

50:2 Fast Algorithms for Geometric Consensuses

a plurality point is not always guaranteed to exist [18]. It is known that one can test if a

plurality point exists (and if so, compute it) in O(dn logn) time [10]. Note that the plurality

point is a point of Tukey depth ⌈n/2⌉ – in general this is the largest possible Tukey depth

any point can have; while the centerpoint is a point that guarantees a “respectable” minority

of size at least n/(d+ 1).

Since plurality points may not always exist, one generalization of a plurality point is the

yolk [17]. A hyperplane is a median hyperplane if the number of voters lying in each of

the two closed halfspaces is at least ⌈n/2⌉. The yolk is the ball of smallest radius intersecting

all such median hyperplanes. Note that when a plurality point exists, the yolk has radius

zero (equivalently, all median hyperplanes intersect at a common point).

We also consider the following restricted problem. A hyperplane is extremal if and

only if it passes through d points, under the assumption that the points are in general

position. The extremal yolk is the ball of smallest radius intersecting all extremal median

hyperplanes. Importantly, the yolk and the extremal yolk are different problems – the radius

of the yolk and extremal yolk can differ [21].

The egg of a point set. A problem related to computing the yolk is the following: For a set

of n points P in R
d, compute the smallest radius ball intersecting all extremal hyperplanes

of P (i.e., all hyperplanes passing through d points of P). Such a ball is the egg of P . See

Figure 1.1 for an illustration of the yolk and egg of a point set.

Linear programs with many implicit constraints. The problem of computing the egg can

be written as a linear program (LP) with Θ(nd) constraints, defined implicitly by the point

set P . One can apply Seidel’s algorithm [19] (or any other linear time LP solver in constant

dimension) to obtain an O(nd) expected time algorithm for computing the egg (or the yolk,

with a bit more work). However, as each d-tuple of points forms a constraint, it is natural to

ask if one can obtain a faster algorithm in this setting. Specifically, we are interested in the

following problem: Let I be an instance of a d-dimensional LP specified via a set of n entities

P , where each k-tuple of P induces a linear constraint in I, for some (constant) integer k.

The problem is to efficiently solve I, assuming access to some additional subroutines.

1.1 Previous work

The yolk. Let P be a set of n points in R
d. Both the yolk and extremal yolk have been

studied in the literature. The first polynomial time exact algorithm for computing the yolk

in R
d was by Tovey in O

(
n(d+1)2)

time – in the plane, the running time can be improved

to O(n4) [22]. Following Tovey, the majority of results have focused on computing the yolk

in the plane. In 2018, de Berg et al. [10] gave an O(n4/3 log1+ε n) time algorithm (for any

fixed ε > 0) for computing the yolk. Obtaining a faster exact algorithm remained an open

problem. Gudmundsson and Wong [12, 13] presented a (1 + ε)-approximation algorithm

with O(n log7 n log4 ε−1) running time. An unpublished result of de Berg et al. [8] achieves a

randomized (1 + ε)-approximation algorithm for the extremal yolk running in expected time

O(nε−3 log3 n).

The egg. The egg of a point set in R
d can be computed by solving a linear program with

Θ(nd) constraints. The egg is a natural extension to computing the yolk, and thus obtaining

faster exact algorithms is of interest. The authors are not aware of any previous work on

this specific problem. Bhattacharya et al. [2] gave an algorithm which computes the smallest

radius ball intersecting a set of m hyperplanes in O(m) time, when d = O(1), by formulating

the problem as an LP (see also Lemma 11). However we emphasize that in our problem the

set of hyperplanes are implicitly defined by the point set P , and is of size Θ(nd) in R
d.

