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1. Introduction

An elliptic differential operator on a closed manifold has a Fredholm index. When
such an operator is lifted to a covering space, one can, by taking into account the group
of symmetries, define a far-reaching generalization of the Fredholm index, called the
higher indez [1,2,6,13,26]. The higher index serves as an obstruction to the existence of
invariant metrics of positive scalar curvature. In the case that such a metric exists, so
that the higher index of the lifted operator vanishes, a secondary invariant called the
higher rho invariant [19,12] can be defined. The higher rho invariant is an obstruction
to the inverse of the operator being local [4]. For some recent applications of the higher
index and higher rho invariant to problems in geometry and topology, we refer the reader
to [5,22,23,25,27-29].

The main purpose of this paper is to prove that the higher rho invariant behaves
functorially under appropriate maps between covering spaces.

More precisely, suppose M; and Ms are two Galois covers of a closed spin manifold
N with deck transformation groups I'y and I'y 2 T'y/H, where H is a normal subgroup
of I'y. The natural projection 7: My — Ms induces a family of maps between various
geometric C*-algebras associated to M; and M, called folding maps, which will be
reviewed in section 2. In particular, there is a folding map

v Cx

max

(M) =

max

(My)"

between maximal equivariant Roe algebras on M; and M, with the property that it
preserves small propagation of operators. Consequently, ¥ induces a map

\IIL70: C(Z,O,ma»x(Z\41)F1 - C}:,O,max(M2)F2
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at the level of obstruction algebras. The main result of this paper is that the K-theoretic
map induced by ¥y o relates the maximal higher rho invariants of Dirac operators on
M1 and MQI

Theorem 1.1. Let N be a closed, spin Riemannian manifold with positive scalar curva-
ture. Let Dy be the Dirac operator on N. Let My and My be Galois covers of M with
deck transformation groups I'y and Ty = T'y/H respectively, for a normal subgroup H of
I'y. Let D1 and Dy be the lifts of the Dirac operator on N to My and My respectively.
Then

(U2,0)+(Pmax(D1)) = pinax(D2) € Ki(CF 0 max(M2)"2),

where (U 0)« is the map on K-theory induced by ¥r o and pmax(D;) is the mazimal
higher rho invariant of D;.

We also generalize this result to the non-cocompact setting using the same method of
proof — see section 7 of this paper.

Theorem 1.1 is useful for computing higher rho and related invariants. It has been
applied in the recent work of Wang, Xie, and Yu [24] to compute the delocalized eta
invariant on a covering space of a closed manifold by showing that, under suitable geo-
metric conditions, it can be approximated by delocalized eta invariants on finite-sheeted
covers, which are more computable. We mention two of their results.

Let M be a closed spin manifold equipped with a positive scalar curvature metric.
First, the authors proved that given a finitely generated discrete group I' and a sequence
{T; }ien of finite-index normal subgroups of I' that distinguishes, in a suitable sense
([25, Definition 2.3]), a given non-trivial conjugacy class in T', the sequence of associated
delocalized eta invariants on the I';-Galois covers of M stabilizes, under the assumption
that the maximal Baum-Connes assembly map for I' is a rational isomorphism. We refer

o [25, Theorem 1.1] for more details.

Second, the authors proved that if D is the Dirac operator associated to the I'-Galois
cover of M, then if the spectral gap of D at zero is sufficiently large, the delocalized
eta invariant of D is equal to the limit of those of Dirac operators associated to the
T';-Galois covers of M [25, Theorem 1.4]. In particular, this is true if the group I' has
subexponential growth [25, Corollary 1.5].

Finally, we mention that in a new preprint [16] by Liu, Tang, Xie, Yao, and Yu, the
authors apply Theorem 1.1 to study rigidity of relative eta invariants. These invariants
are obtained by pairing the higher rho invariant with certain traces, similar to the way
in which the delocalized eta invariant is related to the higher rho invariant through a
trace [28].

Overview.

The paper is organized as follows. We begin in section 2 by recalling the geometric
and operator-algebraic setup we work with. In section 3 we define the folding maps and
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establish some of their basic properties. In section 4 we develop the analytical properties
of the wave operator in the maximal setting. These tools are then put to use in section 5,
where we give a new proof of the functoriality property of the maximal equivariant
higher index. This serves as an intermediate step towards Theorem 1.1, which is proved
in section 6. In section 7 we provide generalizations of our results to the non-cocompact
setting.

Acknowledgments

The authors are grateful to Peter Hochs for pointing us to the reference [17, Theorem
1.1] of Alain Valette for functoriality of the maximal higher index.

2. Preliminaries

In this section, we fix some notation before introducing the necessary operator-
algebraic background and geometric setup for our results.

2.1. Notation

For X a Riemannian manifold, we write B(X), Cy(X), Co(X), and C.(X) to denote
the C*-algebras of complex-valued functions on X that are, respectively: bounded Borel,
bounded continuous, continuous and vanishing at infinity, and continuous with compact
support. A superscript ‘>’ may be added where appropriate to indicate the additional
requirement of smoothness.

We write dx for the Riemannian distance function on X and 1g for the characteristic
function of a subset S C X.

For any C*-algebra A, we denote its unitization by AT, its multiplier algebra by
M(A), and view A as an ideal of M(A).

The action of a group G on X naturally induces a G-action on spaces of functions on
X as follows: given a function f on X and g € G, define g- f by g- f(z) = f(g ).
More generally, for a section s of a I'-vector bundle over X, the section ¢- s is defined by
g-s(x) = g(s(g~1x)). We say that an operator on sections of a bundle is G-equivariant

if it commutes with the G-action.
2.2. Geometric C*-algebras

We now recall the notions of geometric modules and their associated C*-algebras.
Throughout this subsection, X is a Riemannian manifold equipped with a proper iso-
metric action by a discrete group G.

Definition 2.1. An X-G-module is a separable Hilbert space H equipped with a non-
degenerate x-representation p: Co(X) — B(H) and a unitary representation U: G —
U(H) such that for all f € Co(X) and g € G, we have Uyp(f)U; = p(g - f).
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For brevity, we will omit p from the notation when it is clear from context.
Definition 2.2. Let H be an X-G-module and T' € B(H).

o The support of T, denoted supp(T), is the complement of all (x,y) € X x X for which
there exist f1, fo € Co(X) such that f1(z) # 0, f2(y) # 0, and

fiT fo = 0;

e The propagation of T is the extended real number

prop(T) = sup{dx (z,y) | (x,y) € supp(T)};

o T is locally compact if fT and T'f € IC(H) for all f € Cy(X);
o T'is G-equivariant it U,TU; =T for all g € G;

The equivariant algebraic Roe algebra for H, denoted C[X;H]%, is the *-subalgebra of
B(H) consisting of G-equivariant, locally compact operators with finite propagation.

We will work with the maximal completion of the equivariant algebraic Roe algebra.
To ensure that this completion is well-defined, we require that the module H satisfy
an additional admissibility condition. To define what this means, we need the following
fact: if H is a Hilbert space and p: Cy(X) — B(H) is a non-degenerate -representation,
then p extends uniquely to a x-representation p: B(M) — B(H) subject to the property
that, for a uniformly bounded sequence in B(X) converging pointwise, the corresponding
sequence in B(H) converges in the strong topology.

Definition 2.3 (/30]). Let H be an X-G-module as in Definition 2.1. We say that #H is
admissible if:

(i) For any non-zero f € Cy(X) we have p(f) ¢ K(H);

(ii) For any finite subgroup F of G and any F-invariant Borel subset E C X there is a
Hilbert space H' equipped with the trivial F-representation such that p(lg)H’ &
I2(F) @ H' as F-representations, where p is defined by extending p as above.

If an X-G-module H is admissible, we will write C[X]“ in place of C[X;H]Y, for
the reason that C[X;H]¢ is independent of the choice of admissible module — see [26,
Chapter 5].

