasing function of €, we see that minimizing € is equivalent to
minimizing €’. Denoting v* as the optimal value of the optimization problem

max P;(A)
acy 0 (3.14)
s.t. PO (A) < (S,

then the optimal value of (3.13) is €’"!(v*, A, #). Moreover, this is achievable by setting P = P,
that gives the optimal value v* = § to (3.14) by Theorem 3.1.1.
O

An implication of Theorem 3.2.1 is that, by noting that a parametric divergence ball lies inside a
corresponding nonparametric ball, we can compute a bound for M to obtain a required Monte Carlo
size, drawn from the baseline P, to geta feasible solution for the distributionally robust CCP (2.2)
and subsequently the CCP (1.1). More precisely, recall the bounding function M(Po, Uyaza, §) =
M(Po,{Q:dy(Py, Q) < 4,Q € Ppara},d) with A = qS”(l))(ffa’D/(Zn), given by (3.1), as the optimal

value of
max Q(A)
d¢ (Pé,Q) S/LQEPpura,ACy

(3.15)

We have:

COROLLARY 3.2.2. Given a data size n, suppose Y = RF and P4 admits a density, where 0 is the
MLE under Assumption Al. If we choose 6. = €’ (e, ¢”(1))(ffa’D/(2n), ¢) and draw Nexqcr (Oc, B, d)
Monte Carlo samples from the generating distribution P, to construct the sampled problem (2.4), then
the obtained solution will be feasible for (1.1) with asymptotic confidence level at least 1 — a — f.

ProoF. Note that a parametric divergence ball lies inside a corresponding nonparametric ball in
the sense that

{Q:dy(Py, Q) <A, Q € Pparat € {Q:dy(Py, Q) < A}
Thus, by the definition of M, we have
M(Po,{Q : dg(P5, Q) < A,Q € Ppara}, 8) < M(Po,{Q : dy(Py, Q) < 4},5)

In particular,
M(Py{Q : ds(Py, Q) < AQ € Ppara},8) < M(Py {Q: dy(P5, Q) < 11,6) = € (8,1, )

where the equality follows from Theorem 3.2.1. Thus, if we choose . such that e (0es A, 9) <€, 0r
e = €'(€,A,¢), where A = qﬁ”(l))(lz_aD/(Zn) as presented in (2.17), and the generating distribution
as Py, then Corollary 2.2.2 guarantees that running SO on Nexac (Se, B, d) Monte Carlo samples
gives a feasible solution for (1.1) with confidence asymptotically at least 1 — o — f. O

Corollary 3.2.2 thus provides an implementable procedure to handle (1.1) through (2.2).

3.3 Parametric DRO

Next we discuss further the choice of generating distributions in parametric DRO beyond P;. While
the ball center P; is a valid choice, the equivalence relation (3.9) does not apply when the divergence
ball is in a parametric class, and the optimal choice of the generating distribution may no longer be

Py, as shown in the next result.
TuEOREM 3.3.1. In terms of selecting a generating distribution Py to minimize M(Po, {Q : dy (P4, Q) <
A, Q € Ppara}, 6), the optimal value of (3.15), the choice P4 can be strictly dominated by other distri-

butions.
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Intuitively, Theorem 3.3.1 arises because the extreme distribution that achieves the equivalence
relation (3.9) may not be in the considered parametric family. It implies more flexibility in choosing
the generating measure Py, in the sense of requiring less Monte Carlo samples than using P;.

From the standpoint of hypothesis testing in Section 3.1, the imposed minimax problem (3.15)
in searching for the best Py can be viewed as finding a simple null hypothesis that is uniformly
least powerful across the uncertainty set. This question is related and appears more general than
finding the least favorable or powerful prior in testing against composite null hypothesis [48]. In
the latter context, given a set ©1, one aims to find a distribution p*(d6y) such that T'(g*) < T'(u)
for all distributions p(d6y) on ©,, where I'(p) is the optimal value of

max Pg, (A)
6,€0,
(3.16)
s.t. / Py, (A)pu(dby) < 6.
()}

The distribution p(d6)) is interpreted as a prior on a composite null hypothesis parametrized by 6,
and p*(d0y) is the least favorable prior. The difference between (3.16) and our formulation (3.15)
lies in the restriction to measures of the form Py = /90 Pg, 11(d6,) for the former, leading to a smaller
search space than ours. This mixture-type Py and the Bayesian connection will partly motivate our
investigation in Section 4.

To prove Theorem 3.3.1, we present a counter example and also some related discussion.

ExampLE 3.3.2. Consider the uncertainty set Uyarq = {Pp,: —1 < 0 < 1} within Gaussian location
(y=0)*
family on R with Pg(dy) = ——= s
the y?-distance, the latter defined between two probability measures P; and P, as

F(PLP) = / <@—1> P (dy). (3.17)

Note that the y*-distance is in the family of ¢-divergences, by choosing ¢ = (x — 1)?. We aim to find a
generating distribution Py to minimize M(P,{Py : 0 € Uyasa}, 5), the optimal value of

max Py(A)
Gewdam,AcR (318)
s.k. Po (A) <.

We consider several symmetric distributions as Py (symmetry is reasonably conjectured as a good
property since an imbalanced shift might increase the power for the alternative hypothesis on one side
and the worst case overall). We list these symmetric distributions in increasing variability:

NS,

1
Po(dy) = —e~
Var

Pi(dy) =

e (3.19)

Var -2

1 y-1)? y+1)?
P} (dy) = = (e‘w2 +e s )
V T

Given 0 < 0 < 1, it can be shown by the Neyman-Pearson lemma that the rejection region A* (i.e. the
set giving the optimal value of (3.18) for a given 0) for By has the form {y : y > ¢}, for P2 the form

{y : ly — 20| < ¢z} and for P} the form {y : > c3}, for some cq, ¢, and cs. Let § = 0.05 be the

ey+e y
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tolerance level, it can be shown through numerical verification that

M(PL {Pg : 0 € Ugara}, 0.05) = 0.2595
M(P% {Py : 0 € Uyara}, 0.05) = 0.1160 (3.20)
M(P3, {Py : 0 € Ugarg},0.05) = 0.0995.

Thus, the natural choice Py = Py based on relaxing to nonparametric DRO yields a bounding function
M(-) that is outperformed by P or P3. Later in Section 4 we will see numerically how P4 and P3 can
lead to a smaller sample size requirements.

Although Theorem 3.3.1 reveals room to search for the best generating distribution, the involved
optimization, or even just finding an improved distribution over P4, appears to be nontrivial. In
particular, the maximization problem in (3.15) depends on the computation of A* for each alternative
of 6 € Ugqs,- Section 4 discusses some approaches to search for improvements. We conclude the
current section with some discussion on the choice of statistical distances used in the uncertainty
set.

3.4 Choice of Statistical Distance

We have chosen to use ¢-divergence to construct our uncertainty set Uy .4, and we have seen
how this allows us to effectively translate sample size requirements from the data to Monte Carlo.
Note that another common type of distance is the Wasserstein distance (e.g., [6, 25, 27]). If one can
translate the violation probability under a generating distribution into the worst-case violation
probability over a Wasserstein ball, then the same line of arguments in Section 2 applies to using
SO on this DRO. Presuming that the size of a parametric Wasserstein-based confidence region
can be properly calibrated from data, it is conceivable that the above can give rise to an alternate
solution route. It is known (Theorem 3 in [6]), under suitable regularity conditions, that one can
equate a Wasserstein-ambiguous probability sup  Q(¢& € A), where dyy denotes a Wasserstein
dw (QPy) <A

distance of order 1 and cost function c, and A is an event, to P;(c(£, A) < 1/v*) where v* > 0 is
a dual multiplier for the associated optimization problem, and c(&, A) denotes the cost-induced
distance between a point ¢ and a set A. Thus, M(Py, {Q : dw (P4, Q) < A}, 6) can be written as

max Py(c(&A) < 1/v%)
AcY (3.21)
st. Py(A) <4.

Compared to the evaluation of M(Py, {Q : dg(Py, Q) < A}, 6) in Theorem 3.2.1, the tightening of the
tolerance level from € to €’ is now replaced by the set inflation from A to the (1/v*)-neighborhood
of A given by {&¢: ¢(£,A) < 1/v*}. Note that, regardless of the distance used, one could reduce the
conservativeness of our analysis by focusing on A in the form {x ¢ X}, but this would require
looking at the specific form of the safety set X;.