50:4 Fast Algorithms for Geometric Consensuses

Table 1.1 Some previous work on the yolk and our results. Existing algorithms are deterministic,

while the running time of our algorithms holds in expectation.

d = 2 (1 + ε)-approx Exact Our results (Exact)

Extremal yolk
O(nε

−3 log3
n)

[8]
O(n4/3 log1+ǫ

n)

[10]
O(n log n)

Theorem 16

Yolk
O(n log7

n log4
ε

−1)

[13]
O(n4/3 log1+ǫ

n)

Variant of [10]
O(n log n)

Theorem 25

d = 3

Yolk ?
O(n3)

Known techniques
O(n2)

Remark 26

d > 3

Extremal yolk ?
O(nd)

Known techniques
O(nd−1 log n)

Theorem 16

Yolk ?
O(nd)

Known techniques
O(nd−1 log n)

Theorem 25

Implicit LPs. In 2004, Chan [4] developed a framework for solving LPs with many implicit

constraints (the motivation was to obtain an efficient algorithm for computing the Tukey

depth of a point set). Informally, suppose that each input set P of entities maps to a set

H(P) of implicit constraints. For n entities P and a candidate solution, suppose one can

decide if the candidate solution violates any constraints of H(P) in D(n) time. Additionally,

assume that from P , one can construct r = O(1) sets P1, . . . , Pr, each of size at most n/c

(for some constant c > 1) with H(P) =
⋃r
i=1 H(Pi). If this partition step can be performed

in D(n) time, then both assumptions imply that the resulting LP can be solved in O(D(n))

expected time.

1.2 Our results

Note. Due to space limitations, not all results discussed below are presented in the paper.

We refer the reader to the full version of the paper on arXiv [14].

In this paper we revisit Chan’s algorithm for solving LPs with many implicitly defined

constraints [4]. The technique leads to efficient algorithms for the following problems.

Throughout, let P ⊂ R
d be a set of n points in general position:

(A) The yolk (and extremal yolk) of P can be computed exactly in O(nd−1 logn) expected

time. Hence in the plane, the yolk can be computed exactly in O(n logn) expected time.

This improves all existing algorithms (both exact and approximate) [22, 10, 13, 12, 8]

for computing the yolk in the plane, and our algorithm easily generalizes to higher

dimensions. See Table 1.1 for a summary of our results and previous work.

(B) By a straight-forward modification of the above algorithm, see Lemma 17, implies that

the egg of P can be computed in O(nd−1 logn) expected time. The authors are not

aware of any previous work on this specific problem.

(C) Let Hk(P) be the collection of all open halfspaces which contain at least n− k points of

P . Consider the convex polygon Tk = ∩h∈Hk(P)h. Observe that T0 is the convex hull

of P , with T0 ⊇ T1 ⊇ · · · . The centerpoint theorem implies that Tn/(d+1) is non-empty

(and contains the centerpoint). The Tukey depth of a point q in the minimal k such

that q ∈ Tk \ Tk+1.

S. Har-Peled and M. Jones 50:5

When Tk is non-empty, the center ball of P is the ball of largest radius contained

inside Tk. For Tk empty, we define the Tukey ball of P as the smallest radius ball

intersecting all halfspaces of Hk(P).

In the full version of the paper [14] we show that the Tukey ball and center ball can both

be computed in Õ
(
kd−1

[
1 + (n/k)⌊d/2⌋

])
expected time. Here, Õ hides polylogarithmic

factors in n. In particular when k is a (small) constant, a point of Tukey depth k can

be computed in time Õ(n⌊d/2⌋). This improves Chan’s O(nd−1 logn) expected time

algorithm for deciding if there is a point of Tukey depth at least k [4].

(D) For a set Q ⊆ R
d, let conv(Q) denote the convex hull of Q. For a given integer k

let C(P, k) =
{

conv(Q)
∣∣ Q ∈

(
P
k

)}
, where

(
P
k

)
is the set of all k-tuples of points of P .

We define the k-ball of P as the smallest radius ball intersecting all convex bodies in

C(P, k).

While one may be tempted to apply the techniques discussed so far for implicit LPs,

there is a faster algorithm using (≤ k)-sets. When k is constant, in [14] we present an

algorithm for computing the k-ball in O(n⌊d/2⌋ + n logn) expected time. As such, the

smallest ball intersecting all triangles induced by triples of a set of n points in R
3 can

be computed in O(n logn) expected time.

