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Abstract	11 
Odours	 are	 transported	 in	 turbulent	 plumes	 resulting	 in	 rapid	 concentration	12 
fluctuations1,2	 that	 contain	rich	information	about	the	olfactory	scenery,	such	as	13 
odour	source	composition	and	location2–4.	Yet	whether	the	mammalian	olfactory	14 
system	 has	 access	 to	 the	 underlying	 temporal	 structure	 to	 extract	 information	15 
about	the	environment	remains	unknown.	Here,	we	show	that	10	ms	odour	pulse	16 
patterns	 result	 in	 distinct	 responses	 in	 olfactory	 receptor	 neurons.	 In	 operant	17 
conditioning	 experiments	 mice	 discriminated	 temporal	 correlations	 of	 rapidly	18 
fluctuating	 odours	 at	 frequencies	 of	 up	 to	 40	 Hz.	 In	 imaging	 and	19 
electrophysiological	 recordings,	 such	 correlation	 information	 could	 be	 readily	20 
extracted	 from	the	activity	of	mitral	and	 tufted	cells,	 the	output	of	 the	olfactory	21 
bulb.	 	Furthermore,	we	show	that	temporal	correlation	of	odour	concentrations5	22 
reliably	predicts	whether	odorants	emerge	from	the	same	or	different	sources	in	23 
naturalistic	environments	with	complex	airflow.	Training	mice	on	such	tasks	and	24 
probing	with	 synthetic	 correlated	 stimuli	 at	 different	 frequencies	 suggests	 that	25 
mice	can	indeed	use	the	temporal	structure	of	odours	to	extract	information	about	26 
space.	 Our	 work	 thus	 demonstrates	 that	 the	 mammalian	 olfactory	 system	 has	27 
access	to	unexpectedly	fast	temporal	features	in	odour	stimuli.	This	in	turn	endows	28 
animals	with	the	capacity	to	overcome	key	behavioural	challenges	such	as	odour	29 
source	 separation5,	 figure-ground	 segregation6	 and	 odour	 localisation7,	 by	30 
extracting	information	about	space	from	temporal	odour	dynamics.	31 

Main	text	32 
The	 turbulent	 nature	of	 air1,2,4,8	 as	well	 as	water9,10	 flow	 results	 in	 complex	 temporal	33 
fluctuations	of	odour	concentrations	that	depend	on	the	distance	and	direction	of	odour	34 
sources1–4,8,10.	Insects	are	thought	to	use	the	temporal	structure	of	odour	plumes	to	infer	35 
e.g.	odour	source	location4,7,11–13	or	composition13–15.	Mammalian	olfaction	on	the	other	36 
hand	has	generally	been	considered	a	slow	sense.	Individual	sniffs	are	thought	to	be	the	37 
unit	 of	 information16,	 implying	 that	 fast	 odour	 concentration	 changes	 (at	 sub-sniff	38 
resolution)	 should	 be	 inaccessible	 to	 the	 mammalian	 olfactory	 system.	 However,	 the	39 
neural	 circuitry	 of	 e.g.	 the	 mouse	 olfactory	 bulb	 (OB)	 is	 in	 principle	 capable	 of	40 



millisecond-precise	action	potential	firing17,18,	and	is	endowed	with	rich	computational	41 
resources	 that	 could	be	employed	 to	extract	 fine	 temporal	 information	 from	dynamic	42 
inputs19.	Here,	we	 show	 that	 the	mouse	 olfactory	 system	has	 access	 to	 fast,	 sub-sniff	43 
temporal	patterns	in	the	odour	scenery	and	that	mice	can	use	this	information	to	detect	44 
high-frequency	odour	correlations	enabling	source	separation.		45 

Fast	odour	dynamics	encoded	in	OB	inputs	46 

Normal	airflow	is	characterized	by	complex,	often	turbulent,	flow	patterns	and	imposes	47 
a	 rich	 temporal	 structure	 on	 odour	 concentration	 profiles	 with	 significant	 power	 in	48 
frequencies	well	above	typical	sniff	rates	(Fig.	1a).	To	assess	whether	the	mouse	olfactory	49 
system	 has	 access	 to	 this	 frequency	 regime,	 we	 designed	 an	 odour	 delivery	 system	50 
capable	 of	 reliably	 presenting	 odours	 with	 a	 bandwidth	 beyond	 50	 Hz	 (Fig.	1b,	51 
Supplementary	Methods	Fig.	1).	As	prototypical,	simplistic	high	frequency	stimuli	we	52 
employed	two	10	ms	square	pulses	of	odour	separated	by	10	or	25	ms	(Fig.	1c).	Olfactory	53 
sensory	 neurons	 (OSN)	 are	 known	 to	 be	 slow	 in	 responding	 to	 odour	 stimuli20.	 Both	54 
epithelial	mucus	and	the	biochemical	transduction	cascade	act	as	low-pass	filters16,20,21,	55 
suggesting	that	individual	OSNs	cannot	directly	follow	rapidly	fluctuating	odour	stimuli.	56 
However,	 axons	 from	up	 to	10s	of	 thousands	of	OSNs	 that	 express	 the	 same	olfactory	57 
receptor	converge	onto	one	or	a	few	glomeruli	in	the	OB22.	This	organization	resembles	58 
the	auditory	system	where,	despite	the	relatively	low	temporal	resolution	of	individual	59 
cells,	population	responses	 faithfully	 report	high-frequency	 signals23.	Thus,	we	built	 a	60 
model	 of	 populations	 of	 noisy	 integrate-and-fire	 neurons	 with	 stimulus	 filtering	 and	61 
neuronal	 dynamics	 matching	 experimental	 data	 to	 explore	 whether	 this	 large	62 
convergence	could	aid	in	detecting	high	frequency	stimuli	in	OSNs	(Extended	Data	Fig.	63 
1).	Our	 simulation	 results	suggest	 that	 across	the	 thousands	of	OSNs	 that	 express	 the	64 
same	 OR	 –	 while	 still	 not	 directly	 following	 the	 odour	 profile	 –	 the	 population	 can	65 
faithfully	discriminate	between	such	10/25	ms	stimulation	(Extended	Data	Fig.	1d,f,h).	66 
Key	high-frequency	information	in	the	odour	profile	might,	therefore,	be	preserved	in	the	67 
inputs	to	the	OB.		68 

To	test	this	experimentally,	we	performed	Ca2+	imaging	experiments	in	anaesthetized	and	69 
awake	 mice	 expressing	 GCaMP6f	 in	 OSNs	 (Fig.	 1c-i,	 Extended	 Data	 Fig.	 2)	 whilst	70 
delivering	 odour	 pulses	 locked	 to	 inhalation	 (Fig.	 1c,d).	 Overall,	 responses	 for	 all	71 
glomeruli	were	highly	correlated	between	the	two	stimuli	(Fig.	1f,g).	Glomerular	activity	72 
did	not	directly	follow	the	10ms	or	25	ms	pulses	(Fig.	1f).	However,	in	1/3	of	glomeruli	73 
(n	=	33/100,	p	<	0.01),	responses	were	consistently	and	significantly	different	for	the	two	74 
stimuli	 (Fig.	1f-h,	Extended	Data	Fig.	2)	mirroring	the	 simulation	 results	 (Extended	75 
Data	 Fig.	 1).	Notably,	 just	 a	 few	dozen	 randomly	 chosen	glomeruli	were	 sufficient	 to	76 
discern	between	the	stimuli	at	>80%	success	rate	with	a	linear	classifier	(Fig.	1i,	see	also	77 
Extended	 Data	 Fig.	 1h).	 Expanding	 the	 stimulus	 set	 to	 different	 concentrations	 and	78 
multiple	pulses	(Extended	Data	Fig.	2)	confirmed	that	information	about	concentration	79 
and	 temporal	 patterns	 with	 features	 exceeding	 the	 25	 ms	 timescale	 is	 reliably	 and	80 
independently	preserved	in	the	population	of	OSNs.		 	81 



Discrimination	of	correlation	structure		82 

Can	 mice	 base	 behaviour	 on	 such	 high	 frequency	 stimuli?	 We	 trained	 mice	 in	 an	83 
automated	 go/no-go	 operant	 conditioning	 system	 (“AutonoMouse”24,	 Fig.	 2a,	84 
Supplementary	Video	1)	to	discriminate	between	high	frequency	stimuli.	To	ascertain	85 
that	the	brief	odour	pulses	were	delivered	during	inhalation	in	freely	moving	mice	we	86 
opted	for	2	second	pulse	trains	at	different	frequencies	with	constant	airflow	(Fig.	2b).	87 
We	found	that	mice	can	discriminate	whether	an	odour	is	presented	at	e.g.	4	Hz	or	20	Hz,	88 
yet	 the	 apparent	 “critical	 flicker	 frequency”	 (Fig.	 2c,	 Extended	 Data	 Fig.	 3)	 was	89 
significantly	lower	than	frequencies	OSNs	readily	represent	(Fig.	1,	Extended	Data	Fig.	90 
1,2).	However,	in	both	visual	and	auditory	systems,	conventional	flicker	fusion	frequency	91 
or	 gap	 detection	 thresholds	 substantially	 underestimate	 the	 temporal	 sensitivity,	92 
particularly	for	tasks	with	multiple	stimuli	present23,25,26:	In	vision,	for	example,	flicker	93 
fusion	frequency	is	around	60	Hz,	whereas	thresholds	for	detecting	synchrony	between	94 
stimuli	has	been	reported	to	be	3	ms26.	 	Thus,	we	wanted	to	probe	whether,	similarly,	95 
olfactory	tasks	involving	multiple	odours	reveal	behavioural	access	to	higher	frequencies.	96 
We	 presented	 stimuli	 composed	 of	 two	 odours	 fluctuating	 in	 a	 correlated	 or	 anti-97 
correlated	manner	 as	 the	 rewarded	 and	 unrewarded	 stimulus,	 respectively	 (and	 vice	98 
versa,	Fig.	 2d-f).	Mice	 readily	 learned	 to	 differentially	 respond	 to	 correlated	 or	 anti-99 
correlated	odours	 (Fig.	2h-k).	Gradually	 increasing	 the	 correlation	 frequency	 showed	100 
that	 animals	were	 capable	 of	 reliably	 detecting	 the	 correlation	 structure	 of	 stimuli	 at	101 
frequencies	of	up	to	40	Hz	(Fig.	2h,j,k).	As	a	population,	animal	performance	decreased	102 
by	 approximately	 5%	 per	 octave	 with	 performance	 significantly	 above	 chance	 at	103 
frequencies	of	up	to	40	Hz	(n	=	33	mice	in	two	cohorts	of	14	and	19	mice,	Fig.	2k).	To	104 
mitigate	 the	 risk	of	 animals	 using	non-intended	 cues	 for	discrimination,	 odours	were	105 
presented	from	changing	valve	combinations	(Fig.	2g,	Extended	Data	Fig.	4),	odour	flow	106 
was	 carefully	 calibrated	 (Fig.	 2e,	 Extended	 Data	 Fig.	 4d-e)	 and	 additionally	 varied	107 
randomly	 between	 trials	 such	 that	 neither	 flow	 nor	 valve	 clicking	 noises	 or	 average	108 
concentration	 provided	 any	 information	 about	 the	 nature	 of	 the	 stimulus	 (Extended	109 
Data	 Fig.	 4d-h).	 Consistent	with	 this,	when	 valve	 identities	were	 scrambled,	 animals	110 
performed	at	chance	(grey,	Fig.	2k).	Finally,	when	odour	presentation	was	changed	to	a	111 
new	set	of	valves,	performance	levels	were	maintained	(Fig.	2g-i	and	Extended	Data	Fig.	112 
4i-k),	indicating	that	only	intended	cues	(the	temporal	structure	of	odours)	were	used	113 
for	discrimination.	Performance	was	independent	of	the	odour	pair	used	(Extended	Data	114 
Fig.	3g)	and	maintained	for	 tasks	discriminating	correlated	 from	uncorrelated	(rather	115 
than	anti-correlated)	odours	(Extended	Data	Fig.	3e,f).		116 

Mice	tended	to	take	more	time	to	detect	the	correlation	structure	of	stimuli	with	higher	117 
fluctuation	frequencies	(Extended	Data	Fig.	5j-l).	This	was	most	pronounced	for	animals	118 
with	higher	overall	performance	(Extended	Data	Fig.	5j).	Accuracy	strongly	correlated	119 
with	reaction	time	across	all	stimuli	and	animals	(Extended	Data	Fig.	5k)	despite	the	120 
fact	that	total	time	of	odour	delivery	was	the	same	across	all	trials	regardless	of	stimulus	121 
frequency.	Consequently,	when	analysis	was	restricted	to	trials	where	mice	sampled	the	122 
stimuli	long	enough,	e.g.	for	at	least	750	ms,	performance	significantly	increased	across	123 



frequencies	 (Extended	 Data	 Fig.	 5l).	 This	 indicates	 that	 the	 measured	 performance	124 
might	 not	 be	 the	 psychophysical	 limit	 for	 discriminating	 fluctuating	 odour	 stimuli.	125 
Furthermore,	this	suggests	that	mice	integrate	information	across	large	portions	of	the	126 
presented	stimuli,	rather	than	e.g.	detecting	simultaneity	of	odour	onset14	to	determine	127 
whether	 odours	 were	 correlated	 or	 not.	 To	 directly	 test	 this	 possible	 strategy,	 we	128 
interleaved	training	trials	with	probe	trials	where	the	onset	characteristics	were	flipped	129 
(Extended	Data	Fig.	5f-i).	Notably,	performance	did	not	drop	substantially	(Extended	130 
Data	Fig.	5h,i),	consistent	with	a	strategy	that	relies	primarily	on	discerning	the	high	131 
frequency	correlation	structure	of	the	stimulus	over	several	100	ms	rather	than	the	onset	132 
only	(Extended	Data	Fig.	5f,g,i).	Sniff	rate	 in	 turn	was	 independent	of	 the	correlation	133 
frequency	of	stimuli	presented	(Extended	Data	Fig.	5a-e).	134 

Odour	correlation	encoded	in	OB	output	135 
To	assess	how	 this	high-frequency	 information	 is	 represented	and	 reformatted	 in	 the	136 
olfactory	system,	we	imaged	neural	activity	in	response	to	high-frequency	stimuli	(Fig.	137 
3).	Ca2+	imaging	of	OSN	responses	to	correlated	and	anti-correlated	stimuli	showed	that	138 
–	unlike	for	two	pulses	with	variable	gaps	(Fig.	1)	–	correlation	structure	of	odour	pulse	139 
trains	 was	 difficult	 to	 discern	 on	 the	 level	 of	 inputs	 to	 the	 OB	 using	 simple	 linear	140 
classifiers	(Extended	Data	Fig.	6).	Directly	imaging	from	the	output	of	the	OB,	mitral	and	141 
tufted	cells	(M/TCs,	Fig.	3a-g,	Extended	Data	Fig.	7),	showed	that	overall,	M/TCs	also	142 
responded	similarly	to	correlated	and	anti-correlated	stimuli	(Extended	Data	Fig.	7j-l).		143 
17%	of	all	M/TCs,	however,	showed	significantly	different	 integral	responses	(0-5	sec	144 
after	odour	onset,	p	<	0.01)	 to	 the	 two	stimuli	 (114/680	ROIs,	Fig.	3d-f).	As	a	 result,	145 
correlated	and	anti-correlated	odours	were	reliably	discriminated	by	a	linear	classifier	146 
using	 the	 M/TC	 population	 responses	 (somatic	 response	 Fig.	 3g,	 dendritic	 response	147 
Extended	Data	Fig.	7d,i)	unlike	for	the	OSN	population	response	(Extended	Data	Fig.	148 
6k,l).	 This	 is	 consistent	 with	 the	 idea	 that	 the	 OB	 circuitry	 implements	 a	 non-linear	149 
transformation	 of	 OSN	 input	 where	 the	 representation	 of	 correlation	 becomes	 more	150 
readily	accessible	in	the	OB	output.		151 

We	employed	odour	stimuli	rapidly	fluctuating	at	frequencies	that	substantially	exceeded	152 
the	 temporal	 resolution	 of	 Ca2+	 imaging,	 which	 captures	 a	 low-pass	 filtered	 signal	 of	153 
neural	activity.	Although	the	Ca2+	signal	does	not	follow	individual	stimulus	frequencies,	154 
the	M/TC	population	response	contained	enough	 information	to	determine	whether	a	155 
correlated	 or	 anti-correlated	 stimulus	 was	 presented.	 To	 probe	 whether	 additional	156 
information	about	stimuli	is	present	in	the	output	of	the	OB	at	finer	time	scales,	we	turned	157 
to	extracellular	unit	recordings	(Fig.	3h-k,	Extended	Data	Fig.	8)	and	whole-cell	patch	158 
recordings	(Extended	Data	Fig.	9).	Despite	the	kHz	temporal	resolution,	single-units	also	159 
did	 not	 directly	 follow	 high-frequency	 stimuli.	 Average	 activity	 (summed	 spike	 count	160 
during	 500	 ms	 after	 odour	 onset)	 was,	 however,	 significantly	 different	 between	161 
correlated	 and	 anti-correlated	 stimuli	 in	 24%	of	 single-units	 (23/97,	 p	<	 0.01,	Mann-162 
Whitney	U	test,	Fig.	3i,j,	Extended	Data	Fig.	8b),	consistent	with	the	Ca2+	imaging	results.	163 
As	few	as	60	randomly	selected	units	were	sufficient	to	classify	the	odour	stimuli	with	164 



>80%	accuracy	(Fig.	3k).	Additional	 information	was	contained	at	 finer	 time	scales	as	165 
increasing	 the	 temporal	resolution	of	 analysis	 improved	discriminability	 (Fig.	3k	and	166 
Extended	Data	Fig.	8e-g).	Together,	these	results	demonstrate	that	information	about	167 
high-frequency	correlation	structure	in	odours	is	accessible	to	the	animal	for	behavioural	168 
decisions	and	readily	available	in	the	output	of	the	OB.	169 

Correlations	allow	for	source	separation		170 
What	could	the	detection	of	high-frequency	correlations	be	useful	 for?	Natural	odours	171 
consist	of	multiple	different	 types	of	molecules,	 and	a	 typical	olfactory	 scene	 contains	172 
several	sources6.	To	make	sense	of	the	olfactory	environment,	the	brain	must	be	able	to	173 
separate	odour	sources,	attributing	the	various	chemicals	present	to	the	same	or	different	174 
objects5.	Motivated	by	the	turbulent	nature	of	odour	transport,	Hopfield	suggested	that	175 
the	 temporal	 structure	 of	 odour	 concentration	 fluctuations	 might	 contain	 location	176 
information	 about	 odour	 sources5	 -	 i.e.	 that	 chemicals	 belonging	 to	 the	 same	 source	177 
would	co-fluctuate	in	concentration.	Detecting	correlations	in	odour	fluctuations	would	178 
thus	allow	mice	to	discern	which	odours	arise	from	the	same	object.	To	experimentally	179 
probe	the	potential	of	odour	correlation	structure	to	facilitate	odour	source	separation	in	180 
air,	we	devised	a	dual-energy	fast	photoionisation	detection	method	to	simultaneously	181 
measure	 the	 odour	 concentrations	 of	 two	 odours	 with	 high	 temporal	 bandwidth	182 
(Methods,	Fig.	4a,b,	Extended	Data	Fig.	10a-e	and	Supplementary	Methods	Fig.	2).	183 
When	an	odour	was	presented	 in	a	laboratory	environment	with	artificially	generated	184 
complex	airflow	patterns	(Fig.	4a),	to	mimic	the	outdoor	measurements	(Fig.	1a),	odour	185 
concentration	fluctuated	with	a	spectrum	extending	beyond	40	Hz	(Extended	Data	Fig.	186 
10a).	When	two	odours	were	presented	from	the	same	source,	these	fluctuations	were	187 
highly	correlated	(Fig.	4a,b	and	Extended	Data	Fig.	10b).	When	we	separated	odour	188 
sources	and	presented	the	two	odours	50	cm	apart,	odour	dynamics	were	uncorrelated	189 
(Fig.	4a,b)	with	intermediate	correlations	for	closer	distances	(Fig.	4b).	This	pattern	of	190 
almost	perfect	correlation	for	the	same	source	and	virtually	uncorrelated	dynamics	for	191 
separated	sources	was	maintained	at	closer	and	farther	distances	between	odour	source	192 
and	sensor	(Extended	Data	Fig.	10d),	independent	of	the	odours	used	(Extended	Data	193 
Fig.	10c)	and	was	mirrored	outdoors	(Extended	Data	Fig.	10e).	Thus,	the	correlation	194 
structure	 of	 odorant	 concentration	 fluctuations	 indeed	 contains	 reliable	 information	195 
about	odour	objects	–	e.g.	whether	odours	emerge	from	the	same	or	different	sources.	196 

Can	mice	make	use	of	this	information?	We	trained	a	new	cohort	of	mice	in	a	modified	197 
AutonoMouse	setting,	presenting	odours	corresponding	to	the	“same	source”	or	“source	198 
separated”	case	as	rewarded	or	unrewarded	stimuli	(Fig.	4c,d	and	Extended	Data	Fig.	199 
10).	Mice	were	able	to	learn	to	discriminate	these	stimuli	(Fig.	4d,e).	Once	the	task	was	200 
acquired,	 we	 probed	 their	 performance	with	 artificially	 generated	 stimuli	 (Extended	201 
Data	Fig.	10f-k)	that	were	derived	from	prior	measurements	with	natural	airflow	but	202 
perfectly	correlated	(Fig.	4e).	Notably,	they	reliably	responded	to	these	probe	trials	with	203 
correlated	stimuli	as	they	did	to	the	“same	source”	stimuli	they	had	been	trained	on	(Fig.	204 
4e,	Extended	Data	Fig.	10m).	To	further	ascertain	that	they	were	using	the	correlation	205 



structure	to	make	these	decisions,	we	probed	with	artificial	square	pulse	stimuli	(as	in	206 
Fig.	2,	3)	at	different	 frequencies.	Mice	performed	significantly	above	chance	 in	probe	207 
trials	 at	 frequencies	 of	up	 to	 40	Hz	 (Fig.	 4e,	Extended	Data	 Fig.	10s),	 implying	 that	208 
learning	about	source	separation	directly	translates	to	distinguishing	temporal	features	209 
in	correlated	/	uncorrelated	stimuli.		210 

Discussion	211 
Here,	 we	 have	 shown	 that	 the	 mammalian	 olfactory	 system	 has	 access	 to	 temporal	212 
features	of	odour	stimuli	at	frequencies	of	at	least	up	to	40	Hz.	We	have	demonstrated	213 
access	 to	 information	 in	 rapid	 odour	 fluctuations	 using	 different	 behavioural	214 
experiments	 (Fig.	 2,4).	 We	 have	 shown	 reliable	 decoding	 from	 imaging	 and	 unit	215 
recordings	 from	 different	 stages	 of	 the	 olfactory	 system	using	 both	 correlated	 odour	216 
concentration	 fluctuations	 (Fig.	 3,	 Extended	Data	 Fig.	 7,	 8a-g)	 as	 well	 as	 simplistic	217 
paired	pulse	stimuli	with	gaps	as	small	as	25	ms	(Fig.	1,	Extended	Data	Fig.	2,	8h-l),	218 
corroborated	 by	 computational	 modelling	 (Extended	 Data	 Fig.	 1).	 Our	 results	 are	219 
consistent	with	recent	findings	that	the	olfactory	bulb	circuitry	not	only	enables	highly	220 
precise	odour	responses17,18	but	enables	detection	of	optogenetically	evoked	inputs	with	221 
a	precision	of	10-30	ms27–29	with	different	projection	neurons	displaying	distinct	firing	222 
patterns	in	response	to	optogenetic	stimulation29.	While	behavioural	and	physiological	223 
responses	 to	 precisely	 timed	 odour	 stimuli	 have	 been	 observed	 in	 insects13,15,30,	 in	224 
mammals	the	complex	shape	of	the	nasal	cavity	was	generally	thought	to	low-pass	filter	225 
any	temporal	structure	of	 the	 incoming	odour	plume.	Our	results	show	that	while	 the	226 
low-pass	filtering	in	the	nose	and	by	OSNs	might	reduce	the	ability	of	neurons	to	directly	227 
follow	 high-frequency	 stimuli,	 sufficient	 information	 about	 high-frequency	 content	 is	228 
preserved	and	available	such	that	mice	can	readily	make	use	of	this	information.		229 

