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higher rho invariants of the lifts of DN to M1 and M2 behave 
functorially with respect to the above quotient map. This can 
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1. Introduction

An elliptic differential operator on a closed manifold has a Fredholm index. When 
such an operator is lifted to a covering space, one can, by taking into account the group 
of symmetries, define a far-reaching generalization of the Fredholm index, called the 
higher index [1,2,6,13,26]. The higher index serves as an obstruction to the existence of 
invariant metrics of positive scalar curvature. In the case that such a metric exists, so 
that the higher index of the lifted operator vanishes, a secondary invariant called the 
higher rho invariant [19,12] can be defined. The higher rho invariant is an obstruction 
to the inverse of the operator being local [4]. For some recent applications of the higher 
index and higher rho invariant to problems in geometry and topology, we refer the reader 
to [5,22,23,25,27–29].

The main purpose of this paper is to prove that the higher rho invariant behaves 
functorially under appropriate maps between covering spaces.

More precisely, suppose M1 and M2 are two Galois covers of a closed spin manifold 
N with deck transformation groups Γ1 and Γ2 ∼= Γ1/H, where H is a normal subgroup 
of Γ1. The natural projection π : M1 → M2 induces a family of maps between various 
geometric C∗-algebras associated to M1 and M2, called folding maps, which will be 
reviewed in section 2. In particular, there is a folding map

Ψ: C∗
max(M1)Γ1 → C∗

max(M2)Γ2

between maximal equivariant Roe algebras on M1 and M2 with the property that it 
preserves small propagation of operators. Consequently, Ψ induces a map

ΨL,0 : C∗
L,0,max(M1)Γ1 → C∗

L,0,max(M2)Γ2
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at the level of obstruction algebras. The main result of this paper is that the K-theoretic 
map induced by ΨL,0 relates the maximal higher rho invariants of Dirac operators on 
M1 and M2:

Theorem 1.1. Let N be a closed, spin Riemannian manifold with positive scalar curva-
ture. Let DN be the Dirac operator on N . Let M1 and M2 be Galois covers of M with 
deck transformation groups Γ1 and Γ2 ∼= Γ1/H respectively, for a normal subgroup H of 
Γ1. Let D1 and D2 be the lifts of the Dirac operator on N to M1 and M2 respectively. 
Then

(ΨL,0)∗(ρmax(D1)) = ρmax(D2) ∈ K∗(C∗
L,0,max(M2)Γ2),

where (ΨL,0)∗ is the map on K-theory induced by ΨL,0 and ρmax(Dj) is the maximal 
higher rho invariant of Dj.

We also generalize this result to the non-cocompact setting using the same method of 
proof – see section 7 of this paper.

Theorem 1.1 is useful for computing higher rho and related invariants. It has been 
applied in the recent work of Wang, Xie, and Yu [24] to compute the delocalized eta 
invariant on a covering space of a closed manifold by showing that, under suitable geo-
metric conditions, it can be approximated by delocalized eta invariants on finite-sheeted 
covers, which are more computable. We mention two of their results.

Let M be a closed spin manifold equipped with a positive scalar curvature metric. 
First, the authors proved that given a finitely generated discrete group Γ and a sequence 
{Γi}i∈N of finite-index normal subgroups of Γ that distinguishes, in a suitable sense 
([25, Definition 2.3]), a given non-trivial conjugacy class in Γ, the sequence of associated 
delocalized eta invariants on the Γi-Galois covers of M stabilizes, under the assumption 
that the maximal Baum-Connes assembly map for Γ is a rational isomorphism. We refer 
to [25, Theorem 1.1] for more details.

Second, the authors proved that if D̃ is the Dirac operator associated to the Γ-Galois 
cover of M , then if the spectral gap of D̃ at zero is sufficiently large, the delocalized 
eta invariant of D̃ is equal to the limit of those of Dirac operators associated to the 
Γi-Galois covers of M [25, Theorem 1.4]. In particular, this is true if the group Γ has 
subexponential growth [25, Corollary 1.5].

Finally, we mention that in a new preprint [16] by Liu, Tang, Xie, Yao, and Yu, the 
authors apply Theorem 1.1 to study rigidity of relative eta invariants. These invariants 
are obtained by pairing the higher rho invariant with certain traces, similar to the way 
in which the delocalized eta invariant is related to the higher rho invariant through a 
trace [28].

Overview.
The paper is organized as follows. We begin in section 2 by recalling the geometric 

and operator-algebraic setup we work with. In section 3 we define the folding maps and 
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establish some of their basic properties. In section 4 we develop the analytical properties 
of the wave operator in the maximal setting. These tools are then put to use in section 5, 
where we give a new proof of the functoriality property of the maximal equivariant 
higher index. This serves as an intermediate step towards Theorem 1.1, which is proved 
in section 6. In section 7 we provide generalizations of our results to the non-cocompact 
setting.

Acknowledgments

The authors are grateful to Peter Hochs for pointing us to the reference [17, Theorem 
1.1] of Alain Valette for functoriality of the maximal higher index.

2. Preliminaries

In this section, we fix some notation before introducing the necessary operator-
algebraic background and geometric setup for our results.

2.1. Notation

For X a Riemannian manifold, we write B(X), Cb(X), C0(X), and Cc(X) to denote 
the C∗-algebras of complex-valued functions on X that are, respectively: bounded Borel, 
bounded continuous, continuous and vanishing at infinity, and continuous with compact 
support. A superscript ‘∞’ may be added where appropriate to indicate the additional 
requirement of smoothness.

We write dX for the Riemannian distance function on X and 1S for the characteristic 
function of a subset S ⊆ X.

For any C∗-algebra A, we denote its unitization by A+, its multiplier algebra by 
M(A), and view A as an ideal of M(A).

The action of a group G on X naturally induces a G-action on spaces of functions on 
X as follows: given a function f on X and g ∈ G, define g · f by g · f(x) = f(g−1x). 
More generally, for a section s of a Γ-vector bundle over X, the section g · s is defined by 
g · s(x) = g(s(g−1x)). We say that an operator on sections of a bundle is G-equivariant 
if it commutes with the G-action.

2.2. Geometric C∗-algebras

We now recall the notions of geometric modules and their associated C∗-algebras. 
Throughout this subsection, X is a Riemannian manifold equipped with a proper iso-
metric action by a discrete group G.

Definition 2.1. An X-G-module is a separable Hilbert space H equipped with a non-
degenerate ∗-representation ρ : C0(X) → B(H) and a unitary representation U : G →
U(H) such that for all f ∈ C0(X) and g ∈ G, we have Ugρ(f)U∗

g = ρ(g · f).
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For brevity, we will omit ρ from the notation when it is clear from context.

Definition 2.2. Let H be an X-G-module and T ∈ B(H).

• The support of T , denoted supp(T ), is the complement of all (x, y) ∈ X ×X for which 
there exist f1, f2 ∈ C0(X) such that f1(x) �= 0, f2(y) �= 0, and

f1Tf2 = 0;

• The propagation of T is the extended real number

prop(T ) = sup{dX(x, y) | (x, y) ∈ supp(T )};

• T is locally compact if fT and Tf ∈ K(H) for all f ∈ C0(X);
• T is G-equivariant if UgTU∗

g = T for all g ∈ G;

The equivariant algebraic Roe algebra for H, denoted C[X; H]G, is the ∗-subalgebra of 
B(H) consisting of G-equivariant, locally compact operators with finite propagation.

We will work with the maximal completion of the equivariant algebraic Roe algebra. 
To ensure that this completion is well-defined, we require that the module H satisfy 
an additional admissibility condition. To define what this means, we need the following 
fact: if H is a Hilbert space and ρ : C0(X) → B(H) is a non-degenerate ∗-representation, 
then ρ extends uniquely to a ∗-representation ρ̃ : B(M) → B(H) subject to the property 
that, for a uniformly bounded sequence in B(X) converging pointwise, the corresponding 
sequence in B(H) converges in the strong topology.

Definition 2.3 ([30]). Let H be an X-G-module as in Definition 2.1. We say that H is 
admissible if:

(i) For any non-zero f ∈ C0(X) we have ρ(f) /∈ K(H);
(ii) For any finite subgroup F of G and any F -invariant Borel subset E ⊆ X, there is a 

Hilbert space H ′ equipped with the trivial F -representation such that ρ̃(1E)H ′ ∼=
l2(F ) ⊗ H ′ as F -representations, where ρ̃ is defined by extending ρ as above.

If an X-G-module H is admissible, we will write C[X]G in place of C[X; H]G, for 
the reason that C[X; H]G is independent of the choice of admissible module – see [26, 
Chapter 5].

Remark 2.4. When G acts freely and properly on X, the Hilbert space L2(X) is an 
admissible X-G-module. In the case that the action is not free, L2(X) can always be 
embedded into a larger admissible module.
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Definition 2.5. The maximal norm of an operator T ∈ C[X]G is

||T ||max := sup
φ,H′

{
‖φ(T )‖B(H′) | φ : C[X]G → B(H ′) is a ∗-representation

}
.

The maximal equivariant Roe algebra of Mj, denoted C∗
max(X)G, is the completion of 

C[X]G in the norm || · ||max.

Remark 2.6. To make sense of Definition 2.5 for general X and G, one first needs to 
establish finiteness of the quantity ‖ · ‖max. It was shown in [8] that if G acts on X freely 
and properly with compact quotient, the norm ‖ · ‖max is finite. This was generalized 
in [11] to the case when X has bounded geometry and the G-action satisfies a suitable 
geometric assumption.

Remark 2.7. Equivalently, one can obtain C∗
max(X)G by taking the analogous maximal 

completion of the subalgebra SG of C[X]G consisting of those operators given by smooth 
Schwartz kernels.