In [14], we present another application of Chan’s technique for solving implicit LP-type

problems.

(E) Given a set L of n lines in the plane, the crossing distance between two points p, q ∈ R
2

is the number of lines of L intersecting the segment pq. Given a point q ∈ R
2 not lying

on any lines of L, the disk of smallest radius containing all vertices of A(L), within

crossing distance at most k from q, can be computed, in O(n logn) expected time.

2 Preliminaries

◮ Notation. Throughout, the O hides factors which depend (usually exponentially) on the

dimension d. Additionally, the Õ notation hides factors of the form logc n, where c may

depend on d.

2.1 LP-type problems

An LP-type problem, introduced by Sharir and Welzl [20], is a generalization of a linear

program. Let H be a set of constrains and f be an objective function. For any B ⊆ H,

let f(B) denote the value of the optimal solution for the constraints of B. The goal is to

compute f(H). If the problem is infeasible, let f(H) = ∞. Similarly, define f(H) = −∞ if

the problem is unbounded.

◮ Definition 1. Let H be a set of constraints, and let f : 2H → R∪ {∞,−∞} be an objective

function. The tuple (H, f) forms an LP-type problem if the following properties hold:

(A) Monotonicity. For any B ⊆ C ⊆ H, we have f(B) ≤ f(C).

(B) Locality. For any B ⊆ C ⊆ H with f(C) = f(B) > −∞, and for all s ∈ H,

f(C) < f(C + s) ⇐⇒ f(B) < f(B + s), where B + s = B ∪ {s}.

A basis of H is an inclusion-wise minimal subset b ⊆ H with f(b) = f(H). The

combinatorial dimension δ is the maximum size of any feasible basis of any subset of H.

Throughout, we consider δ to be constant. For a basis b ⊆ H, we say that h ∈ H violates

the current solution induced by b if f(b+ h) > f(b). LP-type problems with n constraints

can be solved in randomized time O(n), hiding constants depending (exponentially) on δ [7],

where the bound on the running time holds with high probability.

SoCG 2020

50:6 Fast Algorithms for Geometric Consensuses

2.2 Implicit LPs using Chan’s algorithm

Our algorithms will need the following result of Chan [4] on solving LPs with implicitly

defined constraints.

◮ Lemma 2 ([4]). Let (H, f) be an LP-type problem of constant combinatorial dimension δ,

and let cδ be a constant that depends only on δ. Let ψ, c > 1 be fixed constants, such that

cδ logδ ψ < c. For an input space Π, suppose that there is a function g : Π → 2H which maps

inputs to constraints. Furthermore, assume that for any input P ∈ Π of size n, we have:

(I) When n = O(1), a basis for g(P) can be computed in constant time.

(II) For a basis b, one can decide if b satisfies g(P) in D(n) time.

(III) In D(n) time, one can construct sets P1, . . . , Pψ ∈ Π, each of size at most n/c, such

that g(P) =
⋃ψ
i=1 g(Pi).

Then a basis for g(P) can be computed in O(D(n)) expected time, assuming that D(n/k) =

O(D(n)/k), for all positive integers k ≤ n.

2.3 Duality, levels, and zones

2.3.1 Duality

◮ Definition 3 (Duality). The dual hyperplane of a point p = (p1, . . . , pd) ∈ R
d is the

hyperplane p⋆ defined by the equation xd = −pd+
∑d−1
i=1 xipi. The dual point of a hyperplane

h defined by xd = ad +
∑d−1
i=1 aixi is the point h⋆ = (a1, a2, . . . , ad−1,−ad).

◮ Fact 4. Let p be a point and let h be a hyperplane. Then p lies above h if and only if the

hyperplane p⋆ lies below the point h⋆.

Given a set of objects T (e.g., points in R
d), we let T ⋆ = {x⋆ | x ∈ T} denote the dual

set of objects.