Remark 2.4. When G acts freely and properly on X, the Hilbert space L?(X) is an
admissible X-G-module. In the case that the action is not free, L2(X) can always be
embedded into a larger admissible module.
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Definition 2.5. The mazimal norm of an operator T' € C[X]% is

[T |l max := sup {|¢(T) ||z | ¢: CIX]% - B(H) is a *-representation } .
¢,H'

The mazimal equivariant Roe algebra of Mj;, denoted C}; (X)%, is the completion of

max
C[X]% in the norm || - ||max-

Remark 2.6. To make sense of Definition 2.5 for general X and G, one first needs to
establish finiteness of the quantity || - ||max- It was shown in [8] that if G acts on X freely
and properly with compact quotient, the norm || - ||max is finite. This was generalized
in [11] to the case when X has bounded geometry and the G-action satisfies a suitable
geometric assumption.

Remark 2.7. Equivalently, one can obtain C, (X)¢ by taking the analogous maximal

completion of the subalgebra S¢ of C[X]% consisting of those operators given by smooth
Schwartz kernels.
Definition 2.8. Consider the #-algebra L of functions f: [0,00) — C

max

(X)% that are
uniformly bounded, uniformly continuous, and such that

prop(f(t)) =0 ast— oo.

(i) The mazimal equivariant localization algebra, denoted by C} . (X)Y, is the C*-

algebra obtained by completing L with respect to the norm
A1l = sup [1F (£) ma;

(ii) The map L — C[X]¢ given by f +— f(0) extends to the evaluation map

(X))

ev: C’Emax(X)G — C*

(iii) The mazimal equivariant obstruction algebra is Cj .. (X)% := ker(ev).

2.8. Geometric setup

We will work with the following geometric setup.

Let (N, gn) be a closed Riemannian manifold. Let Dy be a first-order essentially self-
adjoint elliptic differential operator on a bundle Exy — N. We will assume throughout
that if N is odd-dimensional then Dy is an ungraded operator, while if N is even-
dimensional then Dy is odd-graded with respect to a Zo-grading on Ey .

Let p1: M7 — N and ps: My — N be two Galois covers of N with deck transformation
groups I'y and T'y respectively. We will assume throughout this paper that I's 2 Ty /H
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for some normal subgroup H of T'y, so that My & M;/H. Let w: M; — M be the
projection map. Note that for j = 1,2, the group I'; acts freely and properly on M;.

For j =1 or 2, let g; be the lift of the Riemannian metric g5 to M;. Let E; be the
pullback of E along the covering map M; — M, equipped with the natural I';-action.
Since D acts locally, it lifts to a I'j-equivariant operator D; on C*°(Ej;).

We will apply the notions in subsection 2.2 with X = M; and G = I';. The
Hilbert space L*(Ej;), equipped with the natural T'j-action on sections and the Cp(M;)-
representation defined by pointwise multiplication, is an Mj-I'j-module in the sense of
Definition 2.2.

Moreover, the fact that the I';-action on M; is free and proper implies that L?(E;) is
admissible in the sense of Definition 2.3. To see this, choose a compact, Borel fundamental
domain D; for the I'j-action on M; such that for each v € I';, the restriction

Pjlyp;:v-Dj = N

is a Borel isomorphism, where the projection maps p; are as in subsection 2.3. For each
j =1,2 we have a map

;- L2(Ej) — ZQ(Fj) ® L2(EJ|DJ‘)7

s Z TR Wflxvpjs. (2.1)
ver;

This is a I'j-equivariant unitary isomorphism with respect to the tensor product of
the left-regular representation on [*(T';) and the trivial representation on L?(Ej|p,).
Conjugation by ®; induces a *-isomorphism

C[M;)" = CT; ® K(L*(Ej|p,))- (2.2)

Remark 2.9. It follows from (2.2) that for any r > 0, there exists a constant C, such
that for all T € C[M;]" with prop(T) < r, we have

1Tl max < CrllTlB(L2(E,))-

Thus the maximal equivariant Roe algebra C7 . (M;)'i from Definition 2.5 is well-

max

defined in our setting. Moreover,

*
Cmax

(M;)" = Cra (D) ® K,

so that the K-theories of both sides are isomorphic.
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3. Folding maps

In this section, we define certain natural #-homomorphisms, called folding maps,
between geometric C*-algebras of covering spaces, and discuss the role they play in
functoriality for higher invariants. These maps were introduced in [3, Lemma 2.12].

To begin, let us provide some motivation at the level of groups. Observe that the
quotient homomorphism I'y — I'y & T’y /H induces a natural surjective s-homomorphism
between group algebras,

k k
a: CI'y — CTy, ch'yi — ch [vil,

=1 =1

where [7] is the class of an element v € I'y in 'y /H. If one views elements of CT'; as kernel
operators on the Hilbert space l2(I‘j), then the map « takes a kernel k: I'y xI'y = C to
the kernel

a(k): To xTo = C, ([, []) = > k(h7,7).
heH

There is an analogous map between kernels at the level of the Galois covers M;
and My & M;/H. Given a smooth, I'i-equivariant Schwartz kernel k(x,y) with finite
propagation on Mj, one can define a smooth, I's-equivariant Schwartz kernel ¢ (k) with
finite propagation on M by the formula

Y(k)([2], [y) = D k(ha,y). 3.1

heH

Note that this sum is finite by properness of the H-action on M;j. The formula (3.1)
defines a map

P ST — S,

where the kernel algebras S'* and S'2 are as in Remark 2.7. This map is a -
homomorphism by [9, Lemma 5.2].

3.1. Definition of the folding map

We now define a more general version of the map (3.1), called the folding map W, at
the level of finite-propagation operators.

Let Bgp(L?(E;))"7 denote the x-algebra of bounded, I'j-equivariant operators on
L?(E;) with finite propagation. The folding map ¥ is a *-homomorphism B, (L?(FE; )’ —
Bg, (L%(E2))'2 with the following properties:

o For any T € By, (L*(E1))"™, we have prop(¥(7T)) < prop(T);
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e U is surjective;
o W restricts to a surjective x-homomorphism C[M;]'"t — C[Ma]'=.

These properties are proved in Propositions 3.3, 3.4, and 3.5 below.

To define ¥, it will be convenient to use partitions of unity on M; and M, that
are compatible with the I'; and T's-actions, as follows. Since N is compact, there exists
€ > 0 such that for each € N, the ball B(x) is evenly covered with respect to both
p1: My — N and ps: Ms — N. Let

UN = {Ui}ie] (3.2)

be a finite open cover of N such that each U; has diameter at most €. Let {¢;};cr be a
partition of unity subordinate to Uy .

For each i € I, let Uf be a lift of U; to M, via the covering map p;: M; — N. Similarly,
let ¢¢ be the lift of ¢; to Uf. For each g € I'y, let U and ¢ be the g-translates of Uf
and ¢§ in M respectively. Then

Z/{Ml = {Uig}iel,gef17 {(bzg}iel,gGFl (33)

define a locally finite, I';-invariant open cover of M; and a subordinate partition of
unity. This partition of unity is I';-equivariant in the sense that for each i € I, g € T,
and z € supp(¢5), we have ¢7(gz) = ¢5(z).

After taking a quotient by the H-action, we obtain a I's-invariant open cover of Mo,
together with a subordinate I's-equivariant partition of unity:

U, = {U Y ere 8 et ers (3.4)

For each i and g, we have the following commutative diagram of isomorphisms of local
structures involving the covering map :

Ealyy —— U

E2|U[g] E— Ui[g].

We will write 7, and 7|}, for the maps relating a local section of £ to the corresponding
local section of Es. That is, if u is a section of Ey over U7, and v is the corresponding

section of Ey over Ui[g], then we have

T

U 3 v

"
7r|Uig

If w is any vector in the bundle Ej, we will also write m,(w) for its image under the
projection Ej — Es.
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We are now ready for the definition of the folding map ¥. Choose a set S C I'y of
coset representatives for I's = H\I';. Given an operator T' € Bg,(L*(E1))"", we define
U(T) to be the operator on L?(Fs) that takes a section u € L?(Es) to the section

Z Zﬂ'*qb -Tom

g€l i,j€l
SES

ir 0 0} (w) € L (Ey). (3.5)
To clarify the presentation of this equation and others like it, we adopt the following
notational convention for moving between equivalent local sections of F; and Fs:
Convention 3.1. For v € L?(E;) and u € L*(E>), we will use the short-hand

e ¢! to denote . (¢7v);
+ ¢fu to denote 7|7, (¢19u).