4 IMPROVING GENERATING DISTRIBUTIONS

This section discusses some approaches to search for better generating distributions beyond the
baseline distribution in a divergence ball of DRO. Section 4.1 first states a general result to create
better generating distributions. Section 4.2 then specializes to using a mixture distribution on
0 to exploit this result. Sections 4.3 and 4.4 then provide two specific ways to construct these
mixtures. Finally, Section 4.5 demonstrates some numerical comparisons in using these new mixing
generating distributions and also simply using the baseline.
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4.1 A Framework to Reduce Divergence Ball Size by Incorporating Parametric
Information

The reason why the best choice of generating distribution Py is not the baseline of the divergence
ball, P4, in minimizing M(Po, {Q : dy(Ps, Q) < A4, Q € Ppara},d) is that the equivalence relation
(3.9) does not hold when Q is restricted to a parametric class. In some sense the reduction to the
unambiguous chance constraint in the right hand side of (3.9) is over-conservative as it does not
account for parametric information. Suppose we would still like to use the analytically tractable
relation (3.9), but at the same time be less conservative. Then, one approach is to find a new baseline
distribution, say P, such that the parametrically restricted divergence ball {Q : ds(P;,Q) <AQe€
Ppara} lies inside a new nonparametric divergence ball at the center P, namely {Q : dy (P,Q) < A}.
If we can obtain a nonparametric ball size A such that 1 < A and the set inclusion holds, then this
new ball is also a valid uncertainty set, and, when simply setting the generating distribution as
Py = P and applying Theorem 3.2.1, we have a smaller upper bound for M(P,, {Q : dg (P4, Q) <
A, Q € Ppara}, ) than €’71(8, A, ¢) obtained from using Theorem 3.2.1 directly with the parametric
constraint relaxed.

To above mechanism can be executed as follows. Let Uyara = {Q : dy(P3, Q) < A, Q € Ppara}-
For any Py, let

Daata(Po,§) = sup  dy(Po, Q). (4.1)
QeUaata
Then we clearly have
Uiara < {Q : dy(Po, Q) < Dyara(Po, $)}, (4.2)

since the right-hand-side set includes distributions outside of the parametric family as well.

Our goal is to find Py to minimize D 414 (Po, @) or any upper bound of Dy, (Po, @) so that it is
smaller than the ball size A appearing in the original parametric divergence ball U;,.,. We state
the implication of this as follows:

THEOREM 4.1.1. Suppose Y = RF and P4 admits a density. Consider the parametric divergence ball
Ugara ={Q:dy(Py, Q) < 4,Q € Ppara}. Suppose we can find Py such that Dyarq(Po, §) defined in
(4.1) satisfies Dgarq(Po, §) < A. Then we have

n]llmilnM(Pl’ {Q : d(ﬁ(Pé’ Q) < A’Q € Pparu}s 6) < n%ilnM(Pla {Q : d¢(Pé> Q) < Ddata(PO’ ¢)}’ 5)
< min M(Py, {Q : dy (P, Q) < 2},6) (4.3)

and

min M(Py, {Q : dy(Pg, Q) < 4, Q € Ppara}, 6) < € 7(8, Daata(Po, §).9) < € (8,4, ¢)  (4.4)

where €' "' (¢, A, ¢) is defined in (3.11).
Proor. By the definition of D44 (Po, ¢), (4.2) holds. Together with the condition D44 (Po, §) <

A, we have the set inclusions
{Q:d3(Py, Q) < 1,Q € Ppara} € {Q:dy(Po, Q) < Daara(Po, )} C{Q:dy(Py, Q) <A} (45)
The inequalities (4.3) then follow from the definition of M. The inequalities (4.4) in turn follow

immediately from Theorem 3.2.1. O

Theorem 4.1.1 stipulates that choosing Py depicted in the theorem as the generating distribution,
and setting €’ (8, Dygara(Po, $), $) as an upper bound for M(Py, {Q : dy(Py Q) < A,Q € Ppara}, 6)
to obtain the required Monte Carlo size Nexqct (e, B, d) implied by Corollary 2.2.2, will give a
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lighter Monte Carlo requirement than using the bound €’ (8, A, ¢) directly obtained by relaxing
the parametric constraint and using P as the generating distribution as in Corollary 3.2.2.

4.2 Mixture as Generating Distribution

Since optimization (4.1) can be difficult to solve generally, we focus on finding improved generating
distribution Py so that the implication of Theorem 4.1.1 holds, instead of fully optimizing (4.1). In
this and the next subsections, we design a search space P, for P, that allows the construction of
tractable procedures to achieve such improvements, while at the same time ensures the obtained
P, are amenable to Monte Carlo simulation.

From now on we will focus on y?-distance as our choice of ¢ for convenience (as will be seen).
Suppose that Py has density p(y; 8). We then set $ to be the collection of distributions with
densities in the form

poly) = /@ p(y:0)u(d0), (46)

for some probability measure p on ©. This class of distributions is easy to sample assuming p(y; 0)
and p are, as one can first sample 6 ~ u(d0) and then & ~ Py given 0.

Searching for the best po(y) requires minimizing Dy, (Po) over Py € Py (where for convenience
we denote Dyara(Po) as Dyara(Po, ) with ¢ representing the y2-distance). We first use (3.17) to
write

Data(Po) = sup /(M—l) Po(y)dy

0 Uyara po(y)
0 2
o [P,
0ctlna )y DoY)
0 2
/ (p(:6)) ——————dy - 1. (4.7)
ge(udata /@P(y: 9 )ﬂ(d@ )
Denoting $(0) as the space of probability measures on ©, we define the function L : (@) x0 — R
to be
:0))°
L(p,0) é/ —(p(y/ ) —dy, (4.8)
Y Jop(y;0")u(do’)
assuming the integral is well-defined for £ (®) x © and further define
I(p) = sup L(p0). (4.9)

ae(leata
Thus (4.7) can be written as Dy,:q(Po) = (1) — 1, and minimizing Dg4:,(Po) is equivalent to
solving

min I(g) = min max L(u 0 4.10
HEP(O) W /167’(9)9671:;[0; (1.0). ( )

Optimization (4.10) has the following convexity property:
LEMMA 4.2.1. The outer minimization in problem (4.10) is convex.

Lemma 4.2.1 can be proved by direct verification, which is shown in Appendix C. Note also that,
if p is the point mass dg for 8 € ©, then the mixture distribution would recover the parametric
distribution Py. Hence the proposed family $, includes {Pp}geco, and in particular the original
baseline distribution P. Although the outer minimization of (4.10) is a convex problem, computing
I(p) involves a non-convex optimization and is difficult in general. Our approach is to search for a
descent direction for the convex function [(-) from J;. In the following, we will study two types of
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search directions, each using its own version of Danskin’s Theorem [3, 4]. To proceed, we introduce
the following definition:

Definition 4.2.2. Define ©*() to be the set of optimal points for the maximization problem in
I(p) = sup L(u0) given u € P(0):

0€Ugata
0" (p) = argmaxycq,, L(p, 0) (4.11)

It can be shown that ®*(u) is non-empty and ©*(y) € Uga:q because Uyyy, is compact and
L(u, 0) is continuous in 6.

4.3 Mixing with a Proposed Distribution

We consider mixing distributions in the form (1 — )84 + tj1pr0p for some proposed distribution
Hprop» and look for a descent direction by varying ¢ from 0 to 1. We have the following result that
is a consequence of Danskin’s Theorem that involves a one-sided derivative. We provide proofs
both for this theorem and our following result in Appendix C.

THEOREM 4.3.1. Fix any p1, gz € P(0) and 0 € ©. Under the assumptions that (t) = L((1 —
t) i + tg, 0) is well defined for 0 < t < 1, we know that the function g(y, t)

(p(y;0))*
(1= 1) [y p(y: 0 (d6) + ¢ [, p(y; 0')12(d0")
is integrable for t € [0, 1]. If we further assume that there exists a integrable function go(y) such that
(p(y:0)* - Jo p(y;0") (i1 = p12)(d6")
(Jo (0 ((1 = )y + tiz) (d6"))?
then we have the right derivative of (t) at t = 0 given by
L((1- -L
¢+(0) = sup lim (( t)/ll + tll25 0) (I’lli 6)
00" () 110 t

9(y. 1) : Y x[0,1] =

< gO(y)>

;0))% - :0') (= p2) (a6
= sup /(p(y VSO )@ (4.12)
0€0" (1) JY

(Jo p(y: 01 (d6"))?
The quantity §*(0) is the directional derivative of L(y) in the direction y, — py. Thus, to
improve on Dgarq(Py), We can propose a mixing distribution iy, (d6’), and substitute p; = &,
and pz = pprop in (4.12) to check if
sup / (P(y:0)* - Jo (40" (85 = iprop) (d6”) ay
u p
Yy p(y;0)*
which indicates a strict descent for [(-) from ; to piyr0p. In this case, it follows from the convexity
of I(-) that we can find some 0 < t < 1 such that [((1 = t)6, + tprop) < (), so that

<0, (4.13)

0€0*(5;)

Pt(y)=/@P(y;H')((l—t)5g+t/1prop)(d9'), (4.14)

gives rise to Dyara(Po) < Daara(Py). Finding such a t can be done by a bisection search or
enumerating Dg,:4(Py) on p; over a grid of t. Note that the above can be implemented only if
(4.13) can be verified and also if Dy,:4(Py) is computable. We will show that both properties are
satisfied for the case of multivariate Gaussian when 1., is properly chosen. In particular, we will
identify general sufficient conditions for y,,,, to guarantee (4.13), and also find y,,,p such that
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the maximization involved in computing D ,;,(Py) in (4.7) can be reduced to a one-dimensional
problem.