Definition 2.8. Consider the ∗-algebra L of functions f : [0, ∞) → C∗
max(X)G that are 

uniformly bounded, uniformly continuous, and such that

prop(f(t)) → 0 as t → ∞.

(i) The maximal equivariant localization algebra, denoted by C∗
L,max(X)G, is the C∗-

algebra obtained by completing L with respect to the norm

‖f‖ := sup
t

‖f(t)‖max;

(ii) The map L → C[X]G given by f �→ f(0) extends to the evaluation map

ev: C∗
L,max(X)G → C∗

max(X)G;

(iii) The maximal equivariant obstruction algebra is C∗
L,0,max(X)G := ker(ev).

2.3. Geometric setup

We will work with the following geometric setup.
Let (N, gN ) be a closed Riemannian manifold. Let DN be a first-order essentially self-

adjoint elliptic differential operator on a bundle EN → N . We will assume throughout 
that if N is odd-dimensional then DN is an ungraded operator, while if N is even-
dimensional then DN is odd-graded with respect to a Z2-grading on EN .

Let p1 : M1 → N and p2 : M2 → N be two Galois covers of N with deck transformation 
groups Γ1 and Γ2 respectively. We will assume throughout this paper that Γ2 ∼= Γ1/H
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for some normal subgroup H of Γ1, so that M2 ∼= M1/H. Let π : M1 → M2 be the 
projection map. Note that for j = 1, 2, the group Γj acts freely and properly on Mj .

For j = 1 or 2, let gj be the lift of the Riemannian metric gN to Mj . Let Ej be the 
pullback of E along the covering map Mj → M , equipped with the natural Γj-action. 
Since D acts locally, it lifts to a Γj-equivariant operator Dj on C∞(Ej).

We will apply the notions in subsection 2.2 with X = Mj and G = Γj . The 
Hilbert space L2(Ej), equipped with the natural Γj-action on sections and the C0(Mj)-
representation defined by pointwise multiplication, is an Mj-Γj-module in the sense of 
Definition 2.2.

Moreover, the fact that the Γj-action on Mj is free and proper implies that L2(Ej) is 
admissible in the sense of Definition 2.3. To see this, choose a compact, Borel fundamental 
domain Dj for the Γj-action on Mj such that for each γ ∈ Γj , the restriction

pj |γ·Dj
: γ · Dj → N

is a Borel isomorphism, where the projection maps pj are as in subsection 2.3. For each 
j = 1, 2 we have a map

Φj : L2(Ej) → l2(Γj) ⊗ L2(Ej |Dj
),

s �→
∑

γ∈Γj

γ ⊗ γ−1χγDj
s. (2.1)

This is a Γj-equivariant unitary isomorphism with respect to the tensor product of 
the left-regular representation on l2(Γj) and the trivial representation on L2(Ej |Dj

). 
Conjugation by Φj induces a ∗-isomorphism

C[Mj ]Γj ∼= CΓj ⊗ K(L2(Ej |Dj
)). (2.2)

Remark 2.9. It follows from (2.2) that for any r > 0, there exists a constant Cr such 
that for all T ∈ C[Mj ]Γj with prop(T ) ≤ r, we have

‖T ‖max ≤ Cr‖T ‖B(L2(Ej)).

Thus the maximal equivariant Roe algebra C∗
max(Mj)Γj from Definition 2.5 is well-

defined in our setting. Moreover,

C∗
max(Mj)Γj ∼= C∗

max(Γj) ⊗ K,

so that the K-theories of both sides are isomorphic.
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3. Folding maps

In this section, we define certain natural ∗-homomorphisms, called folding maps, 
between geometric C∗-algebras of covering spaces, and discuss the role they play in 
functoriality for higher invariants. These maps were introduced in [3, Lemma 2.12].

To begin, let us provide some motivation at the level of groups. Observe that the 
quotient homomorphism Γ1 → Γ2 ∼= Γ1/H induces a natural surjective ∗-homomorphism 
between group algebras,

α : CΓ1 → CΓ2,

k∑
i=1

cγi
γi �→

k∑
i=1

cγi
[γi],

where [γ] is the class of an element γ ∈ Γ1 in Γ1/H. If one views elements of CΓj as kernel 
operators on the Hilbert space l2(Γj), then the map α takes a kernel k : Γ1 × Γ1 → C to 
the kernel

α(k) : Γ2 × Γ2 → C,
(
[γ], [γ′]

)
�→

∑
h∈H

k(hγ, γ′).

There is an analogous map between kernels at the level of the Galois covers M1
and M2 ∼= M1/H. Given a smooth, Γ1-equivariant Schwartz kernel k(x, y) with finite 
propagation on M1, one can define a smooth, Γ2-equivariant Schwartz kernel ψ(k) with 
finite propagation on M2 by the formula

ψ(k)([x], [y]) =
∑
h∈H

k(hx, y). (3.1)

Note that this sum is finite by properness of the H-action on M1. The formula (3.1)
defines a map

ψ : SΓ1 → SΓ2 ,

where the kernel algebras SΓ1 and SΓ2 are as in Remark 2.7. This map is a ∗-
homomorphism by [9, Lemma 5.2].

3.1. Definition of the folding map

We now define a more general version of the map (3.1), called the folding map Ψ, at 
the level of finite-propagation operators.

Let Bfp(L2(Ej))Γj denote the ∗-algebra of bounded, Γj-equivariant operators on 
L2(Ej) with finite propagation. The folding map Ψ is a ∗-homomorphism Bfp(L2(E1))Γ1 →
Bfp(L2(E2))Γ2 with the following properties:

• For any T ∈ Bfp(L2(E1))Γ1 , we have prop
(
Ψ(T )

)
≤ prop(T );
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• Ψ is surjective;
• Ψ restricts to a surjective ∗-homomorphism C[M1]Γ1 → C[M2]Γ2 .

These properties are proved in Propositions 3.3, 3.4, and 3.5 below.
To define Ψ, it will be convenient to use partitions of unity on M1 and M2 that 

are compatible with the Γ1 and Γ2-actions, as follows. Since N is compact, there exists 
ε > 0 such that for each x ∈ N , the ball Bε(x) is evenly covered with respect to both 
p1 : M1 → N and p2 : M2 → N . Let

UN := {Ui}i∈I (3.2)

be a finite open cover of N such that each Ui has diameter at most ε. Let {φi}i∈I be a 
partition of unity subordinate to UN .

For each i ∈ I, let Ue
i be a lift of Ui to M1 via the covering map p1 : M1 → N . Similarly, 

let φe
i be the lift of φi to Ue

i . For each g ∈ Γ1, let Ug
i and φg

i be the g-translates of Ue
i

and φe
i in M1 respectively. Then

UM1 :=
{

Ug
i

}
i∈I, g∈Γ1

, {φg
i }i∈I, g∈Γ1 (3.3)

define a locally finite, Γ1-invariant open cover of M1 and a subordinate partition of 
unity. This partition of unity is Γ1-equivariant in the sense that for each i ∈ I, g ∈ Γ, 
and x ∈ supp(φe

i ), we have φg
i (gx) = φe

i (x).
After taking a quotient by the H-action, we obtain a Γ2-invariant open cover of M2, 

together with a subordinate Γ2-equivariant partition of unity:

UM2 :=
{

U
[g]
i

}
i∈I, [g]∈Γ2

,
{

φ
[g]
i

}
i∈I, [g]∈Γ2

. (3.4)

For each i and g, we have the following commutative diagram of isomorphisms of local 
structures involving the covering map π:

E1|Ug
i

Ug
i

E2|
U

[g]
i

U
[g]
i .

π

We will write π∗ and π|∗
Ug

i
for the maps relating a local section of E1 to the corresponding 

local section of E2. That is, if u is a section of E1 over Ug
i , and v is the corresponding 

section of E2 over U [g]
i , then we have

u v
π∗

π|∗
U

g
i

If w is any vector in the bundle E1, we will also write π∗(w) for its image under the 
projection E1 → E2.
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We are now ready for the definition of the folding map Ψ. Choose a set S ⊆ Γ1 of 
coset representatives for Γ2 ∼= H\Γ1. Given an operator T ∈ Bfp(L2(E1))Γ1 , we define 
Ψ(T ) to be the operator on L2(E2) that takes a section u ∈ L2(E2) to the section

Ψ(T )u :=
∑

g∈Γ1,
s∈S

∑
i,j∈I

π∗
(
φg

i · T ◦ π|∗Us
j

◦ φ
[s]
j (u)

)
∈ L2(E2). (3.5)

To clarify the presentation of this equation and others like it, we adopt the following 
notational convention for moving between equivalent local sections of E1 and E2:

Convention 3.1. For v ∈ L2(E1) and u ∈ L2(E2), we will use the short-hand

• φ
[g]
i v to denote π∗(φg

i v);
• φg

i u to denote π|∗
Ug

i
(φ[g]

i u).

(Note that the meaning of φ[g]
i v depends on the representative g.)

Using this convention, the formula (3.5) reads

Ψ(T )u :=
∑

g∈Γ1,
s∈S

∑
i,j∈I

φ
[g]
i T (φs

ju) ∈ L2(E2). (3.6)

We call Ψ the folding map. The fact that the above definition is independent of the 
choices of the set S and compatible partitions of unity is proved in Proposition 3.3.

