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Abstract

We study a clustering problem where the goal is to maximize the coverage of the input points by k

chosen centers. Specifically, given a set of n points P ⊆ R
d, the goal is to pick k centers C ⊆ R

d

that maximize the service
∑

p∈P
ϕ

(

d(p, C)
)

to the points P , where d(p, C) is the distance of p to its

nearest center in C, and ϕ is a non-increasing service function ϕ : R+
→ R

+. This includes problems

of placing k base stations as to maximize the total bandwidth to the clients – indeed, the closer the

client is to its nearest base station, the more data it can send/receive, and the target is to place k

base stations so that the total bandwidth is maximized. We provide an nε−O(d)

time algorithm for

this problem that achieves a (1 − ε)-approximation. Notably, the runtime does not depend on the

parameter k and it works for an arbitrary non-increasing service function ϕ : R+
→ R

+.
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1 Introduction

Clustering is a fundamental problem, used almost everywhere in computing. It involves

partitioning the data into groups of similar objects – and, under various disguises, it is the

fundamental problem underlying most machine learning applications. The (theoretically)

well studied variants include k-median, k-means and k-center clustering. But many other

variants of the clustering problem have been subject of a long line of research [10].

A clustering problem is often formalized as a constrained minimization problem of a cost

function. The cost function captures the similarity of the objects in the same cluster. By

minimizing the cost function we obtain a clustering of the data such that objects in the same

cluster are more similar (in some sense) to each other than to those in other clusters. Many

of this type of formalizations of clustering are both computationally hard, and sensitive to

noise – often because the number of clusters is a hard constraint.

Clustering as a quality of service maximization

An alternative formalization of the clustering problem is as a maximization problem where

the goal is to maximize the quality of “service” the data gets from the facilities chosen. As a

concrete example, consider a set of n clients, and the problem is building k facilities. The

quality of service a client gets is some monotonically decreasing non-negative function of its

distance to the closest facility. As a concrete example, for a mobile client, this quantity might

be the bandwidth available to the client. We refer to this problem as the k-service problem.

Such a formalization of clustering has several advantages. The first is diminishing returns

(a.k.a. submodularity) – that is, the marginal value of a facility decreases as one adds

more facilities. This readily leads to an easy constant approximation algorithm. A second
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8:2 Submodular Clustering in Low Dimensions

significant advantage is the insensitivity to outliers – a few points being far away from the

chosen facilities are going to change the target function by an insignificant amount (naturally,

these outliers would get little to no service).

Formal problem statement: k-service

Given a set P ⊆ R
d of n points, a monotonically decreasing function ϕ : R+ → R

+, the goal

is to choose a set C of k centers (not necessarily among the n given points), that maximize
∑

p∈P ϕ
(

d(p, C)
)

, where d(p, C) = minc∈C ‖p− c‖.

Our result

We obtain an nε−O(d)

time algorithm for this problem that achieves (1− ε)-approximation

for points in R
d.

Related work

Maximum coverage problems, such as partial coverage by disks, were studied in the past

[15]. These problems can be interpreted as a k-service problem, where the function is 1

within distance r from a facility, and zero otherwise. In particular, Chaplick et al. [3]

showed a PTAS for covering a maximum number of points, out of a given set of disks in the

plane. Our result implies a similar result in higher dimensions, except that we consider the

continuous case (i.e., our results yields a PTAS for covering the maximum number of points

using k unit disks). Cohen-Addad et al. [7] showed that local search leads to a PTAS for

k-median and k-means clustering in low dimensions (and also in minor-free graphs). In [5] it

was shown that the local search for k-means can be made faster achieving the runtime of

n · k · (log n)(d/ε)O(d)

. In [6] near-linear time approximation schemes were obtained for several

clustering problems improving on an earlier work (in particular, [12]). The authors achieve

the runtime of 2(1/ε)O(d2)

n(log n)O(1). The techniques from the above works do not seem

to be able to give near-linear time solution for the k-service problem, unfortunately. For

instance, consider the special case of the k-service problem with k = 1 and where the service

function is 1 within distance r from a facility, and zero otherwise (the maximum coverage

problem as above). Even for this very special case of the problem there is no algorithm

known running in time no(d) where d is the dimension of the underlying space. The special

case of k = 1 is a significant obstacle towards obtaining near-linear time algorithms for the

k-service problem.

Another related line of work is on the kernel density estimation problem where a set P of

n points is given and the goal is to preprocess P such that for an arbitrary query point c

one can efficiently approximate
∑

p∈P ϕ
(

d(p, c)
)

. The goal is to answer such queries much

faster than in O(nd) time, which is just the linear scan. For various service functions ϕ and

distance functions d significantly faster algorithms are known [14, 4, 1]. Despite the similarity,

however, finding a point (center) c that (approximately) maximizes the sum
∑

p∈P ϕ
(

d(p, c)
)

seems to be a much harder problem [13].1 Our work can be seen as a generalization of the

latter problem where our goal is to pick k centers instead of one center.