Consider a multivariate Gaussian distribution with unknown mean ® c R? in an open convex
set with density

1 Ty (y—
p(y;0) = e 2 (=0T (y-0) (4.15)
V(@2m)P|z]
where ¥ is a fixed positive semi-definite covariance matrix. Direct verification (in Appendix C)
shows that

2 2
Xi—a NT-1(9-0 Xi-a
Uara = {9 €®: x*(Py,Pg) < = ’D} :{ee@:e<9—9> 20-0) _q < I—D}
n n

2
. Xi_
= {9 :0+%70, for |jo]2 < log(1+ 1—’“’)}, (4.16)
n

and thus
2

o N Xi-
0"(d;) =argmaxgcq, (=072 (6-6) _ {9 :0+220, for ||o]|? =log(1+ ! a’D)}. (4.17)
ata n

We propose the following pi,,0p. First, we call a distribution on ® symmetrical around 0 € © if

its probability density or mass function has the same value for any 6y, 8; € © such that 6 = #.

PROPOSITION 4.3.2. Let jiprop(d0’) be any symmetrical distribution around 0. Given 0 € 0" (8;),
we define Yy = (0 — é)TE’l(G’ — 6) with 6’ ~ Hprop(d0”). Suppose there exists an integrable random
variable Y under the measure [ipyo, such that e?¥o <Y forall 0 € ©F (84). If; for each 6 € ©*(5y),
Yy does not equal to 0 with probability 1, then (4.13) holds and the mixture distribution produced by
Hprop(d0) would result in a descent direction on Dgara(Py).

One can check that any Gaussian distribution with mean 6 satisfies the conditions of Proposition
4.3.2, and so does any pprop(d0’) that is discrete, symmetrical around 0, whose outcome directions
6’ — 0 constitute a basis of RP. Alternately, we also consider the following continuous Hprop- We

2

set 0’ ~ 0 + XI’T“‘D - %2y where 7 is a random vector uniformly distributed on the surface of the
D-dimension unit ball. Note that this 8’ can be efficiently simulated by sampling D independent
standard Gaussian random variables and scaling their norm to unit length to obtain 5. While this
Hprop can be readily checked to satisfy the conditions in Proposition 4.3.2, we also provide an
alternate proof on the validity of this j,,0p in achieving a descent direction in Lemma C.0.5 in
the Appendix, as results proven therein provide important reference to calculations in numerical
experiments regarding pip,op.

Next, we discuss the computation of Dy, (Py) for a given Py. First, we call a random variable

Y on Y c RF rotationally invariant if Yzz)QTY for any rotational matrix Q € RF*K. Using this
notion, the following shows how one can reduce the D-dimensional maximization problem in the
definition of Dy, (Py) into a one-dimensional problem.

ProroSITION 4.3.3. Given a nominal distribution Y ~ Py and a multivariate Gaussian family with
known covariance 3 denoted Py = N (0, X). If the nominal distribution Y ~ Py satisfies the condition

that the random variable Z = S~Y2(Y - §) is rotationally invariant, then for any 0y, 0, satisfying
(6, —=0)T271(0; — ) = (0, — )T (6, — 0), we have

x*(Po,Pg,) = x*(Po, Py,). (4.18)
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Thus, for Dyara(Po) = maxgeqy,,,, x> (Po, Pg) with Uggra = {0 € ©: (0 —0)TS71(0 - ) < A} as in
(4.16), we have
_ 2
Daata (PO) = Ongltagxl X (P0> P(l_,)é”g*)s (4.19)
given any 0* satisfying (6* — 6)T="1(6* — §) = A
R 2
PROPOSITION 4.3.4. Given 0 < t < 1 and fiprop(df) = 0 + XI’T"D -2y, where n is a random

vector uniformly distributed on the surface of the D-dimension unit ball, the nominal measure P; with
density

pe) = [ P01 =08 + ) (d0") = (1= 0F; [ 9030 pro ()
satisfies the conditions in Proposition 4.3.3.
Therefore, in computing Dgasq(Po) derived from the proposed distribution pi,r0p (d6) = 0+

- 212y, using Propositions 4.3.3 and 4.3.4 we can change the domain of the involved
maximization from ® c RP into R, leading to a substantial reduction in the search space and a
tractable problem.

2
Xl—a‘D
n

4.4 Enlarging Mixture Variability

Our next proposal is to consider a continuous mixing distribution y, (d6”) on ® where r > 0 controls
the variability of the distribution, so that r = 0 corresponds to §;. Here, we can parametrize the
density of the generating distribution as

pr(y) = /@ p(y; 0")pr(d0), (4.20)

and our search direction is along r starting from r = 0. We propose two possible ways to define
ur(dO’). First is to let p} (d0”) follow the distribution of §” ~ f+37 - ny7 Where 7, is the uniform
distribution inside the D-dimensional unit ball with radius /. Second is to let p2(d6’) follow
N (é rX). The second approach in particular can be intuited as the posterior distribution of the
parameter from a Bayesian perspective. In both cases, we notice that letting r = 0 would recover
the original baseline distribution p(y; 6).

To analyze these schemes, we abuse notation slightly and now define L : R* X ® — R to be

(r(y:0)° |

L(r,0) = \ 4.21
CO= ), o Y (421
and
I(r) 2 sup L(r,0). (4.22)
Hewdata

We show that increasing r to positive values would produce a descent direction for I(r) at r = 0,
when the underlying distribution is Gaussian. Recall that in this case ©*(J;) can be expressed by
(4.17). As I(r) is not necessarily convex in this situation, we use a generalized version of Danskin’s
Theorem [18] for non-convex problems to get the following result:

THEOREM 4.4.1. Withl(r) and L(r, 0) defined in(4.21) and (4.22), and p(y; 0) multivariate Gaussian
with mean 0 and known positive definite covariance %, we have

l+(0) — l(r) l(O) Xl a,D (1 _

=(1+ ) - lim -

. —_) T (0=0
im inf Bgr_,, [20-0770 9>]) (4.23)

0€6°(5;)
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The proof is in Appendix C. With Theorem 4.4.1, we can show that both p! and p? proposed
above are valid choices to produce descent directions. Moreover, we can also show that they allow
tractable computation of Dy,:,(Po). These are depicted as follows.

COROLLARY 4.4.2. Under the assumptions in Theorem 4.4.1, I*(0) < 0 for both u} and pi2.

COROLLARY 4.4.3. Givenr > 0 and jiyrop being pi} (d6) or p?(d0), the nominal measure P, with
density given by (4.20) satisfies the conditions in Proposition 4.3.3.

The proofs of Corollaries 4.4.2 and 4.3.4 are in Appendix C.

4.5 Numerical Demonstrations

To confirm our findings in Section 4.3 and 4.4, we perform several numerical experiments. Consider
Py to be multivariate Gaussian N (6, Ip) with k = D = 10. We set € = a = 0.05 while § = 0.01 and
data size n = 10 or 5. Notice in this case, the dimension D is high but the available sample n is
low and we would actually need N,xqc; = 371 data points to perform standard SO. Based on our
discussion, we compare three choices of f1,,0p:

o= 5@, the point mass at 0.

2
A X . . . .
o iy ~ 0+ /=22 -, where 1 is the uniform random vector on the surface of a D-dimension

unit ball, discussed in Section 4.3.
e i3 ~ N(0,1Ip/n), the Gaussian distribution with mean 6 and covariance matrix Ip /n, discussed
in Section 4.4.

For py, pp and pis, the calculation of Dy, (Po) is tractable. We leave the details in the Appendix as
remarks following Lemma C.0.5 and summarize the results in Table 1 and 2. We use N to denote
the number of Monte Carlo samples needed. Moreover, we use both algorithms Extended SO and
Extended FAST discussed in Section 5 for demonstration. As we can see, the decrease in N under a
better sampling distribution can be considerable, down to less than a third compared to using the
baseline in some cases. Mixing with a proposed uniform distribution () appears to reduce N more
than applying a Gaussian mixture (y3). As a side note, we also observe Extended FAST requires
significantly less sample size than Extended SO in this example.

Table 1. Comparisons among choices of Py for 10 dimensional multivariate Gaussian when n = 5.

Dyata(Py) Oe N for Extended SO N for Extended FAST
,ul((sé) 37.9161 6.5766 X 107> 285601 70221
Ho 11.0368 2.2454 x 1074 83649 20707
3 14.7391 1.6850 x 107* 111465 27528

5 PROCEDURAL DESCRIPTION

This section presents our procedures to find solutions for CCP (1.1) using SO-based methods, when
the direct use of data &, ..., &, from P is possibly insufficient to achieve feasibility with a given
confidence. Algorithm 1, which we call “Extended SO", first presents the basic and most easily
applicable procedure arising from Corollary 3.2.2. Notice that, given an overall target confidence
level, say ¢, we have flexibility in choosing « and § such that « + § = c. In our experiments, we
simply choose a = § = ¢/2. However, if the requirement for confidence level is high, it is a more
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Table 2. Comparisons among choices of Py for 10 dimensional multivariate Gaussian when n = 10.

Daara(Po) Oe N for Extended SO N for Extended FAST
pi(8;)  5.2383 4.6857 x 1074 40081 10026
Ho 3.3139 7.3298 x 1074 25621 6481
13 3.7926 6.4275 x 1074 29219 7363

beneficial to choose a relatively small f, since the required Monte Carlo sample size depends only
logarithmically on S (i.e., required sample size is of O(log %) ) [10]. However, as the confidence
level 1 — o grows larger, the size of uncertainty Uy,;, would grow and cause the tolerance level e
for the SO (under the baseline Py) to decrease. On the other hand, the dependence of Monte Carlo
sample size on € is less favorable, typically of O(%) [10].