Before proceeding further, let us record a few straightforward identities that will help 
us navigate through notational clutter:

(i) If v is a local section of E1 supported in some neighborhood Ug
j , then for any 

g′ ∈ Γ1 we have

g′(φg
i v

)
= φg′g

i g′v, (3.7)

π∗(g′v) = [g′] · π∗(v). (3.8)

(ii) If u is a local section of E2 supported in some neighborhood U [g]
j , then for any 

g, g′ ∈ Γ1 and j ∈ I we have

g′(π|∗Ug
j
u

)
= π|∗

Ug′g
j

([g′] · u), (3.9)

u =
∑
i∈I,

γ∈Γ1

φ
[γ]
i (π|∗Ug

j
u). (3.10)

The following lemma provides a convenient pointwise formula for Ψ(T )u:
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Lemma 3.2. For any u ∈ L2(E2) and x ∈ M2, we have

(
Ψ(T )u)(x) = π∗

( ∑
j∈I,
g∈Γ1

T (φg
j u)(y0)

)
, (3.11)

where y0 is any point in π−1(x), and the sum on the right-hand side is finite.

Proof. Observe that for any j ∈ I and g ∈ Γ1, the summand T (φg
j u)(y0) may only be 

non-zero if Ug
j ∩ Bprop T (y0) �= ∅. Since T has finite propagation and the Γ1-action is 

proper, the set

{(g, j) | Ug
j ∩ Bprop T (y0) �= ∅}

is finite. Hence the sum in question is finite for every x ∈ M2 and y0 ∈ π−1(x).
To prove (3.11), let us first rewrite the right-hand side as

π∗
( ∑

j∈I

∑
h∈H,
s∈S

T (φhs
j u)(y0)

)
. (3.12)

Next, using (3.9), (3.10), and Γ1-equivariance of T , each summand in (3.12) equals

T (φhs
j u)(y0) = T

(
h(φs

j([h] · u))
)
(y0)

= T
(
h(φs

ju)
)
(y0)

= h
(
T (φs

ju)
)
(y0)

=
(

h ·
∑
i∈I,
g∈Γ1

φg
i Tφs

ju
)

(y0), (3.13)

where we have used Convention 3.1 when writing φs
ju. Now observe that if v is a section 

of E1 supported in some open set Ug
i , then for any x ∈ M2, we have

(π∗v)(x) = π∗
( ∑

h∈H

(hv)(y0)
)
, (3.14)

where y0 is an arbitrary point in the inverse image π−1(x). Keeping this in mind while 
summing (3.13) over j ∈ I, s ∈ S, and h ∈ H, we see that (3.12) equals

π∗
( ∑

h,g,s,i,j

(
h(φg

i Tφs
ju)

)
(y0)

)
=

(
π∗

∑
g,s,i,j

φg
i · T (φs

ju)
)

(x),

which is equal to (Ψ(T )u)(x) by (3.6) and noting Convention 3.1. �
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Proposition 3.3. The folding map Ψ defined in (3.6) is a ∗-homomorphism

Ψ: Bfp(L2(E1))Γ1 → Bfp(L2(E2))Γ2

and is independent of the choices of the set S of coset representatives and compatible 
partitions of unity used to define it.

Proof. Boundedness of Ψ(T ) follows from boundedness and finite propagation of T , via 
the formula (3.11). To see that Ψ(T ) is Γ2-equivariant, note that by (3.11), we have for 
all [γ] ∈ Γ2 and u ∈ L2(E2) that

([γ]Ψ(T )[γ−1]u)(x) = [γ] · π∗
∑
j∈I,
g∈Γ1

T (φg
j [γ−1]u)(γ−1y0)

= [γ] · π∗
∑
j,g

Tγ−1(φγg
j u)(γ−1y0).

Using (3.8) and Γ1-equivariance of T , this is equal to

π∗
∑
j,g

γTγ−1(φγg
j u)(y0) = π∗

∑
j,g

T (φγg
j u)(y0) = (Ψ(T )u)(x),

where we used a change-of-variable for the last equality.
To see that Ψ is a ∗-homomorphism, let Q be another operator in Bfp(L2(E1))Γ1 . 

Let x ∈ M2 and y0 ∈ π−1(x). By (3.11), and the fact that both T ′ and T have finite 
propagation, one sees that there exists a finite subset F ⊆ Γ1 such that

(Ψ(T ′T )u)(x) = π∗
∑
j∈I,
g∈F

T ′T (φg
j u)(y0)

= π∗
(

T ′
∑
j,g

T (φg
j u)

)
(y0)

= π∗
(

T ′
∑
i∈I,
γ∈F

φγ
i

∑
j,g

T (φg
j u)

)
(y0)

= π∗
( ∑

i,γ

T ′(φγ
i

∑
j,g

T (φg
j u)

))
(y0)

= (Ψ(T ′) ◦ Ψ(T )u)(x).

One checks directly that Ψ respects ∗-operations.
That (3.6) is independent of the choice of coset representatives S ⊆ Γ1 is implied by 

the pointwise formula (3.11). To see that (3.6) is independent of partitions of unity, let 
{ϕi}, {ϕ

[γ]
i }, and {ϕγ

i } be another set of compatible partitions of unity for N , M2, and 
M1 with the same properties as {φi}, {φ

[γ]
i }, and {φγ

i }. Let us write
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Ψ{φ}(T ) and Ψ{ϕ}(T )

to distinguish the operators defined by (3.6) with respect to these two sets of partitions 
of unity. Since T has finite propagation, there exists a finite subset F ′ ⊆ Γ1 such that if 
g /∈ F , then supp(φg

j ) ∩ Bprop T (y0) = ∅ and supp(ϕg
j ) ∩ Bprop T (y0) = ∅ for any j ∈ I. 

By (3.11), for each x ∈ M2 we have

(Ψ{φ}(T )u)(x) = π∗
∑

j∈I, g∈Γ1

T (φg
j u)(y0)

= π∗
∑

j∈I, g∈F

T (1Bprop T (y0)φ
g
j u)(y0)

= π∗
((

T
∑
j,g

1Bprop T (y0)φ
g
j u

)
(y0)

)
, (3.15)

where 1Bprop T (y0) is the characteristic function of the set Bprop T (y0), and we have used 
that T commutes with finite sums. Likewise, we have

(Ψ{ϕ}(T )u)(x) = π∗
((

T
∑
j,g

1Bprop T (y0)ϕ
g
j u

)
(y0)

)
. (3.16)

Now observe that
∑
j,g

1Bprop T (y0)φ
g
j u and

∑
j,g

1Bprop T (y0)ϕ
g
j u

are both equal to the lift of the section u to M1 restricted to the compact subset 
Bprop T (y0). Thus the right-hand sides of (3.15) and (3.16) are equal, whence

(Ψ{φ}(T )(u))(x) = (Ψ{ϕ}(T )(u))(x). �
The next proposition shows that the folding map Ψ preserves locality of operators. 

In particular, this means that Ψ induces a map at the level of localization algebras (see 
Definition 3.8), which is a crucial ingredient for our main result, Theorem 1.1.

Proposition 3.4. For any operator T ∈ Bfp(L2(E1))Γ1 , we have

prop
(
Ψ(T )

)
≤ prop(T ).

Proof. Take a section u ∈ Cc(E2), and write it as a finite sum 
∑

j,[g] φ
[g]
j u. By (3.11),

(
Ψ(T )u)(x) = π∗

∑
j∈I,g∈Γ1

T (φg
j u)(y0),

where y0 is a lift of x to M1. Now if dM2(x, supp u) > prop(T ), then



14 H. Guo et al. / Journal of Functional Analysis 280 (2021) 108966
dM1

(
y0, supp(φg

j u)
)

> prop(T )

for any j ∈ I and g ∈ Γ1, since distances between points do not increase under the 
projection π. Thus if dM2(x, supp u) > prop(T ), then Ψ(T )u(x) = 0. Since this holds for 
any section u ∈ Cc(E2), we have prop(Ψ(T )) ≤ prop(T ). �
Proposition 3.5. The map Ψ is surjective and preserves local compactness of operators. 
Moreover, it restricts to a surjective ∗-homomorphism

Ψ: C[M1]Γ1 → C[M2]Γ2 .

Proof. Let S ⊆ Γ1 be the set of coset representatives used in the definition of Ψ. For 
any T2 ∈ Bfp(L2(E2))Γ2 , define an operator T1 on L2(E1) by the formula

T1(v) :=
∑

g∈Γ1
i∈I

∑
s∈S
j∈I

φgs
j T2

(
φ

[g]
i v

)
, (3.17)

for v ∈ L2(E1). We claim that T1 ∈ Bfp(L2(E1))Γ1 and that Ψ(T1) = T2. Indeed, for 
each fixed i and j, the sum of operators

∑
g∈Γ1

∑
s∈S

φgs
j T2φ

[g]
i

converges strongly in B(L2(E1)). Since I is a finite indexing set, it follows that T1 is 
bounded. To see that T1 is Γ1-equivariant, note that for any γ ∈ Γ1, we have, by the 
identities (3.7) and (3.8), that

γ−1T1γ(v) =
∑
g,i

∑
s,j

γ−1(
φgs

j T2(φ[g]
i γv)

)

=
∑
g,i

∑
s,j

γ−1(
φgs

j T2(π∗(γ · (φγ−1g
i v)))

)

=
∑
g,i

∑
s,j

γ−1(
φgs

j T2([γ] · (φ[γ−1g]
i v))

)
,

where we observe Convention 3.1 as usual. Using Γ2-equivariance of T2 and (3.9), one 
finds this to be equal to

∑
g,i

∑
s,j

γ−1(
φ

[gs]
j ([γ]T2(φ[γ−1g]

i v))
)

=
∑
g,i

∑
s,j

φγ−1gs
j T2(φγ−1g

i v)

=
∑
−1

∑
φγ−1gs

j T2(φ[γ−1g]
i v)
γ g,i s,j
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= T1(v),

using the definition of T1 and a change of variable for the last equality.
Next, finite propagation of T1 follows from finite propagation of T2. Indeed, for any 

v ∈ Cc(E2), g ∈ Γ1, and i ∈ I, the set

ST1 :=
{

s ∈ S
∣∣ φ

[gs]
j T2

(
φ

[g]
i v

)
�= 0 for some j ∈ I

}
is finite, thus the sum over S in equation (3.17) reduces to a finite sum over ST1 . By the 
same equation, and the fact that the Γ1-action is isometric, we have

prop(T1) ≤ sup
s∈ST1
i,j∈I

{dM1

(
Ug

i , Ugs
j

)
} = sup

s∈ST1
i,j∈I

{
dM1

(
Ue

i , Us
j

)}
< ∞.