In a another work, Friggstad et al. [11] addressed the clustering problem in the setting

with outliers.

1 In particular, to find such a point, [13] use a heuristic that iteratively computes the gradient (mean
shift vector) to obtain a sequence of points that converge to a local maxima (mode) of the density.
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Balanced divisions

One of the building blocks we need is balanced divisions for Voronoi diagrams. This is present

in the recent paper of Cohen-Addad et al. [7]. The idea of balanced divisions seems to go

back to the work of Cohen-Addad and Mathieu [8]. Chaplick et al. [3] also prove a similar

statement for planar graphs.

For the sake of completeness, we include the proof of the desired balanced divisions

we need in Appendix A. Both here and [7] uses the Voronoi separator of Bhattiprolu and

Har-Peled [2] as the starting point to construct the desired divisions. The Voronoi divisions

we construct here are slightly stronger than the one present in [7] – all the batches in the

division are approximately of the same size, and each one has a small separator from the rest

of the point set.

Clustering and submodularity

Work using submodularity in clustering includes Nagano et al. [16] and Wei et al. [17].

Nagano et al. [16] considers the problem of computing the multi-way cut, that minimizes the

average cost (i.e., number of edges in the cut divided by the number of clusters in the cut).

Wei et al. [17] also studies such partitions with average cost target function. These works do

not have any direct connection to what is presented here, beyond the usage of submodularity.

Paper organization

We define the problem formally in Section 2, and review some necessary tools including

submodularity and balanced subdivisions. Section 3 describes how to find a good exchange

for the current solution. We describe the local search algorithm in Section 4. The main

challenge is to prove that if the local search did not reach a good approximation, then there

must be a good exchange that improves the solution – this is proved in Section 5.

2 Preliminaries

Notations

In the following, we use X +x and X−x as a shorthand for X∪{x} and X \{x}, respectively.

Given a point p ∈ R
d, and a set D ⊆ R

d, we denote by d(p, D) = minf∈D ‖p− f‖ the

distance of p from D. A point in D realizing this distance is the nearest-neighbor to p in D,

and is denoted by nn(p, D) = arg minc∈D ‖c− p‖.

2.1 Service function and problem statement

A service function is a monotonically non-increasing function ϕ : R+ → R
+. In the following,

given x ≥ 0, assume that one can compute, in constant time, both ϕ(x) and ϕ−1(x).

Given a point p ∈ R
d, and a center c ∈ R

d, the quality of service that c provides p is

ρ(c, p) = ϕ
(

‖p− c‖
)

. For a set of centers C, the quality of service it provides to p is

ρ(C, p) = max
c∈C

ρ(c, p) = ρ(nn(p, C), p).

The service to P provided by the set of centers C, or just profit, is

ρ(C) = ρ(C, P ) =
∑

p∈P

ρ(C, p).

In the k-service problem, the task is to compute the set C∗ of k points that realizes

optk(P ) = max
C⊆Rd,|C|=k

ρ(C, P ).

SWAT 2020
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2.2 Submodularity

The above is a submodular optimization problem. Indeed, consider a center point c, and a

set of centers C. The cell of c, in the Voronoi partition induced by C, is

cl(c, C) =
{

p ∈ P
∣

∣‖c− p‖ < d(p, C − c)
}

.

◮ Definition 1. The marginal value of c is

∇(c, C) = ρ(C + c, P )− ρ(C − c, P ) =
∑

p∈cl(c,C+c)

(ρ(C + c, p)− ρ(C − c, p)).

In words, this is the increase in the service that one gets from adding the center c.

For two sets of centers D ⊆ C, and a center c, observe that cl(c, C + c) ⊆ cl(c, D + c). In

particular, we have

∇(c, D) =
∑

p∈cl(c,D+c)

(ρ(c, p)− ρ(D, p)) ≥
∑

p∈cl(c,C+c)

(ρ(c, p)− ρ(D, p))

≥
∑

p∈cl(c,C+c)

(ρ(c, p)− ρ(C, p)) = ∇(c, C).

This property is known as submodularity.

2.3 Balanced divisions

For a point set P ⊆ R
d, the Voronoi diagram of P , denoted by V(P ) is the partition of space

into convex cells, where the Voronoi cell of p ∈ P is

CP (p) =
{

q ∈ R
d

∣

∣ ‖q − p‖ ≤ d(q, P − p)
}

,

where d(q, P ) = mint∈P ‖q − t‖ is the distance of q to the set P , see [9] for more details on

Voronoi diagrams.

◮ Definition 2. Let P be a set of points in R
d, and P1 and P2 be two disjoint subsets of P .