What	could	such	high	bandwidth	be	useful	for?	We	have	shown	that	odour	sources	even	230 
in	close	proximity	differ	in	their	temporal	correlation	structure.	Thus,	the	ability	to	detect	231 
whether	 odorants	 are	 temporally	 correlated	 could	 allow	 mice	 to	 perform	 source	232 
separation,	 solving	 the	 "olfactory	 cocktail	 party	 problem"5,6	 without	 prior	 knowledge	233 
about	 the	 odour	 scenery.	We	 show	 that	 mice	 can	 indeed	 discriminate	 between	 “one	234 
source	/	separated	source”	stimuli.	They	readily	translate	this	discrimination	to	artificial	235 
correlated	pulse	trains	demonstrating	that	they	are	using	correlation	structure	to	make	236 
this	distinction.	Distinguishing	between	other	environmental	features,	such	as	distance	237 
or	direction	of	an	odour	source,	could	also	be	achieved	by	extracting	temporal	features	238 
from	 odour	 fluctuations1–3,8	 possibly	 in	 combination	 with	 strategies	 comparing	239 
information	reaching	the	brain	through	the	two	nares31,32.	240 

How	exactly	is	this	temporal	information	extracted?	While	insects	are	able	to	detect	the	241 
simultaneity	of	onset	of	 two	odours14,33,34,	 this	strategy	 is	unlikely	 to	be	the	dominant	242 
means	that	mice	use	to	detect	correlation	(Extended	Data	Fig.	5).	Similarly,	mice	do	not	243 
show	adjustment	of	sniff	strategies	for	discriminating	high	frequency	odour	correlations	244 
(Extended	Data	Fig.	5,	Supplementary	Video	2).	While	individual	mammalian	OSNs	are	245 
thought	to	be	quite	slow	and	unreliable20,	the	large	convergence	of	OSN	axons	provides	a	246 



substrate	 to	 create	 the	 needed	 high	 temporal	 bandwidth35	 (Extended	 Data	 Fig.	 1).	247 
Biophysical	 heterogeneity	 of	 OSNs	 might	 improve	 how	 the	 population	 encodes	248 
temporally	structured	stimuli36,37.	Intrinsic	cellular	biophysics	(Extended	Data	Fig.	9),	249 
local	 interneurons	 or	 long-range	 lateral	 inhibition5,38	 might	 permit	 the	 extraction	 of	250 
temporal	correlation	within	the	olfactory	bulb	circuitry	and	possibly	result	in	individual	251 
projection	neurons	tuned	to	specific	temporal	structures.	252 

The	turbulence	of	odour	plumes	has	often	been	viewed	as	a	source	of	noise	for	mammals.	253 
In	 contrast,	 we	 find	 that	 the	 mouse	 olfactory	 system	 has	 access	 to	 high-frequency	254 
temporal	features	in	odour	stimuli.	This	opens	up	a	new	perspective	on	how	mice	could	255 
make	 use	 of	 natural	 turbulence	 in	 order	 to	 obtain	 information	 about	 their	 spatial	256 
environment.	This	 in	 turn	provides	new	computational	 challenges	 for	 the	mammalian	257 
olfactory	system	and	an	entry	point	into	how	information	about	space	is	extracted	from	258 
sensory	inputs.	259 
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Fig.	 1	 |	 Sub-sniff	 detection	 of	 odour	 signals	 in	 olfactory	 bulb	 inputs.		348 
ai,	Example	odour	plume	recorded	outdoors	under	natural,	complex	airflow	conditions	349 
using	 a	 photoionisation	 detector	 (PID).	aii,	 Averaged	 power	 spectrum	 of	 all	 recorded	350 
odour	plumes	(n=37	plumes,	mean±SD	of	log	power),	typical	range	of	sniff	frequencies	351 
observed	in	mice	highlighted	in	dark	grey.	bi,	Schematic	of	multi-channel	high	bandwidth	352 
odour	 delivery	 device.	 bii,	 Representative	 odour	 pulse	 recordings	 at	 command	353 
frequencies	between	5	and	50Hz.	biii,	Relationship	of	frequency	and	odour	pulse	signal	354 
fidelity	 (see	 Methods,	 n=5	 repeats	 for	 each	 frequency,	 mean±SEM,	 see	 also	355 
Supplementary	Methods	Fig.	1).	ci,	Odour	(red)	and	flow	traces	(black)	of	10ms	paired	356 
pulse	 interval	 (PPI)	 stimuli	 for	 10ms	 (top)	 and	 25ms	 (bottom),	 valve	 commands	 are	357 
shown	 in	 dark	 grey.	 cii,	 Stimuli	 are	 presented	 during	 the	 inhalation	 phase	 of	 the	358 
respiration	 cycle.	 d,	 Schematic	 of	 the	 two-photon	 imaging	 approach.	 e,	 GCaMP6f	359 
fluorescence	recorded	in	olfactory	bulb	glomeruli	(maximum	projection	of	8200	frames,	360 
marked	glomeruli	correspond	to	example	traces	shown	in	f).	Scale	bar:	50µm.	f,	Example	361 
calcium	traces	 in	response	to	10	and	25ms	PPI	odour	stimuli	 (mean	of	10	trials±SEM,	362 
unpaired	two-sided	t-test	for	2s	response-integral	from	odour	onset).	Bottom:	Example	363 
respiration	 trace.	 	g,	 Calcium	 transients	as	 colour	maps	 for	PPI	10ms	 (left),	PPI	25ms	364 
(middle),	 and	 the	 difference	 between	 both	 odour	 stimulations	 (right).	 Glomeruli	 are	365 
sorted	by	response	magnitude	to	the	PPI	10ms	stimulus.	h,	Glomerular	responses	sorted	366 
by	magnitude	of	difference	to	PPI	10	vs.	25ms.	i,	Classifier	accuracy	over	all	glomeruli	367 
when	a	linear	classifier	was	trained	on	several	response	windows	(colour-coded,	black:	368 
shuffle	 control)	 to	 PPI	 10	 vs.	 25ms	stimuli	 (n=up	 to	 100	 glomeruli	 from	5	 individual	369 
animals;	mean±SD	of	500	repetitions).	Throughout,	ethyl	butyrate	was	used	as	the	odour	370 
stimulus.	371 

Fig.	 2	 |	 Mice	 can	 discriminate	 odour	 correlation	 structure	 at	 frequencies	 up	 to	372 
40Hz.	 a,	 Schematic	 of	 the	 automated	 operant	 conditioning	 system	 (“AutonoMouse”)	373 
housing	cohorts	of	up	to	25	animals.	bi,	Representative	trace	of	a	20Hz	odour	pulse	train	374 
(top)	and	corresponding	stable	airflow	(bottom).	bii,	Relationship	of	frequency	and	total	375 
amount	 of	 odour	 released	 (n=5	 repeats	 for	 each	 frequency,	 mean±SEM).	 c,	 Group	376 
accuracy	in	frequency	discrimination	task	(n=10	mice,	p<0.001	for	all	stimuli	compared	377 
to	 chance	 accuracy	 (paired	 two-sided	 t-test);	 see	 also	Extended	 Data	 Fig.	 3).	 Boxes	378 
indicate	25th–75th	percentiles,	thick	line	is	median,	whiskers	are	most	extreme	data	points	379 
not	considered	outliers,	see	Methods.	 	d,	Left:	Valve	commands	to	release	two	odours	380 
fluctuating	 at	 20	 Hz	 in	 a	 correlated	 (top)	 or	 anti-correlated	 (bottom)	manner.	 Right:	381 
Resultant	 odour	 concentration	 changes	 measured	 using	 dual-energy	 photoionisation	382 
detectors	 (Supplementary	 Methods	 Fig.	 2).	 e,	 Odour	 (ei)	 and	 flow	 (eii)	 signal	 for	383 
correlated	and	anti-correlated	stimuli	fluctuating	at	20Hz	(n=60	trials	for	each	condition;	384 
odour:	p=0.19,	flow:	p=0.23,	unpaired	two-sided	t-test).	Median	shown	as	black	dot,	first	385 
and	third	quartile	are	bounds	of	the	black	bar.	f,	Schematic	of	the	discrimination	stimuli;	386 
mice	 were	 trained	 to	 discriminate	 between	 two	 odours	 presented	 simultaneously	 in	387 
either	 a	 correlated	 (top)	 or	 anti-correlated	 (bottom)	 fashion	 	 in	 a	 standard	 go/no-go	388 
paradigm.	g,	Schematic	of	valve	combinations	for	stimulus	production.	Train:	6	valves	are	389 



used	to	produce	the	stimulus	through	varying	valve	combinations.	Switch	control:	two	390 
extra	 valves	 are	 introduced	 and	 odour	 presentation	 switched	 over	 to	 the	 newly	391 
introduced	valves.	h,	Example	animal	performing	the	correlation	discrimination	task	at	392 
different	frequencies.	i,	Trial	response	maps	before	and	after	switch	to	control	valves	(as	393 
described	 in	 g,	 n=12	 trials	 pre-,	 n=12	 trials	 post-new	 valve	 introduction).	 Symbols	394 
indicate	time	point	of	valve	introduction	as	marked	in	h,	see	also	Extended	Data	Fig.	4.	395 
j,	 Accuracy	 of	 3	 representative	 animals	 performing	 correlation	 discrimination	where	396 
stimulus	 pulse	 frequency	 is	 randomised	 from	 trial	 to	 trial.	k,	 Group	 accuracy	 for	 the	397 
experiment	 in	 j	 (black	 trace:	 standard	 training,	 band:	 SEM,	 grey	 trace:	 full	 scramble	398 
control;	n=33	 training	mice,	n=5	control	mice,	n=9.3×105	 trials).	Throughout,	 isoamyl	399 
acetate	and	ethyl	butyrate	were	used	as	odour	stimuli.	400 

Fig.	3	|	Odour	correlation	structure	is	encoded	by	olfactory	bulb	output	neurons.		401 
a,	Schematic	of	the	two-photon	imaging	approach	(see	also	Extended	Data	Fig.	7e).	b,	402 
Coronal	 olfactory	 bulb	 section	 showing	 GCaMP6f	 (green)	 expressed	 in	 projection	403 
neurons.	 Scale	 bar:	 20µm.	 c,	 GCaMP6f	 fluorescence	 from	 mitral	 and	 tufted	 cells	404 
(maximum	projection	of	8000	frames).	Responses	 from	ROI	*	 in	magnified	inset	1	*	 is	405 
shown	in	d.	Scale	bar:	20µm.	d,	Example	traces	of	ROIs	that	show	differential	response	406 
kinetics	 to	 correlated	 (black)	 and	 anti-correlated	 (red)	 stimulation	 (mean	 of	 24	407 
trials±SEM,	 f=20Hz,	 unpaired	 two-sided	 t-tests	 on	 5s	 response-integrals)	 in	408 
anaesthetised	and	e,	awake	animals	(mean	of	16	trials±SEM,	f=20Hz,	unpaired	two-sided	409 
t-tests).	Odour	presentation	indicated	in	light	blue.	f,	Calcium	transients	as	colour	maps	410 
for	correlated	(left)	anti-correlated	(middle)	averaged	trials	and	the	difference	between	411 
both	odour	stimulations	(right)	for	the	5%	of	ROIs	with	the	largest	differential	responses.	412 
g,	Accuracy	of	linear	classifier	trained	on	several	response	windows	(colour-coded,	black:	413 
shuffle	control)	to	correlated	vs.	anti-correlated	stimuli	at	20Hz	(n=up	to	680	ROIs	from	414 
6	 individual	 animals;	 mean±SD	 of	 500	 repetitions).	 h,	 Schematic	 of	 the	 extracellular	415 
recording	approach.	i,	Example	single	unit	of	an	odour	response	for	correlated	(black)	416 
and	anti-correlated	(red)	stimuli	shown	as	raster	plot	(top)	and	PSTH	(mean±SEM)	of	417 
spike	 times	 binned	 every	 50ms	 (bottom);	 inset:	 average	 spike	waveform	 (black)	 and	418 
1000	 individual	 spike	 events	 (grey),	 scale	 bar:	 100µV	 and	 1ms.	 Odour	 presentation	419 
indicated	 in	 light	 blue.	 Two-sided	 Mann-Whitney	 U	 test	 comparing	 spike	 time	420 
distributions	of	correlated	and	anti-correlated	trials	during	4s	after	odour	onset.	j,	Binned	421 
spike	 discharge	 over	 time	 shown	 as	 colour	 maps	 for	 all	 units,	 correlated	 (left),	 anti-422 
correlated	 (middle)	 and	 the	 difference	 between	 both	 odour	 stimulations	 (right).	 k,	423 
Accuracy	of	 linear	 classifier	 trained	on	 the	average	2s	 response	to	 correlated	vs.	 anti-424 
correlated	stimuli	at	20Hz	(yellow);	green:	500ms	window;	blue	100ms	window	(n=up	425 
to	 97	 units	 from	 6	 individual	 animals;	 mean±SD	 of	 1000	 classifier	 repetitions;	 	 see	426 
Methods	and	Extended	Data	Fig.	8).			427 

Fig.	4	|	Source	separation	using	correlations	of	odour	concentration	fluctuations.		428 
a,	Simultaneous	measurement	of	two	odours	(Odour	1:		α-Terpinene;	AT,	Odour	2:	ethyl	429 
butyrate;	EB)	using	a	dual-energy	photoionisation	detector	(Extended	Data	Fig.	10a-e,	430 



Supplementary	 Methods	 Fig.	 2)	 at	 d=40cm,	 presented	 either	 from	 one	 source	 or	431 
separated	 from	 each	 other	 by	 s=50	 cm,	 with	 complex	 airflow	 in	 the	 laboratory.	 b,	432 
Correlation	 coefficients	 over	 all	 recordings	 for	 odours	 from	 the	 same	 source	 and	 for	433 
odour	sources	separated	by	s=10-50cm	(EB	vs.	AT;	n=61	for	Mix,	n=71	for	each	individual	434 
distance;	unpaired	 two-sided	 t-test).	Boxes	 indicate	25th–75th	percentiles,	 thick	 line	 is	435 
median,	whiskers	are	most	extreme	data	points	not	considered	outliers,	see	Methods.		c,	436 
Example	 plumes	 used	 for	 training	 animals	 on	 a	 virtual	 source	 separation	 task	 to	437 
discriminate	between	odour	stimuli	derived	from	the	same	one	source	(Unrewarded,	S-)	438 
and	from	separated	sources	recordings	(Rewarded,	S+).	d,	Example	learning	curve	for	a	439 
mouse	trained	to	perform	the	virtual	source	separation	task.	Isoamyl	acetate	and	ethyl	440 
butyrate	were	used	as	odour	stimuli.	e,	Average	accuracy	over	different	variants	of	the	441 
task,	calculated	over	the	last	2400	trials	of	virtual	source	separation	training	(n=11	mice,	442 
p<0.0001,	 unpaired	 t-test,	 compared	 to	 chance	 performance),	 and	 subsequent	 stages	443 
where	probe	trials	containing	novel	plume	types	are	 interleaved	with	the	training	set.	444 
Responses	are	compared	between	probe	and	training	plumes	within	each	stage.	Probe	445 
plumes:	 odours	 fluctuate	 in	 a	 perfectly	 correlated	 manner,	 with	 a	 novel	 temporal	446 
structure	(120	probe	trials,	in	a	segment	of	2400	trials,	n=11	mice,	paired	t-test).	Probe	447 
2Hz,	 20Hz,	 40Hz:	 Correlated/anti-correlated	 square	 pulse	 trains	 (50	 probe	 trials	 per	448 
frequency,	 in	 a	 segment	 of	 1650	 trials,	 n=9	mice).	 Responses	 to	 2Hz,	 20Hz	 and	 40Hz	449 
probe	 trials	 were	 shuffled	 10000	 times	 to	 calculate	 chance	 performance;	 data	 is	450 
mean±SD;	unpaired	two-sided	t-test.451 



Methods	452 

Ethical	compliance	453 
All	 animal	procedures	performed	 in	 this	 study	were	approved	by	 the	UK	government	454 
(Home	Office)	and	by	the	Crick	Institutional	Animal	Welfare	Ethical	Review	Panel.		455 

Mice	456 
All	mice	used	for	behavioural	experiments	were	C57/Bl6	males	(Fig.	2	and	4,	Extended	457 
Data	Fig.	3-5	and	10).	In	vivo	imaging	experiments	were	performed	in	12-20	week	old	458 
heterozygous	OMP-cre	(39;	JAX	stock	#006668;	Fig.	1,	Extended	Data	Fig.	2	and	6)	or	459 
Tbet-cre	 (40;	 Jax	 stock	#024507;	Fig.	3,	Extended	Data	Fig.	7)	mice	 crossed	with	 the	460 
Ai95(RCL-GCaMP6f)-D	line	(41;	JAX	stock	#028865)	of	either	sex.	Extracellular	unit	(Fig.	461 
3	and	Extended	Data	Fig.	8)	and	whole-cell	patch-clamp	recordings	(Extended	Data	462 
Fig.	9)	were	performed	in	5-8	week	old	C57/Bl6	males.	Mice	were	housed	up	to	5	per	463 
cage	in	a	12/12h	light/dark	cycle.	Food	and	water	were	provided	ad	libitum. 464 

Reagents	465 
All	odours	were	obtained	in	their	pure	form	from	Sigma-Aldrich,	St.	Louis	MO,	USA.	Unless	466 
otherwise	specified,	odours	were	diluted	1/5	with	mineral	oil	in	15	ml	glass	vials	(27160-467 
U,	Sigma-Aldrich,	St.	Louis	MO,	USA).		468 

Statistical	analysis	and	data	display	469 
To	 test	 for	 statistical	 significance	 between	 groups	where	 appropriate	we	 used	 either	470 
paired	or	non-paired	student	t-test	or,	for	non-parametric	data,	the	Mann-Whitney	U	test,	471 
or	 the	 Kolmogorov–Smirnov	 test	 to	 test	 the	 equality	 of	 probability	 distributions.	472 
Statistical	test	details	and	p-values	are	provided	in	figures	and	/	or	their	respective	figure	473 
legends.	Unless	specified	otherwise,	boxplots	were	plotted	using	 the	MATLAB	boxplot	474 
function	with	the	median	depicted	as	a	thick	line	and	default	maximal	whisker	length	of	475 
1.5	 *	 (q3-q1)	where	 q3	 and	 q1	 indicate	 the	 75th	 and	 25th	 percentile,	 respectively.	 If	476 
points	 were	 located	 outside	 this	 whisker	 range	 they	 were	 displayed	 individually	 as	477 
outliers.	Violin	plots	show	the	median	as	a	black	dot	and	the	first	and	third	quartile	by	the	478 
bounds	 of	 black	 bars.	 Mouse	 cartoons	 were	 adapted	 from	479 
https://scidraw.io/drawing/123	and	/49.	480 

High-speed	odour	delivery	device	481 
The	 odour	 delivery	 device	 was	 based	 on	 a	 modular	 design	 of	 four	 separate	 odour	482 
channels,	 and	 consisted	of	 an	 odour	manifold	 for	 odour	 storage,	 a	 valve	manifold	 for	483 
control	of	odour	release	and	hardware	for	controlling	and	directing	airflow	through	the	484 
system	(Fig.	1b).	The	odour	manifold	was	a	12.2x3.2x1.5	cm3	stainless	steel	block	with	4	485 
milled	 circular	 indentations	 (1	 cm	 radius).	 Within	 each	 of	 these	 indentations	 was	 a	486 
threaded	through-hole	for	installation	of	an	input	flow	controller	(AS1211F-M5-04,	SMC,	487 
Tokyo,	Japan)	and	an	output	filter	(INMX0350000A,	The	Lee	Company,	Westbrook	CT,	488 
USA).	For	each	inset,	the	cap	of	a	15	ml	glass	vial	(27160-U,	Sigma-Aldrich,	St.	Louis	MO,	489 
USA)	with	the	centre	removed	was	pushed	in	and	sealed	with	epoxy	resin	(Araldite	Rapid,	490 



Huntsman	Advanced	Materials,	Basel,	Switzerland).	This	meant	that	glass	vials	could	be	491 
screwed	in	and	out	of	the	insets	for	rapid	replacement.		492 
Solenoid	 valves	 typically	 limit	 high-fidelity	 odour	 stimulation	 resulting	 in	 odour	 rise	493 
times	of	several	10s	of	milliseconds	under	optimal	conditions42.	We	thus	employed	high-494 
speed	 micro-dispense	 valves	 with	 custom	 electronics	 for	 pulse-width	 modulation	 to	495 
maximize	bandwidth:	4	VHS	valves	(INKX0514750A,	The	Lee	Company,	Westbrook	CT,	496 
USA)	 were	 installed	 in	 a	 4-position	 manifold	 (INMA0601340B,	 The	 Lee	 Company,	497 
Westbrook	CT,	USA)	with	standard	mounting	ports	(IKTX0322170A,	The	Lee	Company,	498 
Westbrook	CT,	USA).	Each	valve	was	connected	to	a	corresponding	odour	position	in	the	499 
odour	manifold	with	10	cm	Teflon	tubing	(TUTC3216905L,	The	Lee	Company,	Westbrook	500 
CT,	USA).	Each	valve	was	 controlled	by	digital	 commands	via	a	spike-and-hold	driver.	501 
Each	digital	pulse	delivered	to	the	spike-and-hold	driver	delivered	a	0.5	ms,	24	V	pulse	to	502 
the	valve	(to	open	it),	followed	by	a	3.3	V	holding	pulse	lasting	the	rest	of	the	duration	of	503 
the	digital	pulse.	This	spike-and-hold	input	allowed	for	fast	cycling	of	the	valve	without	504 
switching	between	0	and	24	V	at	high	frequencies	to	prevent	from	overheating	the	valve.	505 
Each	valve	was	controlled	by	an	individual	spike-and-hold	driver.	Up	to	4	drivers	could	506 
be	controlled	and	powered	with	a	custom-made	PSU	consisting	of	a	24	V	power	input	and	507 
a	linear	regulator	to	split	the	voltages	into	a	24	V	and	3.3	V	line,	as	well	as	control	inputs	508 
taking	 digital	 signal	 input	 and	 routing	 it	 to	 the	 appropriate	 valve.	 Pulse	 profiles	 for	509 
calibration	 and	 stimulus	 production	 were	 generated	 with	 custom	 Python	 software	510 
(PyPulse,	PulseBoy;	github.com/RoboDoig)	allowing	to	define	pulse	parameters	across	511 
multiple	valves	using	a	GUI.	512 
To	generate	airflow	through	the	olfactometer,	a	pressurised	air	source	was	connected	to	513 
a	 filter	 (AME250C-F02,	 SMC,	 Tokyo,	 Japan)	 and	 demister	 (AMF250CF02,	 SMC,	 Tokyo,	514 
Japan)	and	then	split	into	two	separate	lines,	the	input	line	and	carrier	line.	Both	lines	515 
were	then	connected	to	a	pressure	regulator	(AR20-F01BG-8,	SMC,	Tokyo,	 Japan)	and	516 
flow	controller	(FR2A13BVBN,	Brooks	Instrument,	Hatfield	PA,	USA).	The	main	line	was	517 
then	connected	to	the	input	of	the	valve	manifold.	The	input	line	was	split	into	4	separate	518 
lines	 and	 connected	 to	 the	 input	 flow	 controllers	 (set	 to	 0.25	 L/min)	 on	 each	 odour	519 
position	of	the	odour	manifold.	The	output	of	the	valve	manifold	was	fitted	with	MINSTAC	520 
tubing	(TUTC3216905L,	The	Lee	Company,	Westbrook	CT,	USA).	Where	the	design	was	521 
scaled	up	(e.g.	to	include	8	odour	positions)	the	valve	manifold	outputs	were	connected	522 
and	consolidated	to	a	single	output	with	3-way	connectors	(QSMY-6-4,	Festo,	Esslingen	523 
am	Neckar,	Germany).	Shape	and	reliability	of	odour	pulses	depended	strongly	on	low	524 
volume	headspace	and	low	pressure	levels	(0.05	MPa).	Flow	change	due	to	odour	pulses	525 
was	always	compensated	by	mineral	oil	presentation	(e.g.	light	grey	in	Fig.	1ci).	526 
	527 
Odour	characterisation	528 
Signal	 fidelities	were	 calculated	 by	 first	 subtracting	 the	 average	 amplitude	 of	 troughs	529 
from	the	average	amplitude	of	peaks	during	a	pulse	train	and	then	subsequently	dividing	530 
this	 peak-to-trough	 value	 by	 the	 difference	 of	 average	 peak	 amplitude	 subtracted	 by	531 
baseline	amplitude	(SignalFidelity	=	(meanPeak	–	meanTrough)	/	(meanPeak	–	baseline)).	532 
This	results	in	a	value	between	0	and	1,	with	1	being	perfectly	modulated	odour	pulses.	533 