(Note that the meaning of ¢£g]v depends on the representative g.)

Using this convention, the formula (3.5) reads

Tou= Y Y 67T (¢3u) € L*(B). (3.6)

gely,i,5€l
ses

We call ¥ the folding map. The fact that the above definition is independent of the
choices of the set S and compatible partitions of unity is proved in Proposition 3.3.

Before proceeding further, let us record a few straightforward identities that will help
us navigate through notational clutter:

(i) If v is a local section of E; supported in some neighborhood Uf , then for any
g’ € T'; we have

g (69v) = ¢ "0, (3.7)
m(g'v) = [¢] - 7w (v). (3.8)

(ii) If u is a local section of Ey supported in some neighborhood U][g], then for any
g,9' € I'1 and j € I we have

g (wligu) =7l (9] ), (3.9)
w= Y ¢ (). (3.10)

iel,

vel:

The following lemma provides a convenient pointwise formula for (7T )u:
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Lemma 3.2. For any u € L*(E3) and x € Ma, we have

(@) (@) =7 ( 3 T6fu)wo)), (3.11)

JjEl,
g€l

where yqy s any point in 7= 1(x), and the sum on the right-hand side is finite.

Proof. Observe that for any j € I and g € I'1, the summand T(qﬁ?u)(yo) may only be
non-zero if U]f’ N BpropT(Yo) # 0. Since T has finite propagation and the I';-action is
proper, the set

{(gaj) | UJg n BpropT(yO) 7é (Z)}

is finite. Hence the sum in question is finite for every z € My and yo € 7~ %(x).
To prove (3.11), let us first rewrite the right-hand side as

(33 T@uw)). (3.12)

j€l heH,
seS

Next, using (3.9), (3.10), and I';-equivariance of T, each summand in (3.12) equals

T(¢})*u)(yo) = T (h(&3([h] - u )(yo)
= T(h(¢? )
= W(T(65) (o
=(nx ¢-§’T¢>§u) (0), (3.13)

where we have used Convention 3.1 when writing ¢ju. Now observe that if v is a section
of Ey supported in some open set U/, then for any = € Ms, we have

(mev)(@) = 7 (Y (ho)(%0)), (3.14)

heH

where 7 is an arbitrary point in the inverse image 7 !(z). Keeping this in mind while
summing (3.13) over j € I, s € S, and h € H, we see that (3.12) equals

(> (WeTEm)w0) = (7o Do 6 T(e5w) (@),

h,g,s,%,5 958,%,7

which is equal to (U(T)u)(z) by (3.6) and noting Convention 3.1. O
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Proposition 3.3. The folding map V defined in (3.6) is a x-homomorphism
U By (L (B1))™ — Bep(L?(E2))"?

and is independent of the choices of the set S of coset representatives and compatible
partitions of unity used to define it.

Proof. Boundedness of ¥(T') follows from boundedness and finite propagation of T', via
the formula (3.11). To see that W(T) is I's-equivariant, note that by (3.11), we have for
all [y] € Ty and u € L?(E3) that

(M) M) (@) =[] - m > TG u) (v vo)
JEI,
g€l

W*ZT7 (677u) (v yo)-

Using (3.8) and I'j-equivariance of T, this is equal to

. ) = e LT ) = (VD)

where we used a change-of-variable for the last equality.

To see that ¥ is a *-homomorphism, let () be another operator in By, (L?(E;))l
Let 2 € My and yo € 7~ !(z). By (3.11), and the fact that both 7" and T have finite
propagation, one sees that there exists a finite subset F' C I'; such that

(U(T'T)u)(x) = m Y T'T(¢7u)

jel,
geF

= (T Y T(95w) (vo)

7,9

_w*(T'ZwZT (¢%u) )

iel,
'yGF

= (YT (@ Y T@w)) (o)
— (U(T) 0 U(T)u)(z).

One checks directly that ¥ respects sx-operations.

That (3.6) is independent of the choice of coset representatives S C I'y is implied by
the pointwise formula (3.11). To see that (3.6) is independent of partitions of unity, let
{¢i}, {<pm} and {¢]} be another set of compatible partitions of unity for N, M, and
M with the same properties as {¢;}, {(bgﬂ}, and {¢]}. Let us write
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w1y and wieH(T)

to distinguish the operators defined by (3.6) with respect to these two sets of partitions
of unity. Since T has finite propagation, there exists a finite subset F’ C I'y such that if

g ¢ F, then supp(¢7) N Bprop7(¥0) = 0 and supp(¢§) N Byrop7(yo) = O for any j € 1.
By (3.11), for each x € M> we have

(W) (@) =7 D T(dFu)(yo)

jel, gel'y

= Ty Z T(ﬂBPK'OpT(yO)¢ng)(yO)

j€l, geF

= W*((TZ ]prmpT(yo)¢gu) <yo))7 (315)

where 15 is the characteristic function of the set Bprop7(¥0), and we have used

propT(yO)
that T' commutes with finite sums. Likewise, we have

(O T0) (@) = 7 (TS Uy 950 (0) ). (3.16)

79

Now observe that

Z ]prropT(yﬂ)gb?u and Z ]prropT(yﬂ)<pjgu

7,9 7,9

are both equal to the lift of the section u to M; restricted to the compact subset
Bprop7(y0). Thus the right-hand sides of (3.15) and (3.16) are equal, whence

(UHHT) () (2) = (TH(T)(w)(2). D

The next proposition shows that the folding map ¥ preserves locality of operators.
In particular, this means that ¥ induces a map at the level of localization algebras (see
Definition 3.8), which is a crucial ingredient for our main result, Theorem 1.1.

Proposition 3.4. For any operator T € By, (L*(E1))'!, we have
prop(¥(T)) < prop(T).

Proof. Take a section u € Cc(E2), and write it as a finite sum 3, ¢£-g]u. By (3.11),

((TMu)(z) =m > T(¢%u)(yo),

JjeIl,ge

where yo is a lift of  to My. Now if dpy, (x,suppu) > prop(T'), then
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dar, (yo, supp(¢Ju)) > prop(T)

for any 7 € I and g € T'y, since distances between points do not increase under the
projection 7. Thus if day, (z, suppu) > prop(T), then W(T)u(x) = 0. Since this holds for
any section u € C.(Ez), we have prop(¥(7T)) < prop(T). O

Proposition 3.5. The map V¥ is surjective and preserves local compactness of operators.
Moreover, it restricts to a surjective x-homomorphism

U: C[My]" — C[My)™2

Proof. Let S C I'; be the set of coset representatives used in the definition of ¥. For
any Ty € By, (L?(E»))"2, define an operator T on L?(E;) by the formula

=33 P m(el), (3.17)

g€el'y seS
i€l jeI

for v € L%(E;). We claim that Ty € By, (L%(E1))'t and that ¥(T1) = T». Indeed, for
each fixed ¢ and j, the sum of operators

2> ¢ T

gel; ses

converges strongly in B(L?(E;)). Since [ is a finite indexing set, it follows that T} is
bounded. To see that T3 is I';-equivariant, note that for any v € I';, we have, by the
identities (3.7) and (3.8), that

v T1y(v) Z DT (@)

*ZZ’V (¢ Tu(ma(y - (8] "))
*ZZ’V (62 To(l] - (6 ),

where we observe Convention 3.1 as usual. Using I's-equivariance of T» and (3.9), one
finds this to be equal to

S S @ ( Tl )

g,i 8,

NS ey (e )

gt S,J

> Y6 el

’Y_l_(],i 8,
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= Tl(v),

using the definition of 7T} and a change of variable for the last equality.
Next, finite propagation of T follows from finite propagation of T5. Indeed, for any
v € C.(Ey), g €Ty, and i € I, the set

Sty = {s €S| qbg.gS]TQ(qug]v) # 0 for some j € I}

is finite, thus the sum over S in equation (3.17) reduces to a finite sum over St,. By the
same equation, and the fact that the I';-action is isometric, we have

prop(71) < sup {dn, (Uzg’U;‘]S)} = sup {dMl (Uiev UJS)} < 00.
SGST1 SGSTI
i,j€1 i,j€l

We now show that U(T}) = T». By (3.17) and (3.5) we have, for any u € C.(E»),

V=Y Y olTigh(w)

vely, i,jel
tes

DI HOIDI EAC AT

vel'y, 4,j€1 g€l ses
tes kel lel

Finite propagation of T3 and compact support of u imply that all of these sums are finite,
so by (3.10) this is equal to

Z Z (b’Y] d)!]? d)k ¢t Z Z¢[93 [!J] ))

g,8,k,lv,t,4,7 g,s,k,l t,j

Since {gs|s € S} is a set of coset representatives for H\I'; for any g € I';, the identity
(3.10) implies that the above is equal to

ZT2 ( Z ¢Ecg](¢§u)) = ZTQ((;%?]“) = Thu.
t,j g,k t,j

Thus ¥(T;) = T, as bounded operators on L?(Ey).