2.3.2 k-Levels

◮ Definition 5 (Levels). For a collection of hyperplanes H in R
d, the level of a point p ∈ R

d

is the number of hyperplanes of H lying on or below p. The k-level of H is the union of

points in R
d which have level equal to k. The (≤ k)-level of H is the union of points in R

d

which have level at most k.

By Fact 4, if h is a hyperplane which contains k points of P lying on or above it, then

the dual point h⋆ is a member of the k-level of P ⋆.

2.3.3 Zones of surfaces

For a set of hyperplanes H, we let A(H) denote the arrangement of H and V(A(H)) denote

the vertices of the arrangement of H.

◮ Definition 6 (Zone of a surface). For a collection of hyperplanes H in R
d, the complexity

of a cell ψ in the arrangement A(H) is the number of faces (of all dimensions) which are

contained in the closure of ψ. For a (d− 1)-dimensional surface γ, the zone Z(γ,H) of γ is

the subset of cells of A(H) which intersect γ. The complexity of a zone is the sum of the

complexities of the cells in Z(γ,H).

The complexity of a zone of a hyperplane is known to be Θ(nd−1) [11]; for general

algebraic surfaces it is larger by a logarithmic factor. Furthermore, the cells in the zone of a

surface can be computed efficiently using lazy randomized incremental construction [9].

S. Har-Peled and M. Jones 50:7

◮ Lemma 7 ([1, 9]). Let H be a set of n hyperplanes in R
d and let γ be a (d−1)-dimensional

algebraic surface of degree δ. The complexity of the zone Z(γ,H) is O(nd−1 logn), where

the hidden constants depend on d and δ. The collection of cells in Z(γ,H) can be computed

in O(nd−1 logn) expected time.

3 Computing the extremal yolk

3.1 Background

◮ Definition 8. Let P ⊂ R
d be a set of n points in general position. A median hyperplane is

a hyperplane such that each of its two closed halfspaces contain at least ⌈n/2⌉ points of P . A

hyperplane is extremal if it passes through d points of P . The extremal yolk is the ball of

smallest radius interesting all extremal median hyperplanes of P .

We give an O(nd−1 logn) expected time exact algorithm computing the extremal yolk.

To do so, we focus on the more general problem.

◮ Problem 9. Let Ek(P) be the collection of extremal hyperplanes which contain exactly k

points of P on or above it. Here, k is not necessarily constant. The goal is to compute the

smallest radius ball intersecting all hyperplanes of Ek(P).

We observe that computing the extremal yolk can be reduced to the above problem.

◮ Lemma 10. The problem of computing the extremal yolk can be reduced to Problem 9.

Proof. Suppose that n is even, and define the set Seven = {n/2, n/2 + 1, . . . , n/2 + d}. A

case analysis shows that any extremal median hyperplane h must have exactly m points of P

above or on h, where m ∈ Seven. Thus, computing the extremal yolk reduces to computing

smallest radius ball intersecting all hyperplanes in the set
⋃
m∈Seven

Em(P).

When n is odd, a similar case analysis shows that any extremal median hyperplane must

have exactly m points above or on it, where m ∈ Sodd = {⌈n/2⌉ , ⌈n/2⌉+1, . . . , ⌈n/2⌉+d−1}.

Analogously, computing the extremal yolk with n odd reduces to computing the smallest

radius ball intersecting all hyperplanes in the set
⋃
m∈Sodd

Em(P). ◭

To solve Problem 9, we apply Chan’s result for solving implicit LP-type problems [4],

stated in Lemma 2. We first prove that Problem 9 is an LP-type problem when the constraints

are explicitly given (the following Lemma was also observed by Bhattacharya et al. [2]).

◮ Lemma 11. Problem 9 when the constraints (i.e., hyperplanes) are explicitly given, is an

LP-type problem and has combinatorial dimension δ = d+ 1.