Behaviour	534 
Automatic	operant	conditioning	of	cohorts	of	mice	(AutonoMouse)	535 
In	AutonoMouse,	groups	of	mice	(up	to	25)	implanted	with	an	RFID	chip	are	housed	in	a	536 
common	home	cage	(Fig.	2a,	 for	detailed	description	see24).	Within	the	common	home	537 
cage	of	AutonoMouse,	mice	have	free	access	to	food,	social	interaction	and	environmental	538 
enrichment.	Water	is	not	freely	available	in	the	system,	but	can	be	gained	at	any	time	by	539 
completion	of	an	operant	conditioning	go/no-go	task.	To	access	these	behavioural	tasks,	540 
mice	must	 leave	 the	 home	 cage	 and	 enter	 a	 behavioural	 area.	 This	 behavioural	 area	541 
contains	the	odour	port	and	a	lick	port	through	which	water	rewards	can	be	released.	The	542 
lick	port	is	also	connected	to	a	lick	sensor,	which	registers	the	animal’s	response	(its	lick	543 
rate)	in	response	to	the	task	stimuli.	As	animals	can	only	gain	their	daily	water	intake	by	544 
completing	behavioural	tasks,	mice	are	motivated	to	complete	long	sequences	of	trials	545 
without	manual	water	restriction.	546 
		547 
Training	on	temporally	structured	odours	548 
We	 aimed	 to	 probe	 whether	 mice	 could	 perceive	 a	 particular	 temporal	 feature	 of	549 
naturally	 occurring	 odour	 signals:	 temporal	 correlations	 between	 odour	 signals.	 In	550 
particular,	we	aimed	to	investigate	this	question	with	the	simplest	possible	case:	whether	551 
mice	could	discriminate	perfectly	correlated	from	perfectly	anti-correlated	odour	stimuli.	552 
All	tasks	followed	a	standard	go/no-go	training	paradigm.	Animals	were	presented	with	553 
two	odours	presented	in	either	a	correlated	pattern	or	an	anti-correlated	pattern	(Fig.	2d	554 
and	Extended	Data	Fig.	4a-c).	For	roughly	half	of	all	animals,	the	correlated	pattern	was	555 
S+	(rewarded)	and	the	anti-correlated	pattern	was	S-	(unrewarded);	in	the	other	half	of	556 
the	group	this	reward	valence	was	reversed.	All	stimuli	were	2	s	long.	A	water	reward	557 
could	be	gained	by	licking	such	that	licking	was	detected	for	at	least	10%	of	the	stimulus	558 
time	during	an	S+	presentation	(a	“Hit”).	Licking	for	the	same	amount	of	time	during	S-	559 
presentation	resulted	in	a	timeout	interval	of	7	seconds.	In	all	other	response	cases,	the	560 
inter-trial	interval	was	3	seconds	and	no	water	reward	was	delivered.		561 
	562 
Stimulus	structure	563 
All	 anti-correlated	 and	 correlated	 stimuli	 on	 each	 trial	 followed	 a	 common	pattern	 in	564 
their	construction.	Generally,	wherever	an	odour	position	is	inactivated	a	blank	position	565 
should	be	activated	to	compensate	for	flow	change.	There	should	also	be	no	consistent	566 
differences	 in	 the	 amount	 of	 odour	 or	 flow	 released	 during	 the	 stimulus	 between	567 
correlated	and	anti-correlated	stimuli.	The	detailed	algorithm	for	stimulus	generation	is	568 
as	follows:	569 
	570 
I. Correlated	 or	 anti-correlated/uncorrelated	 odour	 pulses	 (Fig.	 2d-k	 and	 Extended	571 
Data	Fig.	3	and	5)	572 
1. The	stimulus	is	chosen	to	be	correlated	or	anti-correlated/uncorrelated.	573 
2. A	set	of	1-2	positions	each	for	odour	1	and	odour	2	and	2-3	positions	for	blank	are	574 
randomly	 chosen	 from	 a	 pre-defined	 subset	 of	 6	 of	 the	 8	 total	 positions.	 For	575 



example,	a	valid	combination	could	be	odour	1	at	position	1,	2;	odour	2	at	position	576 
5;	and	blank	at	position	3	and	7.	(see	Fig.	2g	and	Extended	Data	Fig.	4b)	577 

3. A	guide	pulse	is	created	at	the	desired	frequency	(e.g.	2	Hz	pulse	with	50%	duty,	see	578 
Supplementary	Methods	Fig.	1c)	for	all	positions	that	follows	the	chosen	stimulus	579 
structure.	580 

4. The	 relative	 contributions	 of	 each	 position	 to	 the	 total	 stimulus	 are	 randomly	581 
generated.	At	each	time	point	 in	 the	stimulus,	only	two	position	types	should	be	582 
active	 (e.g.	 odour	 1	 and	 blank	 for	 an	 anti-correlated	 stimulus)	 so	 the	maximum	583 
contribution	for	any	position	type	is	50%	of	the	total	release	amount.	Where	two	584 
positions	have	been	chosen	for	a	position	type,	their	relative	contributions	should	585 
add	to	50%	(Extended	Data	Fig.	4b).	586 

5. The	guide	pulses	are	pulse-width	modulated	according	to	the	relative	contributions	587 
of	 each	 position	 (Supplementary	 Methods	 Fig.	 1c).	 Pulse-width	 modulation	588 
(PWM)	 is	 at	 500	 Hz	 with	 some	 added	 jitter	 in	 the	 duty	 to	 avoid	 strong	 tone	589 
generation.	590 

6. For	uncorrelated	pulses,	temporal	offsets	are	added	in	one	channel	according	to	a	591 
distribution	of	time	delays	that	follow	the	desired	correlation	structure	between	the	592 
two	odour	pulses	(Extended	Data	Fig.	3e,f).	593 

	594 
II. “One	 source”	 and	 “Source	 separated”	 naturalistic	 plumes	 (Fig.	 4c-e	 and	Extended	595 
Data	Fig.	10)	596 
1. The	stimulus	is	chosen	to	be	“One	source”	or	“Source	separated”.	597 
2. A	plume	bank	of	plume	pairs	obtained	from	indoor	PID	recordings	is	created.	Each	598 
trial	will	contain	2	plumes,	each	representing	one	odour	recording	originating	from	599 
one	source	or	from	sources	positioned	50	cm	apart.	To	maintain	consistency	in	trial	600 
length	between	behaviour	experiments,	a	2	s	time	window	from	each	plume	was	601 
selected	from	the	middle	of	each	5	s	recording,	such	that	odour	was	always	present	602 
in	the	first	500ms	of	the	trial.	Trials	where	the	correlation	of	the	2	s	window	was	603 
vastly	 different	 from	 the	 original	 5	 s	were	 excluded	 from	 the	 plume	 bank.	 This	604 
procedure	resulted	 in	a	plume	bank	containing	72	plume	pairs	 for	 the	separated	605 
source	condition	and	48	plume	pairs	for	the	one	source	condition.	606 

3. An	 odour	 plume	 pair	 is	 randomly	 selected	 from	 the	 plume	 bank,	 from	 the	607 
corresponding	category.	608 

4. The	odour	that	will	be	used	to	replicate	each	plume	in	a	pair	and	the	positions	in	609 
the	odour	delivery	device	that	will	be	used	for	that	purpose	are	randomly	assigned,	610 
as	 described	 previously.	 For	 each	 odour	 valve	 active,	 a	 blank	 valve	will	 also	 be	611 
activated	to	produce	an	“anti-plume”	structure,	to	compensate	for	the	changes	in	612 
flow	created	by	odour	delivery.	613 

5. Plumes	are	recreated	from	the	chosen	PID	recordings.	Each	trace	is	normalised	to	614 
between	0	and	1,	and	then	converted	 into	a	series	of	binary	opening	and	closing	615 
times.	The	 length	of	 the	openings	and	closings	 relate	directly	 to	 the	value	of	 the	616 
normalised	signal,	a	value	of	one	translates	to	a	continuous	opening,	and	a	value	of	617 



zero	 translates	 to	 continuously	 closed.	 This	 series	 of	 openings	 and	 closings	 are	618 
relayed	to	the	valves	and	the	resulting	output	resembles	the	original	plume.	619 

	620 
III. Perfectly	correlated	plume	trials	(probe	trials,	Fig.	4e)	621 
1. A	2	s	window	is	chosen	from	the	source	separated	plume	bank	(plume	structures	622 
previously	associated	with	opposite	reward	valence	–	5	trials)	or	from	independent	623 
plume	recordings	obtained	in	a	different	environment	than	the	original	recordings	624 
(completely	novel	plume	structures	–	10	trials).		625 

2. The	chosen	plume	structure	is	replicated	using	both	odour	channels,	resulting	in	a	626 
plume	where	both	odour	components	fluctuate	in	a	perfectly	correlated	manner.	627 

	628 
IV. Frequency	discrimination	pulses	(Fig.	2c	and	Extended	Data	Fig.	3a-d)	629 
1. Two	frequencies	are	chosen	for	discrimination	(e.g.	2	Hz	vs.	20	Hz).	630 
2. For	each	trial	one	of	the	frequencies	is	chosen	for	presentation.	631 
3. Valves	are	selected	for	presentation	of	both	odours.	632 
4. A	 guide	 pulse	 is	 created	 for	 each	 odour	 channel	 that	 pulses	 at	 the	 desired	 trial	633 
frequency	with	50%	duty,	such	that	pulse	alternates	between	channels	at	the	given	634 
frequency.	635 

5. Guide	pulses	are	pulse-width-modulated	as	for	correlated/anti-correlated	stimuli.	636 
	637 
Task	structure	for	the	correlation	experiment	(Fig.	2d-k,	Extended	Data	Fig.	3-5)	638 
Task	frequency	was	randomised	from	trial	to	trial	in	a	range	between	2-81	Hz.	The	choice	639 
of	frequency	was	with	weighted	probability	divided	into	3	frequency	bands.	E.g.	this	task	640 
could	be	arranged	such	that	2-20	Hz	would	be	chosen	with	P	=	0.6,	21-40	Hz	with	P	=	0.3	641 
and	41-81	Hz	with	P	=	0.1.	Within	each	of	these	frequency	bands,	the	choice	of	individual	642 
task	frequency	was	based	on	a	uniform	distribution.	Thus,	few	trials	were	performed	for	643 
frequencies	exceeding	40	Hz	resulting	in	more	“noisy”	behavioural	performance	data	in	644 
Fig.	2k.	645 
	646 
Onset	detection	647 
For	the	onset	detection	experiments	(Extended	Data	Fig.	5f-i)	animals	were	trained	to	648 
discriminate	perfectly	correlated	(e.g.	S+)	from	perfectly	anti-correlated	stimuli	(e.g.	S-)	649 
and	probed	with	partially	altered	stimuli	where	the	onset	(first	cycle)	of	 the	probe	S+	650 
stimuli	 was	 anti-correlated	 and	 probe	 S-	 stimuli	 where	 the	 onset	 (first	 cycle)	 was	651 
correlated.	 Performance	 during	 these	 probe	 trials	 is	 then	 compared	 to	 the	 average	652 
performance	during	training	(𝑝𝑒𝑟𝑓%&'()).	653 
We	calculated	the	expected	average	animal	performance	on	the	probe	trials	based	on	two	654 
models	(prediction	data,	Extended	Data	Fig.	5f,g):	Model	1	assumed	the	animals	were	655 
taking	any	part	of	 the	stimulus	 into	account	equally	when	making	a	decision.	Model	2	656 
assumed	that	only	the	onset	of	the	stimulus	would	contribute	to	discrimination.	Thus	for	657 
Model	1,	a	stimulus	of	frequency	f	(e.g.	10	Hz)	that	was	sampled	for	𝑡+',-./ 	consisted	of	a	658 
“shifted”	 onset	 component	 of	 one	 cycle	 for	 S+	 (1/f)	 and	 half	 a	 cycle	 for	 S-	 (0.5/f)	659 



corresponding	 to	 a	 fraction	 of	 𝑓𝑟𝑎𝑐2)+/% 	 =	 1/f/𝑡+',-./ 	 of	 the	 entire	 stimulus	 and	 a	660 
“normal”	residual	(𝑓𝑟𝑎𝑐&/+ 	=	1-𝑓𝑟𝑎𝑐2)+/%).	Thus,	 the	predicted	probe	trial	performance	661 
would	be:	662 

(1) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑒	𝑡𝑟𝑖𝑎𝑙	𝑝𝑒𝑟𝑓/)%(&/ 	= 	𝑝𝑒𝑟𝑓%&'() 	× 𝑓𝑟𝑎𝑐&/+ 	+	(1 − 𝑝𝑒𝑟𝑓%&'()) 	× 𝑓𝑟𝑎𝑐2)+/%		663 

In	Extended	Data	Fig.	5i	this	prediction	was	calculated	 for	 the	 following	parameters:	664 
Sniff	frequency:	6	Hz,	inhalation	fraction:	0.2,	stimulus	sampling	time:	0.7	s,	In	Extended	665 
Data	Fig.	5g	sampling	time	was	varied	as	indicated.	666 
	667 
For	Model	2,	ignoring	inhalation	timing,	the	prediction	would	be	that	preference	would	668 
be	 reversed	 (as	 onset	 correlations	 during	 probe	 trials	 are	 reversed).	 However,	 this	669 
ignores	the	fact	that	odour	stimuli	during	the	exhalation	period	might	not	be	detected.	670 
Thus,	to	more	accurately	predict	animals’	performance	for	Model	2,	we	assume	that	the	671 
part	 of	 the	 stimulus	 that	 is	 detected	 as	 the	 “onset”	 is	 the	 first	 odour	 pulse	 during	 an	672 
inhalation	 phase.	 During	 the	 probe	 trial,	 this	 will	 be	 the	 “inverted”	 first	 cycle	 if	 the	673 
stimulus	begins	either	during	the	inhalation	phase	or	at	most	1/f	before	the	inhalation	674 
(then	 inhalation	 would	 start	 during	 the	 inverted	 first	 cycle	 of	 the	 probe	 trial).	 The	675 
probability	 of	 this	 occurring	 is	 𝑝𝑒𝑟𝑓2)+/% 	 =	 (𝑑𝑢𝑟()A	 +1/f)	 /	 𝑑𝑢𝑟+)(BB	 with	 𝑑𝑢𝑟()A	 and	676 
𝑑𝑢𝑟+)(BB	 being	 inhalation	 and	 sniff	 duration	 respectively	 (provided	 𝑑𝑢𝑟()A	 +1/f	 <	677 
𝑑𝑢𝑟+)(BB).	Predicted	probe	trial	performance	for	an	“onset	only”	model	would	thus	be:	678 

(2) 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑒	𝑡𝑟𝑖𝑎𝑙	𝑝𝑒𝑟𝑓2)+/% 	=	𝑝𝑒𝑟𝑓%&'() 	×	(1 − 𝑝𝑒𝑟𝑓2)+/%) 	+	(1 − 𝑝𝑒𝑟𝑓%&'()) × 𝑝𝑒𝑟𝑓2)+/%	679 

Extended	Data	Fig.	5f,g	displays	the	predictions	of	these	two	models	in	comparison	to	680 
the	experimental	data	for	a	broad	range	of	respiration	patterns.	The	“prediction	data”	in	681 
Extended	Data	 Fig.	 5i	shows	model	 predictions	 assuming	 typical	 sniff	 and	 sampling	682 
parameters	as	indicated	above	(Sniff	frequency:	6	Hz,	inhalation	fraction:	0.2,	stimulus	683 
sampling	time:	0.7	s).	684 
	685 
Controls	686 
Control	valves	could	be	automatically	added	to	the	random	frequency	task.	These	tasks	687 
produced	their	stimuli	based	on	a	subset	of	6	valves	and	control	valves	could	be	added	688 
automatically	after	a	set	period	of	trials	to	force	the	algorithm	to	produce	stimuli	from	all	689 
8	valves	(see	Fig.	2g,i	switch	control	and	Extended	Data	Fig.	4i-k).	690 
A	subgroup	of	animals	was	created	in	which	the	valve	map	was	scrambled,	as	an	ongoing	691 
control	against	animals	learning	extraneous	variables	in	the	task	(see	Fig.	2k,	scramble	692 
control).	The	valve	map	was	scrambled	in	the	following	way:	One	blank	to	odour	1,	one	693 
odour	2	to	blank,	one	odour	1	to	odour	2	and	one	odour	1	to	blank.	Every	few	days	all	694 
odour	 bottles	 were	 cleaned	 and	 replaced,	 odour	 positions	 changed	 and	 valves	 re-695 
assigned43.	696 

Airflow	and	sound	recordings	697 
Airflow	and	sound	were	recorded	in	AutonoMouse	during	trials	at	different	frequencies	698 
to	ensure	that	the	temporal	structure	of	the	odour	is	the	only	parameter	that	varies	over	699 
trials	and	that	no	tactile	or	auditory	cues	were	present	 in	 the	stimulus.	A	 flow	sensor	700 



(AWM5101VN,	Honeywell,	USA)	and	a	microphone	(NTG1,	RØDE,	Australia)	were	placed	701 
in	close	proximity	to	the	AutonoMouse	odour	port.	In	total,	286	trials	were	recorded	(2	702 
Hz:	 n	 =	 75	 correlated,	 n	 =	 70	 anti-correlated;	 40	 Hz:	 n	 =	 69	 correlated,	 n	 =	 72	 anti-703 
correlated)	using	Audacity	for	sound	and	Spike2	(Cambridge	Electronic	Design,	UK)	for	704 
flow	signals.	Airflow	and	sound	signal	underwent	spectral	analysis	(Fourier	transform),	705 
as	well	as	linear	classification	analysis	(Extended	Data	Fig.	4d-g).	706 
	707 
Training	on	naturalistic	plumes	708 
One	group	of	animals	(n	=	12)	were	trained	to	discriminate	between	plumes	derived	from	709 
those	 originating	 from	 one	 source	 (S-,	 unrewarded)	 or	 from	 separated	 sources	 (S+,	710 
rewarded),	 using	 2	 s	 long	 stimuli	 produced	 as	 described	 above	 from	 the	 recordings	711 
shown	in	Fig.	4a.	An	additional	12	animals	trained	simultaneously	on	the	reverse	reward	712 
valence	did	not	pass	the	performance	criterion	within	the	given	timeframe	and	were	not	713 
carried	forward	to	probe	trials.		714 
To	test	whether	correlation	structure	was	a	feature	used	by	mice	to	perform	the	virtual	715 
source	 separation	 task,	 probe	 trials	 were	 introduced	 randomly	 at	 a	 frequency	 of	716 
approximately	1	in	11	trials,	with	every	instance	of	a	probe	trial	repeated	every	330	trials.	717 
Probe	trials	consisted	of	perfectly	correlated	plumes	or	correlated/uncorrelated	square	718 
pulses	produced	as	described	above,	presented	at	3	different	frequencies:	2	Hz,	20	Hz,	40	719 
Hz.	The	feedback	for	probe	trials	was	the	same	as	for	a	training	trial,	with	a	reward	or	720 
time-out	given	based	on	the	response	of	 the	mouse.	No	change	 in	performance	across	721 
repeated	presentation	of	the	probe	trials	was	observed	indicating	that	performance	was	722 
not	due	to	putative	rapid	re-learning.	Of	the	12	mice	exposed	to	this	protocol,	a	total	of	9	723 
mice	reached	all	phases	of	the	experiment.		724 
	725 
Cohorts	726 
The	correlation	discrimination	experiment	was	performed	 in	3	separate	experimental	727 
cohorts	(Fig.	2,	Extended	Data	Fig.	3	-5:	group	1,	n	=	14;	group	2,	n	=	25	(one	animal	did	728 
not	successfully	pass	the	pre-training);	Fig.	4,	Extended	Data	Fig.	10:	group	3,	n	=	24,	729 
see	above).	Each	cohort	was	organised	into	several	subgroups,	which	performed	slight	730 
variations	of	the	behavioural	 tasks	 in	terms	of	reward	valence	and	valves	utilised,	but	731 
with	the	same	underlying	task	aim.	Half	of	the	animals	in	each	subgroup	were	trained	on	732 
correlated	 stimuli	 as	 the	 S+	 rewarded	 condition,	 with	 the	 other	 half	 trained	 on	 anti-733 
correlated	 as	 rewarded.	 Animals	 were	 further	 subdivided	 into	 groups,	 which	 were	734 
trained	on	different	subsets	of	valves	as	standard	in	the	8-channel	olfactometer.	For	each	735 
cohort,	mice	were	once	assigned	to	each	of	these	subgroups	based	on	performance	in	a	736 
simple	 pure	 odour	 discrimination	 at	 the	 beginning	 of	 the	 experiment	 –	 group	737 
membership	was	randomised	until	no	significant	(ANOVA,	Tukey-Kramer)	differences	in	738 
performance	could	be	extracted	between	these	subgroups	on	this	task.	739 
		740 



Data	analysis	741 
AutonoMouse	 behavioural	 data	 was	 converted	 to	 MATLAB	 data	 format	 using	 the	742 
Conversion	 module	 of	 the	 Python	 autonomouse-control	 package	743 
(github.com/RoboDoig).	 All	 subsequent	 analysis	 was	 performed	with	 custom-written	744 
MATLAB	scripts	unless	otherwise	specified.	745 
All	behavioural	performance	within	a	 specified	 trial	bin	was	 calculated	as	a	weighted	746 
average	of	S+	vs.	S-	performance:	747 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	 = 	
(𝐻𝑖𝑡	/		𝑆+) 	+	(𝐶𝑅	/	𝑆−)