Finally, that ¥ preserves local compactness of operators follows directly from (3.11),
so that U restricts to a map C[M;]'t — C[M3]'2. To see that this map is surjective,
suppose Ty is locally compact. Then for any f € C.(M;), we have

=13 ¢ T,

g€l i,j€l
seS

The sum over I'y reduces to a sum over the finite set
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Fy = {geI‘1|U]‘v’sﬂsupp(f)7é(Z)f0r some j € I},

hence fT; is equal to

Z Z f‘b?s]lm(suppf)T2¢£g]~

gEF; i,jel
ses

Since the subset 7, (supp f) C Ma is compact, local compactness of T means that this
is a finite sum of compact operators and hence compact. A similar argument shows that
the operator T f is compact. Thus the operator T3 is locally compact, so W restricts to
a surjective x-homomorphism C[M;]'" — C[M]"2. O

3.2. Description of the folding map on invariant sections

The folding map ¥ admits an equivalent description using N-invariant sections of E;.
Such sections, while not in general square-integrable over M, form a space that is natu-
rally isomorphic to L?(E;)"2, as we now describe. This allows computations involving ¥
to be carried out entirely on M;. Thus it may be a useful perspective for some applica-
tions. The discussion below slightly generalizes the averaging map from [10, subsection
5.2] applied in the context of discrete groups.

Let ¢: My — [0, 1] be a function whose support has compact intersections with every
H-orbit, and such that for all z € My,

Z c(hz)? = 1.

heH

Note that this sum is finite by properness of the I'j-action.

Let Ci.(E1)f denote the space of H-transversally compactly supported sections of
E4, defined as the space of continuous, H-invariant sections of F; whose supports have
compact images in My = M; /H under the quotient map. Let L2 (FE; )" denote the Hilbert
space of H-invariant, H-transversally L?-sections of E;, defined as the completion of
Cie(E1)H with respect to the inner product

(81, SQ)L%(El)N = (081, CSQ)LZ(El)-
Then one checks that:

Lemma 3.6. The space L4(E1)! is naturally unitarily isomorphic to L?(Es) and is in-
dependent of the choice of c.

For any T € By, (L*(E1))", the operator ¥(T') on L?(E») from (3.6) can be described
equivalently by its action on the isomorphic space L%(El)H as follows. Take a partition
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of unity {¢?} of M as in (3.3). Let s € L2.(E1)" be an H-transversally L2-section of
E;. For any y € M, set

(U(D)s)(y) = Y (T(d]s) () (3.18)

i€l,gel;

The fact that T has finite propagation means that this pointwise sum is finite, and that
c(¥(T)s) € L*(Ey). Further, ¥(T)s is an element of L2 (E;)¥, since for any h € H and
y € M7 we have

(WE(D)))y) = D (Toh(¢fs) )= Y T(¢s)y) = (¥(T)s)(y),

icl,gel’; iel,gel

where we have used the equivariance properties of T and s. Finally, a direct comparison
shows that this definition is equivalent with that given by equation (3.11).

8.8. Induced maps on geometric C*-algebras and K -theory

By Proposition 3.5, the folding map W restricts to a surjective *-homomorphism
U: C[M]" — C[My)*™2.

By the defining property of maximal completions of x-algebras, ¥ extends to a surjective
x-homomorphism between maximal equivariant Roe algebras,
v Ck

max

(M) = O

max

(My)"=.

In this paper we will make use of a number natural extensions of this map to other
geometric C*-algebras, as well as the induced maps on K-theory. We refer to these maps
collectively as folding maps.

To begin, we have the following elementary lemma:

Lemma 3.7. Let A and B be C*-algebras and let ¢: A — B be a surjective -
homomorphism. Then ¢ extends to a *-homomorphism ¢: M(A) — M(B).

Proof. Since ¢ is surjective, we may define 5 by requiring

p(m)g(a) = ¢(ma),  d(a)p(m) = ¢(am),

for m € A. Concretely, by way of a faithful non-degenerate representation o: B — B(H)
on some Hilbert space H, we may identify B with a subalgebra of B(H). Since ¢ is
surjective, the composition o o ¢: A — B(H) is a non-degenerate representation of A.
Thus the above formulas define a representation of M(A) with values in the idealizer of
o(B), which one identifies with M(B). (See also [7] Lemma 1.9.14.) O
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By Lemma 3.7 and Proposition 3.5, the map ¥ extends to a *-homomorphism
M (C:;lax(Ml)Fl) - M (Cr;ax(MQ)F2) .

(M;)'i as an ideal in M, we will still denote this extended map by U.
This map will be essential when we apply the functional calculus for the maximal Roe

Viewing C}

max

algebra in sections 5 and 6.

Next, suppose we have a path r: [0,00) — Cf. (M) that satisfies

prop(r(t)) = 0 as t— oo.
Then by Proposition 3.4, the same is true of the path Wor: [0,00) — C .. (M;)'2. This

allows the folding map to pass to the level of localization algebras:

Definition 3.8. Define the map

Uy Cz,max(Ml)Fl - Cz,max(MQ)Fz

r— Wor,
Then ¥, restricts to a *-homomorphism between obstruction algebras:
Uro:Ch (M) = C; (My)F2
L,0 L,0,max 1 L,0,max 2 .

Each of the above maps ¥, ¥, and ¥, o induces a map at the level of K-theory. In
this paper, we will make use of two of them:

U, K. (Cha (M2)"2),

(\IJL,O)*: K* (Cz,O,max(Ml)Fl) - K* (OE,O,maX(M2)F2) .

(Ml)rl) — K, (C;

max

Remark 3.9. In the recent paper [21], Schick and Seyedhosseini have constructed a
slightly different completion of the equivariant algebraic Roe algebra, called the quo-
tient completion, which still behaves functorially under maps between covering spaces.
For details of the construction, see [21, section 3].

4. Functional calculus and the wave operator

We now develop the analytical properties of the wave operator on the maximal Roe
algebra that will form the basis of our work in subsequent sections.

Let us begin by recalling the functional calculus for the maximal Roe algebra, which
was developed in a more general setting in [11]. The discussion here is specialized to the
cocompact setting.

Throughout this section we will work in the geometric situation in subsection 2.3. To
simplify notation, in this subsection and the next we will write M, T" for either M;,T"; or
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M5, T, and D, E for either Dy, E1 or Dy, E5. In other words, I' acts freely and properly
on M with compact quotient, and D is a I'-equivariant operator on the bundle £ — M.

4.1. Functional calculus on the maximal Roe algebra

We shall view the C*-algebra C

* (MY as a right Hilbert module over itself. The in-
ner product and right action on C} (M)! are defined naturally through multiplication:

for a,b € C} . (M)T,

(a,b) = a*b, a-b=ab. (4.1)

The algebra of compact operators on this Hilbert module can be identified with
C;;qax

ators can be identified with the multiplier algebra M of C}

(M)T' via left multiplication. Similarly, the algebra of bounded adjointable oper-
(M)".
The operator D defines an unbounded operator on this Hilbert module in the following

ax

way. First note that D acts on smooth sections of the external tensor product EX E* —
M x M by taking a section s to the section Ds defined by

(DS)(‘T7y) = st(x,y), (42)

where D, denotes D acting on the z-variable.
Let ST be the *-subalgebra of C[M]" defined in Remark 2.7. That is, an element of
ST is an operator T given by a smooth kernel x € Cf°(E X E*) that:

(i) is I'-equivariant with respect to the diagonal I'-action;
(ii) has finite propagation, meaning that there exists a constant ¢, > 0 such that if
d(x,y) > ¢, then k(x,y) = 0.