The sets P1 and P2 are Voronoi separated in P if for all p1 ∈ P1 and p2 ∈ P2, we have that

their Voronoi cells are disjoint – that is, CP (p1) ∩ CP (p2) = ∅. That is, the Voronoi cells of

the pointsets are non-adjacent.

◮ Definition 3. Given a set P of n points in R
d, a set of pairs {(B1, ∂1), . . . , (Bm, ∂m)} is

a Voronoi α-division of P , if for all i, we have

(i) B1, . . . , Bm are disjoint,

(ii)
⋃

j Bj = P ,

(iii) pointset ∂i Voronoi separates Bi from P \Bi in the Voronoi diagram of P ∪ ∂i in the

sense of Definition 2, and

(iv) |Bi| ≤ α.

The set Bi is the ith batch, and ∂i is its boundary.

A balanced coloring is a coloring χ : P → {−1, +1} of P by ±1, such that χ(P ) =
∑

p∈P χ(p) = 0. For a set X ⊆ P , its discrepancy is |χ(X)|. We need the following balanced

α-division result. Since this result is slightly stronger than what is available in the literature,

and is not stated explicitly in the form we need it, we provide a proof for the sake of

completeness in Appendix A.
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◮ Theorem 4. Given a set P of n points in R
d, parameters δ ∈ (0, 1) and α = Ω(1/δd+1),

and a balanced coloring χ of P , one can compute in polynomial time, a Voronoi α-division

D = {(B1, ∂1), . . . , (Bm, ∂m)}, such that the following holds:

(A)
⋃

Bi = P , and the batches B1, . . . , Bm are disjoint.

(B) m = O(n/α).

(C) For all i, we have the following properties:

(C.i) the set ∂i Voronoi separates Bi from P \Bi.

(C.ii) (1 − δ)α ≤ |Bi| ≤ α (except for the last batch, which might be of size at least

(1− δ)α, and at most size 2α).

(C.iii) |∂i| ≤ δ |Bi|.

(C.iv) |χ(Bi)| ≤ δ |Bi|.

3 Computing a good local exchange (if it exists)

◮ Lemma 5 (Computing a good single center). Let P be a set of n points in R
d, and let

C be a set of k centers. Given a parameter ε ∈ (0, 1), one can (1 − ε)-approximate the

center c ∈ R
d that maximizes the marginal value in (n/ε)O(d) time. Formally, we have

∇(c, C) ≥ (1− ε) maxf∈Rd\C ∇(f, C).

Proof. Let ρ = ρ(C, P ), g = arg maxf∈P ∇(f, C), ∆ = ∇(g, C), and u = ϕ(0). Clearly, the

profit of the optimal solution, after adding any number of centers to C (but at least one), is

somewhere in the interval [ρ + ∆, nu] ⊆ [ρ + ∆, ρ + n∆], which follows from u ≤ (ρ/n) + ∆.

For a point p ∈ P , let

v(p, i) = min(ρ(C, p) + ℓ(i), u) where ℓ(i) = (1 + ε/4)i ε∆

4n
,

for i = 0, . . . , N , where N =
⌈

16(ln n)/ε2
⌉

. Let r(p, i) = ϕ−1
(

v(p, i)
)

(this is the radius from

p where a center provides service v(p, i)).

Place a sphere of radius r(p, i) around each point p ∈ P , for i = 0, . . . , N . Let F be the

resulting set of spheres. Compute the arrangement A(F), and place a point inside each face

of this arrangement. Let Q be the resulting set of points. Compute the point c ∈ Q realizing

maxf∈Q∇(f, C), and return it as the desired new center.

To show the correctness, consider the (open) face F of A(C), that contains c∗, where c∗

is the optimal center to be added. Let f be any point of Q in F . Let

∇(f, p) = ρ(f ∪ C, p)− ρ(C, p).

Define ∇(c∗, p) similarly. Clearly, we have ∇(f, C) =
∑

p∈P ∇(f, p). Let P1 be all the points

p of P such that ∇(c∗, p) ≤ ∇(f, p) + ε∆/(4n). Similarly, let P2 be all the points p of P ,

such that

∇(c∗, p) > ∇(f, p) + ε∆/(4n).

For any point p ∈ P2, by the choice of N , there exists an index i, such that ℓ(i) ≤ ∇(c∗, p) <

ℓ(i + 1). By the choice of f from the arrangement, we have that ∇(f, p) ≥ ℓ(i), which in

turn implies that

∇(f, p) ≤ ∇(c∗, p) < (1 + ε/4)∇(f, p) =⇒ ∇(f, p) ≥ (1− ε/2)∇(c∗, p).

We thus have the following

∇(f, C) =
∑

p∈P

∇(f, p) =
∑

p∈P1

∇(f, p) +
∑

p∈P2

∇(f, p)

SWAT 2020
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≥
∑

p∈P1

(

∇(c∗, p)−
ε∆

4n

)

+
∑

p∈P2

(1− ε/2)∇(c∗, p)

≥ (1− ε/2)
∑

p∈P

∇(c∗, p)−
ε∆

4
≥ (1− ε)∇(c∗, C).