Proof. We prove something stronger, namely that the problem can be written as a linear

program, implying it is an LP-type problem. Let H be the set of n hyperplanes. For each

hyperplane h ∈ H, let 〈ah, x〉+bh = 0 be the equation describing h, where ah ∈ R
d, ‖ah‖ = 1,

and bh ∈ R. Because of the requirement that ‖ah‖ = 1, for a given point p ∈ R
d, the distance

from p to a hyperplane h is |〈ah, p〉 + bh|.

The linear program has d+ 1 variables and 2n constraints. The d+ 1 variables represent

the center p ∈ R
d and radius ν ≥ 0 of the egg. The resulting LP is

min ν

subject to ν ≥ 〈ah, p〉 + bh ∀h ∈ H

ν ≥ −
(
〈ah, p〉 + bh

)
∀h ∈ H

p ∈ R
d.

SoCG 2020

S. Har-Peled and M. Jones 50:11

3.4 Putting it all together

The above discussions together with Lemma 2 and D(n) = O(nd−1 logn) implies the following.

◮ Lemma 14. Let P ⊂ R
d be a set of n points in general position. For a given integer k,

one can compute in O(nd−1 logn) expected time the smallest radius ball intersecting all of

the hyperplanes of Ek(P)

◮ Notation. For an integer n > 0, let JnK = {1, . . . , n}.

◮ Corollary 15. Let P ⊂ R
d be a set of n points in general position, and let S ⊆ JnK. One

can compute in O(nd−1 logn) expected time the smallest radius ball intersecting all of the

hyperplanes of
⋃
k∈S Ek(P)

Proof. The algorithm is a slight modification of Lemma 14. During the decision procedure,

for each vertex in the zone, we check if it is a member of the k-level for some k ∈ S. If S is

of non-constant size, membership in S can be checked in constant time using hashing. ◭

3.5 Computing the extremal yolk and the egg

◮ Theorem 16. Let P ⊂ R
d be a set of n points in general position. One can compute the

extremal yolk of P in O(nd−1 logn) expected time.

Proof. The result follows by applying Corollary 15 with the appropriate choice of S. When

n is even, Lemma 10 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we

set S = {⌈n/2⌉ , ⌈n/2⌉ + 1, . . . , ⌈n/2⌉ + d− 1}. ◭

◮ Lemma 17. Let P ⊂ R
d be a set of n points in general position. One can compute the egg

of P in O(nd−1 logn) expected time.

Proof. Follows by Corollary 15 with S = JnK. (Alternatively, by directly modifying the

decision procedure to check if any vertex of the zone Z(∆′, H ′) lies inside ∆′.) ◭

3.6 An algorithm sensitive to k

Recall that to compute the extremal yolk, we reduced the problem to computing the smallest

ball intersecting all hyperplanes which contain a fixed number of points of P above or on

them (see Lemma 10). In particular, we developed an algorithm for Problem 9 and applied

it when k is proportional to n. It is natural to ask for an algorithm for Problem 9 which is

faster when k is small. The algorithm will work for all values of k. However when k is large,

the running time deteriorates to the running time of the algorithm of Lemma 14.

To develop an algorithm sensitive to k, we use the result of Lemma 14 as a black-box

and introduce the notion of shallow cuttings.

◮ Definition 18 (Shallow cuttings). Let H be a set of n hyperplanes in R
d. A k-shallow

cutting is a collection of simplices such that:

(i) the union of the simplices covers the (≤ k)-level of H (see Definition 5), and

(ii) each simplex intersects at most k hyperplanes of H.

Matoušek was the first to prove existence of k-shallow cuttings of size O((n/k)⌊d/2⌋) [15].

When d = 2, 3, a k-shallow cutting of size O(n/k) can be constructed in O(n logn) time [5].

For d ≥ 4, we sketch a randomized algorithm which computes a k-shallow cutting, based on

Matoušek’s original proof of existence [15].

SoCG 2020

50:12 Fast Algorithms for Geometric Consensuses

◮ Lemma 19 (Proof sketch in [14]). Let H be a set of n hyperplanes in R
d. A k-shallow

cutting of size O((n/k)⌊d/2⌋) can be constructed in O(k(n/k)⌊d/2⌋ + n logn) expected time.