The operator D acts on elements of ST by acting on the corresponding smooth kernels
as in (4.2). In this way, D becomes a densely defined operator on the Hilbert module
C*

* (MY that one verifies is symmetric with respect to the inner product in (4.1).

Theorem 4.1 ([11] Theorem 3.1). There exists a real number u # 0 such that the operators

(M)
have dense range.

Consequently, the operator D on the Hilbert module C7, (M) is regular and essen-

max
tially self-adjoint, and so admits a continuous functional calculus (see [15, Theorem 10.9]

and [14, Proposition 16]):
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Theorem 4.2. For j =1 or 2, there is a x-preserving linear map

m: C(R) = R (C;’Laz(M)F) J

f= f(D):=7(f),

where C(R) denotes the continuous functions R — C, and R (C},

max

(M)") denotes the
regular operators on CJ,..(M)Y', such that:
(i) 7 restricts to a x-homomorphism Cy(R) — M;

(i) If | ()] < lg(t)] for allt € R, then dom(g(D)) C dom(f(D));

(i) If (fn)nen s a sequence in C(R) for which there exists f' € C(R) such that
[fn(@®)] < |f ()] for allt € R, and if f,, converge to a limit function f € C(R) uni-
formly on compact subsets of R, then fn(D)x — f(D)z for each x € dom(f(D));

(iv) 1A(D) = D.

4.2. The wave operator

We now discuss the relationship between the wave operator formed using the func-
tional calculus from Theorem 4.2 and the classical wave operator on L2. Both of these
(M)",

operators can be viewed as bounded multipliers of the maximal Roe algebra Cf;, .

and we will see that:

Proposition 4.3. For each t € R, we have

P = e € M(Cian(M)D).

Let us begin by explaining both sides of the equation, starting with the right-hand
side. For each t € R, the functional calculus from Theorem 4.2 allows one to form
(M)T'. The resulting
group of operators {e??},cg is strongly continuous in the sense of Theorem 4.2 (iii) and

(M)

a bounded adjointable operator ¢*” on the Hilbert module C},, .

uniquely solves the wave equation on C} .

Lemma 4.4. For any x € S¥, u(t) = e"*Pr is the unique solution of the problem

I iDu, u(0) = &, (4.3)

with u: R — C*

max

(M)Y a differentiable map taking values in dom(D).

Proof. For each t € R, the function s — €' is a unitary in C,(R). Hence e*? is bounded
adjointable and unitary. Let h,, be a sequence of positive real numbers converging to 0

as n — oo. Then for each t € R, the sequence of functions
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ei(t-i—hn)s _ eits

fn(s) = »

converges to f(s) := ise’ uniformly on compact subsets of R in the limit n — co. Also,
each f, is bounded above by |1 + s|. By Theorem 4.2 (iii), this implies (4.3).

For the uniqueness claim, let v be another solution of (4.3) with v(0) = x. For any
fixed s € R and 0 <t < s, set w(t) = e!'Pv(s —t). Then we have

d .
d—qf = iDe'Py(s — t) —ie"P Du(s — t) = 0.

It follows that w(¢) is constant for all ¢, hence

On the other hand, we may apply the functional calculus on L?(E) to the essentially
self-adjoint operator

D: L*(E) — L*(E) (4.4)

to form the classical wave operator eiLtgp , not to be confused with the bounded adjointable
operator e*?. The resulting operator group {e?#},cg is strongly continuous in B(L?(E))

and uniquely solves the wave equation on L?(E): for every v € C2°(E), we have
d ztD itD
9 etP () = iDefP ().

Via composition, e”D defines a map
etP. st — St (4.5)

A standard argument involving the Sobolev embedding theorem now shows that for any
T.. € ST, the kernel of e“D o T} is smooth, in addition to having finite propagation and
being I'- equlvarlant. Indeed, for any m € N, the operator D™ o T}, is bounded on L?(E),
as M/T is compact. Together with the fact that

D™ oeL2 OT,‘i_e”DoDm oT,,

ztD

Sobolev theory implies that the image of e%’;” oT); lies in the smooth sections, so that this

operator also has smooth kernel. By Remark 2.9, (4.5) extends uniquely to a bounded
multiplier of C:, (M),

ef?: Crax(M)" = Cra (M)". (4.6)

This is the operator on the left-hand side of Proposition 4.3.
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Observe that if k is a smooth, compactly supported Schwartz kernel on M x M, then
we have the pointwise equality

(jt etPk) (2, y) = (iDefPR)(z,y). (4.7)

where e”D k denotes the smooth Schwartz kernel of the composition e“D 0T}. The proof
of Proposition 4.3, involves a more general form of this observation for kernels in ST:

Lemma 4.5. Let k € SU, and let S”DH denote the smooth Schwartz kernel of e”D oTy.

Then for every t € R and x,y € M, we have the pointwise equality

(LetP i) (@.0) = (DEPR) o). (45)

ztD

Moreover, the path t — e}y’ k is continuous with respect to the operator norm, and

i(t+h)D
el(2+ D, T.—e®PoT,
L L itD
N —tDe7?

lim =0. (4.9)

h—0

B(LZ(E))

Proof. Fix t € R, ¢ > 0, and z, y € M. Take ¢ € C°(M) such that ¢(z) = 1 if
z € Ba(x), and ¢(z) = 0 if z € M\Bs(x). Since k has finite propagation, the smooth
kernel ¢« is compactly supported in M x M, so by (4.7) we have

(8P or) (2,9) = (DefPor)(r.y). (4.10)
The fact that e”D has propagation at most ¢, together with the fact that

(1= ¢)r(z,y) =0

for all z € By (z), implies that for all w € By(z) we have (e¥'P (1 — ¢)r)(w,y) = 0. It
follows that

(€72’ k) (w,y) = (€12 o) (w, y). (4.11)

Taking w = x and combining with (4.10) gives (4.8).

’LtD

To establish norm continuity, it suffices to show that ¢ — e}2’x is norm-continuous

at t = 0. For each z, y, and ¢ in an interval [—¢g, o], we have

etPr(x,y) — k(z,y)| < |t|- sup |iDePPr(x,y) (4.12)
s€[—to,to]

Dy is T-equivariant

by the mean value theorem applied to (4.8). Since the operator iDe’’
with finite propagation, and M is cocompact, there exists a compact subset K C M

such that
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sup iDeszm(m,y)‘ = sup ‘iDeiLSQDn(x,y) < Cy, (4.13)
z,yeM, z,yeK,
SE[*to,to] Se[*to,to]

for some constant Cy,. Now since esz k — k has finite propagation, its operator norm can

be estimated using and (4.12) and (4.13):

¥ — kllB2(gy < C - sup P r(x,y) — Kz, y)| < CCylt,
z,yeM
for some constant C' depending on the propagation of k. We obtain norm continuity
by taking a limit ¢ — 0. The proof of (4.9) is a straightforward adaptation of this
argument. 0O

With these preparations, we now prove Proposition 4.3.

Proof of Proposition 4.3. Fix t € R. Let T), € ST with smooth Schwartz kernel x. We

claim that the kernel /P r satisfies the wave equation in C},, (M)". To see this, first

max

note that by equation (4.9) we have

i(t4+h)D ;
eZL(; ) oT, —€itP oT,

h

—iDelP o T, =0.