The runtime follows from the observation that the number of faces in the arrangement is

(n/ε)O(d). ◭

◮ Lemma 6. Given a set P of n points in the plane, and a parameter k, one can compute

in polynomial time (i.e., nO(d)) a constant approximation to ρ
O

= optk(P ).

Proof. Follows by using Lemma 5 in a greedy fashion k times, with ε = 0.1, to get a set of k

centers. The quality of approximation readily follows from known results about submodularity

[18]. Indeed, let vi = ρ(Ci, P ) be the service provided by the first i centers computed.

By submodularity, and the quality guarantee of Lemma 5, we have that ∇(ci, Ci−1) ≥

(1 − ε)(ρ
O
− vi−1)/k. In particular, setting ∆0 = ρ

O
, and ∆i = ρ

O
− vi−1, we have that

∆i ≤ (1− (1− ε)/k)∆i−1. As such, ∆k ≤ exp(−k(1− ε)/k)∆0 = ρ
O

/eε−1 ≤ ρ
O

/2. Namely,

we have vk ≥ ρ
O

/2, as desired. ◭

For two sets of points S and C we define ∇(S, C) = ρ(C + S, P )− ρ(C − S, P ).

◮ Lemma 7. Let P be a set of n points in R
d, and let C be a set of k centers. Given an

integer t ≥ 1, a parameter ε ∈ (0, 1), in (n/ε)O(dt) time, one can (1 − ε)-approximate the

set S ⊂ R
d with |S| = t that maximizes the marginal value in (n/ε)O(td) time. Formally, we

have ∇(S, C) ≥ (1− ε) maxF ⊂Rd, |F |=t∇(F, C).

Proof. Consider the optimal set F of size t. Denote it by S∗. Compute the same arrangement

as in the proof of Lemma 5. Let F1, . . . , Ft be the faces of A(C) that contain the t points of

S∗. Pick an arbitrary point from each Fi and let S be the resulting point set of size t. Define

∇(S, p) = ρ(S ∪ C, p)− ρ(C, p).

and similarly ∇(S∗, p).

As in the proof of Lemma 5, let P1 be all the points of P such that ∇(S∗, p) ≤ ∇(S, p) +

ε∆/4n and P2 be all the points of P such that

∇(S∗, p) > ∇(S, p) + ε∆/4n.

We also conclude that ∇(S, p) ≥ (1− ε/2)∇(S∗, p) for all p ∈ P2. We get

∇(S, C) =
∑

p∈P

∇(S, p) =
∑

p∈P1

∇(S, p) +
∑

p∈P2

∇(S, p)

≥
∑

p∈P1

(

∇(S∗, p)−
ε∆

4n

)

+
∑

p∈P2

(1− ε/2)∇(S∗, p)

≥ (1− ε/2)
∑

p∈P

∇(S∗, p)−
ε∆

4
≥ (1− ε)∇(S∗, C).

The runtime follows from the observation that the number of faces in the arrangement is

(n/ε)O(d) and that it is sufficient to consider subsets of size t of the faces. ◭
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4 The local search algorithm

The algorithm starts with a constant approximation, using the algorithm of Lemma 6. Next,

the algorithm performs local exchanges, as long as it can find a local exchange that is

sufficiently profitable.

Specifically, let α = O(1/εd), and let ξ = O(α/ε) = O(1/εd+1). Assume that one can

“quickly” check given a set of k centers C, whether there is a local exchange of size ξ, such

that the resulting set of centers provides service (1 + ε2/(16k))ρcurr, where ρcurr is the service

of the current solution. To this end, the algorithm considers at most kξ possible subsets of

the current set of centers that might be dropped, and for each such subset, one can apply

Lemma 7, to compute (approximately) the best possible centers to add. If all such subsets

do not provide an improvement, the algorithm stops.

Running time analysis

The algorithm starts with a constant approximation. As such, there could be at most O(k/ε2)

local exchanges before the algorithm must terminate. Finding a single such exchange requires

applying Lemma 7 kξ times. Lemma 7 is invoked with t = ξ. The resulting running time is

kξ(n/ε)O(dξ) = (n/ε)O(d/εd+1), where we remember that k ≤ n.

5 Correctness of the local search algorithm

Here we show that if the local algorithm has reached a local optimum, then it reached a

solution that is a good approximation to the optimal solution.

◮ Remark 8. In the following, we simplify the analysis at some points, by assuming that the

local solution takes an exchange if it provides any improvement (the algorithm, however,

takes an exchange only if it is a significant improvement). Getting rid of the assumption and

modifying the analysis is straightforward, but tedious.