For each simplex ∆ in the cutting, the algorithm returns the set of hyperplanes intersecting

∆ and the number of hyperplanes lying below ∆.

Let P ⊂ R
d be a set of n points and let H = P ⋆ be the set of dual hyperplanes. The

algorithm itself is a randomized incremental algorithm, mimicking Seidel’s algorithm for

solving LPs [19]. First, compute a k-shallow cutting for the set of hyperplanes H using

Lemma 19. Let ∆1, . . . ,∆ℓ, where ℓ = O((n/k)⌊d/2⌋), be the collection of simplices in the

cutting. For each simplex ∆i, we have the subset H ∩ ∆i and the number of hyperplanes

lying completely below H (which is at most k). For each cell ∆i, let g(∆i) be the set of

vertices of A(H) which have level k and are contained in ∆i.

The algorithm. The input to the algorithm is a set of simplices and an initial ball b0. Such

a ball is uniquely defined by a subset of d+ 1 constraints, and this is a basis for the LP-type

problem.

Begin by randomly permuting the simplices ∆1, . . . ,∆ℓ. At all times, the algorithm

maintains a ball bi of smallest radius which meets all the constraints defined by ∪ij=1g(∆i).

In the ith iteration, the algorithm performs a violation test: it decides if any constraint of

g(∆i) is violated by bi−1. If so, the algorithm executes a basis computation, in which it

computes the ball b′
i of smallest radius which obeys the constraints of g(∆i) and the d+ 1

constraints defining bi−1. The algorithm then computes a ball bi by invoking itself recursively

on the subset of cells ∆1, . . . ,∆i with b′
i as the initial basis.

◮ Lemma 20. Let P ⊂ R
d be a set of n points in general position. For a given integer k, one

can compute in Õ
(
kd−1

(
1 + (n/k)⌊d/2⌋

))
expected time the smallest radius ball intersecting

all of the hyperplanes of Ek(P).

Proof. The algorithm is described above. As for the analysis, it is similar to any randomized

incremental algorithm for LP-type problems. The key difference is that we are not adding

a single constraint incrementally, but rather a collection of constraints in each iteration.

Fortunately, this does not change the analysis of the algorithm (for further details, see the

proof of Lemma 2 in [4] or the full version of our paper [14]).

It is well-known that in expectation, the algorithm performs O((n/k)⌊d/2⌋) violation

tests and O(logd+1(n/k)) basis computations [20]. Since each simplex ∆i intersects O(k)

hyperplanes of H, each of these subroutines can be implemented in O(kd−1 log k) time using

Lemma 14. Finally, we account for the time needed to construct the shallow cutting – by

Lemma 19 this can be done in O(k(n/k)⌊d/2⌋ + n logn) expected time. ◭

4 Computing the (continuous) yolk

◮ Definition 21. Let P ⊂ R
d be a set of n points in general position. The continuous yolk

of P is the ball of smallest radius intersecting all median hyperplanes of P .

In contrast to Definition 8, we emphasize that the (continuous) yolk must intersect all

median hyperplanes defined by P (not just extremal median hyperplanes).

As before, the algorithm works in the dual space. For an integer k, let Hk(P) be the

collection of halfspaces containing exactly k points of P on or above it. Equivalently, P ⋆ is

the collection of hyperplanes defined by P in the dual space, and
(
Hk(P)

)⋆
is the k-level of

P ⋆. Our problem can be restated in the dual space as follows.

50:14 Fast Algorithms for Geometric Consensuses

Constructing subproblems. For a given input simplex ∆ (along with the set H = P ⋆ ∩ ∆

and the number u) a collection of subproblems ∆1, . . . ,∆ψ (with the corresponding sets Hi

and numbers ui for i = 1, . . . , ψ) can be constructed as described in Section 3.3, by computing

a cutting of the planes H and clipping this cutting inside ∆. In particular, we have that⋃
i g(∆i) = g(∆). Strictly speaking, we have not decomposed the constraints of g(∆) (as

required by Lemma 2), but rather have decomposed the region which is the union of the

constraints of g(∆). This step is valid, as a solution satisfies the constraints of
⋃
i g(∆i) if

and only if it satisfies the constraints of g(∆).