Algorithm 1 Extended SO to obtain a feasible solution X for (1.1) with asymptotic confidence
1-a-p
1: Inputs: data points £, .. ., &,, a #-divergence, parametric information Ppara = {Po}gcocrr-

2: Find the MLE 0 from the data &, ..., &, for parameter 6.

(1 2
Set A « QS()Z# where )(1 D is the 1 — & quantile of a y2 distribution.

Set 8¢ « €’(e, A, ¢) where €’ is deﬁned in (3.10).
Set N <« Nexact (Oc, B, d) where Neyqcr is defined in (2.5).
Generate f{wc, AN/IC from P4 to construct (2.4) and obtain a solution x.

AN L

There are several variants of Algorithm 1. First, we have discussed the use of plain SO and that the
required sample size is (2.5), while on the other hand, as mentioned at the end of Section 2.2, we can
use other variants of SO such as FAST that requires a smaller sample size for either the data or the
Monte Carlo samples we generate. In the case of FAST, we would have Nexqt (€, §, d) = 20d +% log %,
as suggested by [13]. Thus, a variant of Algorithm 1 is to replace Nexqc: With this latter quantity,
and replace (2.4) with the FAST procedure in [13] for the last step of Algorithm 1 (we call this
algorithm “Extended FAST" which will also be used in the next section).

The explicit expression for €’(e, A, @) for different ¢, € and A can be found in [40]. For example,
if we choose ¢ = (x — 1)? which corresponds to the y?-distance, then for ¢ < 1/2, we have

’

€ = max{0,e — A A (e 62 (- 25)/1} We can also replace €’(¢, A, ¢) by any J. that achieves
M(P;,{Q: dy(Py Q) < /1} d¢) < €. In Appendix B, we derive a self-contained easy upper bound
for M(Py, {Q : dy(Py, Q) < A}, ) in the case of y?-distance and use it to find such a .. This easy
computation of §. will also be used in our numerics in the next section.

Section 4.1 has investigated some proposals to improve the generating distributions. Algorithm
2 depicts these proposals in a general form. The main difference of Algorithm 2 compared to
Algorithm 1 is the introduction of Dy;4(Po, ) that one can attempt to minimize over a class
of generating distribution Py or evaluate for trial-and-error choices of Py, so that at the end we
have Dyg14(Po, ¢) < qS”(l))(lzfa)D/(Zn). As discussed in Section 4.1, using this Py allows us to
obtain a smaller Monte Carlo size requirement than simple relaxation of the parametric constraint.
Sections 4.3 and 4.4 describe the possibilities of achieving such a reduction, in the case of Gaussian
underlying distributions and using y?-distance. Note that, just like in Algorithm 1, we can consider
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other variants such as incorporating FAST and using alternate bounds for M instead of €', by
undertaking the same modifications as in Algorithm 1.

Algorithm 2 Extended SO with improved generating distribution to obtain a feasible solution x for
(1.1) with asymptotic confidence 1 — a —

1: Inputs: data points £, .. ., &,, a $-divergence, parametric information Ppara = {Po}gcocrr-

2: Find the MLE 6 from the data &, ..., &, for parameter 6.

71y 2
3: Set A «— qﬁ(l)zw
n

4: Obtain Py by minimizing D44 (Po, ¢) defined in (4.1) over a class of distributions or simple
trial-and-error search so that Dy, (P, ¢) < A.

5: Set 8¢ «— €'(€, Dyara(Po, P), ¢) where €’ is defined in (3.10).

6: Set N «— Nexacr (O, B, d) where Neyqc is defined in (2.5).

7: Generate §{VIC, e §%c from Py to construct (2.4) and obtain a solution X.

where )(lz_a p is the 1 — & quantile of a XE) distribution.

6 NUMERICAL EXPERIMENTS

This section presents some numerical examples to support our theoretical findings and illustrate the
performance of our proposed procedures for data-driven CCPs. We focus on Algorithm 1 (Extended
SO) and its FAST variant discussed in Section 5 (Extended FAST). We consider both single and joint
CCPs (i.e., one and multiple inequalities respectively in the safety condition of the probability)
as well as quadratic optimization problems. Moreover, we compare numerically with methods of
robust optimization (RO) in [2, 54]. The experimental outputs that we report include:

e Under each setting, we repeat the experiment 1000 times with new data generated each time.
For the solution X obtained in each trial from a given algorithm, we evaluate the violation
probability V (%, P) under the true probability measure P (under 6;,,) either through exact
calculation or Monte Carlo simulation with sample size 10000. Moreover, using the empirical
distribution for the violation probabilities, we report é as the average violation probability
V(%,P) as well as Qos, the 95-percentile. Finally, we report and compare “f,,;”, the average
objective value for the optimization problem across all 1000 runs.

e We fix @ = 0.05 and f = 0.01 across different values of € and d. However, when we compare
our methods with robust optimization approaches, we set « = 0.05 and = 0.001, since
RO approaches essentially guarantee = 0. On the other hand, the sample size chosen for

FAST i - — 20d i _ logf-log(B)

is taken with default values Ny = 20d in stage 1 and N; = Tog(1=0)
discussed in [13].

e For given € and d, we denote N,xq+ as the required sample size if we can directly sample
from PP and use standard SO. We denote n as the available data size (n < Ngxqc:) and N as the
Monte Carlo size needed for the our DRO-based methods. In DRO-based methods, we fix our
generating distribution Py as P4 and use the y*-distance across the experiments.

in stage 2 as

6.1 Single Linear Chance Constraint Problem
We first consider a single linear CCP

min , cTx
xeXCR! (61)

st. P((a+&Tx<b)>1-6x>0
where x € R is the decision variable, a,c € R? and b € R are fixed and e R is a random vector

following some parametric distribution. We fix a = [5,5, ..., 5] € R b=5andc = [-1,-1,..,-1] €
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R? and the problem would have a non-empty feasible region with high probability for & considered
here. Moreover, a robustly feasible point for FAST [13] is chosen to be # = 0 € R? and an explicit
Uyatq is constructed as (2.21) for our DRO.

6.1.1  Multivariate Gaussian . We conduct experiments when ¢ ~ N (6, ¥) with fixed but a priori
randomly generated positive definite covariance matrix 3 € R%*? and unknown 6 € R?. Due to the
normality of &, for any given 6, we can reformulate the chance constraint exactly as a second-order
cone constraint, which can be robustified straightforwardly in the ambiguous chance constraint
case. The underlying true parameter is taken to be 04, = 0 € R? and the results are summarized
in Table 3 and 4.

Table 3. Single linear CCP under Gaussian with unknown mean for different € and d.

e=0.1 e=0.1 e=0.1 € =0.05 € =0.05 € =0.05

d=5 d=10 d =20 d=5 d=10 d=20
n 50 80 200 50 80 200
Nexact 113 183 312 229 371 631
N 449 743 1016 1443 2349 3118
é 0.0050 0.0041 0.0041 0.0015 0.0015 0.0014
Qos 0.0136 0.0103 0.0088 0.0045 0.0037 0.0031
Joal -0.7577 -0.7447 -0.7360 -0.7353 -0.7243 -0.7128

Table 4. Comparisons for single linear CCP under Gaussian: € = 0.05, d = 10 and § = 0.001.

RO Extended SO Extended FAST
n 80 80 80
Noexact NA 447 447
N NA 2887 1079
é 0.0180 0.0011 0.00069
Qos 0.0272 0.0029 0.0019
Joal -0.8008 -0.7212 -0.7093

6.1.2  Exponential Distribution. We conduct experiment when each coordinate &; of £ € R indepen-
dently follows exponential distribution with rate A;. Since & is no longer Gaussian and the domain of
the moment generating moment function for exponential distribution depends on A = (4;,. .., 44),
for convenience we use RO constructed from a convex approximation using Chebyshev’s inequality:

PA(§Tx - zd:% > e’l/zlear(fo)) <e

i=
which, combined with Uy,;, as in (2.21), reduces the ambiguous chance constraint into a robust
conic quadratic constraint

d X; d X; d A )(2 d
Ch2valx+e 2y 2 _p<o, VA Y (1-2)% < 22l

i=1 1 n

/2
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The above can be tractably reformulated as in Section 5 of [54] on problems in the form of 5(b),

A 2 A
with Q = (min; (A;)(1 - %))_1 where A; represents the MLE estimate. Finally, the underlying
true parameters are taken as A; = 1, Vi, and results are summarized in Table 5.

Table 5. Comparisons for single linear CCP under Exponential: € = 0.05, d = 10 and § = 0.001.