We now show that Ψ(T1) = T2. By (3.17) and (3.5) we have, for any u ∈ Cc(E2),

Ψ(T1)u =
∑

γ∈Γ1,
t∈S

∑
i,j∈I

φ
[γ]
i T1φt

j(u)

=
∑

γ∈Γ1,
t∈S

∑
i,j∈I

φ
[γ]
i

( ∑
g∈Γ1
k∈I

∑
s∈S
l∈I

φgs
l T2

(
φ

[g]
k (φt

ju)
))

.

Finite propagation of T2 and compact support of u imply that all of these sums are finite, 
so by (3.10) this is equal to

∑
g,s,k,l

∑
γ,t,i,j

φ
[γ]
i

(
φgs

l T2
(
φ

[g]
k (φt

ju)
))

=
∑

g,s,k,l

∑
t,j

φ
[gs]
l T2

(
φ

[g]
k (φt

ju)
)
.

Since {gs | s ∈ S} is a set of coset representatives for H\Γ1 for any g ∈ Γ1, the identity 
(3.10) implies that the above is equal to

∑
t,j

T2

( ∑
g,k

φ
[g]
k (φt

ju)
)

=
∑
t,j

T2(φ[t]
j u) = T2u.

Thus Ψ(T1) = T2 as bounded operators on L2(E2).
Finally, that Ψ preserves local compactness of operators follows directly from (3.11), 

so that Ψ restricts to a map C[M1]Γ1 → C[M2]Γ2 . To see that this map is surjective, 
suppose T2 is locally compact. Then for any f ∈ Cc(M1), we have

fT1 = f
∑

g∈Γ1
s∈S

∑
i,j∈I

φgs
j T2φ

[g]
i .

The sum over Γ1 reduces to a sum over the finite set
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Ff :=
{

g ∈ Γ1
∣∣ Ugs

j ∩ supp(f) �= ∅ for some j ∈ I
}

,

hence fT1 is equal to

∑
g∈Ff

s∈S

∑
i,j∈I

fφgs
j 1π∗(supp f)T2φ

[g]
i .

Since the subset π∗(supp f) ⊆ M2 is compact, local compactness of T2 means that this 
is a finite sum of compact operators and hence compact. A similar argument shows that 
the operator T1f is compact. Thus the operator T1 is locally compact, so Ψ restricts to 
a surjective ∗-homomorphism C[M1]Γ1 → C[M2]Γ2 . �
3.2. Description of the folding map on invariant sections

The folding map Ψ admits an equivalent description using N -invariant sections of E1. 
Such sections, while not in general square-integrable over M1, form a space that is natu-
rally isomorphic to L2(E2)Γ2 , as we now describe. This allows computations involving Ψ
to be carried out entirely on M1. Thus it may be a useful perspective for some applica-
tions. The discussion below slightly generalizes the averaging map from [10, subsection 
5.2] applied in the context of discrete groups.

Let c : M1 → [0, 1] be a function whose support has compact intersections with every 
H-orbit, and such that for all x ∈ M1,

∑
h∈H

c(hx)2 = 1.

Note that this sum is finite by properness of the Γ1-action.
Let Ctc(E1)H denote the space of H-transversally compactly supported sections of 

E1, defined as the space of continuous, H-invariant sections of E1 whose supports have 
compact images in M2 ∼= M1/H under the quotient map. Let L2

T (E1)H denote the Hilbert 
space of H-invariant, H-transversally L2-sections of E1, defined as the completion of 
Ctc(E1)H with respect to the inner product

(s1, s2)L2
T (E1)N := (cs1, cs2)L2(E1).

Then one checks that:

Lemma 3.6. The space L2
T (E1)H is naturally unitarily isomorphic to L2(E2) and is in-

dependent of the choice of c.

For any T ∈ Bfp(L2(E1))Γ1 , the operator Ψ(T ) on L2(E2) from (3.6) can be described 
equivalently by its action on the isomorphic space L2

T (E1)H as follows. Take a partition 
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of unity {φg
i } of M1 as in (3.3). Let s ∈ L2

T (E1)H be an H-transversally L2-section of 
E1. For any y ∈ M1, set

(Ψ(T )s)(y) :=
∑

i∈I,g∈Γ1

(T (φg
i s) (y)). (3.18)

The fact that T has finite propagation means that this pointwise sum is finite, and that 
c(Ψ(T )s) ∈ L2(E1). Further, Ψ(T )s is an element of L2

T (E1)H , since for any h ∈ H and 
y ∈ M1 we have

(h(Ψ(T )s))(y) =
∑

i∈I,g∈Γ1

(T ◦ h(φg
i s) (y)) =

∑
i∈I,g∈Γ1

T (φhg
i s)(y) = (Ψ(T )s)(y),

where we have used the equivariance properties of T and s. Finally, a direct comparison 
shows that this definition is equivalent with that given by equation (3.11).

3.3. Induced maps on geometric C∗-algebras and K-theory

By Proposition 3.5, the folding map Ψ restricts to a surjective ∗-homomorphism

Ψ: C[M1]Γ1 → C[M2]Γ2 .

By the defining property of maximal completions of ∗-algebras, Ψ extends to a surjective 
∗-homomorphism between maximal equivariant Roe algebras,

Ψ: C∗
max(M1)Γ1 → C∗

max(M2)Γ2 .

In this paper we will make use of a number natural extensions of this map to other 
geometric C∗-algebras, as well as the induced maps on K-theory. We refer to these maps 
collectively as folding maps.

To begin, we have the following elementary lemma:

Lemma 3.7. Let A and B be C∗-algebras and let φ : A → B be a surjective ∗-
homomorphism. Then φ extends to a ∗-homomorphism φ̃ : M(A) → M(B).

Proof. Since φ is surjective, we may define φ̃ by requiring

φ̃(m)φ(a) = φ(ma), φ(a)φ̃(m) = φ(am),

for m ∈ A. Concretely, by way of a faithful non-degenerate representation σ : B → B(H)
on some Hilbert space H, we may identify B with a subalgebra of B(H). Since φ is 
surjective, the composition σ ◦ φ : A → B(H) is a non-degenerate representation of A. 
Thus the above formulas define a representation of M(A) with values in the idealizer of 
σ(B), which one identifies with M(B). (See also [7] Lemma I.9.14.) �
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By Lemma 3.7 and Proposition 3.5, the map Ψ extends to a ∗-homomorphism

M
(
C∗

max(M1)Γ1
)

→ M
(
C∗

max(M2)Γ2
)

.

Viewing C∗
max(Mj)Γj as an ideal in M, we will still denote this extended map by Ψ. 

This map will be essential when we apply the functional calculus for the maximal Roe 
algebra in sections 5 and 6.

Next, suppose we have a path r : [0, ∞) → C∗
max(M1)Γ1 that satisfies

prop(r(t)) → 0 as t → ∞.

Then by Proposition 3.4, the same is true of the path Ψ ◦ r : [0, ∞) → C∗
max(M1)Γ2 . This 

allows the folding map to pass to the level of localization algebras:

Definition 3.8. Define the map

ΨL : C∗
L,max(M1)Γ1 → C∗

L,max(M2)Γ2

r �→ Ψ ◦ r.

Then ΨL restricts to a ∗-homomorphism between obstruction algebras:

ΨL,0 : C∗
L,0,max(M1)Γ1 → C∗

L,0,max(M2)Γ2 .

Each of the above maps Ψ, ΨL, and ΨL,0 induces a map at the level of K-theory. In 
this paper, we will make use of two of them:

Ψ∗ : K∗
(
C∗

max(M1)Γ1
)

→ K∗
(
C∗

max(M2)Γ2
)

,

(ΨL,0)∗ : K∗
(
C∗

L,0,max(M1)Γ1
)

→ K∗
(
C∗

L,0,max(M2)Γ2
)

.

Remark 3.9. In the recent paper [21], Schick and Seyedhosseini have constructed a 
slightly different completion of the equivariant algebraic Roe algebra, called the quo-
tient completion, which still behaves functorially under maps between covering spaces. 
For details of the construction, see [21, section 3].

4. Functional calculus and the wave operator

We now develop the analytical properties of the wave operator on the maximal Roe 
algebra that will form the basis of our work in subsequent sections.

Let us begin by recalling the functional calculus for the maximal Roe algebra, which 
was developed in a more general setting in [11]. The discussion here is specialized to the 
cocompact setting.

Throughout this section we will work in the geometric situation in subsection 2.3. To 
simplify notation, in this subsection and the next we will write M, Γ for either M1, Γ1 or 
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M2, Γ2, and D, E for either D1, E1 or D2, E2. In other words, Γ acts freely and properly 
on M with compact quotient, and D is a Γ-equivariant operator on the bundle E → M .