2 	748 

Where	S+	is	the	total	number	of	rewarded	trials,	S-	is	the	total	number	of	unrewarded	749 
trials,	Hit	is	the	total	number	of	rewarded	trials	in	which	a	lick	response	was	detected,	CR	750 
(correct	rejection)	is	the	total	number	of	unrewarded	trials	in	which	no	lick	response	was	751 
detected.	752 
For	 random	 stimulus	 pulse	 frequency	 experiments	 (e.g.	Fig.	 2j,k)	 trials	were	 binned	753 
approximately	by	half-octave	for	performance	analysis.	The	exact	intervals	were	f(Hz)	=	754 
[2,	3,	4,	5,	6:7,	8:10,	11:13,	14:17,	18:22,	23:29,	30:37,	38:48,	49:62,	63:81].	Reaction	time	755 
(Extended	Data	Fig.	5)	was	calculated	from	S+	trials	for	each	animal	as	the	time	to	the	756 
first	lick	after	stimulus	onset.		For	presentation	of	learning	curves	(Fig.	2h,	4d)	accuracy	757 
was	calculated	over	100-trial	sliding	windows.	758 
Motion	magnification	of	the	respiration	camera	video	recordings	(Extended	Data	Fig.	5	759 
and	 Supplementary	 Video	 2)	 was	 performed	 with	 phase-based	 video	 motion	760 
processing	with	 correction	 for	 large	body	movements	based	on	MATLAB	scripts	by	 44	761 
(phaseAmplifyLargeMotions).	Parameters	for	phase	amplification	were:	blurring	σ	=	1,	762 
magnification	 ɑ	 =	 50,	 amplification	 in	 frequency	 band	 between	 2-13	 Hz.	 Following	763 
magnification,	static	ROIs	for	each	video	were	selected	in	Bonsai	(http://www.kampff-764 
lab.org/bonsai/,	45)	over	the	animal	flank.	An	adaptive	binary	threshold	was	applied	to	765 
the	ROI	to	segment	the	animal	body	from	the	video	background.	Respiration	rate	was	766 
extracted	from	the	total	size	of	the	ROI	occupied	by	the	body	over	time.	767 

Olfactory	sensory	neuron	population	model		768 
Overview	769 
We	modelled	the	olfactory	sensor	neuron	(OSN)	population	as	noisy	integrate-and-fire	770 
neurons	integrating	a	filtered	odour	pulse	and	with	independent	(cell-specific)	noise	to	771 
qualitatively	match	 experimental	 data46.	 The	 square	 of	 the	 resulting	mean	population	772 
firing	rate	was	convolved	with	a	calcium	imaging	filter	to	produce	a	model	of	the	observed	773 
calcium	 imaging	 signal.	 All	 code	 and	 related	 data	 for	 the	 model	 can	 be	 found	 at	774 
https://github.com/stootoon/crick-osn-model-release.	775 
 776 
Odour	Input	Current	777 
The	olfactory	input	current	𝐼% 	to	each	OSN	was	modelled	as	a	filtered	version	of	the	odour	778 
pulse	input	𝑂%:	779 

𝜏N 	
𝑑𝐼%
𝑑𝑡 = −𝐼% + 𝑂%	780 



This	 filtering	models	 filtering	 of	 the	 nasal	 cavity,	 transport	 through	 the	mucous,	 and	781 
chemical	transduction	from	odour	concentration	to	receptor	channel	opening.		782 
	783 
Olfactory	Sensory	Neurons	784 
Each	 OSN	 was	 modelled	 as	 a	 noisy	 integrate-and-fire	 neuron.	 Each	 OSN	 membrane	785 
performs	 a	 noisy	 integration	 of	 the	 olfactory	 input	 current	 𝐼% 	 so	 that	 the	 membrane	786 
voltage	𝑉% 	satisfies	the	following	stochastic	differential	equation:	787 

𝜏P	𝑑𝑉% = (𝐼% − 𝑉%)𝑑𝑡 + 𝜎	𝑑𝐵%.	788 
Here	𝐵%	is	standard	Brownian	motion	and	𝜎	is	the	standard	deviation	of	the	membrane	789 
voltage	 noise.	 The	 OSN	 generates	 a	 spike	whenever	 its	membrane	 voltage	 exceeds	 a	790 
spiking	threshold	𝜃:	791 

𝑆% = 	 U
1 𝐼𝑓	𝑉% ≥ 𝜃;
		0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

	792 

	793 
Upon	spiking	the	membrane	voltage	is	clamped	to	a	refractory	voltage	𝑉&/B 	for	a	period	794 
of	𝑡&/B	seconds.	The	mean	instantaneous	firing	rate	of	the	population	is	computed	as	795 

𝑆%̅ =
1
𝑁^𝑆%)

_

)`a

	796 

where	𝑆%)	is	the	spiking	activity	of	OSN	n.	797 
	798 
Calcium	imaging	signal	799 
To	model	the	calcium	imaging	signal	the	mean	firing	rate	is	squared	and	convolved	with	800 
the	imaging	kernel	ℎ%	to	form	the	calcium	imaging	signal	𝐶%:	801 

𝐶% = b𝑆%̅
cd ∗ ℎ%.	802 

The	calcium	imaging	kernel	is	an	alpha	function:	803 
ℎ% = 𝑡	𝑒fg hi⁄ 	805 

	804 
A	 list	 of	 parameters	 is	 given	 in	 Supplementary	 Table	 1.	 All	 parameters	 were	 fit	806 
manually:	Parameters	𝜏N ,	𝜏P	and	𝜎	were	set	to	produce	a	qualitative	match	in	time	courses	807 
between	model	membrane	voltage	traces	and	the	suction	current	traces	in	Figure	2	of	808 
reference	 46.	 The	 remaining	 parameters	 were	 adjusted	 to	 produce	 a	 qualitative	 fit	809 
between	model	and	the	dynamics	of	the	observed	calcium	imaging	traces.	810 
	811 
Generating	model	glomeruli	812 
Overview	813 
We	 generated	 100	model	 glomeruli	 by	 randomly	 varying	 a	 subset	 of	 the	model	 OSN	814 
parameters	described	in	the	previous	section	(tV,	tC,	s,	q ,	a).	Specifically,	we	picked	the	815 
parameters	of	each	glomerulus	by	selecting	uniformly	within	±	25%	of	the	centre	value	816 
of	each	parameter.	All	5000	OSNs	within	each	glomerulus	had	the	same	parameters,	and	817 
differed	only	due	to	the	random	noise	applied	to	their	membrane	voltages.	The	range	of	818 
variation	is	shown	in	Supplementary	Table	2.	819 



	820 
The	effect	of	concentration	was	modelled	by	linear	scaling	of	the	input	waveforms.	For	821 
each	setting	of	PPI	and	concentration	the	model	was	run	to	simulate	25	consecutive	trials	822 
of	length	2.5	seconds	each,	with	the	odour	onset	at	0.1	seconds	into	each	trial.	The	first	5	823 
trials	of	data	were	discarded	 to	allow	 the	model	 to	 ‘settle,’	 yielding	20	 trials	 for	each	824 
condition	that	were	used	in	subsequent	analyses	(Extended	Data	Fig.	1g,h,	Extended	825 
Data	Fig.	2j,k).	826 
	827 
Classifying	glomerular	outputs	828 

Predictors	829 
The	predictors	used	for	classification	were	the	response	integrals	for	each	glomerulus,	830 
defined	as	the	instantaneous	mean	firing	rate	of	the	OSNs	in	the	glomerulus,	filtered	by	831 
the	Ca2+	imaging	filter	(see	section	“Olfactory	sensory	neuron	population	model”)	and	832 
summed	over	the	2	seconds	 following	odour	onset	 in	each	trial.	Since	the	scale	of	 the	833 
responses	 is	 arbitrary,	 we	 scaled	 the	 response	 integrals	 by	 their	 overall	 standard	834 
deviation,	computed	over	glomeruli	and	trials.	835 
	836 
Labels	837 
Trials	were	 labelled	 by	 their	 paired-pulse	 interval	 (PPI),	 or	 a	 combination	 of	 PPI	 and	838 
concentration,	depending	on	the	task.	839 
	840 
Classifiers	841 
The	 classifiers	 used	 were	 support	 vector	 machines	 with	 linear	 kernels	 and	 l2	842 
regularization	 as	 implemented	 by	 the	 ‘LinearSVC’	 function	 of	 the	 Python	 scikit-learn	843 
library.	The	setting	of	the	penalty	parameter	C	and	whether	or	not	to	learn	an	intercept	844 
were	determined	by	cross-validation	with	scikit-learn’s	‘GridSearchCV’.	The	values	of	C	845 
considered	ranged	in	powers	of	10	from	10-4	to	104.	846 
Computing	Decoding	Accuracy	847 
The	decoding	accuracy	for	a	given	subset	of	n	glomeruli	was	computed	as	the	average	848 
accuracy	over	10	cross-validation	trials	for	the	results	in	Extended	Data	Fig.	1h,	and	40	849 
cross-validation	trials	for	the	results	in	Extended	Data	Fig.	2j,k.	In	each	cross-validation	850 
trial,	the	classifier	was	trained	on	a	random	90%	of	the	trials,	tested	on	the	remaining	851 
10%,	and	the	accuracy	recorded.	The	random	subsets	were	stratified	i.e.	constrained	to	852 
have	the	same	fraction	of	 trials	 from	each	class	as	 the	 full	dataset	when	possible.	The	853 
mean	accuracy	across	cross-validation	trials	was	recorded	as	the	accuracy	for	that	subset.	854 
To	 compute	 the	 shuffled	 performance,	 the	 labels	 of	 the	 training	 and	 test	 trials	 were	855 
shuffled	in	each	cross-validation	trial	before	the	classifier	accuracy	was	computed.	856 
	857 
Decoding	PPI	from	the	responses	of	model	glomeruli	858 
To	determine	how	decoding	accuracy	was	affected	by	the	size	of	the	population	used	we	859 
selected	 a	 random	 subset	 of	 n	 glomeruli	 and	 computed	 the	 decoding	 accuracy	 as	860 
described	above.	This	was	repeated	for	256	random	subsets	of	n	glomeruli	generating	861 



256	unshuffled	and	256	shuffled	accuracies.	The	subset	size	n	was	varied	from	1	(using	862 
only	a	single	glomerulus)	to	100	(using	the	full	population;	Extended	Data	Fig.	1h).	Note	863 
that	for	n	≥	99,	some	subsets	are	likely	to	have	been	repeated	because	there	are	fewer	864 
than	256	possible	 subsets	of	 size	99	and	100.	The	observed	variability	 in	accuracy	 in	865 
those	cases	is	then	due	mainly	to	the	random	determination	of	training	and	testing	trials.	866 
	867 
Decoding	PPI	and	concentration	from	the	responses	of	model	glomeruli	868 
To	compute	the	decoding	accuracy	when	decoding	PPI	and	concentration,	we	followed	a	869 
very	 similar	 procedure	 to	 the	 previous	 section,	 but	 fixed	 the	 population	 size	 at	 the	870 
maximum	of	100	and	varied	the	stimulus	concentration	from	0.5	to	5	in	steps	of	0.5	to	871 
cover	a	factor	of	10	range	in	concentration	as	used	in	the	experimental	data	(Extended	872 
Data	 Fig.	 2j-m).	 For	 comparison,	 the	 results	 in	 Extended	 Data	 Fig.	 1h	 were	 for	 a	873 
concentration	 of	 1.	 Decoders	 were	 trained	 to	 extract	 just	 concentration,	 or	 PPI	 and	874 
concentration.	875 

In	vivo	two-photon	imaging	876 
Surgical	and	experimental	procedures	877 
Prior	to	surgery	all	utilised	surfaces	and	apparatus	were	sterilised	with	1%	trigene.	Mice	878 
were	anaesthetised	using	a	mixture	of	fentanyl/midazolam/medetomidine	(0.05	mg/kg,	879 
5	mg/kg,	0.5	mg/kg	respectively).	Depth	of	anaesthesia	was	monitored	throughout	the	880 
procedure	by	testing	the	toe-pinch	reflex.	The	fur	over	the	skull	and	at	the	base	of	the	881 
neck	was	shaved	away	and	the	skin	cleaned	with	1%	chlorhexidine	scrub.	Mice	were	then	882 
placed	 on	 a	 thermoregulator	 (DC	 Temperature	 Controller,	 FHC,	 ME	 USA)	 heat	 pad	883 
controlled	by	a	temperature	probe	inserted	rectally.	While	on	the	heat	pad,	the	head	of	884 
the	animal	was	held	in	place	with	a	set	of	ear	bars.	The	scalp	was	incised	and	pulled	away	885 
from	the	skull	with	four	arterial	clamps	at	each	corner	of	the	incision.	A	custom	head-886 
fixation	implant	was	attached	to	the	base	of	the	skull	with	medical	super	glue	(Vetbond,	887 
3M,	Maplewood	MN,	USA)	such	that	its	most	anterior	point	rested	approximately	0.5	mm	888 
posterior	 to	 the	 bregma	 line.	 Dental	 cement	 (Paladur,	 Heraeus	 Kulzer	 GmbH,	 Hanau,	889 
Germany;	Simplex	Rapid	Liquid,	Associated	Dental	Products	Ltd.,	Swindon,	UK)	was	then	890 
applied	 around	 the	 edges	 of	 the	 implant	 to	 ensure	 firm	 adhesion	 to	 the	 skull.	 A	891 
craniotomy	over	the	left	olfactory	bulb	(approximately	2	x	2	mm)	was	made	with	a	dental	892 
drill	(Success	40,	Osada,	Tokyo,	Japan)	and	then	immersed	in	ACSF	(NaCl	(125	mM),	KCl	893 
(5	 mM),	 HEPES	 (10	 mM),	 pH	 adjusted	 to	 7.4	 with	 NaOH,	 MgSO4.7H2O	 (2	 mM),	894 
CaCl2.2H2O	(2	mM),	glucose	(10	mM))	before	removing	the	skull	with	forceps.	The	dura	895 
was	then	peeled	back	using	fine	forceps.	A	layer	of	2%	low-melt	agarose	diluted	in	ACSF	896 
was	applied	over	 the	exposed	brain	 surface	before	placing	a	glass	window	cut	 from	a	897 
cover	slip	(borosilicate	glass	1.0	thickness)	using	a	diamond	knife	(Sigma-Aldrich)	over	898 
the	 craniotomy.	 The	 edges	 of	 the	 window	 were	 then	 glued	 with	 medical	 super	 glue	899 
(Vetbond,	3M,	Maplewood	MN,	USA)	to	the	skull.		900 
Following	surgery,	mice	were	placed	in	a	custom	head-fixation	apparatus	and	transferred	901 
to	 a	 two-photon	microscope	 rig	 along	with	 the	 heat	 pad.	 The	microscope	 (Scientifica	902 
Multiphoton	VivoScope)	was	coupled	with	a	MaiTai	DeepSee	laser	(Spectra	Physics,	Santa	903 



Clara,	CA)	tuned	to	940	nm	(<50	mW	average	power	on	the	sample)	for	imaging.	Images	904 
(512	x	512	pixels)	were	acquired	in	SciScan	(Scientifica,	UK)	with	a	resonant	scanner	at	905 
a	frame	rate	of	30	Hz	using	a	16x	0.8	NA	water-immersion	objective	(Nikon).	The	output	906 
of	 a	 4-channel	 version	 of	 the	 temporal	 olfactometer	 described	 above	was	 adjusted	 to	907 
approximately	1	cm	away	from	the	ipsilateral	nostril	to	the	imaging	window,	and	a	flow	908 
sensor	was	placed	next	to	the	contralateral	nostril	for	continuous	respiration	recording.		909 
	910 
Awake	recordings	911 
For	 implantation	 of	 the	 head-plate,	 mice	 were	 anaesthetized	 with	 isoflurane	 in	 95%	912 
oxygen	(5%	for	induction,	1.5-3%	for	maintenance).	Local	(mepivacaine,	0.5%	s.c.)	and	913 
general	 analgesics	 (carprofen	 5	mg/kg	 s.c.)	were	 applied	 immediately	 at	 the	 onset	 of	914 
surgery.	After	surgery,	animals	were	allowed	to	recover	for	7	days	with	access	to	wet	diet	915 
and,	after	recovery,	habituated	to	the	head-fixed	situation	 for	at	least	15	min	on	three	916 
consecutive	days	preceding	the	imaging	experiment.			917 
	918 
Odour	stimulation	919 
For	paired-pulse	experiments,	ethyl	butyrate	was	diluted	in	mineral	oil	at	the	ratio	of	1:5	920 
and	installed	into	a	4-channel	version	of	the	high-speed	odour	delivery	device	(15	ml	per	921 
vial)	along	with	two	blank	positions	(15	ml	mineral	oil).	Odour	concentration	range	was	922 
adjusted	over	10	steps	on	a	logarithmic	scale	with	a	factor	of	1.25	by	modulating	odour	923 
pulse-width.	924 
For	 correlated	 vs.	 anti-correlated	 stimulus	 experiments,	 stimuli	were	 generated	 from	925 
mixtures	 of	 physically	 mixed	 monomolecular	 odorants	 in	 order	 to	 ensure	 high	926 
probability	of	 finding	odour	responsive	cells	 in	 the	dorsal	olfactory	bulb	using	custom	927 
Python	Software	(PulseBoy).	Binary	mixtures	were	diluted	in	mineral	oil	at	the	ratio	of	928 
1:5	and	installed	into	a	4-channel	version	of	the	high-speed	odour	delivery	device	(15	ml	929 
per	vial)	along	with	two	blank	positions	(15	ml	mineral	oil).	Mix	1:	ethyl	butyrate	+	2-930 
hexanone,	 mix	 2:	 isoamyl	 acetate	 +	 cineole.	 During	 glomerular	 imaging	 experiments	931 
(Extended	Data	Fig.	6),	six	odours	(A-F)	where	presented	either	individually	or	in	pairs:	932 
A	(ethyl	butyrate),	B	(2-hexanone),	C	(isoamyl	acetate),	D	(cineol),	E	(ethyl	tiglate)	and	F	933 
((+)-fenchone).	 For	 all	 stimuli,	 odour	 valve	 offsets	 were	 compensated	 by	 opening	 a	934 
corresponding	blank	position	valve	to	ensure	no	global	flow	changes	occurred	over	the	935 
course	of	the	stimulus.	All	stimuli	were	repeated	between	16-50	times	with	at	least	15	s	936 
inter-stimulus	interval.	937 
	938 
Data	analysis	939 
For	 M/TC	 imaging,	 motion	 correction,	 segmentation	 and	 trace	 extraction	 were	940 
performed	 using	 the	 Suite2p	 package	 (https://github.com/MouseLand/suite2p;47).	941 
Putative	 neuronal	 somata	 and	 dendritic	 segments	 were	 automatically	 identified	 by	942 
segmentation	 and	 curated	 manually.	 Soma	 and	 neuropil	 fluorescence	 traces	 were	943 
extracted	and	neuropil	fluorescence	was	subtracted	from	the	corresponding	soma	trace.	944 
Further	analysis	was	performed	with	custom	written	scripts	in	MATLAB.		945 



M/TCs	 were	 recorded	 in	 17	 fields	 of	 view	 (FOV)	 from	 6	 individual	 Tbet-cre:Rosa-946 
GCaMP6f	animals,	with	40	±	9.23	(mean	±	SD;	range	27-48)	cells	per	FOV	and	30.25	±	947 
12.97	(mean	±	SD;	range	7-53)	M/TC	dendrites,	948 
For	glomerular	 imaging	experiments,	ROIs	 corresponding	 to	glomeruli	were	manually	949 
delineated	based	on	 the	mean	 fluorescence	 image.	Fluorescence	 signal	 from	all	pixels	950 
within	each	ROI	was	averaged	and	extracted	as	time	series.	ΔF/F	=	(F-F0)/F0,	where	F	=	951 
raw	fluorescence	and	F0	was	the	median	of	the	fluorescence	signal	distribution.	952 
Glomerular	signals	 from	a	total	of	15	 individual	OMP-cre:Rosa-GCaMP6f	animals	were	953 
recorded	with	28	±	4.34	(mean	±	SD;	range	20-36)	glomeruli	per	animal	(Extended	Data	954 
Fig.	6a).	955 
Where	the	odour	stimulus	was	not	inhalation-triggered,	traces	were	post	hoc	aligned	to	956 
the	first	inhalation	after	odour	onset.	Calcium	response	integrals	were	calculated	for	a	957 
range	of	window	durations	starting	 from	odour	onset	(100-5000	ms).	To	analyse	how	958 
well	 odour	 responses	 predicted	 stimulus	 correlation	 on	 a	 trial-to-trial	 basis,	 we	959 
generated	 a	 linear	 discriminant	 classifier	 from	 the	 data	 set	 and	 analysed	 prediction	960 
accuracy.	 For	 the	 classifier,	 we	 performed	 50%	 holdout	 validation,	 splitting	 the	 data	961 
randomly	 into	 a	 training	 set	 and	 test	 set	 with	 equal	 numbers	 of	 samples.	 We	 then	962 
performed	 linear	discriminant	analysis	on	 the	 training	data	 set	 to	determine	 the	best	963 
linear	boundary	between	10	vs.	25	ms	pulse	interval	stimulations	or	correlated	vs.	anti-964 
correlated	 data.	 Classifier	 performance	 was	 then	 validated	 on	 the	 test	 data	 set.	 To	965 
determine	 the	effect	of	number	of	ROIs	used	on	classifier	performance,	we	 iteratively	966 
trained	multiple	classifiers	on	random	subsets	of	ROIs	with	increasing	numbers	of	ROIs	967 
within	each	set.	For	each	ROI	subset	size,	100	classifiers	were	trained	and	the	mean	±	SD	968 
of	their	performance	accuracy	was	calculated.	All	classifier	analysis	was	performed	on	969 
individual,	unaveraged	trials.	970 
	971 
Glomerular	imaging	classifiers	in	Extended	Data	Fig.	6k,l		972 
The	classifiers	used	in	Extended	Data	Fig.	6k,l	were	trained	separately	for	each	odour	973 
pair,	 each	 frequency,	 and	 each	 time	 window.	 The	 inputs	 for	 classification	 were	 the	974 
averaged	 responses	 of	 the	 145	 glomeruli	 in	 a	 given	 time	 window	 for	 24	 odour	975 
presentation	trials,	where	the	odours	were	fluctuating	in	a	correlated	manner	in	half	of	976 
the	trials,	and	in	an	anti-correlated	manner	in	the	remaining	half.	Within	the	correlated	977 
and	anti-correlated	subsets	of	trials,	half	had	the	first	odour	in	the	pair	phase-shifted	by	978 
180	degrees,	and	the	remaining	half	had	no	phase	shift.	The	classification	task	was	to	979 
determine	whether	the	glomerular	responses	in	a	given	trial	were	evoked	by	correlated	980 
or	anti-correlated	odour	fluctuations.		981 
	982 
Because	 we	 had	 far	 fewer	 trials	 (24)	 than	 glomeruli	 (145)	 it	 was	 important	 to	 use	983 
regularized	classifiers	 to	avoid	overfitting.	To	promote	 interpretability	of	 the	decision	984 
boundaries	learned	by	the	classifiers	we	opted	for	sparsity-promoting	regularizers	and	985 
settled	on	the	Lasso,	evaluated	as	a	classifier	by	taking	the	sign	of	its	output	computed	986 
after	the	addition	of	a	small	amount	of	noise	(to	decide	ambiguous	classifications).	The	987 
implementation	of	the	Lasso	we	used	was	‘LassoLarsCV’	provided	by	the	Python	scikit-988 



learn	library	because	it	converged	readily,	gave	very	good	classification	performance,	and	989 
automatically	tuned	the	weighting	of	the	sparsity	penalty.	Inputs	to	the	classifier	were	990 
standardized	 to	have	mean	zero	and	unit	 variance	across	 trials.	We	 found	 that	 it	was	991 
important	to	learn	the	classification	weights	without	intercept	to	avoid	overfitting.		992 
	993 
The	performance	of	a	classifier	was	determined	by	cross-validation,	where	in	each	cross-994 
validation	iteration,	the	classifier	was	trained	on	a	random	~90%	of	the	trials	(21	trials)	995 
and	tested	on	the	remaining	~10%	(3	trials),	and	the	test	accuracy	recorded.	The	random	996 
subsets	were	selected	in	a	stratified	manner,	meaning	that	the	fraction	of	correlated	and	997 
anti-correlated	trials	in	the	subset	were	kept	as	close	as	possible	to	their	fraction	in	the	998 
full	dataset	(50/50).	This	meant	that	10	of	the	21	training	trials	were	of	one	type	and	11	999 
of	 the	other.	This	procedure	was	performed	for	10	cross-validation	 iterations,	and	the	1000 
average	 performance	 over	 these	 repeats	 was	 recorded	 as	 the	 performance	 of	 the	1001 
classifier.	The	shuffled	performance	was	computed	the	same	way	but	with	training	and	1002 
test	labels	shuffled	in	each	iteration.	The	entire	procedure	was	then	repeated	for	each	of	1003 
100	different	random	seeds	to	produce	a	distribution	of	classification	accuracies,	whose	1004 
means	and	standard	deviations	are	plotted	in	Extended	Data	Fig.	6k,l.		1005 
	1006 
Because	we	 used	 a	 sparsity-promoting	 classifier	 it	 was	 straightforward	 to	 determine	1007 
which	glomeruli	were	contributing	to	a	particular	classification	decision.	We	found	that	1008 
if	we	used	all	145	glomeruli	available	 then	frequently	glomeruli	would	be	selected	 for	1009 
noisy	 fluctuations	 of	 their	 responses	 that	 were	 by	 chance	 ‘informative’	 for	 the	1010 
classification.	To	avoid	the	inclusion	of	such	noisy	responses,	we	filtered	glomeruli	for	1011 
responsivity.	To	determine	the	responsivity	of	a	glomerulus,	the	mean	𝑋lm.2,,o'+/.()/ 	and	1012 
standard	deviation	𝜎m.2,,o'+/.()/ 	of	its	responses	pooled	across	all	baseline	bins	(defined	1013 
as	the	3	seconds	before	odour	onset)	and	across	all	trials	for	the	given	odour	pair	and	1014 
frequency	were	first	computed.	A	Z-score	was	then	computed	for	its	averaged	response	1015 
for	 the	 given	 time	 bin	 and	 for	 each	 trial	 by	 comparing	 this	 response	 to	 the	 baseline	1016 
activity	according	to	1017 

