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Allosteric regulation is a key functional feature of many proteins and protein complexes, involving 
communication between distal protein regions. The process is initiated by ligand binding or other structural 
or dynamic perturbation, which occurs at one site and is subsequently propagated through the protein to 
influence the activities at a distal site. We present a new method for rapidly computing suboptimal paths 
between defined sites in protein dynamic networks. The method allows identification of allosteric residue 
paths in large proteins and macromolecular assemblies. Knowledge of allosteric communication 
mechanisms has impact on the fields of rational drug discovery and protein design.
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Abstract

Suboptimal path analysis in a protein structural or dynamical network becomes increasingly 

popular for identifying critical residues involved in allosteric communication and regulation. 

Several software packages have been developed for calculating suboptimal paths, including 

NetworkView, WISP, and CNAPATH (Bio3D). Although these packages work well for biological 

systems of moderate sizes, they either dramatically slow down or are subjected to accuracy 

issues when applied to large systems such as supramolecular complexes. In this work, we 

develop a new method called SOAN, which implements a modified version of Yen’s algorithm for 

finding loopless k-shortest paths. Instead of searching the entire protein network, SOAN builds 

up a subgraph for path calculations based on an initial evaluation of the optimal path and its 

neighboring nodes. We test our method on four systems of increasing size and compare to the 

NetworkView, WISP, and CNAPATH methods. The result shows that SOAN is approximately five 

times faster than NetworkView and orders of magnitude faster than CNAPATH and WISP. In 

terms of accuracy, SOAN is comparable to CNAPATH and WISP and superior to NetworkView. 

We also discuss the influence of SOAN input parameters on performance and suggest optimal 

values.

Introduction

Allosteric regulation is a key functional feature of many proteins and protein complexes, involving 

communication between distal protein regions. The process is initiated by ligand binding or some 

other structural or dynamic perturbation, which occurs at one site and is subsequently propagated 

through the protein to influence the activities at a distal site. Knowledge of allosteric 

communication mechanisms has impact on the fields of rational drug discovery1 and protein 

design2. While classical models of allosteric regulation have suggested that a binding event 

induces substantial conformational changes in the distal site3,4, other studies have observed 

allostery in the absence of large-scale conformational change5,6. This suggests that subtle 

differences in dynamics can alter the population distribution of the conformational ensemble 

without drastically altering the average conformation of the biomolecule.

In recent years, numerous computational methods have been developed to elucidate this subtle 

form of allosteric communication. Many of these methods represent the protein topology as a 

graph and use network algorithms to provide a link between the connectivity of protein residues 

and their functional significance in the regulatory allosteric response. In the graph, nodes (or 
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vertices) represent the protein residues. Edges between the nodes are weighted according to 

geometric7-11,14-16 or energetic criteria12,13. An underlying assumption is that allosteric coupling can 

be described as the propagation of information facilitated by the network of interacting residues. 

One such method, dynamic network analysis11, incorporates dynamic information from molecular 

dynamics (MD) simulations and has found exceptionally wide applicability to many biological 

systems11,17-21. Specifically, residue-residue cross-correlations are computed from the MD 

trajectories and mapped onto the edges of the network. Using edge weights based on dynamic 

correlation has advantages compared to static contact networks, accounting for dynamic 

conformational rearrangements occurring during MD. Once constructed, these dynamic networks 

encapsulate a wealth of information on the hierarchical organization and communication 

pathways of a biomolecule in a particular functional state. Conveniently, these important network 

features can be readily computed using methods derived from graph theory22-24. One such feature 

is suboptimal paths (or shortest paths) between a source and target residue (e.g. residues located 

on two distinct sites in a protein). Dynamic network models have traditionally focused on the 

shortest path (or optimal path), presumed to be the most significant contributor to protein allostery. 

However, suboptimal paths, slightly longer than the optimal, have also been shown to have 

outsized influence on allosteric responses. Determining these paths and their statistical 

distribution through the nodes of the protein network could help identify key functional residues 

involved in allosteric regulation. 