4.1. Functional calculus on the maximal Roe algebra

We shall view the C∗-algebra C∗
max(M)Γ as a right Hilbert module over itself. The in-

ner product and right action on C∗
max(M)Γ are defined naturally through multiplication: 

for a, b ∈ C∗
max(M)Γ,

〈a, b〉 = a∗b, a · b = ab. (4.1)

The algebra of compact operators on this Hilbert module can be identified with 
C∗

max(M)Γ via left multiplication. Similarly, the algebra of bounded adjointable oper-
ators can be identified with the multiplier algebra M of C∗

max(M)Γ.
The operator D defines an unbounded operator on this Hilbert module in the following 

way. First note that D acts on smooth sections of the external tensor product E�E∗ →
M × M by taking a section s to the section Ds defined by

(Ds)(x, y) = Dxs(x, y), (4.2)

where Dx denotes D acting on the x-variable.
Let SΓ be the ∗-subalgebra of C[M ]Γ defined in Remark 2.7. That is, an element of 

SΓ is an operator Tκ given by a smooth kernel κ ∈ C∞
b (E � E∗) that:

(i) is Γ-equivariant with respect to the diagonal Γ-action;
(ii) has finite propagation, meaning that there exists a constant cκ ≥ 0 such that if 

d(x, y) > cκ then κ(x, y) = 0.

The operator D acts on elements of SΓ by acting on the corresponding smooth kernels 
as in (4.2). In this way, D becomes a densely defined operator on the Hilbert module 
C∗

max(M)Γ that one verifies is symmetric with respect to the inner product in (4.1).

Theorem 4.1 ([11] Theorem 3.1). There exists a real number μ �= 0 such that the operators

D ± μi : C∗
max(M)Γ → C∗

max(M)Γ

have dense range.

Consequently, the operator D on the Hilbert module C∗
max(M)Γ is regular and essen-

tially self-adjoint, and so admits a continuous functional calculus (see [15, Theorem 10.9]
and [14, Proposition 16]):
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Theorem 4.2. For j = 1 or 2, there is a ∗-preserving linear map

π : C(R) → R
(
C∗

max(M)Γ)
,

f �→ f(D) := π(f),

where C(R) denotes the continuous functions R → C, and R 
(
C∗

max(M)Γ)
denotes the 

regular operators on C∗
max(M)Γ, such that:

(i) π restricts to a ∗-homomorphism Cb(R) → M;
(ii) If |f(t)| ≤ |g(t)| for all t ∈ R, then dom(g(D)) ⊆ dom(f(D));

(iii) If (fn)n∈N is a sequence in C(R) for which there exists f ′ ∈ C(R) such that 
|fn(t)| ≤ |f ′(t)| for all t ∈ R, and if fn converge to a limit function f ∈ C(R) uni-
formly on compact subsets of R, then fn(D)x → f(D)x for each x ∈ dom(f(D));

(iv) Id(D) = D.

4.2. The wave operator

We now discuss the relationship between the wave operator formed using the func-
tional calculus from Theorem 4.2 and the classical wave operator on L2. Both of these 
operators can be viewed as bounded multipliers of the maximal Roe algebra C∗

max(M)Γ, 
and we will see that:

Proposition 4.3. For each t ∈ R, we have

eitD
L2 = eitD ∈ M(C∗

max(M)Γ).

Let us begin by explaining both sides of the equation, starting with the right-hand 
side. For each t ∈ R, the functional calculus from Theorem 4.2 allows one to form 
a bounded adjointable operator eitD on the Hilbert module C∗

max(M)Γ. The resulting 
group of operators {eitD}t∈R is strongly continuous in the sense of Theorem 4.2 (iii) and 
uniquely solves the wave equation on C∗

max(M)Γ:

Lemma 4.4. For any κ ∈ SΓ, u(t) = eitDκ is the unique solution of the problem

du

dt
= iDu, u(0) = κ, (4.3)

with u : R → C∗
max(M)Γ a differentiable map taking values in dom(D).

Proof. For each t ∈ R, the function s �→ eits is a unitary in Cb(R). Hence eitD is bounded 
adjointable and unitary. Let hn be a sequence of positive real numbers converging to 0
as n → ∞. Then for each t ∈ R, the sequence of functions
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fn(s) := ei(t+hn)s − eits

hn

converges to f(s) := iseits uniformly on compact subsets of R in the limit n → ∞. Also, 
each fn is bounded above by |1 + s|. By Theorem 4.2 (iii), this implies (4.3).

For the uniqueness claim, let v be another solution of (4.3) with v(0) = κ. For any 
fixed s ∈ R and 0 ≤ t ≤ s, set w(t) = eitDv(s − t). Then we have

dw

dt
= iDeitDv(s − t) − ieitDDv(s − t) = 0.

It follows that w(t) is constant for all t, hence

v(s) = w(0) = w(s) = eisDκ = u(s). �
On the other hand, we may apply the functional calculus on L2(E) to the essentially 

self-adjoint operator

D : L2(E) → L2(E) (4.4)

to form the classical wave operator eitD
L2 , not to be confused with the bounded adjointable 

operator eitD. The resulting operator group {eitD
L2 }t∈R is strongly continuous in B(L2(E))

and uniquely solves the wave equation on L2(E): for every v ∈ C∞
c (E), we have

d

dt
(eitD

L2 (v)) = iDeitD
L2 (v).

Via composition, eitD
L2 defines a map

eitD
L2 : SΓ → SΓ. (4.5)

A standard argument involving the Sobolev embedding theorem now shows that for any 
Tκ ∈ SΓ, the kernel of eitD

L2 ◦ Tκ is smooth, in addition to having finite propagation and 
being Γ-equivariant. Indeed, for any m ∈ N, the operator Dm ◦ Tκ is bounded on L2(E), 
as M/Γ is compact. Together with the fact that

Dm ◦ eitD
L2 ◦ Tκ = eitD

L2 ◦ Dm ◦ Tκ,

Sobolev theory implies that the image of eitD
L2 ◦Tκ lies in the smooth sections, so that this 

operator also has smooth kernel. By Remark 2.9, (4.5) extends uniquely to a bounded 
multiplier of C∗

max(M)Γ,

eitD
L2 : C∗

max(M)Γ → C∗
max(M)Γ. (4.6)

This is the operator on the left-hand side of Proposition 4.3.



22 H. Guo et al. / Journal of Functional Analysis 280 (2021) 108966
Observe that if k is a smooth, compactly supported Schwartz kernel on M × M , then 
we have the pointwise equality

( d

dt
eitD

L2 k
)

(x, y) = (iDeitD
L2 k)(x, y), (4.7)

where eitD
L2 k denotes the smooth Schwartz kernel of the composition eitD

L2 ◦ Tk. The proof 
of Proposition 4.3, involves a more general form of this observation for kernels in SΓ:

Lemma 4.5. Let κ ∈ SΓ, and let eitD
L2 κ denote the smooth Schwartz kernel of eitD

L2 ◦ Tκ. 
Then for every t ∈ R and x, y ∈ M , we have the pointwise equality

( d

dt
eitD

L2 κ
)

(x, y) = (iDeitD
L2 κ)(x, y). (4.8)

Moreover, the path t �→ eitD
L2 κ is continuous with respect to the operator norm, and

lim
h→0

∥∥∥∥e
i(t+h)D
L2 ◦ Tκ − eitD

L2 ◦ Tκ

h
− iDeitD

L2 ◦ Tκ

∥∥∥∥
B(L2(E))

= 0. (4.9)

Proof. Fix t ∈ R, ε > 0, and x, y ∈ M . Take φ ∈ C∞
c (M) such that φ(z) = 1 if 

z ∈ B2t(x), and φ(z) = 0 if z ∈ M\B3t(x). Since κ has finite propagation, the smooth 
kernel φκ is compactly supported in M × M , so by (4.7) we have

( d

dt
eitD

L2 φκ
)

(x, y) = (iDeitD
L2 φκ)(x, y). (4.10)

The fact that eitD
L2 has propagation at most t, together with the fact that

(1 − φ)κ(z, y) = 0

for all z ∈ B2t(x), implies that for all w ∈ Bt(x) we have (eitD
L2 (1 − φ)κ)(w, y) = 0. It 

follows that

(eitD
L2 κ)(w, y) = (eitD

L2 φκ)(w, y). (4.11)

Taking w = x and combining with (4.10) gives (4.8).
To establish norm continuity, it suffices to show that t �→ eitD

L2 κ is norm-continuous 
at t = 0. For each x, y, and t in an interval [−t0, t0], we have

∣∣∣eitD
L2 κ(x, y) − κ(x, y)

∣∣∣ ≤ |t| · sup
s∈[−t0,t0]

∣∣∣iDeisD
L2 κ(x, y)

∣∣∣ (4.12)

by the mean value theorem applied to (4.8). Since the operator iDeisD
L2 κ is Γ-equivariant 

with finite propagation, and M is cocompact, there exists a compact subset K ⊆ M

such that
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sup
x,y∈M,

s∈[−t0,t0]

∣∣∣iDeisD
L2 κ(x, y)

∣∣∣ = sup
x,y∈K,

s∈[−t0,t0]

∣∣∣iDeisD
L2 κ(x, y)

∣∣∣ ≤ Ct0 (4.13)

for some constant Ct0 . Now since eitD
L2 κ −κ has finite propagation, its operator norm can 

be estimated using and (4.12) and (4.13):

‖eitD
L2 κ − κ‖B(L2(E)) ≤ C · sup

x,y∈M

∣∣∣eitD
L2 κ(x, y) − κ(x, y)

∣∣∣ ≤ CCt0 |t|,

for some constant C depending on the propagation of κ. We obtain norm continuity 
by taking a limit t → 0. The proof of (4.9) is a straightforward adaptation of this 
argument. �

With these preparations, we now prove Proposition 4.3.

Proof of Proposition 4.3. Fix t ∈ R. Let Tκ ∈ SΓ with smooth Schwartz kernel κ. We 
claim that the kernel eitD

L2 κ satisfies the wave equation in C∗
max(M)Γ. To see this, first 

note that by equation (4.9) we have

lim
h→0

∥∥∥∥e
i(t+h)D
L2 ◦ Tκ − eitD

L2 ◦ Tκ

h
− iDeitD

L2 ◦ Tκ

∥∥∥∥
B(L2(E))

= 0.