B(L*(E))

lim
h—0

Now since the kernels eiL(ﬁJrh)D/i and De%QD x each have propagation at most
r:= prop(k) + [t + hl,

by Remark 2.9 there exists a constant C). such that the norm of

i(t+h)D itD
Kk—elyk ;
L2 z L2~ _iDeP (k)
in C7..(M)T is bounded above by C, times its norm in B(L?(E)). Thus
ei(;erh)D,i —¢itDy 4
}llig%) L 7 L2 " _iDeP (k) =0,

(M)F. Tt follows
coincide on ST, and hence

so the operator group {e%'P},cr solves the wave equation (4.3) in C7,
from the uniqueness property in Lemma 4.4 that eiLtQD and et

are equal as elements of M. O
5. Functoriality for the higher index
In this section, we discuss functoriality in the case of the maximal higher index from

the point of view of folding maps and wave operators. This will prepare us for the proof
of our main result, Theorem 1.1, in the next section.
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Suppose M; and M, are two Galois covers of N with deck transformation groups I'y
and 'y 2Ty /H, for some normal subgroup H of T';. Then the quotient homomorphism
I'y — I's induces a natural surjective x-homomorphism between group algebras,

k k
(07 Crl — CFQ, ZCW%‘ = ZC'Y'L [72]7

i=1 i=1

where [7] is the class of v € T'y in 'y /H. In this setting, we have the following functoriality
result for the maximal higher index, which follows from a theorem of Valette [17, Theorem
1.1):

Theorem 5.1. Let N be a closed Riemannian manifold. Let Dy be a first-order, self-
adjoint elliptic differential operator acting on a bundle En — N. Let My and Ms be
Galois covers of N with deck transformation groups I'y and T'y = T'1/H respectively,
for a mormal subgroup H of T'y. Let Dy and Dy be the lifts of Dy to My and M.
Then the map on K-theory induced by « relates the mazximal higher indices of Dy and
Ds:

a*(InthmaX Dl) = Indr‘%max Dy e K, (C;;ax(FQ)).

This result was proved originally using K K-theory. To prepare for the proof of Theo-
rem 1.1, we now give a proof of Theorem 5.1 using local properties of the wave operator
and the folding map ¥ from the previous sections.

5.1. Higher index

We begin by recalling the definition of the maximal higher index of an equivariant
elliptic operator. Let I', M, and D be as in section 4.
Let Q := M/C,,. .(M)F. Consider the short exact sequence of C*-algebras

0—Cr

max

(M - M- Q—0,

where M is shorthand for the multiplier algebra M (C},, (M)"). This induces the fol-
lowing six-term exact sequence in K-theory:

Ko(Crax(M)') —— Ko(M) ——— Ko(Q)

] |

Ki(Q) ¢+——— Ki(M) +— K1(Cj, (M),

max

where the connecting maps dy and 01, known as index maps, are defined as follows.
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Definition 5.2.

(i) Oo: let u be an invertible matrix over Q representing a class in K;(Q). Let v be
the inverse of u. Let U and V be lifts of v and v to a matrix algebra over M. Then

the matrix
1 0 1 -V 1 0
WZ(U 1)(0 1><U 1)

is invertible, and P = W ( (1) 8) W' is an idempotent. We define
0 0 * I
olu] == [P] = |5 || € EKo(Crax(M)"). (5.1)

(ii) O1: let ¢ be an idempotent matrix over Q representing a class in Ky(Q). Let @
be a lift of ¢ to a matrix algebra over M. Then €?™? is a unitary in the unitized
algebra, and we define

81 [q] = [62mQ] S Kl(O*

max (M)F). (5.2)
This construction is applied to the operator D via the functional calculus from The-
orem 4.2, as follows. Let xy: R — R be a continuous, odd function such that

li =1

Jim x(z) =1,

known as a normalizing function. Using Theorem 4.2, we obtain an element x(D) in M.
We now have:

Lemma 5.3. The class of x(D) in M/C} .. (M)' is invertible and independent of the
choice of normalizing function x.

Proof. Let S(R) denote the Schwartz space of functions R — C. Then for every f € S(R)
with compactly supported Fourier transform f, the operator f(D) is given by a smooth
kernel [18, Proposition 2.10]. Since every f € Cp(R) function is a uniform limit of
such functions, the first part of Theorem 4.2 implies that for every such f we have
F(D) € Clpn(M)T.

Now if y is a normalizing function, then y? — 1 € Co(R). Hence the class of x(D) in
M/CE (M) is invertible. Since any two normalizing functions differ by an element of
Co(R), this class is independent of the choice of x. O

Using this lemma, one computes that

x(D)+1
2
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is an idempotent modulo C,, (M)" and so defines element of Ko (M /Cy,. (M)"). This

leads us to the definition of the maximal higher index of D:

Definition 5.4. For i = 1,2, let 0; be the connecting maps from Definition 5.2. The
mazximal higher index of D is the element

01 [X(D)] (C*

max

o [ M5+ € Ky (C

(M)F),  if dim M is even,
Indr max D :=
(M)"),  if dim M is odd.

max
5.2. Functoriality

In this subsection, we return to the geometric setup described in subsection 2.3 and
give a new proof of Theorem 5.1.
A key idea is to use the local nature of the wave operator to prove:

Proposition 5.5. For all t € R, we have ¥(e'P1) = ¢itP2,

Proof. For j = 1,2, let elLtQD
extends uniquely to a bounded multiplier of C}, (M;)"7. By Proposition 4.3, we have

eZLtD =ePi ¢ M. Thus to prove this proposition, it suffices to show that \I/(e}szl) =

6252{32 as elements of By, (L?(E;))".

As a notational convenience, we will write e**Ps for eLr?J € By, (L*(E;))Yi. Let the

7 be the wave operator on L?(E;). By (4.6), this operator

open covers Uy, and Uy, be as in (3.3) and (3.4), so that by definition, there exists
some € > 0 such that each ball of diameter € in My is evenly covered with respect to
m: My — M.

Let {V;} be another open cover of M such that each Vj has diameter at most 5 and
such that any compact subset of M» intersects only finitely many of the Vj. Let {py} be
a partition of unity subordinate to {Vj}.

Choose a positive integer n such that % < 5. Now since

eitDl — (elnDl) ,

and W is a x-homomorphism, it suffices to show that ¥(e'# 1) = ein D2, Noting that any

section u € C;(E5) can be written as a finite sum u = ), pru, we have
eZnDl U_Z\I] i D1 Pku)
We first claim that for each k£ we have

W(e' D) (ppu) = €5 P2 (pgu). (5.3)
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To see this, note that the ball of radius § around supp(pyu) has diameter at most ¢ and
so is evenly covered with respect to m. Since the definition of ¥ is independent of the
choice of compatible partitions of unity by Proposition 3.3, we may work with a partition
of unity {(bg.g]} for M, subordinate to a cover Uy, such that Bi(supp(pku)) C Uj, for
some open set Uj{jo] € Upr, and d)io] =1 on B¢ (supp(pxu)), for some so € S and jo € I.
By the definition of the folding map (3.6) applied to this choice of open cover, we have

V(e P (ppu) = Y Y ol (e P65 (pru))
geel"sl, i,5€1
S

= o (P (w0 (1))

= T, (ei%D1 (73,

o (Pku>))-

Now the wave equation on M; reads

0 a * . it Dy *
2 (4 () = 1D (64 (i)

Applying 7, to both sides of this equation and using that D is the lift of Dy, we obtain

O (@(e'42) () = D (W47 1),

whence (5.3) follows from uniqueness of the solution to the wave equation on M.
Taking a sum over k now yields

eln Dl Ju = E \Ile’nD1 )(pru) g el DZ (pru) —enD2u

Thus \If(ei%Dl) =e nDz as bounded operators on L?(FEy). By our previous remarks, this
means that \Il(e“Dl) _ 1tD2. O

Applying Fourier inversion together with Proposition 5.5 leads to:
Proposition 5.6. For any f € Co(R) we have
U(f(D1)) = f(D2) € Ma.

Proof. Suppose first that f € S(R) with compactly supported Fourier transform. By the
Fourier inversion formula, we have

1(D)) = 5= [ Fe?s . (5.4
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* ax(M2)F2) Proposi-
(M7)' such that ¥(kg) = k. Since ¥ is a

where the integral converges strongly in M;. Now for any x € C},
tion 3.5 implies that there exists kg € C}

max

*-homomorphism,
1 7 itD
V(D)) = V(D)) = 5= [ FOyw(e P o).
R

By Proposition 5.5, this equals

1 [~

7 /f(t)e”DQ/i dt = f(Ds)k.