RO Extended SO Extended FAST
n 80 80 80
Nexact NA 447 447
N NA 2887 1079
é 0.0045 0.0047 0.0016
Qos 0.0094 0.0100 0.0050
Joal -0.6978 -0.6981 -0.6701

From the results of the experiments, we can see the vast majority of solutions produced by
three methods satisfy statistical feasibility. In fact, all methods are conservative with respect to the
violation probability €, although some are more conservative than the other. In particular, when &
is Gaussian, RO takes advantage of an exact formulation to produce less conservative solution with
lower objective value (closer to the optimal value). This can be seen in Table 4, where € = 0.018
fval = —0.80 for RO and € = 0.0011 f,,; = —0.72 only for Extended SO. When ¢ is no longer Gaussian,
RO appears to produce similar-quality solutions as Extended SO in terms of feasibility or optimality.
For example in Table 5, we have € = 0.0045 f,4; = —0.6978 for RO and é = 0.0047 f,,,; = —0.6981 for
Extended SO. Note that while the validity of RO depends crucially on the applicability and accuracy
of convex approximation, the validity of Extended SO or Extended FAST is not restricted by the
distributions of ¢, and they also do not require intensive, case-specific analysis as RO. In general,
we observe consistent performances of our methods in both experiments.

6.2 Joint Linear Chance Constraint Problem

Next, we consider a joint chance-constrained linear problem:
min  c'x
xeXCR4 (6.2)
st. P((A+E)x<b)=21-¢x20

where x € RY is the decision variable, A € R™9, ¢ € R? and b € R™ are fixed and = € R™ is a
random matrix following some parametric distribution. We set ¢, each row of A and b to be the
same as in the single linear CCP. We treat £ € R as a matrix concatenated from a random
vector £ € R™ ~ N(6,%) with fixed but a priori randomly generated positive definite covariance
matrix ¥ € R™>™4 and unknown 6 € R™?. To solve RO, we use Bonferroni’s inequality as in [57]
to first divide the violation probability e uniformly across m individual chance constraints and then
follow the procedure as in single linear CCP. The results are summarized in Table 6.

In this joint linear example, Extended FAST provides the least conservative solution in terms
of the achieved tolerance level (¢ = 0.0226, which is closer to 0.05, compared to 0.0003 in RO and
0.0012 in Extended SO), and Extended SO is the least conservative in terms of the objective value
(foar = —0.6626 compared to —0.6448 in RO and —0.6466 in Extended FAST). RO appears to be the
most conservative in terms of both the achieved tolerance level and objective value. Note that this
occurs even though the underlying randomness is Gaussian, which allows exact reformulation in
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Table 6. Comparisons for Joint linear CCP under Gaussian: € = 0.05, m = 3, d = 10 and = 0.001.

RO Extended SO Extended FAST
n 80 80 80
Nexact NA 291 291
N NA 2388 1214
é 0.0003 0.0012 0.0226
Qos 0.0007 0.0033 0.0564
fval -0.6448 -0.6626 -0.6466

the single chance constraint case. The conservative performance here is likely (and unsurprisingly)
due to the crude Bonferroni’s correction. Note that other alternatives to using Bonferroni, if one
considers tractable reformulation, would be to use moment-based DRO where tractability can be
achieved (e.g., [69]). However, it is unclear if using moment-based DRO would be more or less
conservative than using Bonferroni correction along with exact reformulation for the individualized
constraints, which could comprise an interesting comparison for a future study. Nonetheless, our
Extended SO/FAST, being purely sampled-based, avoids the additional conservativeness coming
from the Bonferroni correction. However, we note that a large number of Monte Carlo samples are
required due to the large size of Uy, in this high-dimensional problem.

6.3 Non-Linear Chance Constrained Problems

In this section, we conduct numerical experiments for non-linear CCP. We consider two examples.
First is a quadratic objective with joint linear chance constraints, and second is a linear objective
with a quadratic chance constraint, similar as the QM problem considered in [49].

6.3.1 Quadratic Objective with Joint Linear Chance Constraint. We adopt the same setup (thus the
robust feasibility condition remains the same) as in (6.2) except we modify the objective with a
quadratic term
min leH x+clx
xeXCR4 2 (6.3)
st. P((A+E)x<b)=21-¢x2>0

for a fixed but a priori randomly generated positive definite matrix H. We use € = 0.05. Results are
summarized in Table 7. As we can see, feasibility in terms of violation probability is satisfied by
all methods, though RO suffers from higher conservativeness compared to Extended SO/FAST in
terms of the objective value (f,q; = —0.48 compared to —0.5547 and —0.5476 for Extended SO and
FAST respectively). Like the previous example, this could be attributed to the Bonferroni correction
used in the RO. Extended FAST gives the least conservative solution in terms of the tolerance level
(é = 0.0096), using only one third of the samples compared to Extended SO (3888 vs 1384). On
the other hand, Extended SO gives the least conservative solution in terms of the objective value
(foar = —0.5547).

6.3.2 Linear Objective with Quadratic Chance Constraint. We consider the following setup:
min  ¢!x
xeXCR4 (6.4)
st. P(xT8x+alx<b)>1-€x>0
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Table 7. Comparisons for quadratic objective with joint linear chance constraint under Gaussian: € = 0.05,
m=5,d=10and = 0.001.

RO Extended SO Extended FAST
n 200 200 200
Noexact NA 447 447
N NA 3888 1384
é 0 0.0006 0.0096
Qos 0 0.0017 0.0253
foal -0.4800 -0.5547 -0.5476

We set =2 = # . gl-gl.T and ¢ € R4 ~ N(6,3) are iid. with unknown 6. We set 0, = 0 € R?
and consequently mE follows a Wishart distribution ‘W (2, m) with m degrees of freedom and
covariance matrix X under P. We use € = 0.05. The RO formulation for this problem is not readily
available while our sampling-based methods are still directly applicable. We thus focus on evaluating
the performance of Extended FAST under different hyper-parameters. The results are summarized in
Table 8. As we can see, the high dimensions of the problem do not affect the sample size requirement
of Extended FAST dramatically, as it increases moderately form N = 154 whend =5 to N = 334
when d = 10 and to N = 422 when d = 15. Moreover, the average optimal value f,,; is around —0.85
and feasibility is satisfied (¢ all within 0.05), showing the consistent effectiveness of our method.

Table 8. Linear objective with quadratic chance constraint for different €, m and d.

€=0.1,d=5m=5 € =0.05,d =10,m = 10 €=0.05d=15m=15

n 80 200 300
Nexact 113 371 504
N 154 334 422
é 0.0092 0.0050 0.0048
Qos 0.0263 0.0133 0.0128
Joal -0.8393 -0.8576 -0.8672

7 CONCLUSION

We consider data-driven chance constrained problems with limited data. In such situation, standard
approaches in SO may not be able to generate statistically feasible solutions. We investigate
an approach that uses divergence-based DRO to efficiently incorporate parametric information
through a data-driven uncertainty set, and subsequently uses Monte Carlo sampling to generate
enough samples to handle the distributionally robust chance constraint. In this way our framework
translates the data size requirement in SO into a Monte Carlo requirement, the latter could be much
more abundant thanks to cheap modern computational power.

To exploit the full capability of our framework, we have investigated the optimality of the
generating distribution in drawing the Monte Carlo samples in the sense of minimizing its re-
quired sample size. We have shown that, while the optimal choice is the baseline distribution in
the unambiguous and nonparametric DRO cases, this natural choice can be dominated by other
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distributions in the parametric DRO case. We proved this by connecting the Neyman-Pearson
lemma in statistical hypothesis testing to DRO and SO, which comprises the first such results of its
kind as far as we know. We then studied several ways to find better generating distributions by
searching for mixtures that enhance distributional variability. Lastly, we showed some numerical
results to demonstrate how our approach can give rise to feasible solutions in a wide range of
settings where other methods such as RO cannot be utilized directly or give more conservative
solutions.
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A REGULAR CONDITIONS FOR VERIFYING ASSUMPTION A1

We consider the following conditions:
(C1) p(x, 61) = p(x, 6;) for all x implies 6; = 0,.
(C2) B¢rye is an inner point of © C RD.
(C3) The support of distribution {x : p(x,8) > 0} does not depend on 6.
(C4) There exists a measurable function L; (x) such that By, L? < co and

[log p(x, 01) —log p(x,02)| < Ly (x)[|01 — 021l (A1)
for all 64, 0, in a neighborhood of ;..
(C5) I(04rye) is non-singular.
(C6) The density family {Py}gco is differentiable in quadratic mean at 6,4, i.e., there exists a
measurable function L, (x) : X — RP such that for any h € RP that converges to 0,

/ (\/p(x, Otrue +h) — \/P(xa etrue) - éhTLZ(x) VP(X, Qtrue))zdx = O(Hh”zZ) (A.2)
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The consistency and asymptotic normality of MLE in Assumption Al is guaranteed under
conditions (C1)-(Cé6). See [47, 66].
B ALTERNATE BOUNDS USING y? DISTANCE

Consider the y?-based uncertainty set Uy,;q = {Q € Ppara X (P4 Q) < A}. Here we provide an

alternNate upper bound for the function M(Py, Uyasa, ), which we call M(Po, Ugara, 8). That is, we
find M(Py, Uaq, 5) that satisfies

sup Q(& € A) < M(Po, Ugara,8), for all A such that Py(A) < 6.
QE(L(data

For any Q absolutely continuous with respect to Py, we have

sup Q(Ee€A)=Po(f€A)+( sup QEeA)-Po(¢eA)

Qe(udata QE(udata
=Py(E€A)+ Q:leglm./ 1{¢e A}(ZTS) - 1)dIP’0(§)
1/2 dQ
< Py(¢ € A) v swp (/ 1 e A}dpo(g)) : (/ () dPo(g))
<8+68"2( sup Y(Po, Q) (B.1)

QeUaata

where the fourth line follows from the Cauchy-Schwarz inequality. Thus, we can set

M(Po, Ugaras 8) = 5+ 82 ( sup  x*(Po, @))% = 5+ 8% - (Daara(Po)) %,
QE(LIdata

which is non-decreasing in 8. By (2.9), we can choose J, such that §, + 5;/2 (Daara(Po))/? < €, or
equivalently,

66 <€+ M \/ z)dam(PO) + - (Z)data(PO)) (B-Z)

by solving the quadratic equation. In the case where we relax the parametric constraint completely,
we have Dg4:4(Py) = A. Compared to the bound obtained from Theorem 3.2.1 and Corollary 3.2.2,

Xl a,D

(B.2) is less tight, but the gap can be shown to asymptotically vanish when e, — 0.