The decision procedure. Given a candidate solution b⋆, the problem is to decide if b⋆

contains g(∆) in its interior. The decision algorithm itself is similar as in the proof of

Theorem 16. Consider the set ∆ ∩ (Rd \ b⋆), where ∆ is a simplex, and notice that it is

the union of the most two convex regions. Let ∆′ be one of these two regions of interest.

Observe that it suffices to check if there is a point on the boundary of ∆′ which is part of

the k-level. Let H ′ ⊆ H be the subset of hyperplanes intersecting ∆′.

To this end, compute Z(∂∆′, H ′). For each (d−1)-dimensional face f of ∆′, the collection

of regions Ξ = {f ∩ s | s ∈ Z(∂∆′, H ′)} forms a (d− 1)-dimensional arrangement restricted

to f . Furthermore, the complexity of this arrangement lying on f is at most O(nd−1 logn).

Notice that the level of all points in the interior of a face of Ξ is constant, and two adjacent

faces (sharing a boundary) have their level differ by at most a constant. The algorithm

picks a face in Ξ, computes the level of an arbitrary point inside it (adding u to the count).

Then, the algorithm walks around the arrangement, exploring all faces, using the level of

neighboring faces to compute the level of the current face. If at any step a face has level k,

we report that the input (∆, H, u) violates the candidate solution b⋆.

Analysis of the decision procedure. We claim the running time of the algorithm is pro-

portional to the complexity of the zone Z(∂∆′, H ′). Indeed, for each (d − 1)-dimensional

face f of ∆′ (where f may either be part of a hyperplane or part of the boundary of b⋆), we

can compute the set {f ∩ s | s ∈ Z(∂∆′, H ′)} in time proportional to the total complexity

of Z(∂∆′, H ′) (assuming we can intersect a hyperplane with a portion of a constant degree

surface efficiently). The algorithm then computes the level of an initial face naively in O(|H ′|)

time, and computing the level of all other faces can be done in O(|Z(∂∆′, H ′)|) time by

performing a graph search on the arrangement.

Because the boundary of ∆′ is constructed from d+ 1 hyperplanes and the boundary of

the hyperboloid, Lemma 7 implies that the zone complexity is O(|H|
d−1

log |H|). As such,

our decision procedure runs in time D(n) = O(nd−1 logn).

◮ Lemma 23. Problem 22 can be solved in O(nd−1 logn) expected time, where n = |P |.

Proof. Follows by plugging the above discussion into Lemma 2. ◭

By modifying the decision procedure appropriately, we also obtain a similar result to

Corollary 15.

◮ Corollary 24. Let P ⊂ R
d be a set of n points in general position, and let S ⊂ JnK. The

smallest ball intersecting all hyperplanes in
⋃
k∈S Hk(P) can be computed in O(nd−1 logn)

expected time.

◮ Theorem 25. Let P ⊂ R
d be a set of n points in general position. One can compute the

yolk of P in O(nd−1 logn) expected time.

S. Har-Peled and M. Jones 50:15

Proof. The result follows by applying Corollary 24 with the appropriate choice of S. When

n is even, Lemma 10 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we

set S = {⌈n/2⌉ , ⌈n/2⌉ + 1, . . . , ⌈n/2⌉ + d− 1}. ◭

◮ Remark 26. In R
3, one can shave the O(logn) factor to obtain an O(n2) expected time

algorithm for the yolk. We modify the decision procedure as follows, which avoids computing

the zone Z(∂∆′, H ′). For each 2D face f of ∆′, simply compute the arrangement of the

set of lines {f ∩ h | h ∈ H} on f in O(n2) time. As before, we perform a graph search on

this arrangement, computing the level of each face. If any time we discover a point on

the boundary of ∆′ of the desired level, we report that the given input violates the given

candidate solution.