5.1 Notations

Let L and O be the local and optimal set of k centers. Let U = L∪O. Assign a point of U color

+1 if it is in O and −1 if it is in L (for the sake of simplicity of exposition assume no point

belong to both sets). Let γ be a sufficiently large constant. For δ = ε/γ and α = O(1/δd+1),

compute a α-division D = {(B1, ∂1), . . . , (Bm, ∂m)} of L ∪ O, using Theorem 4.

Let Li = Bi ∩ L, Li = Li ∪ ∂i, Oi = Bi ∩ O, Oi = Oi ∪ ∂i, li = |Li|, and oi = |Oi|,

for all i. Let L =
⋃

i Li, and O =
⋃

i Oi. Let ∂ =
⋃

i ∂i. By construction, we have that
∑

i |∂i| ≤ δ2k ≤ εk/4 if γ is a sufficiently large constant.

5.2 Submodularity implies slow degradation

The following is a well known implication of submodularity. We include the proof for the

sake of completeness.

◮ Lemma 9. Let C be a set of k centers. Then, for any t ≤ k, there exists a subset C ′ ⊆ C

of size t, such that ρ(C ′) ≥ t
k ρ(C), where ρ(C) = ρ(C, P ).

Proof. Let C0 = C. In the ith iteration, we greedily remove the point of Ci−1 that is

minimizing the marginal value. Formally,

fi = arg min
c∈Ci−1

∇(c, Ci−1 − c),

SWAT 2020
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and Ci = Ci−1 − fi. By submodularity, we have that ∇(fi, Ci−1 − fi) ≤ ρ(Ci−1)/ |Ci−1|. As

such, we have

ρ(Ci) = ρ(Ci−1)−∇(fi, Ci−1 − fi) ≥

(

1−
1

k − i + 1

)

ρ(Ci−1) =
k − i

k − i + 1
ρ(Ci−1)

≥
k − i

k − i + 1
·

k − i + 1

k − i + 1 + 1
· · ·

k − 1

k
ρ(C0) =

k − i

k
ρ(C).

The claim now readily follows by taking the set Ck−t. ◭

5.3 Boundary vertices are not profitable

First, we argue that adding the boundary points, does not increase the profit/service

significantly, for either the local or optimal solutions.

◮ Lemma 10. ρ
(

L
)

≤ (1 + ε/4)ρ(L) and ρ
(

O
)

≤ (1 + ε/4)ρ(O).

Proof. Let p = |∂|. Consider a point c ∈ ∂, and observe that ∇(c, L) ≤ ρ(L)/k. This is a

standard consequence of submodularity and greediness/local optimality. To see that, order

the centers of L = {c1, . . . , ck} in an arbitrary order. Let ∇i = ∇(ci, {c1, . . . , ci−1}) ≥ 0, for

i = 1, . . . , k, and observe that ρ(L) =
∑k

i=1∇i. As such, there exists an index i, such that

∇i ≤ ρ(L)/k. By submodularity, we have that ∇(ci, L− ci) ≤ ∇(ci, {c1, . . . , ci−1}) = ∇i ≤

ρ(L)/k, and ∇(c, L− ci) ≥ ∇(c, L). Assume, for the sake of contradiction, that ∇(c, L) >

ρ(L)/k. We have that

ρ(L− ci + c) = ρ(L)−∇(ci, L− ci) +∇(c, L− ci) ≥ ρ(L)−
ρ(L)

k
+∇(c, L)

> ρ(L)−
ρ(L)

k
+

ρ(L)

k
= ρ(L).

But the local search algorithm considered this swap, which means that L− ci + c can not be

more profitable than the local solution. A contradiction (see Remark 8).

Setting ∂ = {f1, . . . , fp}, we have

ρ
(

L
)

= ρ(L) +

p
∑

i=1

∇(fi, L + f1 + · · ·+ fi−1) ≤ ρ(L) +

p
∑

i=1

∇(fi, L) ≤

ρ(L) + pρ(L)/k ≤ (1 + ε/4)ρ(L),

since p = |∂| ≤ εk/4.

The second claim follows by a similar argument. ◭

5.4 If there is a gap, then there is a swap

The contribution of the clusters Li and Oi is

∇Li = ∇
(

Li, L \ Li

)

. and ∇Oi = ∇
(

Oi, O \ Oi

)

, (5.1)

respectively. Notice that, because of the separation property, the points in P that their

coverage change when we move from L \ Li to L, are points that are served by ∂i ⊆ L \ Li

(same holds for O \ Oi and O).