R

This proves the claim for f € S(R). The general claim now follows from density of S(R)
in Co (R) O

Proof of Theorem 5.1. The expressions (5.1) and (5.2) show that, for j = 1,2, the higher
index of D, is represented by a matrix A;(x) whose entries are operators formed using
functional calculus of D;. More precisely, if the initial operator Dy on N is ungraded,
as is typically the case for M odd-dimensional, then

Aj(x) = ™) (Dy). (5.5)

When Dj; is odd-graded with respect to a Zj-grading on the bundle E; = E;r ® LS,
as typically occurs when dim NV is even, we have a direct sum decomposition x(D;) =
X(D;)T @ x(D;)~. In this case, the index element is represented explicitly by the matrix
Aj(x) = ( (1—=x(Dj)~x(D;)*)? X(Dj)~ (1=x(Dj)*x(Dj)7) )
! x(D) ¥ (2=x(D;) " x(D;) ") 1—x(D;) " x(D;)) x(D;)Tx(Dy)~ (2=x(D) x(D;) 7)1
(5.6)
Observe that in either case, each entry of A; is an operator of the form f(D;), for
some f € Cp(R) (modulo grading and the identity operator). By Proposition 5.6, ¥
maps each entry of A; to the corresponding entry of As. Hence W,.[A;] = [As], which
proves the claim. O

Remark 5.7. When I'y = m NV and T's is the trivial group, Theorem 5.1 reduces to the
maximal version of Atiyah’s L2-index theorem mentioned in section 1.

Atiyah’s original L?-index theorem, which uses the von Neumann trace 7 instead
of the folding map, can be proved by an argument along lines similar to the proof of
Theorem 5.1.

6. Functoriality for the higher rho invariant

The higher index is a primary obstruction to the existence of positive scalar curvature
metrics on a manifold. When the manifold is spin with positive scalar curvature, so that
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the higher index of the Dirac operator vanishes, one can define a secondary invariant
called the higher rho invariant, introduced in [19,12]. This is an obstruction to the inverse
of the Dirac operator being local [4]. In this section we show that the higher rho invariant
behaves functorially under the map ¥y o from Definition 3.8.

6.1. Higher rho invariant

Consider the geometric situation in subsection 2.3, with the additional condition that
the Riemannian manifold N is spin with positive scalar curvature. The operator Dy is
then the Dirac operator acting on the spinor bundle Ey.

As the definition of the higher rho invariant is the same for either M or My, we will
simply write M, I to mean either My, I'y or My, I's. Similarly, D will refer to either of
the lifted operators Dy or Dy acting on the equivariant spinor bundles F; or Es lifted
from Ep.

Let k be the scalar curvature function of the lifted metric on M, which is uniformly
positive. Let V: C®(E) — C*°(T*M ® E) be the connection on E induced by the
Levi-Civita connection on M. Recall that by the Lichnerowicz formula,

K
D*=V*V + —.
4
Since x is uniformly positive, D? is strictly positive as an unbounded operator on the
Hilbert module C,. (M)F'. Thus we may use the functional calculus from Theorem 4.2
to form the operator

an element of the multiplier algebra M = M(C%

max

(M)T). Observe that % is a
projection in M.

Since D is invertible, there exists € > 0 such that the spectrum of D is contained
in R\(—¢,€). Let {F;}tecr+ be a set of normalizing functions satisfying the following

conditions:

e F; has compactly supported distributional Fourier transform for each ¢;
o diam(supp F;) — 0 as t — oo;
« F,— ﬁ uniformly on R\(—¢, €) in the limit ¢ — 0.

In the limit ¢ — oo, the propagations of F;(D) tend to 0. By Theorem 4.2 (i), as t — 0,
the operators F;(D) converge to Fo(D) in the norm of M.
Define a path R=9 — (Cz . (M)T)* given by

max

Rp:t— A(F)), (6.1)
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where the matrix A(F}) is defined by (5.5) or (5.6) depending upon the dimension of N
(the subscript j is omitted). Noting that

00

Rp(0) = A(Fy) = (0 1
1 if dim NV is odd,

) if dim NV is even,

one sees that Rp is a matrix with entries in (O;O,max(M)F)Jr.

Definition 6.1. The higher rho invariant of D on the Riemannian manifold M is
prmax(D) = [Rp] € Ki(CT g max(M)"),

where i = dim M (mod 2).

6.2. Functoriality

We are now ready to complete the proof of our main result, Theorem 1.1, using the
tools we developed in sections 3, 4, and 5.
Recall from Definition 3.8 that we have a folding map at level of obstructions algebras,

\IJL70: Cz,O,max(Ml)Fl - Cz,O,max(MQ)F2'

This map is well-defined because the folding map ¥ at the level of maximal equivariant
Roe algebras preserves small propagation of operators, by Proposition 3.4. The induced
map on K-theory,

(\I/L,O)*: K* (CZ,Qmax(Ml)Fl) - K* (CZ7O,max(M2)F2) ’
implements functoriality of the maximal higher rho invariant.

Proof of Theorem 1.1. For j = 1,2, let the higher rho invariants of D; be denoted by
Pmax(D;), as in Definition 6.1. By (6.1), this class is represented the path

RDj = Aj(Ft),

where the matrix A; is as in (5.5) and (5.6). By Definition 3.8, the map (V). takes the
class

[RDl] € K, (CE,O,max(Ml)Fl)
to the class of the composed path

Vo Rp,:tr U(AL(F))
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in K, (Cz,o,max(M2)F2>~ Since each entry of A; is an operator of the form f(D;), for
some f € Cp(R) (up to grading and the identity operator), Proposition 5.6 implies that
for each t > 0, we have

Vo Rp,(t) = V(Ai(F)) = A2(Fi) = Rp, (1).
It follows that (VU o)« (pPmax(D1)) = Pmax(D2) € K*(Cz,o,max(M2)F2)~ O
7. Generalizations to the non-cocompact setting

The methods in this paper can be used to establish analogous results in more general
geometric settings. In this final section, we give two such generalizations, both involving
non-cocompact actions.

We will work with the non-cocompact analogue of the geometric setup in subsec-
tion 2.3, so that the manifold N is no longer assumed to be compact. We will assume
throughout this section that the operator Dy has unit propagation speed. In place of the
finite partition of unity (3.2) used to define the folding map ¥, we take a locally finite
partition of unity Uy whose elements are evenly covered with respect to the projections
p1: M7 — N and py: My — N, and with the property that any compact subset of N
intersects only finitely many elements of Uy. The equivariant partitions of unity U,
and Uy, of My and My are defined in the same way according to (3.3) and (3.4).

D

The local nature of the wave operator e’*” means that Proposition 5.5 generalizes

naturally to this setting:

Proposition 7.1. Let N, My, and M be as in this section, with N not necessarily compact.
Then for all t € R, we have ¥(e?P1) = ¢itD2,

Proof. We adapt the proof of Proposition 5.5, indicating only what needs to be changed.
Let the open covers Uy, and Uy, be as above. The difference now is that since N may be
non-compact, we cannot assume the existence of a uniformly positive covering diameter
€ as in the proof of Proposition 5.5.

Instead, the key point is to observe that for any fized t € R and u € C.(F3), the section
e*P2q is supported within the compact subset B;(suppu). Thus we can find € > 0 such
that for all z € B;(suppw), the ball B, (z) is evenly covered with respect to the projection
w: My — Ms. From here, we proceed precisely as in the proof of Proposition 5.5, with
M, replaced by By (supp u), to show that W(e®*P1)y = P24, Since t and u are arbitrary,
we conclude. O

7.1. Operators invertible at infinity

In this subsection, suppose that the operator Dy is invertible at infinity, meaning
that there exists some compact subset Zy C N on whose complement we have D% > a
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for some a > 0. An important special case is when N is spin, Dy is the Dirac operator,
and the metric gy has uniformly positive scalar curvature outside of Zy.