Now since the kernels ei(t+h)D
L2 κ and DeitD

L2 κ each have propagation at most

r := prop(κ) + |t + h|,

by Remark 2.9 there exists a constant Cr such that the norm of

e
i(t+h)D
L2 κ − eitD

L2 κ

h
− iDeitD

L2 (κ)

in C∗
max(M)Γ is bounded above by Cr times its norm in B(L2(E)). Thus

lim
h→0

∥∥∥∥e
i(t+h)D
L2 κ − eitD

L2 κ

h
− iDeitD

L2 (κ)
∥∥∥∥

max
= 0,

so the operator group {eitD
L2 }t∈R solves the wave equation (4.3) in C∗

max(M)Γ. It follows 
from the uniqueness property in Lemma 4.4 that eitD

L2 and eitD coincide on SΓ, and hence 
are equal as elements of M. �
5. Functoriality for the higher index

In this section, we discuss functoriality in the case of the maximal higher index from 
the point of view of folding maps and wave operators. This will prepare us for the proof 
of our main result, Theorem 1.1, in the next section.
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Suppose M1 and M2 are two Galois covers of N with deck transformation groups Γ1

and Γ2 ∼= Γ1/H, for some normal subgroup H of Γ1. Then the quotient homomorphism 
Γ1 → Γ2 induces a natural surjective ∗-homomorphism between group algebras,

α : CΓ1 → CΓ2,

k∑
i=1

cγi
γi �→

k∑
i=1

cγi
[γi],

where [γ] is the class of γ ∈ Γ1 in Γ1/H. In this setting, we have the following functoriality 
result for the maximal higher index, which follows from a theorem of Valette [17, Theorem 
1.1]:

Theorem 5.1. Let N be a closed Riemannian manifold. Let DN be a first-order, self-
adjoint elliptic differential operator acting on a bundle EN → N . Let M1 and M2 be 
Galois covers of N with deck transformation groups Γ1 and Γ2 ∼= Γ1/H respectively, 
for a normal subgroup H of Γ1. Let D1 and D2 be the lifts of DN to M1 and M2. 
Then the map on K-theory induced by α relates the maximal higher indices of D1 and 
D2:

α∗(IndΓ1,max D1) = IndΓ2,max D2 ∈ K∗
(
C∗

max(Γ2)
)
.

This result was proved originally using KK-theory. To prepare for the proof of Theo-
rem 1.1, we now give a proof of Theorem 5.1 using local properties of the wave operator 
and the folding map Ψ from the previous sections.

5.1. Higher index

We begin by recalling the definition of the maximal higher index of an equivariant 
elliptic operator. Let Γ, M , and D be as in section 4.

Let Q := M/C∗
max(M)Γ. Consider the short exact sequence of C∗-algebras

0 → C∗
max(M)Γ → M → Q → 0,

where M is shorthand for the multiplier algebra M
(
C∗

max(M)Γ)
. This induces the fol-

lowing six-term exact sequence in K-theory:

K0(C∗
max(M)Γ) K0(M) K0(Q)

K1(Q) K1(M) K1(C∗
max(M)Γ),

∂1∂0

where the connecting maps ∂0 and ∂1, known as index maps, are defined as follows.



H. Guo et al. / Journal of Functional Analysis 280 (2021) 108966 25
Definition 5.2.

(i) ∂0: let u be an invertible matrix over Q representing a class in K1(Q). Let v be 
the inverse of u. Let U and V be lifts of u and v to a matrix algebra over M. Then 
the matrix

W =
(

1 0
U 1

) (
1 −V
0 1

) (
1 0
U 1

)

is invertible, and P = W

(
1 0
0 0

)
W −1 is an idempotent. We define

∂0[u] := [P ] −
[

0 0
0 1

]
∈ K0

(
C∗

max(M)Γ)
. (5.1)

(ii) ∂1: let q be an idempotent matrix over Q representing a class in K0(Q). Let Q
be a lift of q to a matrix algebra over M. Then e2πiQ is a unitary in the unitized 
algebra, and we define

∂1[q] :=
[
e2πiQ

]
∈ K1(C∗

max(M)Γ). (5.2)

This construction is applied to the operator D via the functional calculus from The-
orem 4.2, as follows. Let χ : R → R be a continuous, odd function such that

lim
x→+∞

χ(x) = 1,

known as a normalizing function. Using Theorem 4.2, we obtain an element χ(D) in M. 
We now have:

Lemma 5.3. The class of χ(D) in M/C∗
max(M)Γ is invertible and independent of the 

choice of normalizing function χ.

Proof. Let S(R) denote the Schwartz space of functions R → C. Then for every f ∈ S(R)
with compactly supported Fourier transform f̂ , the operator f(D) is given by a smooth 
kernel [18, Proposition 2.10]. Since every f ∈ C0(R) function is a uniform limit of 
such functions, the first part of Theorem 4.2 implies that for every such f we have 
f(D) ∈ C∗

max(M)Γ.
Now if χ is a normalizing function, then χ2 − 1 ∈ C0(R). Hence the class of χ(D) in 

M/C∗
max(M)Γ is invertible. Since any two normalizing functions differ by an element of 

C0(R), this class is independent of the choice of χ. �
Using this lemma, one computes that

χ(D) + 1

2
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is an idempotent modulo C∗
max(M)Γ and so defines element of K0

(
M/C∗

max(M)Γ)
. This 

leads us to the definition of the maximal higher index of D:

Definition 5.4. For i = 1, 2, let ∂i be the connecting maps from Definition 5.2. The 
maximal higher index of D is the element

IndΓ,max D :=

⎧⎨
⎩

∂1 [χ(D)] ∈ K0
(
C∗

max(M)Γ)
, if dim M is even,

∂0

[
χ(D)+1

2

]
∈ K1

(
C∗

max(M)Γ)
, if dim M is odd.

5.2. Functoriality

In this subsection, we return to the geometric setup described in subsection 2.3 and 
give a new proof of Theorem 5.1.

A key idea is to use the local nature of the wave operator to prove:

Proposition 5.5. For all t ∈ R, we have Ψ(eitD1) = eitD2 .

Proof. For j = 1, 2, let eitDj

L2 be the wave operator on L2(Ej). By (4.6), this operator 
extends uniquely to a bounded multiplier of C∗

max(Mj)Γj . By Proposition 4.3, we have 
e

itDj

L2 = eitDj ∈ Mj . Thus to prove this proposition, it suffices to show that Ψ(eitD1
L2 ) =

eitD2
L2 , as elements of Bfp(L2(Ej))Γj .

As a notational convenience, we will write eitDj for eitDj

L2 ∈ Bfp(L2(Ej))Γj . Let the 
open covers UM1 and UM2 be as in (3.3) and (3.4), so that by definition, there exists 
some ε > 0 such that each ball of diameter ε in M2 is evenly covered with respect to 
π : M1 → M2.

Let {Vk} be another open cover of M2 such that each Vk has diameter at most ε
2 and 

such that any compact subset of M2 intersects only finitely many of the Vk. Let {ρk} be 
a partition of unity subordinate to {Vk}.

Choose a positive integer n such that t
n < ε

8 . Now since

eitD1 =
(
ei t

n D1
)n

,

and Ψ is a ∗-homomorphism, it suffices to show that Ψ(ei t
n D1) = ei t

n D2 . Noting that any 
section u ∈ Cc(E2) can be written as a finite sum u =

∑
k ρku, we have

Ψ(ei t
n D1)u =

∑
k

Ψ(ei t
n D1)(ρku).

We first claim that for each k we have

Ψ(ei t
n D1)(ρku) = ei t

n D2(ρku). (5.3)
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To see this, note that the ball of radius ε
8 around supp(ρku) has diameter at most ε and 

so is evenly covered with respect to π. Since the definition of Ψ is independent of the 
choice of compatible partitions of unity by Proposition 3.3, we may work with a partition 
of unity {φ

[g]
j } for M2 subordinate to a cover UM2 , such that B ε

4
(supp(ρku)) ⊆ Uj0 for 

some open set U [s0]
j0

∈ UM2 and φ[s0]
j0

≡ 1 on B ε
8
(supp(ρku)), for some s0 ∈ S and j0 ∈ I. 

By the definition of the folding map (3.6) applied to this choice of open cover, we have

Ψ(ei t
n D1)(ρku) =

∑
g∈Γ1,
s∈S

∑
i,j∈I

φ
[g]
i

(
ei t

n D1φs
j(ρku)

)

= φ
[s0]
j0

(
ei t

n D1
(
π|∗Us0

j0
(ρku)

))
= π∗

(
ei t

n D1
(
π|∗Us0

j0
(ρku)

))
.

Now the wave equation on M1 reads

∂

∂t

(
ei t

n D1
(
π|∗Us0

j0
(ρku)

))
= iD1

(
ei t

n D1
(
π|∗Us0

j0
(ρku)

))
.

Applying π∗ to both sides of this equation and using that D1 is the lift of D2, we obtain

∂

∂t

(
Ψ

(
ei t

n D1
)
(ρku)

)
= iD2

(
Ψ

(
ei t

n D1
)
(ρku)

)
,

whence (5.3) follows from uniqueness of the solution to the wave equation on M2.
Taking a sum over k now yields

Ψ(ei t
n D1)u =

∑
k

Ψ(ei t
n D1)(ρku) =

∑
k

ei t
n D2(ρku) = ei t

n D2u.