𝑍m.2,,%&('. =
𝑋m.2,,%&('. − 𝑋lm.2,,o'+/.()/
𝜎m.2,,o'+/.()//q𝑛r)s

,	1018 

where	𝑋m.2,,%&('. 	is	the	response	of	the	glomerulus	in	the	given	time	window	and	𝑛r)s 	is	1019 
the	number	of	time	bins	constituting	the	window.	The	scaling	of	the	baseline	standard	1020 
deviation	is	to	account	for	the	reduction	in	variance	due	to	the	averaging	over	time	bins	1021 
used	to	compute	the	response.	A	glomerulus	was	considered	responsive	in	a	given	trial	if	1022 
the	absolute	value	of	its	Z-score	as	computed	above	was	greater	than	1	on	three-quarters	1023 
or	 more	 of	 the	 trials.	 Such	 a	 thresholding	 ensured	 that	 the	 number	 of	 responsive	1024 
glomeruli	was	almost	always	zero	before	odour	onset,	but	rose	to	a	peak	~125	of	the	145	1025 
glomeruli	available	when	2	s	windows	were	used.	Reducing	the	window	size	reduced	the	1026 
peak	number	of	glomeruli,	but	at	least	25	glomeruli	were	used	during	the	peak	responsive	1027 
period	in	all	cases,	and	frequently	many	more.	This	filtering	also	meant	that	some	time	1028 



windows	late	in	the	response	contained	no	responsive	glomeruli	for	some	window	sizes,	1029 
which	explains	the	`patchiness’	observed	in	Extended	Data	Fig.	6k,l.	1030 

Extracellular	recordings	1031 
Surgical	and	experimental	procedures	1032 
5-8	week	old	C57BL/6Jax	mice	were	anaesthetised	using	a	mixture	of	ketamine/xyazline	1033 
(100mg/kg	and	10mg/kg	respectively)	by	intraperitoneal	(IP)	injection.	An	IP	line	was	1034 
inserted	 after	 the	 initial	 injection	 to	 allow	 for	 easier	 and	 more	 regular	 subsequent	1035 
injections	of	anaesthetics.	Surgery	was	carried	out	as	described	above	 for	 two-photon	1036 
imaging,	up	until	the	application	of	agar	and	cranial	window.			1037 
Following	 surgery,	 mice	 and	 custom	 platform	 were	 transferred	 to	 the	 extracellular	1038 
recording	set	up.	A	flow	sensor	(A3100,	Honeywell,	NC,	USA)	was	placed	in	front	of	the	1039 
contralateral	nostril	whilst	an	output	from	the	temporal	olfactometer	was	positioned	in	1040 
front	of	the	ipsilateral	nostril.	A	Ag/Ag+Cl-	reference	coil	was	immersed	in	the	well,	over	1041 
the	left	hemisphere	of	the	skull.	The	reference	wire	was	connected	to	both	the	reference	1042 
and	 ground	 of	 the	 amplifier	 board	 (RHD2132,	 intan,	 CA,	 USA),	 which	was	 connected	1043 
(Omnetics,	MN,	USA)	to	a	head-stage	adapter	(A32-OM32,	NeuroNexus,	MI,	USA).	A	32-1044 
channel	probe	(A32-Poly3,	NeuroNexus,	MI,	USA)	was	connected	to	the	adapter,	and	the	1045 
tip	 of	 the	 probe	was	manoeuvred	 to	 be	 positioned	 1-2cm	 above	 the	 craniotomy.	 The	1046 
adapter	and	probe	were	held	above	the	craniotomy	using	a	micromanipulator	(PatchStar,	1047 
Scientifica,	 UK)	 set	 at	 90	 degrees	 to	 the	 surface	 of	 the	 brain.	 The	 probe	 was	 moved	1048 
towards	the	surface	of	the	OB,	whilst	being	observed	through	a	surgical	microscope.	Once	1049 
the	 probe	 was	 in	 contact	 with	 the	 surface,	 but	 had	 not	 entered	 the	 brain,	 the	1050 
manipulator’s	Z	position	was	set	to	zero.	The	signal	from	the	probe	was	streamed	through	1051 
OpenEphys	 acquisition	 board	 and	 software	 (OpenEphys,	 RI,	 USA).	 The	 probe	 was	1052 
inserted	at	<	4	µm/s	until	 the	number	and	amplitudes	of	spikes	began	to	decrease	on	1053 
deeper	channels,	indicating	the	tip	of	the	probe	was	exiting	the	MC	layer.	This	was	found	1054 
to	be	between	400-600	µm	from	the	surface	of	the	OB.	From	here,	the	probe	was	left	for	1055 
10	minutes	for	neural	activity	to	stabilise	before	recording	began.	1056 
	1057 
Odour	stimulation	1058 
Odours	were	 presented	 using	 an	 8-channel	 version	 of	 the	 high-speed	 odour	 delivery	1059 
device,	4	of	which	contained	odours	(A:	ethyl	butyrate,	B:	2-hexanone,	C:	isoamyl	acetate,	1060 
D:	eucalyptol)	and	4	contained	blank	(mineral	oil)	which	were	used	to	compensate	for	1061 
flow	changes.	Trials	either	paired	A	and	B	or	C	and	D	together.	Stimuli	were	repeated	64	1062 
times	and	had	an	8	s	inter-trial	interval.	Onset	of	odour	was	recorded	using	TTL	pulses	1063 
passed	through	additional	channels	in	the	OpenEphys	acquisition	board.	Trial	starts	were	1064 
triggered	on	inhalation	as	detected	by	the	flowmeter.	1065 
	1066 
Data	analysis	1067 
Spikes	were	sorted	using	Kilosort2	(github.com/MouseLand/Kilosort2;48)	and	classified	1068 
as	 ‘good’	 when	 they	 displayed	 a	 strong	 refractory	 period	 visible	 in	 their	 auto-1069 
correlogram,	a	typical	waveform	and	a	stable	firing	rate,	as	‘MUA’	(multi-unit	activity)	if	1070 



they	presented	a	typical	waveform	but	a	weak	refractory	period,	or	‘noise’	if	they	were	1071 
suspected	of	being	electrical	or	mechanical	interference.	For	a	first-pass	analysis	units	1072 
were	classified	as	“differentially	responding"	to	correlated	and	anti-correlated	stimuli	if	1073 
units	were	found	to	have	significantly	(p	<	0.01,	Mann	Whitney	u	test)	different	spike	time	1074 
distributions	during	4	s	post	odour	onset.	However,	the	cut-off	for	such	distinction	will	1075 
always	be	somewhat	arbitrary.	For	the	majority	of	the	analysis,	we	therefore	pooled	all	1076 
good	 units	 across	 experiments	 in	 a	 pseudo-population.	 All	 classifiers	 used	 for	 unit	1077 
recording	analysis	were	support	vector	machines	(SVMs)	with	linear	kernels	with	a	low	1078 
regularisation	parameter,	which	translates	to	a	greater	freedom	for	a	classifier	to	vary	1079 
weights	 for	 any	 given	 component.	 Data	 was	 split	 into	 training	 and	 test	 sets	 prior	 to	1080 
classification.	 Test	 sets	 either	 consisted	 of	 26	 trials	 (summed	 spike	 classifiers	 for	1081 
correlated	 vs.	 anti-correlated)	 or	 2	 trials	 (PCA	 classifiers	 and	 short	 odour	 pulse	1082 
combinations).	Data	passed	to	the	summed	spike	classifiers	was	pre-processed	in	one	of	1083 
two	ways	prior	to	classification.		1084 
Firstly,	 a	 rolling	 sum	of	 detected	 spikes,	within	 variable	window	 sizes	was	 used.	 The	1085 
window	sizes	varied	from	10	ms	to	2000	ms.	In	addition	to	window	size,	window	starts	1086 
were	also	varied.	Each	window	size	was	trialled	with	every	possible	window	start	from	1087 
zero	to	four	seconds	minus	the	window	size	from	odour	onset,	with	10	ms	incremental	1088 
changes.	For	example,	a	500	ms	window	was	tested	with	starts	varying	from	0	to	3500	1089 
ms	from	odour	onset.		1090 
Secondly,	the	coefficients	of	PCs	for	units	in	each	trial	was	used	for	classification.	The	PCs	1091 
were	found	by	applying	PCA	across	all	units	and	all	training	trials.	Each	PC	represented	a	1092 
time	series	and	hence	the	coefficients	signify	the	strength	at	which	that	time	series	was	1093 
followed	by	a	given	unit	for	a	given	trial.	The	two	holdout	trials	were	not	used	to	find	the	1094 
PCs	but	were	 then	projected	onto	 them	and	 their	 coefficients	used	as	 the	 test	 for	 the	1095 
classifiers.	All	classifiers	were	repeated	1000	times	with	a	random	selection	of	holdout	1096 
trials	each	time.	1097 
Finally,	 for	 the	 short	 odour	 pulse	 classification,	 classifiers	 were	 trained	 on	 summed	1098 
spikes	in	windows	of	500	ms	post	odour	onset.	Each	classifier	was	trained	on	all	but	two	1099 
hold	out	trials.	To	account	for	a	varying	number	of	trials	between	animals,	training	data	1100 
was	bootstrapped	to	1000	trials	of	each	type.	Each	trial	was	randomly	selected	from	the	1101 
initial	 pool	 of	 training	 trials,	 and	 each	 unit	 was	 bootstrapped	 independently.	 These	1102 
classifiers	were	tested	on	the	initial	two	hold	out	trials.	This	was	repeated	1000	times	1103 
with	different	bootstrapped	datasets	and	different	hold	out	trials.	1104 
Training	data	for	all	classifiers	was	scaled	such	that	each	feature	(unit	spike	count	/	PC	1105 
coefficient)	had	a	mean	value	of	zero,	and	a	standard	deviation	of	one	using	the	following	1106 
equation:	1107 

𝑧 =
(𝑥 − 𝑢)

𝑠
	1108 

where	x	is	the	initial	value	of	the	feature,	u	is	the	mean,	s	is	the	standard	deviation,	and	z	1109 
is	the	scaled	value.	Means	and	standard	deviations	were	calculated	using	the	training	data	1110 
so	no	information	from	the	testing	data	could	influence	the	scaling.	The	testing	data	was	1111 



scaled	using	the	same	values	as	for	the	training.	Scaling	was	applied	during	every	repeat	1112 
in	this	manner.	1113 

Whole-cell	patch	recordings	1114 
Whole-cell	recordings	were	performed	as	described	previously38,49.	Borosilicate	pipettes	1115 
(2	x	1.5	mm)	were	pulled	and	filled	with	(in	mM)	KMeSO3	(130),	HEPES	(10),	KCl	(7),	1116 
ATP-Na2	 (2),	 ATP-Mg	 (2),	 GTP-Nax	 (0.5),	 EGTA	 (0.05)	 (pH	 =	 7.3,	 osmolarity	 ~290	1117 
mOsm/kg).	The	OB	surface	was	submerged	with	ACSF	containing	(in	mM)	NaCl	(135),	1118 
KCl	(5.4),	HEPES	(5),	MgCl2	(1),	CaCl2	(1.8),	(pH	=	7.4	and	~300	mOsm/kg.	Signals	were	1119 
amplified	and	 low-pass	 filtered	at	10	kHz	using	an	Axoclamp	2B	amplifier	 (Molecular	1120 
Devices)	 and	 digitized	 at	 40	 kHz	 using	 a	 Micro	 1401	 analogue	 to	 digital	 converter	1121 
(Cambridge	Electronic	Design).		1122 
After	zeroing	the	pipette	tip	position	at	the	OB	surface,	the	tip	was	advanced	to	reach	a	1123 
depth	of	~200	µm	from	the	surface.	Whole-cell	patch-clamp	recordings	were	obtained	as	1124 
described	in50.	Series	resistance	was	compensated	and	monitored	continuously	during	1125 
recording.	 Neurons	 showing	 series	 resistance	 >25	 MΩ	 were	 discarded	 from	 further	1126 
analysis.	To	estimate	the	input	resistance,	a	-50	pA	current	step	was	delivered	at	the	start	1127 
and	end	of	each	recording.	1128 
The	vertical	depth	of	recorded	neurons	was	calculated	as	the	vertical	distance	from	the	1129 
brain	surface.	Respiration	was	recorded	using	a	mass	flow	sensor	(A3100,	Honeywell,	NC,	1130 
USA)	and	digitized	at	10	kHz.	Odours	were	prepared	and	delivered	as	described	above	1131 
and	triggered	to	the	beginning	of	inhalation.		1132 
	1133 
Data	analysis	1134 
Change	in	membrane	potential	1135 
Recordings	 were	 spike-clipped	 using	 a	 custom	 script	 written	 in	 Spike2	 (Cambridge	1136 
Electronic	 Design)	 and	 analysed	 in	 MATLAB	 (Mathworks,	 USA).	 All	 recordings	 were	1137 
baseline	 subtracted	 as	 described	 previously51.	 The	 average	 change	 in	 membrane	1138 
potential	was	defined	as	the	difference	between	the	average	membrane	potential	over	a	1139 
2	s	period	before	odour	onset	and	the	average	membrane	potential	in	the	first	500	ms	1140 
(~2	sniffs)	after	odour	onset.	1141 
	1142 
Change	in	spike	frequency	1143 
Action	potentials	were	counted	from	raw	traces,	converted	into	spike	frequency	in	50	ms	1144 
bins	 and	 plotted	 as	 peri-stimulus	 time	 histograms	 (PSTH).	 The	 net	 change	 in	 spike	1145 
frequency	was	defined	as	the	difference	of	the	average	spike	frequency	during	2	s	before	1146 
onset	and	500	ms	after	onset.	1147 
	1148 
Arithmetic	sum	1149 
Baseline-subtracted	 traces	 obtained	 from	 independent	 component	 odour	 (A	 and	 B)	1150 
presentations	were	either	summed	and	averaged	in	an	in-phase	manner	to	generate	the	1151 
arithmetic	sum	equivalent	of	 the	correlated	response	or	phase-shifted	to	generate	the	1152 
equivalent	of	the	anti-correlated	response.		1153 



	1154 
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑠𝑢𝑚(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑) = (𝑉𝑚2s2w&x +	𝑉𝑚2s2w&y)/2	1155 

	1156 
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑠𝑢𝑚(𝑎𝑛𝑡𝑖𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑)1157 

= (𝑉𝑚2s2w&x +	𝑠ℎ𝑖𝑓𝑡𝑒𝑑	𝑉𝑚2s2w&y +	𝑠ℎ𝑖𝑓𝑡𝑒𝑑	𝑉𝑚2s2w&x +	𝑉𝑚2s2w&y)/4			1158 
	1159 

Dual-energy	fast	photoionisation	detection	(defPID,	Supplementary	Methods	Fig.	1160 
2)	1161 
Two	 photoionisation	 detectors	 (200B	miniPID,	 Aurora	 Scientific,	 Aurora	 ON,	 Canada)	1162 
fitted	with	UV	lamps	of	emission	energy	10.6	eV	(PID	high)	and	8.4	eV	(PID	low)	were	1163 
used	to	discriminate	ethyl	butyrate	(EB,	 ionisation	energy	=	9.9	eV)	 from	α-Terpinene	1164 
(AT,	ionisation	energy	=	7.6	eV)	or	ethyl	valerate	(EV,	ionisation	energy	=	10.0	eV)	from	1165 
tripropyl	amine	(TA,	ionisation	energy	=	7.2	eV).	To	accommodate	the	lower	voltage	UV	1166 
lamp,	 resonance	 circuitry	 in	 the	 PID	 headstage	 electronics	was	 adjusted	 according	 to	1167 
manufacturer’s	recommendations.	Specifically,	potentiometer	‘PT1’	was	adjusted	up	to	1168 
the	point	where	the	8.4	eV	lamp	began	to	glow.	Further,	we	tested	if	the	now	converted	1169 
PID	low	was	now	sensitive	to	only	AT	and	TA	while	not	detecting	EB	and	EV.	The	PID	1170 
inlets	were	connected	with	a	3-way	connector	to	detect	incoming	odours	by	both	PIDs	1171 
simultaneously	from	a	common	point.	PID	heads	were	held	on	lab	stands	with	the	PID	1172 
inlet	at	approximately	4	cm	above	ground	level.		1173 
	1174 
Odour	delivery		1175 
Odours	were	held	in	ceramic	crucibles	(5	cm	diameter,	6	ml	volume)	covered	in	an	air-1176 
tight	fashion	using	glass	lids.	Odours	were	released	for	5	s	with	an	inter-trial	interval	of	1177 
15	s	by	Arduino-based	robots	programmed	to	lift	the	lids	from	the	crucibles	using	a	servo	1178 
motor	(TowerPro	SG-5010,	Adafruit,	UK).	Lid	lifting	events	were	triggered	by	the	Arduino	1179 
board,	recorded	in	Spike2	and	defined	as	the	onset	of	odour	for	analysis.	Both	the	Arduino	1180 
board	and	Spike2	were	controlled	by	a	portable	computer	and	used	the	same	clock	for	1181 
synchronisation.	Experiments	were	carried	out	in	a	large	open	space,	both	indoors	and	1182 
outdoors	(Supplementary	Methods	Fig.	2f,g).		1183 
Outdoors	setup:	PIDs	and	odour	delivery	system	as	described	above	were	used	to	record	1184 
for	multiple	trials	in	different	conditions	on	a	day	with	low	wind	(~8-12	mph	»	3-5	m/s,	1185 
recorded	 with	 a	 2-axis	 ultrasonic	 wind	 sensor	 (Gill	 Instruments,	 Hampshire,	 UK)).	1186 
Outdoor	 experiments	 were	 performed	 on	 a	 ~6	 m	 x	 10	 m	 wooden	 patio	 structure	1187 
surrounded	 by	 trees.	Measurement	of	odour	 correlations	 in	 the	outdoor	 setting	were	1188 
complicated	by	the	presence	of	background	odours:	If	background	odours	are	detectable	1189 
by	both	PIDs,	measured	correlation	will	be	artificially	inflated;	if	they	can	be	ionized	only	1190 
by	the	“PIDhigh”	they	will	artificially	decrease	the	measured	correlation.		1191 
Indoors	setup:	A	digitally	controlled	fan	(2214F/2TDH0,	ebm-papst,	Chelmsford,	UK)	was	1192 
placed	at	a	distance	of	325	cm	facing	the	PID	inlet.	An	exhaust	line	was	situated	behind	1193 
the	PID	inlet	to	ensure	the	direction	of	air	from	the	fan	towards	the	PID	inlet.	During	a	1194 
recording,	 the	 fan	was	 set	 to	maximum	speed	such	 that	 it	pushed	approximately	550	1195 



cf/min	 (cubic	 feet	per	minute,	»260	 l/s)	of	 air	 towards	 the	PID	 inlet.	A	25x25x25	cm	1196 
Thermocool	box	was	placed	200	cm	downwind	of	 the	 fan	acting	as	an	obstacle	 to	air	1197 
movement,	promoting	complex	air	movement	patterns	at	the	PID	inlet.	The	pump	at	each	1198 
PID	was	 set	 to	»	 0.02	 l/s	 suction	 speed,	 unlikely	 to	 perturb	 overall	 airflow	dynamics	1199 
substantially.		1200 
	1201 
Recording	conditions	1202 
6	ml	of	the	desired	odour(s)	were	filled	in	two	crucibles	and	placed	in	different	locations	1203 
based	on	the	experimental	conditions	as	described	below:	1204 
	1205 
1.	Low	energy	only:	The	‘low-energy	odour’	(AT	or	TA)	was	placed	40	cm	(radial	distance	1206 
d)	away	from	the	PID	inlet,	and	displaced	either	25	cm	left	or	25	cm	right	of	the	midline	1207 
(the	line	between	the	PID	inlet	and	the	centre	of	the	fan).	The	odour	source	was	alternated	1208 
between	 left	 and	 right	positioning	 relative	 to	 the	midline	 to	 remove	any	possible	bias	1209 
from	 positioning	 in	 the	 air	 stream.	 The	 purpose	 of	 this	 recording	 condition	 was	 to	1210 
generate	data	to	calculate	 the	 linear	transformation	 from	the	 low	energy	signal	 to	 the	1211 
high	energy	signal	(Supplementary	Methods	Fig.	2c,d).	1212 
2.	Mix:	3	ml	EB	+	3	ml	AT	(or	3	ml	EV	+	3	ml	TA)	was	pipetted	in	one	crucible	and	placed	1213 
either	25	cm	left	or	25	cm	right	of	the	midline	at	radial	distances	of	20	cm,	40	cm	and	60	1214 
cm.	The	purpose	of	this	recording	condition	was	to	determine	how	the	temporal	structure	1215 
of	individual	odours	in	a	plume	behaved	when	the	odours	were	emitted	from	the	same	1216 
source.	1217 
3.	Separate:	3	ml	EB	and	3	ml	of	AT	(or	3	ml	EV	and	3	ml	TA)	were	individually	pipetted	1218 
in	two	different	crucibles	and	placed	at	a	radial	distance	of	40	cm	from	the	PID	inlet.	For	1219 
the	s=50	cm	apart	condition,	one	odour	source	was	placed	25	cm	left	of	the	midline	while	1220 
the	other	was	25	cm	on	the	right	of	the	midline	and	vice-versa	(equal	number	of	trials	for	1221 
both	 cases)	 separating	 the	odour	 sources	by	50	cm.	This	procedure	was	 repeated	 for	1222 
lateral	distances	of	s=30	cm	and	s=10	cm.		The	‘50	cm	apart’	case	was	repeated	for	radial	1223 
distances	 of	 d=20	 cm	 and	 d=60	 cm.	 The	 purpose	 of	 this	 recording	 condition	was	 to	1224 
determine	how	the	temporal	structure	of	individual	odours	in	a	plume	behaved	when	the	1225 
odours	were	emitted	from	separated	sources	but	were	still	free	to	mix	in	air.	1226 
	1227 
Data	analysis	1228 
Decomposition	procedure:	The	low	energy	odour	(AT)	was	recorded	using	both	PIDs	as	1229 
described	above.	Assuming	a	 linear	 relation	between	 the	 recorded	signals	 from	 the	2	1230 
PIDs,	 we	 plotted	 the	 recorded	 events	 with	 a	 linear	 regression	 fit	 (Supplementary	1231 
Methods	Fig.	2c)	and	calculated	slope	and	R2	value	of	the	fit.	The	scaling	factor	(6.82	±	1232 
0.356,	mean	±	SD)	was	calculated	as	the	average	slope	of	all	linear	fits	for	R2	≥	0.9.	1233 
The	‘PID	low’	traces	were	multiplied	by	this	scaling	factor	which	was	termed	‘estimated	1234 
low	energy	odour’	(Supplementary	Methods	Fig.	2e).	The	‘estimated	high	energy	odour’	1235 
was	calculated	by	subtracting	the	estimated	low	energy	odour	from	the	‘PID	high’	traces.	1236 