Recent advances in computer architecture have made the simulation of large macromolecular 

complexes computationally feasible. However, conventional suboptimal paths analysis may be ill-

suited to handle networks derived from large systems since the runtime is expected to increase 

significantly with the increased number of edges.  In this work, we propose a neighbors-based 

approach for rapidly computing suboptimal paths between two protein residues in a dynamic 

network. Our protocol is written in the Python programming language and takes advantage of 

well-established Python packages, including NumPy and NetworkX25-29. To establish the utility 

and computational efficiency of our approach, we provide benchmark calculation on four biological 

systems of increasing size: (i) acid-β-glucosidase (GlcCerase) comprised of ~ 500 residues, (ii) 

the E.coli replication machinery DNA polymerase III (Pol III) comprised of ~ 2000 residues, (iii) 

the human transcription factor IIH (TFIIH) comprised of ~ 4000 residues and (iv) the human pre-

initiation complex (PIC) comprised of ~ 10000 residues. Additionally, we compare the 

computational efficiency and accuracy of our approach with widely used network analysis 

methods: CNAPATH in the Bio3D R package30-32, the Weighted Implementation of Suboptimal 

Paths (WISP)33, and NetworkView24. 
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Methods

Building the network. Prior to computing suboptimal paths using the neighbors-based approach 

the adjacency matrix C must be constructed. Embedded within the adjacency matrix is the 

connectivity of graph G=(V,E), where G is an undirected graph containing vertices (or nodes) V 

and edges E. Note that C is a n x n symmetric matrix whose rank equals the total number of 

vertices in the graph (n). For weighted graphs, the value of the matrix element Cij is,

. (1)𝐶𝑖𝑗 = {𝑤𝐸𝑖𝑗, 𝑖𝑓 𝐸𝑖𝑗 ∈ 𝐺
0,               𝑒𝑙𝑠𝑒

where wEij is the weight of the edge connecting nodes i and j. Our protocol has been designed to 

work with adjacency matrices that have been derived in a manner consistent with dynamic 

network analysis11. As discussed previously, the dynamical network model represents each Cα 

atom in the protein as a node, although other choices are possible. Edges between nodes are 

then determined and weighted based on the interdependence among protein residues. In the 

case of MD, an edge is drawn between two nodes if the minimal (non-hydrogen) atomic distance 

between the two corresponding residues is 4.5 Å for more than 75% of the MD trajectory. ≤

Additionally, residues adjacent to the node under consideration and directly connected through 

chemical bonds are ignored (i.e. residues )), as these are expected to be within the distance  (𝑖 ± 1

cutoff and highly correlated. In some network models, this definition of adjacency is further 

extended to include second or third neighbors in the amino acid sequence (e.g.  or ). 𝑖 ± 2 𝑖 ± 3

The weight of an edge is determined by the cross-correlation, cij, between the two corresponding 

residues,

 (2)𝑐𝑖𝑗 =  
〈(𝐫𝑖 ― 〈𝐫𝑖〉) ∙ (𝐫𝑗 ― 〈𝐫𝑗〉)〉

〈‖𝐫𝑖 ― 〈𝐫𝑖〉‖2〉1/2〈‖𝐫𝑗 ― 〈𝐫𝑗〉‖2〉1/2.

Here, <·> is the ensemble average (estimated from MD simulations) and ri (rj ) is the positional 

vector of node i (j). Prior to the calculation, all simulation frames are structurally superimposed 

onto a reference structure (e.g., the first frame) based on the backbone or Cα atoms. There are 

numerous software packages available that can compute these values directly from MD 

trajectories, including Carma34, CPPTRAJ35, WISP33, and Bio3D30-32, to name a few. In order to 

examine the shortest paths in protein networks, the elements of the cross-correlation matrix C 

are transformed to distances using,

. (3)𝑤𝑖𝑗 ≡ 𝑑𝑖𝑗 =  ― log (|𝑐𝑖𝑗|)
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Note that dij in equation 3 is not a physical distance (e.g. Cartesian-based) but rather a distance 

metric in correlation space. Moreover, taking the negative logarithm of the cross-correlation 

ensures that strongly correlated and anticorrelated residues will correspond to shorter distances 

dij. 

Employing neighbors to identify an initial set of suboptimal paths. Upon construction of the 

C matrix, the first step in our protocol is to find the single, most direct route (the optimal path) in 

the network between a source (s) and target (t) node. This is readily accomplished using Dijkstra’s 

algorithm. However, we are interested in paths connecting s and t that are slightly longer than the 

optimal path. This general definition of suboptimal paths, based on length, allows us to make an 

important assumption: if the suboptimal paths are only slightly longer than the optimal path, then 

it follows that at some point these paths will diverge from the optimal path via a node that is directly 

adjacent to the optimal pathway. In other words, the neighbors of the optimal path will be the most 

likely candidates for suboptimal pathway composition. To clarify, a node j is considered a neighbor 

of node i if there is an edge Eij between them. Thus, the terms neighbor and adjacent are used 

interchangeably.