This implies that

∇(L, ∂) =
∑

i

∇Li and ∇(O, ∂) =
∑

i

∇Oi.
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In the following, we assume that ρ(L) < (1 − ε)ρ(O). By Lemma 10 this implies that

ρ
(

L
)

≤ (1 + ε/4)ρ(L) < (1 + ε/4)(1− ε)ρ(O) ≤ (1− ε/2)ρ(O) ≤ (1− ε/2)ρ
(

O
)

. As such, we

have

ρ
(

L
)

< (1− ε/2)ρ
(

O
)

=⇒ ρ(∂) +∇(L, ∂) < (1− ε/2)(ρ(∂) +∇(O, ∂))

=⇒ ∇(L, ∂) < (1− ε/2)∇(O, ∂)− (ε/2)ρ(∂)

=⇒ ∇(L, ∂) < (1− ε/2)∇(O, ∂)

=⇒ (ε/2)∇(O, ∂) <
∑

i

(∇Oi −∇Li).

By averaging, this implies that there exists an index t, such that

∇Ot −∇Lt >
ε

2k
∇(O, ∂) >

ε

2k

(

∇(O, ∂)−∇(L, ∂)
)

(5.2)

=
ε

2k

(

ρ
(

O
)

− ρ
(

L
))

≥
ε

2k
·

ε

2
ρ
(

O
)

≥
ε2

4k
ρ
(

O
)

, (5.3)

where in the second to last inequality we use that ρ
(

L
)

< (1− ε/2)ρ
(

O
)

. Namely, there is a

batch where the local and optimal solution differ significantly.

5.4.1 An unlikely scenario

Assume that |Lt| ≥ |Ot|+ |∂t|. We then have that

ρ(L + ∂t − Lt + Ot) = ρ(L + ∂t)−∇Lt +∇Ot ≥ ρ(L) +
ε2

4k
ρ
(

O
)

.

But this is impossible, since the local search algorithm would have performed the exchange

L + ∂t − Lt + Ot, since |∂t|+ |Lt|+ |Ot| is smaller than the size of exchanges considered by

the algorithm.

5.4.2 The general scenario

◮ Lemma 11. There exists a subset Y ⊆ Ot, such that |Lt| ≥ |Y |+ |∂t|, and

∇
(

Y, O \ Ot

)

≥ ∇Lt +
ε2

8k
ρ
(

O
)

,

see Eq. (5.1).

Proof. We have that (ε/2)∇(O, ∂) <
∑

i(∇Oi −∇Li). Subtracting (ε/8)∇(O, ∂) from both

sides implies that (ε/4)∇(O, ∂) <
∑

i((1− ε/8)∇Oi −∇Li). This in turn implies that there

exists t such that (1− ε/8)∇Ot −∇Lt > (ε/(4k))∇(O, ∂). Arguing, as above, we have that

(1− ε/8)∇Ot −∇Lt > (ε2/(8k))ρ
(

O
)

.

Consider the following (submodular) function

f(X) = ∇
(

X, O \ Ot

)

,

By Lemma 9 (or more precisely arguing as in this lemma), we have that there exists a set

Y ⊂ Ot, such that |Y | = (1− ε/8) |Ot| and f(Y ) ≥ (1− ε/8)f(Ot) = (1− ε/8)∇Ot. As such,

we have that

∇
(

Y, O \ Ot

)

≥ (1− ε/8)∇Ot ≥ ∇Lt + (ε2/8k)ρ
(

O
)

.
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As for the size of Y . Observe that by Theorem 4, we have |∂i| ≤
ε
γ (|Oi| + |Li|) and

∣

∣|Oi| − |Li|
∣

∣ ≤ ε
γ (|Oi| + |Li|). This readily implies that |Oi| ≤ (1 + 4ε/γ) |Li| , and |Li| ≤

(1 + 4ε/γ) |Oi| , if γ is sufficiently large. As such, we have that

|Lt| ≥
|Ot|

1 + 4ε/γ
≥ (1− 4ε/γ) |Ot| = (1− ε/8) |Ot|+ (ε/8− 4ε/γ) |Ot|

≥ |Y |+
ε

16
|Ot| ≥ |Y |+ |∂i| ,

if γ ≥ 64. ◭

◮ Lemma 12. The local search algorithm computes a (1− ε)-approximation to the optimal

solution.

Proof. If not, then, arguing as above, there must be a batch for which there is an exchange

with profit at least (ε2/4k)ρ
(

O
)

(see Eq. (5.3)). By Lemma 11, we can shrink the optimal

batch Ot, such that the exchange becomes feasible, and is still profitable (the profit becomes

(ε2/8k)ρ
(

O
)

). But that is impossible, since by arguing as above (i.e., the unlikely scenario),

we have that this swap would result in a better local solution, and the exchange is sufficiently

small to have been considered. Specifically, the local search algorithm uses Lemma 7, say

with ε = 1/2, ensures that the local search algorithm would find an exchange with half this

value, and would take it. A contradiction. ◭

5.5 The result

◮ Theorem 13. Let P be a set of n points in R
d, let ε ∈ (0, 1) be a parameter, let ϕ : R+ →

R
+ be a service function, and let k ≤ n be an integer parameter. One can compute, in

(n/ε)O(d/εd+1) time, a set of k centers C, such that ρ(C, P ) ≥ (1− ε)optk(P ), where optk(P )

denotes the optimal solution using k centers.