Correlation	calculation:	Custom	written	scripts	in	MATLAB	(Mathworks,	USA)	were	used	1237 
to	calculate	the	correlation	coefficient	between	the	estimated	low	energy	odour	and	the	1238 
estimated	high	energy	odour	for	all	conditions.	Box	plots	were	obtained	from	these	values	1239 
using	Igor	Pro	6	(WaveMetrics,	USA).	1240 
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Extended	 Data	 Fig.	 1	 |	 Distinguishing	 fast	 odour	 stimuli	 with	 slow	 OSNs.		1321 
a,	Membrane	voltage	relative	to	baseline	of	a	single	model	OSN	in	response	to	a	10	ms	1322 
odour	pulse.	Black	traces	are	 individual	trials;	red	trace	 is	average	over	20	trials.	OSN	1323 
spike	threshold	has	been	set	high	enough	to	prevent	spiking	to	illustrate	the	subthreshold	1324 
voltage	time	course.	b,	Membrane	voltages	(grey	traces)	of	ten	OSNs	from	a	population	of	1325 
5000	in	response	to	a	paired	odour	pulse	with	pulse	width	10	ms	and	PPI	of	25	ms.	The	1326 
voltage	time	course	for	one	example	OSN	is	in	black.	Several	OSNs	reach	the	OSN	spike	1327 
threshold	(dashed	red	line)	and	are	temporarily	reset	to	the	refractory	voltage	of	-1.	The	1328 
population	average	membrane	voltage	(red)	reveals	membrane	charging	in	response	to	1329 
odour	 stimulation	 and	 the	 subsequent	 discharging	 and	 refractory	 period.	 c,	 Raster	1330 
showing	the	spike	times	(dots)	of	the	full	population	from	b	and	the	corresponding	mean	1331 
firing	rate	(trace)	estimated	in	1	ms	bins.	d,	Mean	firing	rates	computed	over	20	trials	in	1332 
response	to	paired	odour	pulses	of	width	10	ms	and	PPIs	of	10	ms	(green)	and	25	ms	1333 
(black).	e,	Model	calcium	signals	are	produced	by	squaring	the	instantaneous	mean	firing	1334 
rate	and	filtering	the	result	with	a	calcium	imaging	kernel.	f,	Model	calcium	responses	to	1335 
the	paired	odour	stimulus	with	a	PPI	of	10	ms	(green)	and	25	ms	(black).	Thin	traces	are	1336 
single	 trials,	 thick	 traces	 are	 averages	 over	 15	 trials.	 g,	 Schematic	 of	 the	 OSN	model.	1337 
Variables	in	dashed	bounding	boxes	are	changed	for	each	glomerulus	(see	Methods).	h,	1338 
Linear	classifier	analysis	over	an	 increasing	subset	size	of	glomeruli	 (1-100;	plotted	 is	1339 
mean	±	SD,	256	repeats	for	random	subsets	of	n	glomeruli	generating	256	unshuffled	and	1340 
256	shuffled	accuracies).	1341 

Extended	Data	Fig.	2	|	Sub-sniff	odour	information	in	the	olfactory	bulb	input	layer.		1342 
a,	GCaMP6f	fluorescence	recorded	in	olfactory	bulb	glomeruli	in	an	anaesthetised	OMP-1343 
cre:Rosa-GCaMP6f	mouse	(maximum	projection	of	8200	frames,	glomerulus	marked	with	1344 
red	asterisk	corresponds	to	first	example	trace	shown	in	b).	Scale	bar:	50	µm.	b,	Example	1345 
calcium	traces	in	response	to	10	and	25	ms	PPI	odour	stimuli	(mean	of	50	trials	±	SEM).	1346 
Bottom:	Example	 respiration	 traces.	P-values	derived	 from	unpaired	 two-sided	 t-tests	1347 
comparing	responses	of	 individual	 trials	 integrated	over	2	s	windows	to	paired	odour	1348 
pulse	stimulation.	c,	Classifier	accuracy	over	an	increasing	number	of	glomeruli	when	a	1349 
linear	classifier	was	trained	on	several	response	windows	(colour-coded	black:	shuffle	1350 
control)	to	PPI	10	vs.	25	ms	stimuli	(mean	±	SD	of	up	to	93	glomeruli	from	4	individual	1351 
animals;	 500	 repetitions).	 di,	 Classifier	 accuracy	 when	 trained	 on	 all	 glomeruli	 in	1352 
response	to	PPI	10	vs.	25	ms	stimuli	recorded	in	anaesthetised	animals	(n	=	93	glomeruli,	1353 
mean	 ±	 SD	 from	 4	 individual	 animals)	 with	 a	 sliding	 window	 of	 different	 durations	1354 
(colour-coded;	black:	shuffle	control;	100	repetitions)	starting	at	2	s	before	odour	onset	1355 
(left)	 and	 time	 period	 between	 -0.5	 and	 0.5	 s	 from	 odour	 onset	 shown	 at	 higher	1356 
magnification	(right).	dii,	Same	as	di	 for	awake	animals	(n	=	100	glomeruli,	mean	±	SD	1357 
from	5	individual	animals).	e,	Odour	and	f,	flow	signal	integrated	over	2	s	for	PPI	10	ms	1358 
and	PPI	25	ms	stimuli	(10	repeats	each,	odour:	p	=	0.1841,	flow:	p	=	0.1786,	unpaired	1359 
two-sided	t-test).	g,	Correlation	coefficients	of	glomerular	calcium	responses	to	PPI	10	vs.	1360 
25	ms	in	anaesthetised	(n	=	93	glomeruli	from	4	individual	animals)	and	awake	(n	=	100	1361 
glomeruli	 from	 5	 individual	 animals)	 mice	 (p	 =	 0.3187,	 unpaired	 two-sided	 t-test,	1362 
measured	as	in	Fig.	1	from	OMP-Cre:Rosa-GCaMP6f	mice).	Violin	plots	show	the	median	1363 



as	a	black	dot	and	the	first	and	third	quartile	by	the	bounds	of	the	black	bar.	hi,	Example	1364 
respiration	traces	recorded	using	a	flow	sensor	from	awake	mice.	Inhalation	goes	in	the	1365 
upwards,	 exhalation	 in	 the	 downwards	 direction.	 hii,	 Average	 instantaneous	 sniff	1366 
frequency	from	one	example	animal	plotted	as	a	function	of	time	(n	=	24	trials,	mean	±	1367 
SEM).	The	odour	stimulus	consisted	of	two	10	ms	long	odour	pulses	either	10	or	25	ms	1368 
apart	(see	Fig.	1c).	hiii,	Distribution	of	sniff	intervals	during	a	2	s	window	before	(grey)	1369 
and	 a	 5	 s	 window	 after	 (blue)	 odour	 stimulus	 onset	 (p	 =	 1.02e-189,	 two-sample	1370 
Kolmogorov-Smirnov	test).	hiv-vi,	Same	but	for	the	anaesthetised	condition	(p	=	0.3952,	1371 
two-sample	Kolmogorov-Smirnov	test).	i,	Mean	odour	signal	for	PPI	10	and	25	ms	for	10	1372 
increasing	concentration	steps	defined	by	modulating	valve	pulse	duty	(see	Methods	and	1373 
Supplementary	 Methods	 Fig.	 1).	 There	 were	 no	 significant	 differences	 in	 odour	1374 
concentration	between	both	stimuli	(unpaired	two-sided	t-tests).	j,	Modelled	response	1375 
integrals	to	PPI	10	vs.	25	ms	stimulations	over	a	10-fold	concentration	range	pooled	over	1376 
all	20	trials	and	100	glomeruli	(see	Methods).	Box	plots	show	median	and	extend	from	1377 
the	25th	to	75th	percentiles,	whiskers	extend	to	the	5th	and	95th	percentiles.	ki,	Confusion	1378 
matrix	 of	 support	 vector	 machine	 (SVM)-based	 classification	 results	 of	 modelled	1379 
glomerular	signals	in	response	to	a	range	of	10	odour	concentrations	ranked	and	colour-1380 
coded	 (n	 =	 100	 glomeruli).	 kii,	 Shuffle	 control	 with	 labels	 assigned	 randomly.	 kiii,	1381 
Confusion	matrix	showing	the	ranked	and	colour-coded	results	of	glomerular	responses	1382 
independently	 classified	 for	 10	 ms	 vs.	 25	 ms	 PPI	 and	 across	 the	 range	 of	 10	 odour	1383 
concentrations.	kiv,	Shuffle	control	for	kiii	with	labels	assigned	randomly.	l,	Same	as	j	but	1384 
2	 s	 response	 integrals	 are	 derived	 from	 Ca2+	 imaging	 data	 (10	 repeats	 for	 each	1385 
concentration).	m,	Same	as	k	for	Ca2+	imaging	data	(n	=	57	glomeruli,	from	2	individual	1386 
animals,	 10	 repeats	 for	 each	 concentration).	 Note	 that	 10	 ms	 PPI	 could	 be	 reliably	1387 
distinguished	from	25	ms	PPI	with	only	few	instances	where	a	response	to	e.g.	a	10	ms	1388 
PPI	stimulus	was	misclassified	as	25	ms	or	vice	versa	(compare	light	red	quadrants	to	1389 
light	green	quadrants).	n,	Shifting	the	position	of	10	ms	PPI	within	a	single	inhalation.	ni,	1390 
PPI	10	ms	at	Position	1	or	nii,	at	Position	2	of	three	10	ms	odour	pulses.	Odour	pulses	as	1391 
recorded	with	a	PID	shown	in	red,	valve	commands	are	shown	in	dark	grey.	Light	grey	1392 
area	 shows	 additional	 compensatory	 blank	 valve	 command	 to	 keep	 the	 flow	 profile	1393 
indistinguishable	between	stimuli.	niii,	Total	odour	concentration	was	independent	of	the	1394 
pulse	profile	(10	repeats,	p	=	0.57,	unpaired	two-sided	t-test).		o,	Both	the	10	ms	PPI	at	1395 
Position	 1	 (oi)	 and	 at	 Position	 2	 (oii)	 are	 presented	 during	 the	 inhalation	 phase	1396 
(respiration	 shown	 in	 black,	 inhalation	 upwards,	 exhalation	 downwards).	p,	 Example	1397 
calcium	traces	in	response	to	10	ms	PPI	at	Position	1	(black)	and	Position	2	(red),	shown	1398 
is	 the	mean	 of	 10	 trials	 ±	SEM.	 P-values	 derived	 from	unpaired	 t-tests	 comparing	2	s	1399 
integrated	 responses	 of	 individual	 trials	 to	 odour	 pulses.	 	q,	 Classifier	 accuracy	 over	1400 
increasing	number	of	glomeruli	when	a	linear	classifier	was	trained	on	the	2	s	response	1401 
to	 PPI	 10	ms	 at	 Position	 1	 vs.	 Position	 2	 (mean	 ±	 SD	 of	 up	 to	 57	 glomeruli,	 from	 2	1402 
individual	animals,	500	repetitions;	blue:	PPI	10	ms	at	Position	1	vs.	Position	2,	black:	1403 
shuffle	 control).	 Boxes	 in	 e,f,niii	 indicate	 25th–75th	 percentiles,	 thick	 line	 is	 median,	1404 
whiskers	are	most	extreme	data	points	not	considered	outliers	(see	Methods).	1405 

Extended	 Data	 Fig.	 3	 |	 Frequency	 discrimination	 experiments.	 a,	 Frequency	1406 
discrimination	 stimuli	 are	 produced	 by	 alternating	 presentation	 of	 two	 odours	 to	1407 
generate	a	desired	odour	change	frequency.	During	odour	delivery,	valves	are	not	held	1408 



open	but	 rather	 randomly	opened	and	closed	over	 time	 to	produce	slight	variation	 in	1409 
odour	amplitude	for	each	pulse.	This	means	that	odour	concentration	cannot	be	used	as	1410 
a	 cue	 to	 learn	 the	 task	and	odour	switching	 frequency	 is	 the	primary	 stimulus	 signal.	1411 
Furthermore,	valve	clicking	 is	randomised	to	minimize	any	acoustic	cues.	b,	Replacing	1412 
one	odour	channel	with	blank,	un-odourised	air	and	recording	the	frequency	stimuli	with	1413 
a	PID	reveals	that	the	desired	odour	pulse	frequency	is	being	produced.	c,	Mice	readily	1414 
learn	to	discriminate	2	vs.	20	Hz	pulse	frequency	stimuli	in	a	go/no-go	task.	Replacing	the	1415 
odours	 with	 blank	 channels	 results	 in	 chance-level	 performance	 (No	 odour),	 which	1416 
recovers	 when	 odours	 are	 replaced	 (Recovery)	 showing	 that	 mice	 were	 likely	1417 
discriminating	the	odour	switching	frequency	rather	than	any	extraneous	cues	such	as	1418 
valve	noise.	The	order	of	odour	presentation	in	the	stimuli	had	no	effect	on	behaviour	as	1419 
when	 it	 was	 shifted	 (Phase	 switch)	 no	 decrease	 in	 performance	 was	 observed.	1420 
Additionally,	performance	was	dependent	on	the	alternation	between	different	odours	as	1421 
when	the	experiment	was	repeated	with	the	same	odours	in	each	channel	(Equal	odours)	1422 
performance	 was	 at	 chance	 level.	 d,	 To	 determine	 the	 perceptual	 limit	 of	 frequency	1423 
discrimination,	 the	 floor	 frequency	 used	 in	 the	 task	 over	 successive	 experiments	was	1424 
increased	 such	 that	 the	 difference	 in	 frequency	 between	 the	 stimuli	 progressively	1425 
narrowed.	Overall	performance	decreased	as	the	difference	in	frequency	grew	smaller,	1426 
reaching	near-chance	level	with	a	frequency	difference	of	10	Hz	(10	vs.	20	Hz).	Switching	1427 
back	to	the	original	discrimination	(2	vs.	20	Hz)	recovered	performance	quickly,	showing	1428 
that	the	drop	in	discrimination	ability	was	truly	due	to	the	frequency	difference	rather	1429 
than	general	deterioration	of	performance	over	time.	e,	Example	uncorrelated	stimuli.	1430 
Combinations	 of	 odour	 1	 (red)	 and	 odour	 2	 (blue)	 valves	 are	 opened	with	 temporal	1431 
offsets	and	randomised	pulse	timing	resulting	in	a	correlation	of	0	(see	Methods).	Blank	1432 
(black)	valves	are	used	to	keep	total	airflow	constant	throughout	the	stimulus.	eii,	Higher	1433 
magnification	of	the	area	in	ei	marked	in	grey.	f,	Animals	show	similar	average	accuracy	1434 
as	 shown	 in	Fig.	2k	when	probed	 to	discriminate	 correlated	 from	uncorrelated	odour	1435 
pulses	at	10	Hz	(n	=	19	mice,	mean	±	SEM	of	average	accuracy	=	0.6506	±	0.0016;	after	1436 
scrambling	stimulus	identity:	0.4997	±	0.0032;	p	=	0.0175,	unpaired	two-sided	t-test).	g,	1437 
Animals	show	similar	average	accuracy	when	discriminating	the	correlation	structure	of	1438 
a	different	odour	pair	(Acetophenone	vs.	Cineol)	at	10	Hz	(n	=	19	mice,	mean	±	SEM	of	1439 
average	accuracy	=	0.6558	±	0.0026;	after	scrambling	stimulus	identity:	0.5165	±	0.0048;	1440 
p	=	0.0129,	unpaired	two-sided	t-test).	Grey	dots	mark	average	performance	of	individual	1441 
animals.	Boxes	in	f,g	 indicate	25th	–	75th	percentiles,	thick	line	is	median,	whiskers	are	1442 
most	extreme	data	points	not	considered	outliers	(see	Methods).	1443 

Extended	Data	Fig.	4	|	AutonoMouse	stimulus	and	experimental	design.	a,	Detailed	1444 
schematic	of	stimulus	production;	odour	presentation	(Odour	1:	blue,	Odour	2:	red)	is	1445 
always	offset	by	clean	air	(Mineral	Oil:	grey)	valves	at	the	same	flow	levels,	to	ensure	that	1446 
total	 flow	during	 the	 stimulus	 is	 constant.	b,	 Schematic	of	 the	use	of	 valve	 subsets	 to	1447 
produce	the	desired	stimulus.	t1	and	t2	represent	valve	openings	at	the	corresponding	1448 
time	 points	 shown	 in	 a.	 c1	 (b,	 left)	 and	 c2	 (b,	 middle)	 represent	 two	 possible	1449 
configurations	that	could	be	used	to	produce	the	same	resulting	stimulus	at	the	two	time	1450 



points.	Opacity	in	the	colours	represents	total	concentration	contribution	to	the	resulting	1451 
stimulus	 at	 the	 time	 point.	 For	 example,	 to	 produce	 the	 dual	 odour	 pulse	 at	 t1,	1452 
configuration	c1	can	be	used	where	odour	1	(blue)	is	delivered	from	one	valve	and	odour	1453 
2	 (red)	 from	 another	 valve.	 During	 t2	 two	 valves	 contribute	 clean	 air.	 Alternatively,	1454 
configuration	 c2	 can	 be	 used	 in	which	 during	 t1	 odour	 1	 (blue)	 is	 generated	 by	 50%	1455 
opening	of	two	valves,	with	odour	2	(red)	produced	by	70%	/	30%	opening	of	two	other	1456 
valves	 respectively.	 (b,	 right)	 Scramble	 control:	 valve	 maps	 (represented	 by	 arrow	1457 
colour)	are	maintained	compared	to	the	training	condition	but	odour	vial	positions	are	1458 
scrambled	 resulting	 in	 odour	 stimuli	 uninformative	 about	 reward	 association	 whilst	1459 
maintaining	any	non-odour	cue	such	as	putative	sound	or	flow	contributions.	c,	Predicted	1460 
accuracy	 for	 animals	 in	 the	 case	 that	 they	 use	 solely	 olfactory	 temporal	 correlations	1461 
(black)	 and	 in	 the	 case	 that	 they	 use	 extraneous	 non-olfactory	 cues	 or	 non-intended	1462 
olfactory	cues	(e.g.	contaminations,	clicking	noises)	(violet).	Note	that	when	switching	1463 
stimulus	preparations	to	a	new	set	of	valves	(as	in	Fig.	2i	and	below	in	i-k),	such	non-1464 
intended	 cues	would	not	provide	 any	 information	 about	 stimulus-reward	 association,	1465 
thus	 animals’	 accuracies	 would	 transiently	 drop	 back	 to	 chance.	 di,	 Average	 flow	1466 
recordings	(mean	±	SD)	of	2	Hz	correlated	(black,	n	=	75)	and	anti-correlated	(red,	n	=	1467 
70)	trials	taken	from	the	AutonoMouse	odour	port.	dii,	Fourier	transform	of	the	flow	plots	1468 
from	di,	showing	the	power	of	the	signal	over	a	range	of	1	kHz.	diii	A	zoom	in	over	the	1469 
range	of	10	Hz	indicated	by	the	dotted	box	in	dii.	div,	Mean	accuracy	of	a	series	of	linear	1470 
classifiers	 trained	 on	 an	 increasing	window	of	 the	 integrated	 signal	 starting	 from	1	 s	1471 
before	trial	shown	in	di.	Classifiers	were	tested	on	two	withheld	trials,	one	correlated	and	1472 
one	anti-correlated,	and	repeated	100	times.	e,	Same	as	d	but	 for	40	Hz	trials	(n	=	69	1473 
correlated	and	n	=	72	anti-correlated).	fi,	Average	audio	recording	trace	(mean	±	SD)	of	2	1474 
Hz	stimuli	using	a	microphone	placed	in	close	proximity	to	the	AutonoMouse	odour	port.	1475 
fii,	fiii,	Fourier	transforms	of	the	audio	signal	from	fi.	Note,	whilst	there	are	notable	peaks	1476 
at	specific	frequencies,	these	are	present	in	both	correlated	and	anti-correlated	trials.	fiv,	1477 
Accuracy	of	a	series	of	linear	classifiers	as	shown	in	d	but	using	the	modulus	of	the	audio	1478 
signal.	g,	Same	as	 f	but	 for	40	Hz	trials.	Note,	whilst	 the	sound	profile	and	the	Fourier	1479 
transforms	are	different	between	2	and	40	Hz,	there	is	no	difference	detectable	between	1480 
correlated	and	anti-correlated	trials.	h,	Example	traces	of	odour	signal	(ethyl	butyrate,	1481 
isoamyl	 acetate,	 PID	 recorded)	 during	 correlated	 (top)	 and	 anti-correlated	 trials	1482 
(middle).	 Simulated	 maximum	 accuracy	 based	 on	 differences	 in	 mean	 odour	 signal	1483 
(bottom).	Simulated	accuracy	was	calculated	as	the	fraction	of	trials	correctly	identified	1484 
as	correlated	/	anti-correlated	based	on	a	decision	threshold	set	at	some	level	between	1485 
the	minimum	and	maximum	mean	signal.	Simulated	accuracy	was	calculated	for	multiple	1486 
decision	 thresholds,	 increasing	 the	 decision	 threshold	 from	minimum	odour	 signal	 to	1487 
maximum	 odour	 signal	 in	 steps	 of	 1/5000th	 of	 the	 range	 between	 minimum	 and	1488 
maximum.		i,	Detailed	schematic	of	correlated	(top	left)	and	anti-correlated	(top	right)	1489 
stimulus	production	before	(middle)	and	after	(bottom)	switching	valves.	For	the	switch	1490 
control,	a	set	of	previously	unused	odour	valves	is	introduced	to	rule	out	potential	bias	1491 
towards	 a	 specific	 valve	 combination	 when	 performing	 the	 odour	 correlation	1492 
discrimination	task.	j,	Trial	map	of	5	representative	animals	during	2	Hz	(ji)	and	12	Hz	1493 
(jii)	correlation	discrimination	tasks	before	and	after	introduction	of	control	valves	(n	=	1494 
12	trials	pre-,	n	=	12	trials	post-new	valve	introduction,	new	valve	introduction	indicated	1495 
by	black	vertical	dotted	line.	Each	row	corresponds	to	an	animal,	each	column	within	the	1496 



row	represents	a	trial.	Light	green:	hit,	dark	green:	correct	rejection,	light	red:	false	alarm,	1497 
dark	 red:	miss.	ki,	Boxplots	of	mean	accuracy	 for	animals	 (n	=	5	mice)	pre-	 and	post-1498 
control	for	2	Hz	(left)	and	12	Hz	(right).	Box	indicates	25th	–	75th	percentiles,	thick	line	is	1499 
median,	whiskers	are	most	extreme	data	points	not	considered	outliers,	see	Methods.	P-1500 
values	derived	from	unpaired	t-tests.	kii,	Summary	histograms	of	performance	change	for	1501 
all	 animals	 during	 all	 “valve	 switch”	 control	 tests	 (see	 Methods)	 indicating	 that	1502 
discrimination	accuracy	was	based	on	intended	olfactory	cues.	The	five	animals	showing	1503 
highest	 performance	 before	 the	 valve	 switch/bottle	 change	 (and	 thus	 the	 largest	1504 
potential	 to	 drop	 in	 performance)	 were	 analysed.	 l,	Discrimination	 accuracy	 (n	 =	 33	1505 
animals,	 mean	 ±	 SEM) for	 rewarded	 S+	 (left)	 and	 unrewarded	 S-	 (right)	 trials	 when	1506 
odours	 were	 presented	 using	 standard	 training	 valve	 configurations	 (black)	 and	1507 
scrambled	 valve	 identity	 (red),	 data	 from	Fig.	2k.	Note	 that	 frequencies	 >40	Hz	were	1508 
presented	predominantly	in	the	last	block	of	the	training	schedule	and	reduced	licking	in	1509 
the	control	group	(decreased	S+	performance	and	increased	S-	performance)	might	be	1510 
due	to	decreased	motivation	at	that	point.		1511 