C PROOFS AND OTHER TECHNICAL RESULTS

Proor oF LEMMA 4.2.1. First, by definition (©) is a convex set and, for any p, i, € £ (0) and
0 <t <1, wehave

(1=t)u +tps € P(O).
Next, fixing 0 € Uy,sq, the function L(-, 0) is convex since:

) B (p(y:0))°
L((1 =)y + tp2, 0) —/y Jop(:6)((1 —t)p1+tpz)(d9’)dy

/ (p(y:0))?
v (1) Jop(5:0)m(d6) + 1 fy ply: ) pa(de)

(p(y;0))* (p(y;0))°
<(1-t dy+t d
( )/y Fopy 0@ " /y Jop(w:0)ms(d6)
:(1 - t)L(,uls 6) + tL(ﬂZ; 6)
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for any 0 < ¢t < 1 where the inequality follows from the convexity of the function 1/x for x > 0.

Thus, as the supremum of convex functions, I(y) = sup L(y, 0) is also convex. O
0€Ugata

We provide a version of Danskin’ Theorem needed to prove Theorem 4.3.1. Alternately, one can
also resort to a generalized version in [18] by verifying the conditions there. Here we opt for the
former and provide a self-contained proof, which mostly relies on the techniques from Proposition
4.5.1 of [4] but with some slight modification to handle issues regarding the domain of the involved
function. We have:

LemMA C.0.1. Fix probability measures p, yz € P(0). Suppose ti. | 0 is a positive sequence such
that (1—ty)p1 +trps € P(O) forallk and O € O ((1—ty) g + trpi2) is a sequence such that 6, — 0
for some 60y € Uygsq, then we have

I L((1 = ti)pn + tiepio, O) —L(p1, 0k) . L((1—1t)py + tpg, 60) — L, 6o)
im sup ” < ltlﬂ)l ; ,
k—oo

if we assume L((1 — t)py + tps, 0) is jointly continuous in0 < t < 1 and 0 € ©.

Proor. Itisknown thatif f : T — R is a convex function with I being an open interval containing
some point x, we then have the following results [4]:

f+(x):ltiﬁ)1f(x+t)t_f(X) :itg(f)‘f(x-'-t)t_f(x), (Cl)
() =ltiff)lf(X) —{(x—t) =S;UIO>f(x) —{(x—t)’ (C2)

and
frx) = f(x). (C.3)

In other words, these limits exist and satisfy the above relations for convex functions. Thus, if
we define fi (t) = L((1 — tg)p1 + tepio + t (o — py), 0g), it follows from the convexity of P (©) and
L(-, 6x) that fi () is convex and well-defined for —t; <t < 1 — t;. Using the above results in (C.1),
(C.2) and (C.3), we then have

L((1 = t)pa + tepa, Oc) — L, Ox) _ fie(0) — fie(—te)
9% B tk

fe(0) — fi(=1)
t

< up VGRS 10}
t>0

= £ (0) < £ (0) = inf
(C.4)

On the other hand, if we define fj(t) = L((1 — £)py + tpz, 6p), it also follows that f;(t) is convex
and well-defined for 0 < ¢ < 1. It follows from the convexity of fy(-) as well as (C.1) that

. L((1 = t)p1 + tp, 0o) — L(p1, 6p) i So(t) = fo(0)
m =11m

ltllo t t10o t
:EEM = f+(0). (C.5)

Then, it again follows from the convexity of f;(+) that, given any 7 > 0, we can find some > 0

such that
£ =50 ;f‘)(o) < FH0) +1, (C.6)
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for all 0 < s < 7. It then follows from definitions and (C.6) that

L((1 = s)py + spiz, 0p) — L(p1, 0o) =L((/11 +5(pz — p11), 60) — L(p1, 0o)
S S

=M < f0+(0) +1, (C.7)

for all 0 < s < . Fixing one such s, since the function L((1 — t)p; + tpz, 0) is jointly continuous in
0 <t < 1and 6 € ©, and the sequence satisfies 6y — 0, we have

- fi(s) = fie(0) o L((1 = t)pn + tiepiz + (g2 — ), Ok) = LOQL = t) pa + tiepia, O)

lim ——————~ = lim

k—o0 S k—o0

s
_ LG +5(pa =), 00) = L(p11,00) _ fo(s) = fo(0)
s s

< f37(0) + 21,

as long as we make 7 > s > 0 small enough so that < 1 — #; for all k. Then, for k large enough,

we have
o Je@) = fi(0) _ fie(s) = fic(0)
inf <
>0 t S
Combining (C.4), (C.5) and (C.8), we have that, for k large enough,

L((l—tk)u1+tkuz,9k)—L(u1,9k)<l. L((1 =) + tpz, 00) — L, 0o) 5
. < tlll}’)l ; + 21.

< fi7(0) + 27 (C.8)

Finally, since 7 is arbitrary, we conclude that

Jim sup L((1 =ty + tkfz’ Ok) — L(p1, 0k) < hi“ LA -t + z‘lltz, 0) — L(p, 90).
k—oo k t]o

We now prove the following version of Danskins’ Theorem:

THEOREM C.0.2. Fix piy, pty € P(Ugara)- Suppose ty | 0 is a positive sequence such that (1 — ty)py +
tet € P(O) for all k and L((1 — t)pq + tpa, 0) is jointly continuous in0 < t < 1 and 0 € ©. Then, if
we let (1) =1((1 —t)p + tp) for0 <t <1 withl(-) = sup L(-,0) defined as (4.9), we have

QE(L{duta
L((1-t tip, 0) — L(py, 0
J*(0)= sup lim ((1 = B)ps +tpap, 0) — L(p11, 6) (C9)
9ee (u) 110 t
Proor. For any 6y € ©*(p1) and 6, € ©*((1 — )y + typ), we have
(8 = 9(0) _ L=t + tyre) = L) _L((1 = D)pny + 112, 0,) = Ly, 00)
t t t
>L((1 — ) + tpa, 0p) — L1, 0o)
> . .
Thus, by taking ¢ | 0 and taking the supremum over all 8, € ©*(y;), we have
L((1—-1t t -L
I//+(0) > sup lim (( )/11 + L, 0) (Ills 0) ) (C].O)

0€0* (uy) 110 ¢

Notice that the existence of the several limits above follows from the convexity of related functions.
To prove the reverse inequality, we consider a sequence {t;} with 0 < t; < 1 and #; | 0. Then,
we pick another sequence {0x} C Uyurq With O € O ((1 — ty) g + tr ) for all k. Since Uyy;, is
compact, there exist a subsequence of {6 } converge to some 6y € Uy,.,. Without loss of generality,
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we drop the subsequence and simply assume 6, — 8. We first show 6y € ©*(y4). To do this, pick
any 6y € ©*(p1). Since L((1 — )y + tps, 0) is jointly continous in ¢ and 6, we have

L(p,00) = Jim L((1 = te) py + trpta, Op) = Jim L((1 = ti) 1 + tieptz. 60) = L(pu1, o),

whereNthe inequality follows from the definition of 6. Now, since 0, € ©* (p1) and L(py, 6p) >
L(p1, 0y), we must have
L(/l], 90) = L(/l], 90) and 6() [S 6*([11)

Now, using the definition of ©*(p4), we can write

t) — (0 ) —v(0) I((1-t t -1
4 (0) = inf 22 YO _ 9t ~y(0) LA = i) + tipra) = L)
o<t t 52 52
:L((l — )1 + tpta, Ox) — L (11, 05)
Ik
SL((I — ti) 1 + trpta, Ox) — L(p, 9k). (C.11)
173
Now we use Lemma C.0.1 to conclude that
L((1-¢ tepz, Or) — Ly, 6
J*(0) < lim sup ((1 = ti)p + tiepaz, O) — L1, 0x)
k—o0 Iy
L((1- -
<lim ((1 =t)py + tpz, 69) — L1, 6o)
t1o t
L((1—1t tio, 0) — Ly, 0
< sup lim (( JH1 + tpz, 0) (p1,0) (C.12)
00" () 10 t
Finally, we combine (C.10) and (C.12) to conclude the proof
L((1—t tia, 0) — L, 0
y*(0)= sup lim (( M+ tpo, 0) (11, 0)
0€0* () 110 t
O

ProOF OF THEOREM 4.3.1. The result can be obtained from Leibniz’s integral rule (i.e. differenti-
ation under the integral sign). See, for example, Theorem 2.27 in [26]. O

Next we prove Proposition 4.3.2. For convenience, we note that (4.15) can be written in a compact
form for exponential family [58]:

p(y:0) = e{DO-F@+k(y), (C.13)

where (a,b) = aTb represents the usual inner product in the Euclidean space, and ¢(-), F(-) and
k() are known functions. In particular, we have
67>
2

To facilitate the calculation, we first introduce two lemmas involving the exponential parametric
family based on [58].