6 Discussion

We presented an algorithm that runs in polynomial time for any constant ε > 0 and any

constant dimension d and achieves a (1−ε)-approximation. The dependency on the dimension

d is doubly exponential, however. A natural question is whether the dependency on the

dimension d in the runtime can be improved. Perhaps by considering some special cases of

the problem, for more specific service function, such as ϕ(ℓ) = 1
1+ℓ or ϕ(ℓ) = 1

1+ℓ2 (i.e., the

service quality drops roughly linearly or quadraticly with the distance).

Our algorithm finds a subset C ⊆ R
d of size k that approximately maximizes the objective

function. A close variant of the problem asks to find a subset C ⊆ R
d of size k that has an

additional constraint that C ⊆ P . Can we obtain an algorithm for this problem with the

same asymptotic runtime for d > 2? The main difficulty is that we would need a variant of

Theorem 4 with an additional property ∂i ⊆ P for all i but such a division does not exist

even for d = 3. (For d = 2 using planar graph divisions on the Voronoi diagram directly

implies the desired result.)

Finally, one can ask a similar question about clustering in graphs. Specifically, given a

graph on n vertices P , we would like to select k vertices C that approximately maximizes
∑

p∈P minc∈C ϕ
(

d(p, c)
)

, where d(p, c) is the shortest-path distance from p to c. Can we

achieve a polynomial time algorithm for arbitrary small constant ε > 0 if the graph is planar

or come from some other class of graphs?
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A Balanced Voronoi division

We need the following variant of a result of Bhattiprolu and Har-Peled [2].

◮ Theorem 14. Let P be a set of n′ points in R
d, where every point has a positive integer

weight, such that the total weight of the points is n, and let α be parameter. Furthermore,

assume that no point has weight that exceeds α. Then, one can compute, in expected O(n)

time, a ball , and a set Z that lies on the boundary of , such that

(i) |Z| ≤ c1α1−1/d,

(ii) the total weight of the points of P inside is at least α and at most c2α,

(iii) Z is a Voronoi separator of the points of P inside from the points of P outside .

Here c1, c2 > 0 are constants that depends only on the dimension d.

The points of the separator Z are guards.

A.1 A division using the above separator

A.1.1 Algorithm

We start with a set P of n points, and a parameter α. The idea is to repeatedly extract a

set of weight (roughly) α from the point set, separate it, remove it, and put the set of guards

associated with it back into the set.

To this end, let α be a parameter, such that

c1α1−1/d < α/8 ⇐⇒ 8c1 < α1/d ⇐⇒ α > (8c1)d,

where c1 is the constant from Theorem 14.

For an unweighted set of points X and a real number τ > 0, let τ ∗X denote the set of

points, where every points has weight τ .

The algorithm for constructing the division is the following:

1. P0 ← P . Initially all the points in P0 have weight 1.

2. i← 1.

3. While Pi−1 has total weight larger than α do:

3.1 (i, Zi)← ball and separator computed by Theorem 14 for Pi−1 with parameter α.

3.2 Ii ← Pi−1 ∩ i. // All points inside ball to be removed

3.3 Gi ← Ii \ P . // The old guards in the ball

3.4 Bi = P ∩ Ii // The batch of original points

3.5 Pi = (Pi−1 \ i) ∪ (τi ∗ Zi), where τi = ⌈(α/4)/ |Zi|⌉.

3.6 ∂i = Zi ∪Gi // The set of guards for the batch Bi

3.7 i← i + 1.

4. m← i

5. Bm = Pm−1 ∩ P , and ∂m = Pm−1 \Bm.

6. Return D = {(B1, ∂1), . . . , (Bm, ∂m)}.
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A.1.2 Analysis

◮ Lemma 15. Consider the Voronoi diagram of V(P ∪ ∂i). There is no common boundary

in this Voronoi diagram between a cell of a point of Bi and a cell of a point of P \Bi.

Proof. Consider a point p that is in equal distance to a point f ∈ Bi, and a point g ∈ P \Bi,

and furthermore, all other points of P \ {f, g} are strictly further away from p.

The claim is that d(p, ∂i) < ‖p− f‖ = ‖p− g‖. Namely, the region of common boundary

between f and g in V(P ) is completely covered by cells of ∂i in V(P ∪ ∂i).

If g ∈ Pi, then Zi separates (in the Voronoi interpretation) f ∈ Bi ⊆ Ii from all the

points of Pi ∩ P ∋ g, which implies the claim.

As such, it must be that g ∈ Bj , for some j < i. Namely, there is a guard gj ∈ Zj , that

separates g from f , and its cell contains p. That is ‖p− gj‖ < ‖p− f‖, and gj ∈ Pj . If

gj ∈ ∂i then the claim holds.