Extended	Data	Fig.	5	|	Respiration	recordings,	stimulus	onset	model	and	reaction	1512 
time	for	correlation	discrimination	experiments.	a,	An	overhead	camera	was	used	to	1513 
image	a	head-fixed	mouse	during	a	sequence	of	odour	presentations.	Simultaneously,	a	1514 
flow	sensor	was	placed	close	to	one	nostril	to	monitor	respiration	to	establish	the	validity	1515 
of	motion	 imaging-based	respiration	recording.	Phase-based	motion	amplification	was	1516 
used	to	magnify	motion	on	the	animal’s	flank	to	capture	body	movements	associated	with	1517 
respiration.	 Right:	 example	 for	 simultaneous	 respiration	 measurement	 with	 motion	1518 
imaging	(red)	and	flow	sensor	(black;	see	Methods	and	Supplementary	Video	2).	b,	Three	1519 
further	 example	 trials	with	 respiration	 rate	 extracted	 from	motion	 imaging	 (red)	 and	1520 
simultaneous	 flow	 sensor	 recording	 (black).	 Below:	 instantaneous	 sniff	 frequencies	1521 
calculated	from	either	sensor	were	tightly	correlated.	c,	Correlation	between	respiration	1522 
traces	extracted	from	motion	imaging	and	respiration	captured	by	flow	sensor	(n	=	26	1523 
trials,	10	s	duration	each).	Violin	plot	shows	the	median	as	a	black	dot	and	the	first	and	1524 
third	quartile	by	the	bounds	of	 the	black	bar.	d,	Probability	distributions	of	 inter-sniff	1525 
intervals	for	odour	presentations	(isoamyl	acetate	vs.	ethyl	butyrate,	2	Hz	and	20	Hz)	for	1526 
freely	moving	animals	 in	AutonoMouse	before	stimulus	onset	and	e,	during	2	s	odour	1527 
stimulation	 (n	=	605	sniffs	 for	2	Hz	and	n	=	668	 for	20	Hz,	 two-sample	Kolmogorov-1528 
Smirnov	test).	f,	Heat	map	of	accuracy	difference	between	a	model	where	animals	rely	on	1529 
onset	information	only	(see	Methods)	and	actual	animal	accuracies	across	a	range	of	sniff	1530 
frequencies	 and	 inhalation	 fractions	 (n	 =	 10	 mice).	 No	 matter	 what	 assumed	 sniff	1531 
frequency	and	 inhalation	 frequency,	 the	“onset	model”	deviates	substantially	 from	the	1532 
accuracy	measured	in	the	behavioural	experiments	(panels	h,i).	g,	Difference	between	a	1533 
model	 where	 animals	 use	 the	 entire	 stimulus	 structure	 (see	 Methods)	 and	 actual	1534 
behavioural	accuracies	across	different	stimulus	sampling	times	(n	=	10	repeats,	mean	±	1535 
SD).	The	“whole	stimulus”	model	accurately	describes	animal	behaviour	indicating	that	1536 
mice	base	a	decision	about	the	correlation	structure	of	a	stimulus	not	predominantly	on	1537 
the	onset.	Note	the	different	scales	in	f	and	g.	h,	Schematic	of	experimental	stimulus	in	1538 
which	 the	 first	 stimulus	 pulse	was	 disrupted	when	 presented	 on	 “probe	 trials”.	 Top:	1539 



normal	 stimulus	 design,	 bottom:	 “onset	 disrupt”	 stimuli	 in	which	 the	 first	 pulse	 in	 a	1540 
correlated	 stimulus	 is	 disrupted	 to	 be	 anti-correlated;	 and	 vice	 versa	 for	 an	 anti-1541 
correlated	 stimulus.	 i,	 Animals	 were	 trained	 on	 standard	 (non-probe)	 correlation	1542 
discrimination	 stimuli	 (f	 =	 10	 Hz)	 but	 onset	 disrupt	 (probe)	 stimuli	 were	 presented	1543 
randomly	on	probe	trials	with	a	1/10	probability.	Accuracy	was	only	slightly	degraded	1544 
on	probe	trials	(mean	±	SD	of	accuracy	for	non-probe	trials	75.8	±	4.4%;	for	probe	trials	1545 
67.8	±	6.1%;	p	=	0.001,	paired	two-sided	t-test,	n	=	9	mice)	but	did	not	drop	below	chance	1546 
(p	=	7.3e-06,	paired	 t-test).	 Importantly,	 accuracy	on	probe	 trials	was	 consistent	with	1547 
whole-structure	prediction	(70.3	±	3.5%,	p	=	0.13,	paired	t-test	of	comparison	to	probe	1548 
trials)	and	differed	significantly	from	the	accuracy	of	onset-only	prediction	(41.6	±	1.5%;	1549 
p	=	1.02e-6,	paired	t-test	of	comparison	to	probe	trials).	j,	Mean	reaction	time	(time	from	1550 
stimulus	onset	to	first	lick	in	S+	trials)	plotted	as	a	function	of	stimulus	pulse	frequency	1551 
for	 the	 three	animals	with	 the	best	 (left)	 and	 the	worst	 (right)	global	 accuracy	 (mean	1552 
accuracy	across	all	trials).	Better	performing	animals	tend	to	increase	their	reaction	time	1553 
as	stimulus	pulse	frequency	increases.	k,	Scatter	plot	of	mean	accuracy	vs.	mean	reaction	1554 
time	for	each	animal	and	stimulus	pulse	 frequency	condition	(averaged	over	blocks	of	1555 
100	trials).	Points	are	colour-coded	according	to	stimulus	pulse	frequency.	Accuracy	was	1556 
significantly	positively	correlated	to	reaction	time,	suggesting	that	mice	that	sampled	a	1557 
greater	 portion	 of	 the	 stimulus	 made	 more	 accurate	 decisions	 about	 its	 correlation	1558 
structure	 (Pearson	 correlation	 coefficient	 R	 =	 0.49,	 p<1.1e-112).	 l,	 Accuracy	 (mean	 ±	1559 
SEM)	is	plotted	as	in	Fig.	2k,	but	only	trial	blocks	with	reaction	times	above	or	below	a	1560 
certain	threshold	(colour	code)	are	included	in	the	analysis.	Where	only	longer	reaction	1561 
times	 are	 considered,	 global	 performance	 is	 higher	 than	 the	 case	where	 only	 shorter	1562 
reaction	 times	are	 included,	 again	 suggesting	 that	 longer	 stimulus	 sampling	 improves	1563 
discrimination	of	odour	correlation	structure	across	all	stimulus	pulse	frequencies.	1564 

Extended	Data	Fig.	6	 |	OSN	imaging	in	response	to	correlated	vs.	anti-correlated	1565 
odour	 stimulation.	 a,	 Four	 example	 fields	 of	 view	 (FOV)	 recorded	 from	 the	 dorsal	1566 
olfactory	 bulb	 of	 individual	 mice.	 aii,	 Number	 of	 individual	 glomeruli	 per	 FOV	 in	 all	1567 
experimental	mice	(n	=	15).	The	number	of	individually	delineated	glomeruli	ranges	from	1568 
20-36	with	an	average	of	28	glomeruli	per	FOV.	Labelled	data	points	(1-4)	correspond	to	1569 
FOVs	shown	in	ai.	Scale	bars:	50	µm.	Edges	of	the	box	are	the	25th	and	75th	percentiles,	1570 
the	whiskers	 extend	 to	 the	most	 extreme	 data	 points	 not	 considered	 as	 outliers,	 see	1571 
Methods.	 b,	 Example	 glomerulus	 response	 from	 OMP-Cre:Rosa-GCaMP6f	 mice	 to	1572 
presentation	of	individual	odours	plotted	pairwise	(AB,	CD,	EF;	mean	of	6	trials	±	SEM).	1573 
Stimulation	period	 (1	s)	 is	 indicated	by	vertical	bar	 (blue,	 green	and	yellow).	Bottom:	1574 
Typical	 example	 respiration	 trace.	 P-values	 derived	 from	 unpaired	 two-sided	 t-tests	1575 
comparing	 2	 s	 integrated	 responses	 between	 paired	 odours.	 c,	 Averaged	 calcium	1576 
transients	 from	 all	 glomeruli	 (n	 =	 145	 from	 5	 individual	 animals)	 in	 response	 to	1577 
individual	odours,	plotted	as	colour	maps	sorted	by	response	magnitude.	d,	Difference	1578 
between	 glomerulus	 responses	 to	 individual	odours	 plotted	 pairwise	 as	 colour	maps.	1579 
Glomeruli	 are	 sorted	 by	 average	 magnitude	 of	 response	 difference.	 e,	 Example	1580 
glomerulus	 response	 to	 presentation	 of	 correlated	 vs.	 anti-correlated	 odour	 pairs	1581 
fluctuating	at	2	Hz	(mean	of	12	trials	±	SEM).	Bottom:	typical	example	respiration	trace.	1582 



P-values	derived	from	unpaired	two-sided	t-tests	comparing	2	s	integrated	responses	of	1583 
individual	 trials	 to	 correlated	 and	 anti-correlated	 odour	 stimulation.	 f,	 Difference	1584 
between	glomerulus	responses	to	2	Hz	correlated	and	anti-correlated	odours	as	colour	1585 
maps	sorted	as	shown	in	d.	g-h,	Same	as	in	e-f	but	for	20	Hz	correlated	vs.	anti-correlated.	1586 
Example	glomerulus	from	b,e,g	indicated	with	an	asterisk	in	colour	maps	in	c,d,f,h.	i,	Left:	1587 
P-values	derived	from	comparing	trials	of	the	summed	2	s	response	to	correlated	vs.	anti-1588 
correlated	odour	stimulation	at	2	Hz	(unpaired	two-sided	t-tests)	for	three	odour	pairs	1589 
(colour-coded)	 as	 a	 function	 of	 glomerulus	 selectivity	 to	 individual	 odours	 (n	 =	 145	1590 
glomeruli).	Selectivity	is	calculated	as	the	difference	between	the	absolute	response	to	1591 
single	odours	scaled	by	the	summed	absolute	response.	A	threshold	is	set	at	0.5	defining	1592 
glomeruli	 as	 low	 or	 high	 selective.	 Dot	 size	 represents	 magnitude	 of	 the	 summed	1593 
response.	Middle:	Comparison	of	p-values	between	low	and	high	selective	glomeruli	(p	<	1594 
0.05,	unpaired	two-sided	t-test).	Violin	plots	show	the	median	as	a	white	dot	and	the	first	1595 
and	third	quartile	by	the	bounds	of	the	grey	bar.	Right:	Cumulative	distribution	function	1596 
of	p-values	for	low	and	high	selective	glomeruli	(p	<	0.01	for	all	pairwise	comparisons,	1597 
two-sample	Kolmogorov-Smirnov	test).	j,	Same	as	i	but	for	20	Hz,	(n	=	145	glomeruli).	k,	1598 
Top	 row:	 Mean	 ±	 SD	 over	 100	 repetitions	 of	 classifier	 accuracy	 when	 trained	 on	 all	1599 
responsive	 glomeruli	 (n	 =	 145	 available,	 from	 5	 individual	 animals,	 see	 Methods)	 to	1600 
discriminate	2	Hz	correlated	vs.	anti-correlated	stimuli,	trained	separately	for	each	of	the	1601 
three	odour	pairs	and	within	sliding	windows	of	different	widths	(colours);	x-coordinates	1602 
indicate	 latest	 extent	 of	 each	window.	 Bottom	 row:	 same	 as	 top	 row	 but	with	 labels	1603 
shuffled	as	control.	l,	Same	as	k	for	20	Hz	correlated	vs.	anti-correlated	odours.	Some	data	1604 
points	in	k,	l	are	absent	because	not	all	time	points	had	responsive	ROIs	for	every	window	1605 
size	(see	Methods).	1606 

Extended	 Data	 Fig.	 7	 |	 Odour	 correlation	 structure	 is	 encoded	 in	 dendrites	 of	1607 
olfactory	bulb	output	neurons.	a,	GCaMP6f	fluorescence	from	mitral	and	tufted	cells	1608 
and	 their	 dendrites	 recorded	 in	 the	 dorsal	 portion	 of	 the	 olfactory	 bulb	 of	 a	 Tbet-1609 
cre:Rosa-GCaMP6f	 mouse	 (maximum	 projection	 of	 8000	 frames).	 Dendritic	 ROIs	 are	1610 
superimposed	 in	 colour.	 Four	 dendritic	 segments	 (1-4)	 are	 shown	 in	 higher	1611 
magnification,	scale	bars:	20	µm.	b,	Four	example	calcium	traces	extracted	from	dendritic	1612 
segments	shown	in	a	that	show	differential	response	kinetics	to	correlated	(black)	and	1613 
anti-correlated	(red)	stimulation	(mean	of	24	trials	±	SEM,	f	=	20	Hz).	In	total,	24%	of	1614 
dendritic	segments	showed	significantly	different	integral	responses	(0-5	s	after	odour	1615 
onset,	p	<	0.01,	unpaired	two-sided	t-test;	121/514)	to	the	two	stimuli.	c,	Average	calcium	1616 
transients	as	colour	maps	for	correlated	(left)	anti-correlated	(middle)	and	the	difference	1617 
between	both	odour	stimulations	(right)	of	all	analysed	dendritic	segments	(n	=	514,	from	1618 
6	individual	animals).	d,	Classifier	accuracy	over	an	increasing	number	of	dendritic	ROIs	1619 
trained	on	several	response	windows	(colour-coded)	to	discriminate	correlated	vs.	anti-1620 
correlated	stimuli	at	20	Hz	(n	=	up	to	514,	mean	±	SD	from	6	individual	animals,	black:	1621 
shuffle	 control).	 e,	Method	 of	 aligning	 calcium	 traces	 to	 first	 inhalation	 after	 odour	1622 
stimulus	onset.	ei,	Representative	respiration	traces	recorded	using	a	flow	sensor	placed	1623 
in	front	of	the	nostril	contralateral	to	the	imaging	window.	The	first	inhalation	peaks	were	1624 
detected	and	the	time	(Δt)	to	the	first	inhalation	after	odour	onset	was	calculated	for	each	1625 
trial	 individually.	eii,	 Representative	 calcium	 transients	 in	 response	 to	 a	 single	 odour	1626 
presentation	 (here:	 20	 Hz	 correlated).	 eiii,	 Transients	 are	 shifted	 according	 to	 Δt.	 eiv,	1627 



Individual	calcium	transients	(faint	colours,	24	trials)	 in	response	to	20	Hz	correlated	1628 
odour	presentations	with	the	average	calcium	signal	(thick	traces)	superimposed.	Top:	1629 
before	aligning	 to	 first	 inhalation	after	odour	onset,	bottom:	after	alignment.	Blue	bar	1630 
represents	 the	 odour	 presentation	 phase	 (approximate	 for	 the	 aligned	 data).	 f,	1631 
Distribution	of	odour	response	integrals	from	all	recorded	ROIs	(n	=	514)	for	correlated	1632 
(grey)	and	anti-correlated	(red)	stimulation.	Box	indicates	25th	–	75th	percentiles,	thick	1633 
line	 is	 median,	 whiskers	 are	 most	 extreme	 data	 points	 not	 considered	 outliers,	 see	1634 
Methods.	g,	Histogram	of	 the	difference	between	correlated	and	anti-correlated	odour	1635 
responses.	 Box	 plots	 as	 in	 f.	 h,	 Comparison	 of	 correlated	 and	 anti-correlated	 odour	1636 
responses	of	all	dendritic	ROIs	(f	=	20	Hz,	n	=	514	dendrites).	i,	Classifier	accuracy	when	1637 
trained	 on	 all	 dendritic	 ROIs	 recorded	 with	 a	 sliding	 window	 of	 different	 durations	1638 
starting	2	seconds	before	odour	onset	(colour-coded,	black:	shuffle	control,	n	=	514	from	1639 
6	individual	animals;	mean	±	SD,	100	repetitions).	j-m,	same	as	f-i	for	projection	neuron	1640 
somata	(f	=	20	Hz,	n	=	680	cells;	see	Fig.	3).	1641 

Extended	Data	Fig.	8	|	Projection	neurons	unit	recordings	in	response	to	correlated	1642 
vs.	 anti-correlated	 stimulation	 and	 short	 odour	 pulse	 combinations.		1643 
a,	Data	 from	unit	 recordings	 as	 described	 in	 Fig.	 3h-k.	 Average	waveforms	 across	 all	1644 
channels	 of	 two	 isolated	 units	 shown	 in	 bi,ii.	 Each	 waveform	 represents	 the	 average	1645 
waveform	for	the	unit	on	a	specific	channel.	Red	waveform	indicates	the	channel	with	the	1646 
largest	 average	waveform	 for	 the	unit.	 Scale	bar	 in	 the	bottom	 left	represents	100	µV	1647 
(vertically)	and	1	ms	(horizontally).	b,	Additional	example	single	unit	odour	responses	to	1648 
correlated	(black)	and	anti-correlated	(red)	stimuli	shown	as	raster	plot	(top)	and	PSTH	1649 
(mean	of	64	trials	for	each	condition	±	SEM)	of	spike	times	before	(second	from	top)	and	1650 
after	baseline	subtraction	(second	to	bottom),	and	the	differential	PSTH	of	correlated	and	1651 
anti-correlated	(bottom,	blue).	Average	spike	waveform	shown	as	insets	in	bi,ii.	Duration	1652 
of	odour	presentation	(2	s)	is	indicated	in	light	blue.	P-values	are	derived	from	a	two-1653 
sided	Mann-Whitney	U	test	comparing	the	spike	time	distributions	of	correlated	and	anti-1654 
correlated	trials	during	4	s	after	odour	onset.	c,	Average	baseline	firing	rate	for	all	units	1655 
(n	=	97	from	6	individual	animals).	Baseline	firing	rates	were	calculated	from	4	s	to	0	s	1656 
before	odour	onset	for	each	of	the	1312	trials	presented	during	all	recordings.	Violin	plot	1657 
shows	the	median	as	a	black	dot	and	the	first	and	third	quartile	by	the	bounds	of	the	black	1658 
bar.	di,	Classifier	accuracy	when	trained	on	all	baseline-subtracted	units	in	response	to	1659 
20	Hz	correlated	vs.	anti-corelated	stimulation	(n	=	97	units,	mean	±	SD	from	6	individual	1660 
animals)	 with	 a	 sliding	 window	 of	 different	 durations	 (colour-coded;	 black:	 shuffle	1661 
control;	 100	 repetitions)	 starting	 at	 2	 s	 before	 odour	 onset.	 Time	 along	 the	 x-axis	1662 
represents	 the	end	 time	of	 the	window.	dii,	Time	period	between	 -0.5	and	0.5	 s	 from	1663 
odour	onset	shown	at	higher	magnification	(n	=	97	units,	mean	±	SD	from	6	individual	1664 
animals).	 e,	 To	 take	 the	 entire	 temporal	 structure	 of	 responses	 into	 account	 we	1665 
performed	a	principal	component	analysis	(PCA)	on	the	temporal	evolution	of	the	firing	1666 
rate	 responses	 (see	 Methods).	 Shown	 here	 is	 the	 accuracy	 for	 linear	 SVM	 classifiers	1667 
(mean	±	SD)	trained	on	 increasing	numbers	of	principal	components	(PCs).	Classifiers	1668 
were	 trained	 on	 all	 but	 two	 trials	 (one	 correlated,	 one	 anti-correlated).	 Training	 and	1669 
testing	were	repeated	1000	times.	The	colour	code	represents	the	same	window	sizes	as	1670 
defined	in	d.	f,	The	first	(fi),	second	(fii),	and	third	(fiii)	PCs	found	from	PCA	for	different	1671 
rolling	window	 sizes	 (colour	 code	 as	 defined	 in	d).	 In	 the	 second	 and	 third	 PCs,	 the	1672 



windows	have	been	split	as	to	better	compare	the	similarities	in	PCs	for	different	window	1673 
sizes.	g,	Average	classifier	accuracy	of	 a	set	of	classifiers	 trained	on	the	PC	weights	of	1674 
increasing	number	of	units.	Classifiers	were	trained	on	all	but	two	trials	(one	correlated,	1675 
one	anti-correlated).	The	number	of	PCs	used	for	each	window	was	selected	by	the	peak	1676 
accuracies	in	e	(colour-coded;	n	=	up	to	97	units	from	6	individual	animals;	mean	±	SD	of	1677 
1000	classifier	repetitions).	h,	Schematic	of	odour	pulse	stimuli	timings	in	relation	to	the	1678 
respiration	cycle.	Three	combinations	were	presented,	each	trial	120	ms	in	length.	For	1679 
example,	11000	(top)	consisted	of	a	40	ms	odour	pulse	(light	blue)	followed	by	80	ms	of	1680 
blank	odourless	air	(grey);	All	trials	were	triggered	at	the	onset	of	inhalation.	i,	PSTH	from	1681 
four	example	units	(ii-iv)	showing	their	average	firing	rate	prior,	during,	and	after	odour	1682 
presentation	 (light	 blue	 vertical	 bar).	 Responses	 are	 either	 to	 11000	 trial	 (black)	 or	1683 
10100	 odour	 presentation	 (red).	 The	 instantaneous	 firing	 rate	 was	 calculated	 by	1684 
summing	the	number	of	detected	spikes	in	10	ms	windows	and	multiplying	the	value	by	1685 
100	to	get	Hz.	j,	Accuracy	of	linear	classifiers	as	a	function	of	the	number	of	units	available	1686 
for	training/testing	(mean	±	SD	of	n	=	up	to	145	units	from	8	individual	anaesthetised	1687 
animals).	Each	classifier	is	trained	on	the	summed	spike	count	of	the	available	units	in	a	1688 
window	of	500	ms	starting	at	odour	onset.	The	classifiers	were	trained	on	all	but	 two	1689 
trials,	one	11000	and	one	10100	trial	and	the	number	of	repeats	between	animals	varied	1690 
between	11	and	30.	To	account	for	this	and	to	minimise	the	variability	of	the	training	set,	1691 
trial	number	was	bootstrapped	to	1000	repeats.	This	was	achieved	by	randomly	selecting	1692 
a	repetition	 for	each	unit	 independently.	The	test	set	was	 isolated	 from	the	responses	1693 
prior	to	bootstrapping	and	thus	was	not	seen	by	the	classifier	until	it	was	tested	on	it.	1694 
Each	 classification	 was	 repeated	 500	 times	 with	 a	 different	 selection	 of	 units,	 and	 a	1695 
different	test	set.	The	shuffled	control	(black)	was	accomplished	by	shuffling	the	training	1696 
labels	during	each	iteration	of	the	classifier	without	shuffling	test	labels.	k,	Same	as	in	j	1697 
but	 classifying	 all	 three	 odour	 pulse	 combinations	 shown	 in	 h.	 l,	 Confusion	 matrix	1698 
showing	 the	 fractions	 that	 each	 trial	 type	 was	 classified	 as	 (n	 =	 145	 units	 from	 8	1699 
individual	 animals).	 True	 labels	 are	 shown	 on	 the	 x-axis	 and	 labels	 predicted	 by	 the	1700 
classifier	on	the	y-axis.	Accuracies	correspond	to	maximum	unit	count	shown	in	c	and	d.	1701 
The	classifiers	can	readily	separate	between	trials	containing	a	single	40	ms	odour	pulse.	1702 
Accuracy	 is	 lower	 when	 distinguishing	 between	 an	 intermission	 of	 20	 or	 40	ms	 but	1703 
remains	above	chance	(chance	=	0.33).	1704 