F(0) =

(C.14)

LemMma C.0.3. Pick 01,0, € ©. If 20, — 0, € ©, then we have

(p(y; 92))2dy — (F(20,-00)~(2F(0)-F(0)))
v p(y:61)

In particular, if F(0) = 9122—19’ then /y %%I?Zdy = e(02=0) T2 (0-61)
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Proor. It follows from (C.13) that

(p(y; 92))2dy o<t ()20:-0:>= (2 (0)-F(0))+k(y) gy
vy p(y;01)

o F(20,-6,)~ (2F (0,)-F(6))) ./p(y; 20, — 01)dy
Yy

— oF(20=01)~(2F (0:)~F(01))

m|
LemMma C.0.4. Pick 01,0, and 05 € ©. If 20, — 26, + 05 € ©, then we have
(p(y:62))*p(y; 93)d _ oF(20,-20,+03)~2F (6,)+2F (0:)~F(03)
vy (py:6)?
; ; _ 613719 (0(y:02)°p(4:83) 7 _ ,(0,-0:) 75" (6,-61)+2(6,-61)571 (0,0
In particular, if F(0) = =%5—, then fy Wdy = (020077 (6,-01)+2(0:~61) 27" (65-61)
Proor. The proof follows from the same techniques as in Lemma C.0.3. O

Then (4.16) follows from (2.20), (C.14) and Lemma C.0.3 so that

2 2
Uaara = {0 €0: ¥’ (P;Py) < XI_H’D} = {9 €@ : l20-0)-CFO)-FO) _1 < —XI_H’D}
n n

2
_ {9 c@: -0 0-0) _ 4 o Xl—_fw}
n

2
A Xi-
= {9 :0+370, forall [Jo|? < log(1+ 1—""’3)},
n

and (4.17) follows. We now prove Proposition 4.3.2:

Proor oF PROPOSITION 4.3.2. Following Theorem 4.3.1, Lemma C.0.3 and Lemma C.0.4, we have

N / (3 0+ fo£(4:0) 35 = borop) 40
ocor (55 J (o p(y:0)5,(d6"))?
- ( (w0, _ / (P(y:0)* - Jo (50" (prop) (d6)) dy)
Y

vcer (5, \Jy  p(y;0) (p(y: 0))

(y;0))* :0)% - p(y; 0") ,
s ( (p(y:0)” , _/ (p(y;6)) Apzy 4y - Hprap (d0')
00" (55) \JY  p(y;0) eJy (p(y;0))
= sup (e(e—é)Tzl(e—é)_/ew—é)TZ1(9—é)+2(9—é)Tzl(e'-é)ypmp(de,))
0c0*(55) e

Xi- NTS-1(9'_H
—(1+ 1 a,D) . sup (1 _ E9'~ypwp [62(6—9) s1(0 0)])
n 0€0*(5;)

X
—(1+ 2 ’D)-(l— inf By
n

2(0-0)Tz1(0'-0) ) C.15
00 (5,) Hprop 1€ ) (€15
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Notice the second equality follows from Fubini’s theorem. The third equality follows from Lemma C.0.3
and Lemma C.0.4. The fourth equality follows from (4.17). Now, following the last line (C.15), for
the search of descent direction, it is sufficient to prove

inf By, [20-07EO-0)] 5

00" (35 eror
However, since prop (d0’) is a symmetrical distribution around é, we know that

Eg 200-0)T371(0 - )] =o0.

~Hprop [

for any 6 € ©"(J;). Then, it follows from Jensen’s inequality that

inf E9’~,uprop [eQ(Q—é)TE*I(B’_é)] > 1.

00" (5,)
Now suppose for the sake of contradiction that

inf Eg e2(0-0)7=7O-0)] _ ¢
00" (3,)

~Hprop [
Then, let {0 }x € ©"(Jy) be a subsequence such that By, [ez(ek‘é)Tzfl(el‘é)] — 1. Due to the
compactness of ©"(J;), we can find a subsequence of {0 }; converging to some 6y € ©*(5,). For
convenience we drop the subsequence and suppose 60 — 0. Then the existence of Y allows us to
use dominated convergence theorem:

2Yp 1 _ 2(00-0)T="1(0-0)1 _ 1: 2(0,-0)T=1(6"-0)7 _
B[] = Egy,,, [ ] = lim Egy,, [#% J=1.

However, Jensen’s inequality would indicate that E[e?*%] = 1 if and only P(Yp, = 0) = 1, which
contradicts our assumption. Thus, we know that

inf B 2(60-0)7=71(67-0) > 1,
Qe(i)r*l(&é) O~ Hprop le ]
as claimed. ]
PROOF OF PROPOSITION 4.3.3. First we prove (4.18). Letting ¢ = m we know that
2
2 p*(y;0)
X" (Po,Pg) = dy—1

po(y)

/ e~ (y=0T=7' (y-0) p
= [ ——dy-1
py) Y

. ~(y-0)T= 1 (y-0) . ,~2(y-6)T=1(6-6)
e IE0-0) 2 / ey e

dy -1
Po(y)
o 2Tz | —22T5712(6-0)
:c|21/2|e‘HZ’W(9—9)II§/e e
Po(Z1/2z +0)
. T -2 Tz—l/z(é_g)
—c[s|e 1= @-01 [ € Te” dz—1 (C.16)
pz(2)

where we denote pz(-) to be the density function of random variable Z = X71/2(Y — é) with

1/2

Y ~ Py and the last two lines follow from a change of variable z = X7/“(y — 0). Now, since
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=728, = 9)|2 = |[Z7V2(8, - §)||? = r for some r by assumption, it follows from (C.16) that
X2 (Po, Pg,) = x*(Po, Py,) if we can show

e—sz X e—ZzTZ’l/Z(é—Gl) e—sz . e—ZZTZ’l/Z(é—Hg)
/ dz =/ dz.
pz(2) pz(z)

"2 are both rotationally invariant functions (i.e. f(z) = f(QTz) for all

However, since pz(z) and e?

—ZTZ —2Z" VvV
z and rotational matrix Q, with |Q| = 1), it can be shown that f €2 2e ' 7 holds the same value

pz(2)
for any v such that ||v||5 = r. Notice the rotational invariance of pz(z) follows from the rotational
invariance of Z. This proves (4.18). To prove (4.19), notice that for any 6 € Uy,;4, we can find some

0 <t < 1 such that
(1=-0)0+t0*) =) ((1-1)0+t0*) =) = (6 - 0)T="1(6 - 0)
and hence y?(Py, P (1_tydson) = 12 (Py, Pg) by (4.18). m|

PRrRoOF OF PROPOSITION 4.3.4. To check that Y ~ P, with density
pe(y) = [ PR ((1 = 053 thyrap) (607) = (1= 0+ [ D450 (),

leads to rotationally invariant Z = X~1/2(Y — é), simply notice that

2
. . X2
Y2(1 - U) (0 + X)) + Up (6 + 4| 2222 . 512 4 X)),
n

where Uy is an independent Bernoulli variable with success rate t, 7 is a random vector uniformly
distributed on the surface of the D-dimensional unit ball and X3, X are independent N (0, ). Then,

it follows that
2

« Xi-
=Y - 0)2(1-UNZ + U (| 2220 + 2,)
n
where Z;, Z, are now independent N (0, Ip). Consequently, the rotational invariance of Z now
follows from the rotational invariance of Z;, Z,, n and their independence. ]

. 2
Following the comments after Proposition 4.3.2, we show that 8 ~ o, with 0 24+ Xl'T""D .

»1/2 .y provides a descent direction, with an alternate proof using the following lemma and the
last line of (C.15).

Lemma C.0.5. Fixing 0; € ©*(6,), we have

Eo, .., [2O-0Z 007 5 g
2~ Hprop >

. 2
for 0y ~ p1prep(d0) where 0, 24+ \ XI’T“D -3Y2 . 5 with 5 following the uniform distribution on the
surface of the D-dimensional unit ball.

PrOOF OF LEMMA C.0.5. Let u; € RP denote an arbitary point on the surface of D dimensional
unit ball ( [|u]|? = 1) and let n = [y, 12, ..., np] be the random vector in RP uniformly distributed

on the surface of D dimensional unit ball. Then we claim that @ ~ Beta(%, % .