Otherwise, we apply the same argument again, this time to gj and f . Indeed, gj was

removed (from Pk) in some iteration k, such that j < k < i. Namely gj ∈ k, and f /∈ k. The

point p is closer to gj then to f . If p ∈ k then there is a guard gk ∈ Zk that is closer to p

than f , by the separation property. Otherwise, it is easy to verify that the Voronoi cells of

the guards of Zk in V(Pk−1 ∪ Zk) cover completely the portion of the Voronoi cells of points

in Pk−1 ∩ k outside k, in the Voronoi diagram V(Pk−1). This readily implies that there is a

closer guard gk ∈ Zk to p than gj . In either case, we continue the argument inductively on

(gk, f).

By finiteness, it follows that there must be a guard g′ ∈ ∂i that is closer to p than f ,

which implies the claim. ◭

◮ Observation 16. (A) For all i, we have τi =
⌈

α/4
|Zi|

⌉

≥ α/4
|Zi| ≥

α/4
c1α1−1/d ≥

α1/d

4c1
.

(B) As such, for all i, Ii contains at most c2α/ minj αj = O(α1−1/d) points that are not

in P . That is, we have |Ii \Bi| = O(α1−1/d).

(C) It follows that |∂i| = |Ii \Bi|+ |Zi| = O(α1−1/d).

◮ Lemma 17. Given a set P of n points in R
d, and a parameter α, one can compute in

polynomial time, a division D = {(B1, ∂1), . . . , (Bm, ∂m)}, such that the following holds:

(A)
⋃

Bi = P , and the clusters B1, . . . , Bm are disjoint.

(B) m = O(n/α).

(C) For all i, we have the following properties:

(C.i) the set ∂i separates Bi from P \Bi.

(C.ii) |Bi| = O(α).

(C.iii) |∂i| = O(α1−1/d).

(D) For ∂ =
⋃

i ∂i, we have that |∂| = O(n/α1/d).

Furthermore, one can modify the above construction, so that Cii is replaced by |Bi| = Θ(α).

Proof. For the bound on number of clusters, observe that every iteration of the algorithm

reduces the weight of the working set Pi by at least α/2 – indeed, the weight of Bi is at least

α, and the total weight of points of Zi (after multiplying their weight by τi) is at most α/2.

Thus implying the claim.

All the other claims are either proved above, or readily follows from the algorithm

description.

The modification of Cii follows by observing that we can merge clusters, and there are

Θ(n/α) clusters with Ω(α) points of P , by averaging. As such, one can merge O(1) clusters
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that have o(α) points of P into a cluster that has Ω(α) points of P , thus implying the

modified claim. ◭

◮ Theorem 4. Given a set P of n points in R
d, parameters δ ∈ (0, 1) and α = Ω(1/δd+1),

and a balanced coloring χ of P , one can compute in polynomial time, a Voronoi α-division

D = {(B1, ∂1), . . . , (Bm, ∂m)}, such that the following holds:

(A)
⋃

Bi = P , and the batches B1, . . . , Bm are disjoint.

(B) m = O(n/α).

(C) For all i, we have the following properties:

(C.i) the set ∂i Voronoi separates Bi from P \Bi.

(C.ii) (1 − δ)α ≤ |Bi| ≤ α (except for the last batch, which might be of size at least

(1− δ)α, and at most size 2α).

(C.iii) |∂i| ≤ δ |Bi|.

(C.iv) |χ(Bi)| ≤ δ |Bi|.

Proof. We compute a division of P using Lemma 17, with parameter α′ = O(δα) = Ω(1/δd),

such that (i) the maximum size of a batch is strictly smaller than δα/2, and (ii) c4(α′)1−1/d <

δα′, where c4 is some prespecified constant. Let D′ = {(B′
1, ∂′

1), . . . , (B′
τ , ∂′

τ )}, be the resulting

division. Let ∆i = χ(∂′
i), and observe that

∑

i ∆i = χ(P ) = 0. There is a permutation π of

the batches, such that for any prefix j, we have |
∑j

i=1 ∆π(i)| ≤ maxi |Bi| ≤ δα/2 = D. This

follows readily by reordering the summation, such that one adds batches with positive (resp.,

negative) balance if the current prefix sum is negative (resp., positive), and repeating this

till all the terms are used2.

We break the permutation π into minimum number of consecutive intervals, such that

total size of batches in each interval is at least (1 − δ)α. Merging the last two interval if

needed to comply with the desired property. The batch formed by a union of an interval can

have discrepancy at most 2D = 2(δα/2) = δα, as desired.

All the other properties follows readily by observing that merging batches, results in valid

batches, as far as separation. ◭

2 This is the same idea that is used in the Riemann rearrangement theorem.