Extended	Data	Fig.	9	|	Whole	cell	recordings	of	projection	neurons	in	response	to	1705 
correlated	vs.	anti-correlated	odour	stimulation.	a,	Schematic	of	the	whole-cell	patch	1706 
clamp	recording	approach.	b,	Distribution	of	input	resistance	and	c,	recording	depth	as	1707 
measured	from	all	recorded	projection	neurons	(n	=	31).	d,	Left:	Example	recording	from	1708 
single	cells	with	consecutive	presentations	of	correlated	(black)	and	anti-correlated	(red)	1709 
odour	stimulus	at	2	Hz.	Duration	of	odour	presentation	(2	s)	is	indicated	in	light	blue.	1710 
Right:	 Baseline-subtracted	 and	 spike-clipped	 subthreshold	 voltage	 response	 from	 a	1711 
single	cell	to	odour	1	(green)	and	odour	2	(blue)	for	2	Hz.	e,	the	same	as	d	but	for	20	Hz	1712 
odour	stimulation.	f,	Voltage	response	from	three	example	cells	for	correlated	(black)	and	1713 
anti-correlated	(red)	odour	stimulus	for	2	Hz	(top)	and	20	Hz	(bottom).	The	cell	shown	1714 
in	fi	corresponds	to	the	cell	shown	in	d	and	e.	The	grey	overlaid	traces	correspond	to	the	1715 
arithmetic	 sum	 estimated	 from	 the	 response	 to	 individual	 odours.	 Bottom:	 Linear	1716 
prediction	histogram	calculated	by	thresholding	the	arithmetic	sum	of	the	subthreshold	1717 



responses	 to	 the	 individual	 odours.	 Differences	 here	 suggest	 that	 correlation	 can	 be	1718 
calculated	based	on	a	single	cell	 level	 if	the	two	 individual	odours	engage	overlapping	1719 
OSN	populations.	P-values	are	derived	from	a	paired	two-sided	t-test	of	the	membrane	1720 
potential	and	the	firing	rate	in	the	first	500	ms	after	odour	onset.	g,	Average	change	in	1721 
voltage	(gi)	 and	 in	 instantaneous	 spike	 frequency	(gii)	 in	 the	 first	500	ms	after	odour	1722 
onset	 from	baseline	membrane	potential	 for	2	Hz	correlated	vs.	 anti-correlated	odour	1723 
presentation	 and	 h,	 for	 20	 Hz.	 Each	 marker	 corresponds	 to	 a	 single	 cell,	 error	 bars	1724 
represent	SEM.	Data	points	in	black	represent	cells	where	p	<	0.05	between	correlated	1725 
and	anti-correlated	conditions.	P-values	are	derived	from	a	paired	t-test	of	the	membrane	1726 
potential	and	the	firing	rate	in	the	first	500	ms	after	odour	onset.		Indicators	(i),	(ii)	&	(iii)	1727 
represent	 cells	 shown	 in	 f.	 i,	 Pie	 charts	 depicting	 the	 proportion	 of	 cells	 showing	1728 
significant	 difference	 as	 described	 above	 (blue)	 in	 subthreshold	membrane	 potential	1729 
(left)	and	spike	frequency	(right)	for	all	2Hz	(top)	and	20Hz	(bottom)	cells.	P-values	are	1730 
derived	from	a	paired	t-test	of	the	membrane	potential	and	the	firing	rate	in	the	first	500	1731 
ms	after	odour	onset.	1732 

Extended	Data	Fig.	10	|	Odour	plume	generation	and	additional	analysis	of	source	1733 
separation	experiments.	a,	Power	spectrum	of	all	recorded	odour	plumes	(mean	±	SD	1734 
of	log	power,		n	=	132	plumes).	b,	Cross	correlation	of	all	recordings	at	different	lateral	1735 
separation	distances.	c,	Correlation	coefficients	over	all	recordings	for	odours	from	the	1736 
same	 source	 and	 for	 odour	 sources	 separated	 by	 50	 cm	 in	 a	 controlled	 laboratory	1737 
environment	 with	 complex	 airflow	 (indoors;	 ethyl	 valerate	 (EV)	 vs.	 tripropylamine	1738 
(TPA);	n	=	25	for	same	source,	n	=	27	for	sources	separated	by	50	cm;	p	<	0.0001,	unpaired	1739 
two-sided	t-test).	Box	indicates	25th	–	75th	percentiles,	thick	line	is	median,	whiskers	are	1740 
most	extreme	data	points	not	considered	outliers;	see	Methods.	d,	Same	as	Figure	4b	(for	1741 
odours	α-Terpinene	and	ethyl	butyrate)	but	for	radial	distances	to	the	PID	of	20	cm	and	1742 
60	cm	(p	<	0.0001,	unpaired	two-sided	t-test).	e,	Same	as	d	but	measured	outdoors	(n	=	1743 
7	for	same	source,	10	for	sources	separated	by	50	cm;	p	<	0.001,	unpaired	t-test;	Indoors	1744 
versus	outdoors,	one	source:	p	=	0.0060,	s	=	50	cm:	p	=	0.0632,	unpaired	two-sided	t-1745 
test).	 f,	 Example	plume	structures	originating	 from	 the	 same	one	 source	or	 separated	1746 
sources	 as	 recorded	 with	 a	 PID	 (blue)	 and	 replayed	 with	 the	 multi-channel	 high	1747 
bandwidth	odour	delivery	device	(orange).	g,	Correlation	coefficients	over	all	recordings	1748 
of	replayed	plumes	for	one	source	(n	=	53	plumes)	and	for	sources	separated	by	50	cm	1749 
from	each	other	(n	=	74	plumes;	p	=	2.27e-41,	unpaired	two-sided	t-test).	h,	Odour	signals	1750 
integrated	over	2	s	for	all	recordings	of	replayed	plumes	for	one	source	(n	=	53	plumes)	1751 
and	for	sources	separated	by	50	cm	(n	=	74	plumes;	p	=	0.75,	unpaired	two-sided	t-test).	1752 
i,	Odour	plume	signals	integrated	over	2	s	for	rewarded	and	unrewarded	trials	(n	=	150	1753 
trials	 each;	 Odour	 1:	 p	 =	 0.4739,	 Odour	 2:	 p	 =	 0.0923,	 unpaired	 two-sided	 t-test).	 j,	1754 
Overlaid	power	spectra	(mean	±	SD	of	log	power)	of	all	plumes	(n	=	127	plumes)	recorded	1755 
in	complex,	natural	airflow	conditions	(blue)	and	replayed	plumes	(orange).	k,	Schematic	1756 
of	 plume	 reproduction:	 First,	 a	 2s	 long	 window	 is	 selected	 from	 the	 PID	 recording,	1757 
starting	around	the	middle	of	the	trace	and	such	that	odour	is	present	during	the	first	500	1758 
ms.	Secondly,	the	trace	is	normalised	between	0	and	1.	Thirdly,	the	trace	is	converted	into	1759 
a	 series	 of	 binary	 opening	 and	 closing	 commands	 directly	 related	 to	 the	 value	 of	 the	1760 



normalised	 signal.	 A	 value	 of	 1	 translates	 to	 a	 continuous	 opening,	 and	 a	 value	 of	 0	1761 
translates	to	continuously	closed.	This	series	of	commands	is	relayed	to	an	odour	valve	1762 
and	an	inverted	version	of	the	commands	is	relayed	to	a	mineral	oil	valve	to	generate	a	1763 
compensatory	airflow.	The	resulting	output	resembles	the	original	plume,	as	measured	1764 
with	a	PID,	and	there	is	constant	airflow	throughout	the	trial,	as	measured	with	a	flow	1765 
meter.	The	same	procedure	is	then	applied	to	the	accompanying	odour,	to	create	both	1766 
plumes	needed	for	each	trial.	l,	Group	learning	curves	(mean	±	SD)	for	the	two	groups	of	1767 
animals	trained	on	the	virtual	source	separation	task,	but	on	different	set	of	valves.	Group	1768 
1	(n	=	6	mice,	blue)	were	trained	on	the	task	from	the	start,	while	Group	2	(n	=	6	mice,	1769 
cyan)	were	first	exposed	to	a	scrambled	version	of	the	task	and	were	later	transferred	to	1770 
the	same	plumes	as	Group	1.	This	served	as	a	control	that	the	cue	required	for	learning	is	1771 
indeed	olfactory	information	contained	in	the	odour	plumes.	For	the	3rd	stage	of	learning,	1772 
the	plumes	were	refined	to	ensure	odour	was	always	present	in	the	first	500	ms	of	the	1773 
trial	 and	 performance	 stabilised	 for	 the	 two	 groups.	 Mice	 progressed	 through	 these	1774 
learning	 stages	 as	 a	 group,	 based	 on	 time	 elapsed	 from	 the	 beginning	 of	 training.	1775 
Therefore,	some	mice	performed	more	trials	than	others.	The	last	trial	performed	by	a	1776 
mouse	in	each	phase	is	represented	by	a	colour-coded	circle	above	the	plot.	Accuracy	is	1777 
calculated	over	a	100-trial	sliding	window.	m,	Rejection	 fraction	(fraction	of	 trials	 the	1778 
mouse	abstained	from	licking)	calculated	for	each	plume	pair	plotted	in	relation	to	the	1779 
correlation	between	the	two	odour	traces	in	that	plume	pair.	Animals	are	trained	to	lick	1780 
(expected	low	rejection	fraction)	for	source	separated	trials	(low	correlation)	and	abstain	1781 
from	licking	(high	rejection	fraction)	for	one	source	trials	(high	correlation).	n,	Difference	1782 
in	 lick	 rates	 in	 response	 to	 source	 separation	training	 trials	 (n	=	9	mice,	mean	±	SD),	1783 
calculated	for	each	mouse	as	lick	rate	(licks	/	100	ms)	in	response	to	S+	trials	minus	the	1784 
lick	rate	in	response	to	S-	trials,	normalized	to	averaged	lick	rate	for	all	trials	across	the	1785 
corresponding	time	period.	o,	Reaction	times	for	each	mouse,	calculated	as	the	time	point	1786 
when	the	difference	in	lick	rate	for	each	mouse	crossed	a	threshold	(mean	+	3	SDs	over	1787 
the	baseline,	defined	as	the	first	200	ms	of	the	trace,	when	odour	was	not	present).	Box	1788 
indicates	25th	 –	75th	percentiles,	 thick	 line	 is	median,	 see	Methods.	p,	Trial	map	of	 all	1789 
animals	during	virtual	source	separation	tasks	before	and	after	introduction	of	control	1790 
valves	similar	 to	Extended	Data	Fig.	4	(n	=	40	trials	pre-,	n	=	40	trials	post-new	valve	1791 
introduction,	 new	 valve	 introduction	 indicated	 by	 black	 vertical	 line).	 Each	 row	1792 
corresponds	to	an	animal,	each	column	within	the	row	represents	a	trial.	Light	green:	hit,	1793 
dark	green:	correct	rejection,	light	red:	false	alarm,	dark	red:	miss.	q,	Mean	performance	1794 
of	animals	(n	=	11	mice)	that	reached	performance	criterion	during	training	during	pre-	1795 
and	post-control.	r,	Discrimination	accuracy	split	by	stimulus	valence	(green,	S+;	black,	1796 
S-)	for	odour	correlation	fluctuation	frequencies	2,	20	and	40	Hz	(Fig.	4e;	n	=	9	mice,	data	1797 
is	mean	±	SD,	unpaired	two-sided	t-test).	s,	Group	performance	for	the	square	pulse	probe	1798 
trials	at	different	frequencies,	in	animals	trained	on	the	source	separation	task	(blue	dots,	1799 
n	=	9	mice,	data	 is	mean	±	SD),	 compared	 to	group	performance	where	animals	were	1800 
trained	on	correlated	and	anti-correlated	square	pulse	trains	(from	Fig.	2k,	black	line	and	1801 
SEM	band,	n	=	33	mice;	2	Hz:	p	=	0.0018,	20	Hz:	p	=	0.19,	40Hz:	p	=	0.94,	unpaired	two-1802 



sided	t-test).	Violin	plots	 in	g-i	show	the	median	as	a	black	dot	and	the	 first	and	third	1803 
quartile	by	the	bounds	of	the	black	bar. 1804 



Supplementary	Information	Guide	1 

Supplementary	 Video	 1:	 Automated	 operant	 conditioning	 system	 (“AutonoMouse”)	2 
equipped	with	high	speed	odour	delivery	device.	3 

Supplementary	 Video	 2:	 Comparison	 between	 original	 video-based	 respiration	4 
recording	and	phase-based	motion	amplification	(red	trace)	in	head-fixed	condition	on	5 
the	 animal’s	 flank	 to	 capture	 body	 movements	 associated	 with	 respiration.	6 
Simultaneously,	respiration	was	recorded	with	a	flow	sensor	placed	in	front	of	one	nostril	7 
(black	trace).	Odour	stimulus	highlighted	with	blue	bar.	8 

Supplementary	Methods	 Fig.	 1	 |	 Characterization	 of	 odorants	 presented	 with	 a	9 
high-speed	 odour	 delivery	 device.	a,	 Calculated	 signal	 fidelities	 for	 seven	 different	10 
odours	(colours,	see	legend	in	b)	pulsed	for	2	s	over	a	frequency	range	of	2	to	100	Hz	at	11 
50%	pulse	duty	(n	=	5	repeats	for	each	condition,	mean	±	SEM).	b,	Amount	of	released	12 
odour	(n	=	5	repeats	for	each	condition,	mean	±	SEM).	Odours	are:	AA	(isoamyl	acetate),	13 
ACP	 (acetophenone),	 AT	 (α-Terpinene),	 CN	 (cineol),	 EB	 (ethyl	 butyrate),	 Hex	 (2-14 
hexanone),	PEA	(phenylethyl	alcohol).	c,	Left:	Schematic	of	the	pulse-width	modulation	15 
(PWM)	 method.	 For	 any	 period	 of	 odour	 release,	 maximum	 final	 concentration	 is	16 
achieved	 by	 keeping	 the	 valve	 open	 for	 the	 entire	 time	 (top).	 The	 amount	 of	 odour	17 
released	can	be	reduced	by	cycling	the	valve	at	a	high	frequency	(here	500	Hz)	with	a	18 
different	level	of	PWM	(middle	and	bottom	panel).	Right:	Odours	were	released	over	a	2	19 
s	period	with	different	PWM	duties	at	500	Hz	(n	=	5	repeats	for	each	condition,	mean	±	20 
SEM).	The	 resulting	amount	of	 released	odour	 is	normalised	 to	 the	maximum	release	21 
(PWM	=	1).	d,	Average	PID	signal	of	single	100	ms	pulses	(pulse	indicated	in	blue)	for	22 
seven	different	odours	(n	=	60	pulses	for	each	odour,	mean	±	SEM).	e,	Summary	table:	23 
delay	(time	from	start	of	the	odour	pulse	to	5%	of	maximum	signal	amplitude),	rise	(time	24 
from	5%	to	95%	of	maximum	signal	amplitude),	decay	(time	for	the	signal	to	decay	back	25 
to	5%	of	maximum	amplitude	after	the	end	of	the	odour	pulse).	f,	Effect	of	tubing	length	26 
attached	to	the	valve	manifold	on	signal	fidelity	at	different	pulse	frequencies	pulsed	for	27 
2	s	at	50%	pulse	duty	(ethyl	butyrate).		28 

Supplementary	 Methods	 Fig.	 2	 |	 Dual-energy	 fast	 photoionisation	 detection	29 
(defPID).		30 
a,	Schematic	of	the	dual-energy	fast	photoionisation	detection	method.	Two	odours	are	31 
recorded	 simultaneously	 by	 two	 PIDs	 with	 different	 ionizing	 energies	 (different	32 
wavelength	UV	light	sources).	The	odours	are	chosen	such	that	one	odour	(odour	2	(ethyl	33 
butyrate),	9.5	eV)	has	an	ionization	energy	greater	than	the	low	energy	PID	bulb,	but	less	34 
than	the	high	energy	PID	bulb,	thus	only	being	detectable	by	the	high	energy	PID.	The	35 
other	odour	(odour	1	(α-Terpinene),	7.9	eV)	is	chosen	such	that	its	ionization	energy	is	36 
lower	 than	 both	 PID	 bulbs	 (detectable	 by	 both	 PIDs,	 see	 also	 e).	 b,	 Method	 of	37 
decomposing	odour	 signals.	Top	panel:	high	energy	PID	signal	 (grey:	 recorded	signal,	38 
blue:	 calculated	 signal	due	 to	odour	1,	 red:	 calculated	 signal	due	 to	odour	2).	Bottom	39 
panel:	low	energy	PID	signal	(green:	recorded	signal,	red:	calculated	signal	due	to	odour	40 
2;	the	entire	signal	is	due	to	odour	1).	c,	Single	data	points	of	the	PID	signal	evoked	by	α-41 
Terpinene	in	the	two	PIDs.	The	slope	of	the	linear	fit	serves	as	a	scaling	factor	to	map	the	42 
low	energy	PID	to	the	high	energy	PID	signal.	d,	Histogram	of	R-squared	values	of	all	dual-43 



PID	α-Terpinene	recordings	to	define	the	scaling	factor	(n	=	59	recordings).	e,	Summary	44 
of	signal	combinations	for	defPID	recordings.	The	scaling	factor	for	the	PIDlow	signal	is	45 
determined	by	the	slope	in	c.	f,	Schematic	of	outdoors	odour	plume	recording	setup.	PIDs	46 
and	 odour	 delivery	 system	were	 used	 to	 record	 for	multiple	 trials	 at	 different	 lateral	47 
distances	(s)	between	odours	held	in	ceramic	crucibles.	Data	was	collected	on	a	day	with	48 
low	wind	(~8-12	mph,	equivalent	to	~3-5	m/s,	recorded	with	a	2-axis	ultrasonic	wind	49 
sensor	at	the	height	of	the	PID	inlet.	Outdoor	experiments	were	performed	on	a	~6	m	x	50 
10	m	wooden	patio	structure	surrounded	by	trees.	There	was	>300	cm	of	unobstructed	51 
space	on	an	artificial	grass	mat	in	front	of	the	PIDs	to	capture	air	movements.	g,	Indoor	52 
setup:	A	digitally	controlled	fan	was	placed	at	a	distance	of	325	cm	facing	the	PID	inlet.	53 
An	exhaust	line	was	situated	behind	the	PID	inlet	to	ensure	the	direction	of	air	from	the	54 
fan	towards	the	PID	inlet.	During	a	recording,	the	fan	was	set	to	maximum	speed	such	55 
that	it	pushed	approximately	552	cf/min	(cubic	feet	per	minute,	~260	l/s)	of	air	towards	56 
the	PID	inlet.	A	25x25x25	cm	Thermocool	box	was	placed	200	cm	downwind	of	the	fan	57 
acting	as	an	obstacle	to	air	movement,	promoting	complex	air	movement	patterns	at	the	58 
PID	location.	The	pump	at	the	PID	was	set	to	~0.02	l/s	suction	speed,	unlikely	to	perturb	59 
overall	airflow	dynamics	substantially.	60 

Supplementary	Table	1:	Parameters	of	the	olfactory	sensory	neuron	population	model.	61 

Supplementary	Table	2:	Parameters	of	the	olfactory	sensory	neuron	population	model	62 
that	were	varied.	63 
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Supplementary	Table	1:	Parameters	of	 the	olfactory	sensory	neuron	population	
model	

Parameter	 Description	 Value	
𝜏" 	 Olfactory	transduction	time	constant	 75	ms	
𝜏#	 OSN	membrane	time	constant	 75	ms	
𝜎	 Standard	 deviation	 of	 OSN	 membrane	

voltage	additive	noise	
0.25	V	

𝑎	 Stimulus	amplitude	 15	V	
𝜃	 OSN	spike	threshold	 2	V	
𝑡()*	 OSN	refractory	period	 1	sec	
𝑉()* 	 OSN	refractory	voltage	 -1	V	
𝜏,	 Ca2+	imaging	filter	time	constant	 150	ms	
Δ𝑡	 Euler	integration	step	size	 1	ms	

 



Supplementary	Table	2:	Parameters	of	 the	olfactory	sensory	neuron	population	
model	that	were	varied	

Parameter	 Centre	 Minimum	 Maximum	
𝜏"	 75	ms	 56.25	ms	 93.75	ms	
𝜏# 	 75	ms	 56.26	ms	 93.75	ms	
𝜎	 0.25	V	 0.1875	V	 0.3125	V	
𝜃	 2	V	 1.5	V	 2.5	V	
𝑎	 5	 3.75	V	 6.25	V	
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