Thus Ψ(ei t
n D1) = ei t

n D2 , as bounded operators on L2(E2). By our previous remarks, this 
means that Ψ(eitD1) = eitD2 . �

Applying Fourier inversion together with Proposition 5.5 leads to:

Proposition 5.6. For any f ∈ C0(R) we have

Ψ(f(D1)) = f(D2) ∈ M2.

Proof. Suppose first that f ∈ S(R) with compactly supported Fourier transform. By the 
Fourier inversion formula, we have

f(Dj) = 1
2π

∫
f̂(t)eitDj dt, (5.4)
R
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where the integral converges strongly in Mj . Now for any κ ∈ C∗
max(M2)Γ2 , Proposi-

tion 3.5 implies that there exists κ0 ∈ C∗
max(M1)Γ1 such that Ψ(κ0) = κ. Since Ψ is a 

∗-homomorphism,

Ψ(f(D1))(κ) = Ψ(f(D1)κ0) = 1
2π

∫
R

f̂(t)Ψ(eitD1κ0)dt.

By Proposition 5.5, this equals

1
2π

∫
R

f̂(t)eitD2κ dt = f(D2)κ.

This proves the claim for f ∈ S(R). The general claim now follows from density of S(R)
in C0(R). �
Proof of Theorem 5.1. The expressions (5.1) and (5.2) show that, for j = 1, 2, the higher 
index of Dj is represented by a matrix Aj(χ) whose entries are operators formed using 
functional calculus of Dj . More precisely, if the initial operator DN on N is ungraded, 
as is typically the case for M odd-dimensional, then

Aj(χ) = eπi(χ+1)(Dj). (5.5)

When Dj is odd-graded with respect to a Z2-grading on the bundle Ej = E+
j ⊕ E−

j , 
as typically occurs when dim N is even, we have a direct sum decomposition χ(Dj) =
χ(Dj)+ ⊕ χ(Dj)−. In this case, the index element is represented explicitly by the matrix

Aj(χ) =
(

(1−χ(Dj)−χ(Dj)+)2 χ(Dj)−(1−χ(Dj)+χ(Dj)−)

χ(Dj)+(2−χ(Dj)−χ(Dj)+)(1−χ(Dj)−χ(Dj)+) χ(Dj)+χ(Dj)−(2−χ(Dj)+χ(Dj)−)−1

)
(5.6)

Observe that in either case, each entry of Aj is an operator of the form f(Dj), for 
some f ∈ C0(R) (modulo grading and the identity operator). By Proposition 5.6, Ψ
maps each entry of A1 to the corresponding entry of A2. Hence Ψ∗[A1] = [A2], which 
proves the claim. �
Remark 5.7. When Γ1 = π1N and Γ2 is the trivial group, Theorem 5.1 reduces to the 
maximal version of Atiyah’s L2-index theorem mentioned in section 1.

Atiyah’s original L2-index theorem, which uses the von Neumann trace τ instead 
of the folding map, can be proved by an argument along lines similar to the proof of 
Theorem 5.1.

6. Functoriality for the higher rho invariant

The higher index is a primary obstruction to the existence of positive scalar curvature 
metrics on a manifold. When the manifold is spin with positive scalar curvature, so that 
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the higher index of the Dirac operator vanishes, one can define a secondary invariant 
called the higher rho invariant, introduced in [19,12]. This is an obstruction to the inverse 
of the Dirac operator being local [4]. In this section we show that the higher rho invariant 
behaves functorially under the map ΨL,0 from Definition 3.8.

6.1. Higher rho invariant

Consider the geometric situation in subsection 2.3, with the additional condition that 
the Riemannian manifold N is spin with positive scalar curvature. The operator DN is 
then the Dirac operator acting on the spinor bundle EN .

As the definition of the higher rho invariant is the same for either M1 or M2, we will 
simply write M , Γ to mean either M1, Γ1 or M2, Γ2. Similarly, D will refer to either of 
the lifted operators D1 or D2 acting on the equivariant spinor bundles E1 or E2 lifted 
from EN .

Let κ be the scalar curvature function of the lifted metric on M , which is uniformly 
positive. Let ∇ : C∞(E) → C∞(T ∗M ⊗ E) be the connection on E induced by the 
Levi-Civita connection on M . Recall that by the Lichnerowicz formula,

D2 = ∇∗∇ + κ

4 .

Since κ is uniformly positive, D2 is strictly positive as an unbounded operator on the 
Hilbert module C∗

max(M)Γ. Thus we may use the functional calculus from Theorem 4.2
to form the operator

F0(D) := D

|D| ,

an element of the multiplier algebra M = M(C∗
max(M)Γ). Observe that F0(D)+1

2 is a 
projection in M.

Since D is invertible, there exists ε > 0 such that the spectrum of D is contained 
in R\(−ε, ε). Let {Ft}t∈R+ be a set of normalizing functions satisfying the following 
conditions:

• Ft has compactly supported distributional Fourier transform for each t;
• diam(supp F̂t) → 0 as t → ∞;
• Ft → x

|x| uniformly on R\(−ε, ε) in the limit t → 0.

In the limit t → ∞, the propagations of Ft(D) tend to 0. By Theorem 4.2 (i), as t → 0, 
the operators Ft(D) converge to F0(D) in the norm of M.

Define a path R≥0 → (C∗
max(M)Γ)+ given by

RD : t �→ A(Ft), (6.1)
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where the matrix A(Ft) is defined by (5.5) or (5.6) depending upon the dimension of N
(the subscript j is omitted). Noting that

RD(0) = A(F0) =

⎧⎨
⎩

( 0 0

0 1

)
if dim N is even,

1 if dim N is odd,

one sees that RD is a matrix with entries in 
(
C∗

L,0,max(M)Γ)+.

Definition 6.1. The higher rho invariant of D on the Riemannian manifold M is

ρmax(D) = [RD] ∈ Ki(C∗
L,0,max(M)Γ),

where i = dim M (mod 2).

6.2. Functoriality

We are now ready to complete the proof of our main result, Theorem 1.1, using the 
tools we developed in sections 3, 4, and 5.

Recall from Definition 3.8 that we have a folding map at level of obstructions algebras,

ΨL,0 : C∗
L,0,max(M1)Γ1 → C∗

L,0,max(M2)Γ2 .

This map is well-defined because the folding map Ψ at the level of maximal equivariant 
Roe algebras preserves small propagation of operators, by Proposition 3.4. The induced 
map on K-theory,

(ΨL,0)∗ : K∗
(
C∗

L,0,max(M1)Γ1
)

→ K∗
(
C∗

L,0,max(M2)Γ2
)

,

implements functoriality of the maximal higher rho invariant.

Proof of Theorem 1.1. For j = 1, 2, let the higher rho invariants of Dj be denoted by 
ρmax(Dj), as in Definition 6.1. By (6.1), this class is represented the path

RDj
: t �→ Aj(Ft),

where the matrix Aj is as in (5.5) and (5.6). By Definition 3.8, the map (ΨL)∗ takes the 
class

[RD1 ] ∈ K∗
(
C∗

L,0,max(M1)Γ1
)

to the class of the composed path

Ψ ◦ RD1 : t �→ Ψ(A1(Ft))
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in K∗
(
C∗

L,0,max(M2)Γ2
)
. Since each entry of Aj is an operator of the form f(Dj), for 

some f ∈ C0(R) (up to grading and the identity operator), Proposition 5.6 implies that 
for each t ≥ 0, we have

Ψ ◦ RD1(t) = Ψ(A1(Ft)) = A2(Ft) = RD2(t).

It follows that (ΨL,0)∗(ρmax(D1)) = ρmax(D2) ∈ K∗(C∗
L,0,max(M2)Γ2). �

7. Generalizations to the non-cocompact setting

The methods in this paper can be used to establish analogous results in more general 
geometric settings. In this final section, we give two such generalizations, both involving 
non-cocompact actions.

We will work with the non-cocompact analogue of the geometric setup in subsec-
tion 2.3, so that the manifold N is no longer assumed to be compact. We will assume 
throughout this section that the operator DN has unit propagation speed. In place of the 
finite partition of unity (3.2) used to define the folding map Ψ, we take a locally finite 
partition of unity UN whose elements are evenly covered with respect to the projections 
p1 : M1 → N and p2 : M2 → N , and with the property that any compact subset of N
intersects only finitely many elements of UN . The equivariant partitions of unity UM1

and UM2 of M1 and M2 are defined in the same way according to (3.3) and (3.4).
The local nature of the wave operator eitD means that Proposition 5.5 generalizes 

naturally to this setting:

Proposition 7.1. Let N , M1, and M2 be as in this section, with N not necessarily compact. 
Then for all t ∈ R, we have Ψ(eitD1) = eitD2 .

Proof. We adapt the proof of Proposition 5.5, indicating only what needs to be changed. 
Let the open covers UM1 and UM2 be as above. The difference now is that since N may be 
non-compact, we cannot assume the existence of a uniformly positive covering diameter 
ε as in the proof of Proposition 5.5.

Instead, the key point is to observe that for any fixed t ∈ R and u ∈ Cc(E2), the section 
eitD2u is supported within the compact subset Bt(supp u). Thus we can find ε > 0 such 
that for all x ∈ Bt(supp u), the ball Bε(x) is evenly covered with respect to the projection 
π : M1 → M2. From here, we proceed precisely as in the proof of Proposition 5.5, with 
M2 replaced by Bt(supp u), to show that Ψ(eitD1)u = eitD2u. Since t and u are arbitrary, 
we conclude. �
7.1. Operators invertible at infinity

In this subsection, suppose that the operator DN is invertible at infinity, meaning 
that there exists some compact subset ZN ⊆ N on whose complement we have D2

N ≥ a
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for some a > 0. An important special case is when N is spin, DN is the Dirac operator, 
and the metric gN has uniformly positive scalar curvature outside of ZN .