For each node comprising the optimal path we identify all nodes that are directly adjacent. The 

shortest paths are then computed, again using Dijkstra’s algorithm, from s  nj and nj  t, where → →

nj is the neighbor. These paths are then stitched together at the nj junction. Any path that folds 

back on itself (i.e. s,…,nj-1,nj,nj-1,…,t) is discarded as these do not constitute a direct route to the 

target. By default, our code expands away from the optimal path by 1 neighbor. However, this is 

a free parameter that permits any level of expansion up to including the entire graph. Thus, one 

can, in principle, include the neighbors of the optimal path neighbors and so on. This would, 

however, increase the run time of the code.

Improving path statistics using a subgraph derived from the initial set of suboptimal paths. 
The previous step represents a first pass through the graph since the paths produced are highly 

unique. This is a consequence of Dijkstra’s algorithm, which will only identify multiple paths 

between two nodes if the path lengths are equal. Unfortunately, a set of unique paths will provide 

very poor path statistics, making the computation of statistical quantities like node degeneracies 

impractical. Node degeneracy is particularly important, as it aids in the identification of critical 

node residues in the allosteric network. A natural remedy, then, is to utilize the node composition 

of the paths found in the previous step to limit the search space and apply more robust path 

exploration techniques to improve the statistics. Hence, we can use the initial set of shortest paths 

and the nodes that comprise them to build a subgraph S of the original graph G. Let P={p1,…,pN} 
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be the set of shortest paths between s and t found previously. For each pi in P there is a set of 

nodes that is unique to pi but collectively belong to the graph G. These nodes form the basis of 

the subgraph S and retain the connectivity to each other defined by G. In short, the subgraph S 

is simply a subset of the original graph G, bound by the nodes that make up the initial set of 

shortest path P,

. (4)𝑆 = (𝑉, 𝐸)𝑉|𝐸 ∈  𝑃 𝑎𝑛𝑑 𝐺

The benefits of this approach are two-fold: (i) the complexity of the search space is significantly 

reduced, thus decreasing the overall run time and (ii) a search space bound by an initial set of 

shortest paths virtually guarantees that every new path found is, by definition, suboptimal. 

From the subgraph S we can now find the shortest paths between s and t by employing the k-

shortest paths algorithm proposed by Yen36. This algorithm computes the single-source k-shortest 

loopless paths for a graph with non-negative weights. Upon finding the shortest path, the k-

shortest paths algorithm then proceeds to find the next shortest path and so forth, up to k, which 

is a free parameter (optimal values selection for free parameters is covered under Discussion). 

Since we already have an initial set of suboptimal paths found in the previous steps, our code 

discards any paths identified with k-shortest paths that overlap with this set, thus avoiding 

redundancy. If it is not possible to find k-shortest paths within the subgraph, our code will then 

expand to the next level of neighbors, rebuild the subgraph and continue Yen’s algorithm until k 

is reached.

An overview of the method can be seen in Figure 1. In general, our methodology proceeds through 

the following steps:

1. Compute the optimal path between s and t using Dijkstra’s algorithm.

2. Identify all nodes adjacent to the optimal path computed in step 1.

3. Compute all shortest paths between s  ni and ni  t using Dijkstra’s algorithm.→ →

4. Combine paths from step 3 at the ni junction.

5. Identify all unique nodes from the initial set of shortest paths computed in steps 3 and 4.

6. Build a subgraph S of the original graph G using the nodes identified in step 5 and the 

interconnectivity defined by G.

7. Find k shortest paths between s and t in the subgraph S using the k-shortest paths 

algorithm by Yen.

8. If the number of specified paths (k) is found within the subgraph, output the results; else, 

return to step 2 and expand to the next level of neighbors. 
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Molecular dynamics simulations. Modeling, system setup and system equilibration have been 

described previously for GlcCerase37, Pol III38, TFIIH21 and PIC21. In this work, production MD runs 

totaling 2.1 µs (GlcCerase), 200 ns (PolIII) and 300 ns (TFIIH and PIC) in the isothermal-isobaric 

ensemble were obtained using the Amber18 or Amber16 (GlcCerase) CUDA code39,40. In the 

simulations, temperature and pressure were set to 300 K and 1 atm, respectively. For analysis, 

snapshots from the MD trajectories were collected at 1-ps intervals for the GlcCerase system, 5-

ps intervals for the Pol III system and 20-ps intervals for the TFIIH and PIC systems. 

Adjacency matrix construction. For each system, nodes were positioned at all Cα atoms of 

protein residues and P atoms of DNA (if applicable). Edges were then drawn between nodes if 

the physical distance between them was less than 4.5 Å for more than 75% of the trajectory 

frames. Additionally, we ignored residues directly attached via atomic bonds (i.e. i+1 and i-1). The 

cross-correlations between residues were then computed with CPPTRAJ35 and used to weight 

the edges of in-contact nodes in the manner described above. Sources and targets for all 

suboptimal path calculations are included in Table 1. 