5 Conclusion

The natural open problem is to improve the running times for computing the yolk (and

extremal yolk) even further. It seems believable, that for d > 3, the log factors in Theorem 16

and Theorem 25 might not be necessary. We leave this as an open problem for further

research.

References

1 Boris Aronov, Marco Pellegrini, and Micha Sharir. On the zone of a surface in a hyperplane

arrangement. Discrete Comp. Geom., 9:177–186, 1993. doi:10.1007/BF02189317.

2 Binay K. Bhattacharya, Shreesh Jadhav, Asish Mukhopadhyay, and Jean-Marc Robert.

Optimal algorithms for some intersection radius problems. Computing, 52(3):269–279, 1994.

doi:10.1007/BF02246508.

3 Duncan Black. On the rationale of group decision-making. Journal of Political Economy,

56(1):23–34, 1948. doi:10.1086/256633.

4 Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth. In J. Ian

Munro, editor, Proc. 15th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 430–436. SIAM,

2004. URL: http://dl.acm.org/citation.cfm?id=982792.982853.

5 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-

d and 3-d shallow cuttings. Discrete Comp. Geom., 56(4):866–881, 2016. doi:10.1007/

s00454-016-9784-4.

6 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comp. Geom.,

9:145–158, 1993. doi:10.1007/BF02189314.

7 Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the

dimension is small. J. ACM, 42(2):488–499, 1995. doi:10.1145/201019.201036.

8 Mark de Berg, Jonathan Chung, and Joachim Gudmundsson. Computing the yolk in spatial

voting games, 2019.

9 Mark de Berg, Katrin Dobrindt, and Otfried Schwarzkopf. On lazy randomized incremental

construction. Discrete Comp. Geom., 14(3):261–286, 1995. doi:10.1007/BF02570705.

10 Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing

plurality points. ACM Trans. Algorithms, 14(3):36:1–36:23, 2018. doi:10.1145/3186990.

11 Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir. On the zone theorem for hyperplane

arrangements. SIAM J. Comput., 22(2):418–429, 1993. doi:10.1137/0222031.

12 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games

without computing median lines. In 33th Conf. Artificial Intell. (AAAI), 2019.

13 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games

without computing median lines. CoRR, abs/1902.04735, 2019. arXiv:1902.04735.

14 Sariel Har-Peled and Mitchell Jones. Fast algorithms for geometric consensuses. CoRR,

abs/1912.01639, 2019. arXiv:1912.01639.

SoCG 2020

50:16 Fast Algorithms for Geometric Consensuses

15 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom., 2:169–186, 1992. doi:

10.1016/0925-7721(92)90006-E.

16 Jiří Matoušek. Lectures on Discrete Geometry, volume 212 of Grad. Text in Math. Springer,

2002. doi:10.1007/978-1-4613-0039-7/.

17 Richard D. McKelvey. Covering, dominance, and institution-free properties of social choice.

American Journal of Political Science, 30(2):283–314, 1986. doi:10.2307/2111098.

18 Ariel Rubinstein. A note about the “nowhere denseness” of societies having an equilibrium

under majority rule. Econometrica, 47(2):511–514, 1979. doi:10.2307/1914198.

19 Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete

Comp. Geom., 6:423–434, 1991. doi:10.1007/BF02574699.

20 Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related

problems. In 9th Symp. on Theoretical Aspects of Comput. Sci. (STACS), pages 569–579, 1992.

doi:10.1007/3-540-55210-3_213.

21 Richard E. Stone and Craig A. Tovey. Limiting median lines do not suffice to determine the

yolk. Social Choice and Welfare, 9(1):33–35, 1992. doi:10.1007/BF00177668.

22 Craig A. Tovey. A polynomial-time algorithm for computing the yolk in fixed dimension. Math.

Program., 57:259–277, 1992. doi:10.1007/BF01581084.