For j = 1, 2, the lifted operator Dj then satisfies the analogous relation D2
j ≥ a on 

the complement of a cocompact, Γj-invariant subset Zj ⊆ Mj . We can define a version 
of the higher index of Dj , localized around Zj , as follows (see also [20] and [10, section 
3]).

For each R > 0, let C∗
max(BR(Zj))Γj be the maximal equivariant Roe algebra of 

the R-neighborhood of Zj . Since BR(Zj) is cocompact, this algebra is isomorphic to 
C∗

max(Γj) ⊗ K by Remark 2.9. One can then show that for any f ∈ Cc(−a, a), we have

f(Dj) ∈ lim
R→∞

C∗
max(BR(Zj))Γj ,

where limR→∞ C∗
max(BR(Zj))Γj is the direct limit of these C∗-algebras. Indeed, this 

limit algebra is isomorphic to C∗
max(Γ) ⊗ K, where K denotes the compact operators on 

a (not necessarily compact) fundamental domain of the Γ-action. The construction from 
subsection 5.1 then gives an index element

IndΓj ,max Dj ∈ K∗(C∗
max(Γj)).

Similar to the cocompact case, we have the following version of Theorem 5.1 for 
operators that are invertible at infinity:

Theorem 7.2. Let N be a Riemannian manifold and DN a first-order, self-adjoint elliptic 
differential operator acting on a bundle EN → N . Assume that DN has unit propagation 
speed. Let M1 and M2 be Galois covers of N with deck transformation groups Γ1 and 
Γ2 ∼= Γ1/H respectively, for a normal subgroup H of Γ1. Let D1 and D2 be the lifts of 
DN to M1 and M2 respectively. Then the map on K-theory induced by the folding map 
Ψ relates the maximal higher indices of D1 and D2:

Ψ∗(IndΓ1,max D1) = IndΓ2,max D2 ∈ K∗
(
C∗

max(Γ2)
)
.

Proof. Analogous to the proof of Theorem 5.1, with Proposition 5.5 replaced by Propo-
sition 7.1. �
7.2. Manifolds with equivariantly bounded geometry

A second generalization involves non-cocompact coverings that satisfy certain addi-
tional geometric conditions. Under these conditions we obtain generalizations of both 
Theorems 5.1 and 1.1. In contrast to Theorem 7.2, here we do not require invertibility of 
the operator at infinity, and the Roe algebra we work with does not need to be defined 
in terms of cocompact sets as in subsection 7.1.
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Again, suppose that we are in the setup of subsection 2.3, but with N not necessarily 
compact. We impose two conditions on the geometry of N and the Γi-action on Mi (see 
also [11, subsection 2.1]):

A. The Riemannian manifold N has positive injectivity radius, and its curvature tensor 
is uniformly bounded across N along with all of its derivatives.

B. For j = 1, 2, there exists a fundamental domain Dj for the action of Γj on Mj such 
that

l(γ) → ∞ =⇒ d(Dj , γDj) → ∞,

where l : Γj → N is a fixed length function and d is the Riemannian distance on Mj .

It follows from these two assumptions and [11, Proposition 2.14] that the max-
imal equivariant Roe algebra C∗

max(Mj)Γj is well-defined, along with a subalgebra 
C∗

max,u(Mj)Γj called the maximal equivariant uniform Roe algebra. Using the latter, 
we constructed in [11] a version of the functional calculus suitable for the maximal set-
ting.

We briefly recall the definition of C∗
max,u(Mj)Γj . Let SΓj

u be the ∗-subalgebra of SΓj

(see section 4) whose kernels have uniformly bounded derivatives of all orders. In other 
words, an element of SΓj

u is a bounded operator on L2(Ej) given by a Schwartz kernel 
κ ∈ C∞

b (Ej � E∗
j ) such that

(i) κ has finite propagation;
(ii) κ(x, y) = κ(γx, γy) for all γ ∈ Γj ;
(iii) Each covariant derivative of κ is uniformly bounded over Mj .

Then C∗
max,u(Mj)Γj is defined to be the closure of SΓj

u in C∗
max(Mj)Γj .

Similar to section 4, C∗
max,u(Mj)Γj can be viewed as right Hilbert module over itself, 

with inner product and multiplication being defined by the same formula (4.1). The op-
erator Dj can be viewed as a densely defined symmetric operator on C∗

max,u(Mj)Γj . By 
[11, Theorem 3.1], this operator is regular and so admits a functional calculus. The con-
struction from subsection 5.1 then allows one to define the maximal equivariant uniform 
index of Dj ,

indexΓj ,max,u Dj ∈ K∗(C∗
max,u(Mj)Γj ).

The corresponding versions of the higher rho invariant can be defined as in subsection 
6.1, and we denote this by

ρmax,u(Dj) ∈ K∗(C∗
L,0,max,u(Mj)Γj ),
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where C∗
L,0,max,u(Mj)Γj is defined analogously to C∗

L,0,max(Mj)Γj , with C∗
max,u(Mj)Γj in 

place of C∗
max(Mj)Γj . Constructions analogous to those in subsection 3.3 give way to 

folding maps at K-theory level, which we denote by

(Ψu)∗ : K∗(C∗
max,u(M1)Γ1) → K∗(C∗

max,u(M2)Γ2),

(ΨL,0,u)∗ : K∗(C∗
L,0,max,u(M1)Γ1) → K∗(C∗

L,0,max,u(M2)Γ2).

Further, Proposition 4.3 generalizes naturally to manifolds satisfying conditions A 
and B above:

Proposition 7.3. For each t ∈ R, we have

e
itDj

L2 = eitDj ∈ Mj(C∗
max,u(Mj)Γj ),

with notation as in subsection 4.2.

Proof. The proof proceeds exactly as for Proposition 4.3, but with Lemma 4.5 replaced 
by Lemma 7.4 below. �
Lemma 7.4. Let N , M1, and M2 be as in this section, with N not necessarily compact. 
Let κ ∈ SΓj

u , and let eitDj

L2 κ denote the smooth Schwartz kernel of eitDj

L2 ◦ Tκ. Then the 

path t �→ e
itDj

L2 κ is continuous with respect to the operator norm, and we have

lim
h→0

∥∥∥∥e
i(t+h)Dj

L2 ◦ Tκ − e
itDj

L2 ◦ Tκ

h
− iDje

itDj

L2 ◦ Tκ

∥∥∥∥
B(L2(E))

= 0.

Proof. Similar to equation (4.12), we have, for each x, y ∈ Mj and t ∈ [−t0, t0],
∣∣∣eitDj

L2 κ(x, y) − κ(x, y)
∣∣∣ ≤ |t| · sup

s∈[−t0,t0]

∣∣∣iDje
isDj

L2 κ(x, y)
∣∣∣ .

Since Mj has bounded Riemannian geometry, it follows from Sobolev theory that the 
operator iDje

isDj

L2 κ(x, y) has uniformly bounded smooth kernel, along with all deriva-
tives. Indeed, since eisDj

L2 is unitary, 
∣∣iDje

isDj

L2 κ(x, y)
∣∣ is bounded above by a constant 

C1 independent of s, x, and y. It follows that we can estimate the L2-norm of the 
finite-propagation operator eitDj

L2 κ − κ by

‖e
itDj

L2 κ − κ‖B(L2(E)) ≤ C2 · sup
x,y∈M

∣∣∣eitDj

L2 κ(x, y) − κ(x, y)
∣∣∣ ≤ C1C2,

for some other constant C2. We can then finish the proof as in Lemma 4.5. �
With this in hand, we arrive (via an obvious analogue of Proposition 5.6) at the 

following generalizations of Theorems 5.1 and 1.1.
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Theorem 7.5. Let N be a Riemannian manifold and M1 and M2 be Galois covers of N
with deck transformation groups Γ1 and Γ2 ∼= Γ1/H respectively, for a normal subgroup 
H of Γ1. Suppose that the conditions A and B in this subsection are satisfied. Let DN

be a first-order, self-adjoint elliptic differential operator acting on a bundle EN → N , 
and assume that DN has unit propagation speed. Let D1 and D2 be the lifts of DN to 
M1 and M2 respectively. We then have:

(Ψu,∗)(indexΓ1,max,u D1) = indexΓ2,max,u D2 ∈ K∗
(
C∗

max,u(M2)Γ2
)
,

(Ψu,∗)(indexΓ1,max D1) = indexΓ2,max D2 ∈ K∗
(
C∗

max(M2)Γ2
)
.

Theorem 7.6. Suppose (N, gN ) is a spin Riemannian manifold with uniformly positive 
scalar curvature. Let M1 and M2 be Galois covers of M with deck transformation groups 
Γ1 and Γ2 ∼= Γ1/H respectively, for a normal subgroup H of Γ1. Suppose that the condi-
tions A and B in this subsection are satisfied. Let DN be the Dirac operator on N (with 
unit propagation speed). Let D1 and D2 be the lifts of DN to M1 and M2 respectively. 
We then have:

(ΨL,0,u)∗
(
ρmax,u(D1)

)
= ρmax,u(D2) ∈ K∗

(
C∗

L,0,max,u(M2)Γ2
)
,

(ΨL,0,u)∗
(
ρmax(D1)

)
= ρmax(D2) ∈ K∗

(
C∗

L,0,max(M2)Γ2
)
.

Remark 7.7. The second equality in Theorem 7.5 follows from the observation that the 
natural inclusion C∗

max,u(Mj)Γj ↪→C∗
max(Mj)Γj relates indexΓj ,max,uDj to indexΓj ,maxDj . 

The second equality in Theorem 7.6 follows from a similar relationship at the level of 
obstruction algebras.
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