To show this, assume without loss of generality that u; = [1,0,...,0] € RP. Then for any
t € [—1,1], it follows that P(ulTn € dt) is proportional to the infinitesimal surface area on the ball
corresponding to 1; € dt, which is in turn proportional to the product of the sub-dimension D — 2

surface area on the belt xj+x%+...+x2 = 1-t* with the infinitesimal width of this belt. Specifically, the
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sub-dimension D — 2 surface area around the belt is proportional to (V1 — t2)P~2, This follows from
the fact that points of the form [0, V1 - 2,0, ..., 0], [0,0, V1 — ¢2,0,...,0], ..., [0,0, ..., 0, V1 — t2] are on

this belt. Also, the width of this belt, according to the Pythagorean theorem, is dt - NG = d )2 +1=
Thus,

dt
(V1-2)P-2
V1-—1¢2

Now, we can substitute ”1 = s with s € [0,1] to get

Pulped) o« ——2 —dt=(1-12) "7 dt

eds) o (s) 7 1(1—s)7 "ids,

i+
P Y
(—— 2

which can only be the density function for Beta(=— D1 Do 1) It now follows from [68] that “L— ! has
moment generating function

u’lrr/+1
M(t) 2E[e" 7]

D-1 D t?
=1Fi(——D-11) = eD F > B) > e (1 +ct?) > P, (C.17)

for some ¢ > 0 where {F;(-,-,-) and ¢F;(;,-, ) are the confluent hypergeometric function with
identity 1 F; (a, 2a, x) = eg/zFl(;a +1/2,x%/16) (see [19]),

, vt . O (a)tk
. = — d =
ofila.) Zk=0 o 4 il py ZH Bk’

T (y+k)

with (y) = being the Pochhammer symbol [68]. To conclude the proof, denote p, =

2 2
\/log(l + Xl'T""D) . \/XI’T“D and use (4.16), (4.17) and (C.17) to write
Eg [ez(el—é)Tz*l(ez—é)]
2

ur . _
=By [ V] = By _porq(or o) [P X7V ] = M(4py) [ > (1+16¢p]) > 1.

~Hprop

]

Remark. Following Lemma C.0.5, we discuss the numerical calculations of D (Py) following Proposi-

R 2
tion 4.3.4. We use Ugara = {Pp : 10012 < Xl'T"”D}wherep(y; 0) = (27‘[)_% e~ 21(y=0)I; Then, for py,

2
Xl—a,D

the nominal py(y) is simply p(y; é) and Dyara(Po) = Dyara(Py) = maxgeq ellO=0IF _q = ¢ =522 _q
according to (4.16) and Lemma C.0.3. For i, it can be shown that the nominal P, follows N (é (1+

1) -Ip), and a direct computation would show that Dyarq(Po) = maxgeq( r(l'(’ni)z )z enszllO- 03 _q =
2

(n+1)?\ 4 _n_ X-aD
(n(n+2))Ze"+2 n

— 1. Finally, for ps, assume w.l.o.g that 6 = 0. Then we use the derivation in

T
Lemma C.0.5 that ”lT”H ~ Beta %, %) for any u; on the D-dimensional unit ball surface to
show that, for any v € RP,

D—-1
Eyle" ?] = e 1oley i (Z—— D — 1,2jo]l,), (C.18)

and consequently
2 2
d— 1,2 12y o3 s 552
n

D )2

_D d—-
po(y) = (2m), * Fi(
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Then, to calculate Dg4:4(Py), we note that

Daara(Po) +1 = max p (y,G)
16112 < _’{1 —a.D po(y)

)( )(
D _1y2e 101124207 y+ D@D 4 (T 7 )y,
= max (2m) ze 2'Wlk
2

_ Xwpnl
)2 < H=ee> Fi (S d - 1,2(7=2) 2 lyll,)

2 2
o l1013+207 y+ 15D ¢ (1D 3y,
= max Ey-n(0.1p) - " 1 . (C.19)
o2 < Xi=D WFr(5hd - 1,2(2=22)2|Y|),)

Furthermore, through either direct verification or analysis similar to those in Lemma C.0.5, we note
that Y ~ N(0, Ip) shares the same distribution of Ly where L € R* and 5 € RP are two independent

random variables with L being the norm of N(0,Ip) bearing density fi(I) = 1{;50} 2 o )ld 1,

and 7 being the random vector on the D-dimensional unit ball surface. Thus, it follows from (C.19)
that (C.19) equals
dl

r 2 2 D-1
o max By |e1ome5eReeny b oy, 117D~ L 4L[Ol)

2 D— Xz—a: :
o<zt 1B (55D - 1,2(Z52) 2 1)
2+X12;a{,D ()Fl(’ 12)5L2||0||2) ]

1
o 1012+2267 n+ 1 “D+(X1-3’D)5L
max EL|E,
2
X d-1 Xi D1
IIe”gSITa’D - lFl( 2 sd_l)z( nﬂt )ZL)

= max Er e~ 101l "
X1_ 1-a,D
lojz<==el  * oF1(; B, L2 (25=R)

2 _D
t+X127a,D / 0F1(> 2,1 t) 21 ld 1 _,dl
1

= max e 2n
t<Xf—a,D >0 OF( D lZ(Xl (xD) F( )

- n

which is numerically tractable.

ProoF oF THEOREM 4.4.1. It follows from routine calculation that we can find a compact neigh-
borhood of r around 0 such that V,L(r, 0) exists and is continuous. Thus we can use the main
theorem in [18] to show that

i L) = 100) / (p(y:6))° - lim, p L2220
lim ———= = sup - dy
0€0*(5;)

rlo r (p(y; é/))Z
;0 :0) - p,
= sup /(p(y ) (p(:0) ~pr(y)) dy

0c6* (5,) rl° r (p(y:07))?
2
o tml [ @GO (P(¥:0)* [y 0P (y: 0’ (')
0co (5, T T Jy p(y;07) (p(y;6")?

2

Xi—a,D . 2(0-0)T="1(9'-6
=(1+ 2222 .1 (1 — inf Eg. (0-6)T37(0'-0) )
1+—)- i T\ et Bo i ]

]
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To prove Corollary 4.4.2, we present two technical Lemmas C.0.6 and C.0.7.

Lemma C.0.6. Forany 6 € ©*(5;), lim, o %(1 -Ep 2 [ez(e’éﬁzq(gl’é)]) is a fixed negative value.

~ 2
ProoF oF LEmma C.0.6. Forany 0 € ©*(;), we have |Z7/2(0-0) ||, = y/log(1 + )“'T""D).Denote
2 ~
pn = log(1 + Xl’T“D) Furthermore, under 8’ ~ p!(d’), we have 37126’ — 0) ~ 1y the uniform

distribution inside the D-dimensional unit ball with radius /7, which can be viewed as the product
of two independent random variables

nyr ~U-R
where U is the uniform distribution on the surface of the D-dimensional unit ball and R is the
norm of the random vector ranged from 0 to /7. For any 0 < s < +/r, since nyr follows a uniform
distribution inside a D-dimensional unit ball, and the volume of a D-dimensional ball with radius s
is proportional to sP, then fz(s), the density of R, must satisfy

dsP
fr(s) ~ 5 sP1,

which is equivalent to saying

D

fr(s) = P,
(VP

Thus, we have that E[R?] = ¢;r for some ¢; > 0. Now we let u; = [1,0,...,0] € RP. We utilize the

proof in Lemma C.0.5 as well as the independence of R, U to show that

for 0 < s < r.

Eg.p [ez(efé)Tzfl(eué)] —Ey g[e?" -R-ulTU]

=E[E[e I V|R]]
=Er[M(4p,R)/e”""]
>E[1+ 16¢p2R*] > 1+ 16¢cpZeyr.
Now it follows that .
lriﬂ)l ;(1 —Ep_p [ez(‘g*e)Tzil(gLa)]) < —16¢cpie;.
O

Lemma C.0.7. Forany 0 € ©%(5;), lim, | %(1 —EBgp2 [ez(a_é)rz-l(e/_é)]) is a fixed negative value.

R 2
ProoF oF LEmma C.0.7. Forany 0 € ©*(5;), we have ||271/2(0-0) ||, = y/log(1 + )(I’T“D).Denote
2 ~
pn = log(1+ XI'T“’D). Furthermore, under 0" ~ y?(d@"), we have 271/2(0” — 0) ~ N(0,rIp). Using

the moment generating function for Gaussian random variables, we have

EQ’N#E [ez(e—é)Tz-l(a/—é)] _ e(Zr-(H—é)TZ"(B/—é)) = ren > 1+ 2”)’21.

Now it follows that

1 A “1(pn/_A
li —(I—E, | [e2(0-0)TE(O-0) ) < —2p%.
im o~ le ] Pn

]

PROOF OF COROLLARY 4.4.2. Lemmas C.0.6 and C.0.7 combined with (4.23) indicate that increas-
ing r to positive value would produce a descent direction for I(r) at r = 0. O
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ProoF oF COROLLARY 4.4.3. We proceed the proof as in Proposition 4.3.4. The proof for the case
of pu}(d0) is entirely similar. For the proof of the case y?(df), we simply notice that if Y ~ P;, then

Y2(1 - U) (6 + X)) + U (8 +VrXs + X3),

where U, is an independent Bernoulli variable with success rate t and Xj, X;, X3 are independent
N(0,X). Then, it follows that

2_1/2(Y - é)g(l -Up)Zy + Ut(\/;Zz +Z3)

where Z;, Z,, Z5 are now independent N (0, Ip). Consequently, the rotational invariance of Z now
follows from the rotational invariance of Z;, Z;, Z3 and their independence.
m]
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