For j = 1,2, the lifted operator D; then satisfies the analogous relation D]z > a on
the complement of a cocompact, I j-invariant subset Z; C M;. We can define a version
of the higher index of Dj, localized around Z;, as follows (see also [20] and [10, section
3]).

For each R > 0, let C

* ax(Br(Z;))'7 be the maximal equivariant Roe algebra of

the R-neighborhood of Z;. Since Br(Z;) is cocompact, this algebra is isomorphic to
C: ;) ® K by Remark 2.9. One can then show that for any f € C.(—a,a), we have

max (

f(Dj) € lim G (B r(Z;)",

(Br(Z;))'7 is the direct limit of these C*-algebras. Indeed, this
(T) ® K, where K denotes the compact operators on

where limp_,o C} .«

limit algebra is isomorphic to C} .
a (not necessarily compact) fundamental domain of the T'-action. The construction from

subsection 5.1 then gives an index element
IndFj,max Dj € K (Crtlax( ))

Similar to the cocompact case, we have the following version of Theorem 5.1 for
operators that are invertible at infinity:

Theorem 7.2. Let N be a Riemannian manifold and Dy a first-order, self-adjoint elliptic
differential operator acting on a bundle En — N. Assume that Dy has unit propagation
speed. Let My and My be Galois covers of N with deck transformation groups 'y and
Ty 2Ty /H respectively, for a normal subgroup H of T'y. Let Dy and Dy be the lifts of
Dy to My and My respectively. Then the map on K-theory induced by the folding map
U relates the maximal higher indices of D1 and Dsy:

\I/* (IndFl,max Dl) = Inng,max D2 € K* (Cmax(r2))

Proof. Analogous to the proof of Theorem 5.1, with Proposition 5.5 replaced by Propo-
sition 7.1. O

7.2. Manifolds with equivariantly bounded geometry

A second generalization involves non-cocompact coverings that satisfy certain addi-
tional geometric conditions. Under these conditions we obtain generalizations of both
Theorems 5.1 and 1.1. In contrast to Theorem 7.2, here we do not require invertibility of
the operator at infinity, and the Roe algebra we work with does not need to be defined
in terms of cocompact sets as in subsection 7.1.
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Again, suppose that we are in the setup of subsection 2.3, but with N not necessarily
compact. We impose two conditions on the geometry of N and the I';-action on M; (see
also [11, subsection 2.1]):

A. The Riemannian manifold N has positive injectivity radius, and its curvature tensor
is uniformly bounded across NV along with all of its derivatives.

B. For j = 1,2, there exists a fundamental domain D; for the action of I'; on M, such
that

l(y) = 00 = d(D;,yD;) — o0,
where [: I'; — N is a fixed length function and d is the Riemannian distance on Mj;.

It follows from these two assumptions and [11, Proposition 2.14] that the max-
imal equivariant Roe algebra C. (M;)l7 is well-defined, along with a subalgebra
C;aX’U(Mj)FJ' called the maximal equivariant uniform Roe algebra. Using the latter,
we constructed in [11] a version of the functional calculus suitable for the maximal set-
ting.

We briefly recall the definition of C’;ax’u(Mj)F 7. Let Sy’ be the *-subalgebra of S
(see section 4) whose kernels have uniformly bounded derivatives of all orders. In other
words, an element of S’ is a bounded operator on L?(Ej) given by a Schwartz kernel
k € Cp°(E; W EY) such that

(i) & has finite propagation;
(ii) k(z,y) = k(yz,vy) for all vy € T';;
(iif) Each covariant derivative of « is uniformly bounded over M;.

Then C},y. (M;)'7 is defined to be the closure of Sy’ in Ctax (M1
Similar to section 4, C’;ax’u(Mj)Fi can be viewed as right Hilbert module over itself,

with inner product and multiplication being defined by the same formula (4.1). The op-
erator D; can be viewed as a densely defined symmetric operator on Cji,. ., (M;)F7. By
[11, Theorem 3.1], this operator is regular and so admits a functional calculus. The con-
struction from subsection 5.1 then allows one to define the mazimal equivariant uniform

index of D,

indexr; max,u Dj € Ku(Chhayu(M;)17).

max,u

The corresponding versions of the higher rho invariant can be defined as in subsection
6.1, and we denote this by

pmax,u(Dj) € K* (Cz7o,max,u(Mj)Fj )7
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where CF o ay.a(M;)"7 is defined analogously to C ... (M;)", with C;:

max u(M])Fj in
place of Cf,,. (M;)"i. Constructions analogous to those in Subsectlon 3.3 give way to

folding maps at K-theory level, which we denote by

(Wa)w: Ku(Chraxu (M2)™),

(\I/L,O,U>*: K*(CL,O,max,u(Ml)Fl) - K*(CLA,O,max,u(MQ)Fz)‘

(M1)"™) — K. (C

max,u

Further, Proposition 4.3 generalizes naturally to manifolds satisfying conditions A
and B above:

Proposition 7.3. For each t € R, we have

Pl = P € My(Chhaxn(M;)5),

with notation as in subsection 4.2.

Proof. The proof proceeds exactly as for Proposition 4.3, but with Lemma 4.5 replaced
by Lemma 7.4 below. 0O

Lemma 7.4. Let N, My, and My be as in this section, with N not necessamly compact.

Let k € Suj, and let eLQD Kk denote the smooth Schwartz kernel of eL2 Di o T,.. Then the

path t — eLzD Kk 1s continuous with respect to the operator norm, and we have

P o P o, »
h B(L2(E))

lim

—iD; eL2] oT,
h—0

Proof. Similar to equation (4.12), we have, for each z,y € M; and t € [—to, to],

itD;
e k(@) = wla,y)| <[t sup
s€[—to,t0]

iDjeffj/s(x,y)‘ :

Since M; has bounded Riemannian geometry, it follows from Sobolev theory that the
operator iDjeiLszD Ik(z,y) has uniformly bounded smooth kernel, along with all deriva-
tives. Indeed, since eiLsQDj is unitary, |iDjeiL32Dj/<;(ac,y)} is bounded above by a constant
C; independent of s, x, and y. It follows that we can estimate the L2-norm of the
finite-propagation operator elzzD 'k — Kk by

- .
ey k — Kllse(my) < Co - sup ‘ethz Tk(z,y) — Kz, y)| < C10%,
z,y€

for some other constant Cs. We can then finish the proof as in Lemma 4.5. O

With this in hand, we arrive (via an obvious analogue of Proposition 5.6) at the
following generalizations of Theorems 5.1 and 1.1.
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Theorem 7.5. Let N be a Riemannian manifold and My and My be Galois covers of N
with deck transformation groups Ty and Ty = T'1/H respectively, for a normal subgroup
H of T'1. Suppose that the conditions A and B in this subsection are satisfied. Let Dy
be a first-order, self-adjoint elliptic differential operator acting on a bundle Eny — N,
and assume that Dy has unit propagation speed. Let Dy and Do be the lifts of Dy to
My and My respectively. We then have:

(V) (indexr, max,u D1) = indexr, max,u D2 € K. (C (MQ)FQ),

(o) (indexr, max D1) = indexr, max Do € K (Ch o (M2)"?2).

Theorem 7.6. Suppose (N, gn) is a spin Riemannian manifold with uniformly positive
scalar curvature. Let My and My be Galois covers of M with deck transformation groups
'y and Ty 2Ty /H respectively, for a normal subgroup H of T'1. Suppose that the condi-
tions A and B in this subsection are satisfied. Let Dy be the Dirac operator on N (with
unit propagation speed). Let Dy and Dy be the lifts of Dy to My and Mas respectively.
We then have:

(\I’L,O,u)*(pmax,u(Dl)) = PmaX,u(D2) € K. (Cz,o,max,u(MZ)Fz)a
(\I/L,O,u)*(pmaX(Dl)) = pmaX(D2) € K. (Cz,o,max(M2)F2)'

Remark 7.7. The second equality in Theorem 7.5 follows from the observation that the
natural inclusion C* (M;)"i = C . (M;)" 5 relates indexr; max,uD; to indexr; maxD;.

max,u

The second equality in Theorem 7.6 follows from a similar relationship at the level of
obstruction algebras.
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