Weighted implementation of suboptimal paths (WISP) protocol. As input for WISP, we 

provided the adjacency matrix and the contact map of each simulated system. One of the benefits 

of WISP is that it will compute both of these objects directly from the MD trajectories. However, 

for consistency and to ensure that the runtime only reflects the suboptimal paths calculation, we 

supplied pre-computed adjacency matrices and contact maps to initiate WISP. Another benefit of 

WISP is the parallelization, which enables the code to utilize multiple cores on a CPU. Thus, for 

each system, the WISP calculation employed 6 cores on a Linux 64-bit machine with an Intel i7-

5930K processor. 

Suboptimal paths with NetworkView. Separate from the NetworkView plugin to VMD is the 

subopt executable, written entirely in the C programming language. A natural benefit of this code 

is that it is compiled for the specific machine architecture and, thus, tends to outperform programs 

written in interpretive languages (e.g. Python or R). As input for subopt, we only provided the pre-

computed adjacency matrices. Additionally, subopt requires an offset value to be added to the 

optimal path length. This value is set by the user. Large offsets tend to increase the search space, 

while small offsets can severely limit the search space. To be consistent with both WISP and our 

method, we subtracted the optimal path length from the largest path length found with our method 

to determine the offset for subopt.  Since subopt does not have a parameter for the number of 

desired paths, fine-tuning the offset was the only way to control the number of computed 
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suboptimal paths. Unlike WISP, subopt has not been parallelized to utilize multiple cores. Thus, 

each calculation only used 1 core on a Linux 64-bit machine with an Intel i7-5930K processor.

Suboptimal paths with CNAPATH in Bio3D. This protocol implements the original Yen’s 

algorithm36 for finding k-shortest paths. First, a dynamical network is built using the ‘cna()’ function 

from Bio3D. Then, the ‘cnapath()’ function of Bio3D is called to search for (sub)optimal paths. The 

function is parallelized and was tested using 16 or 2 (for the PIC system) CPU cores (Intel Xeon 

E5-2665) on a Linux 64-bit machine. A more detailed description of the protocol along with 

examples of application is available32. 

Suboptimal paths with the Subsets of Adjacent Nodes (SOAN) method. As input for our 

method, we only provided the pre-computed adjacency matrices. Since our code will determine 

when and if it needs to expand beyond the neighbors directly adjacent to the optimal path, we left 

the neighbor level at the default value of 1. Like subopt, our code is not parallelized for multiple 

cores, thus, each calculation was performed using 1 core on a Linux 64-bit machine with an Intel 

i7-5930K processor.   

Results and Discussion

We first tested the computational efficiency of each suboptimal path method using four distinct 

biological systems of increasing size: (i) acid-β-glucosidase (GlcCerase), a 497 amino acid 

lysosomal hydrolase41, (ii) DNA polymerase III (Pol III), a 2033 residue replicative enzyme in E. 

Coli bacteria42, (iii) human transcription factor IIH (TFIIH), a complex comprised of 10 protein 

subunits and 3995 amino acids involved in both transcription and nucleotide excision repair43, and 

(iv) human pre-initiation complex (PIC), a massive 22-subunit and 9900 amino acid complex 

involved in transcription initiation44. All systems have been previously characterized using graph 

theory methods21,37,38 and, therefore, serve as excellent test cases for comparison of methods for 

suboptimal path determination. For each system and method tested, we determined the runtime 

needed to compute 1000 shortest paths (Table 2 and Fig. 2). In the case of Pol III, TFIIH and 

PIC, WISP did not finish in a practical amount of time (see note in Table 2) and was, therefore, 

excluded from direct efficiency comparison with the other methods. Overall, our results 

demonstrate that SOAN is remarkably fast compared to the other approaches. The only exception 

is the runtime of NetworkView for the smallest of our test systems, GlcCerase. However, even for 

GlcCerase, both NetworkView and SOAN performed within a negligible difference of ~ 0.5 

seconds. More importantly, as the number of edges in the simulated system increases, SOAN 

demonstrates the best scalability. In contrast, the runtime of CNAPATH and NetworkView 
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increases faster with the increase of the total number of edges (Fig. 2). NetworkView performs 

well on small to medium size systems but its advantages disappear for protein networks the size 

of PIC with ~ 35,000 edges. Moreover, SOAN still outperforms NetworkView for Pol III (7,405 

edges), TFIIH (12,896 edges) and PIC (32,851 edges), with speedups of ~ 3x or greater. Thus, 

for larger systems SOAN appears to be an optimal choice.   

Next, we determined the node degeneracy for each residue in each set of computed paths. Node 

degeneracy offers a quantitative approach to identify key residues in the protein topology that 

may be critical for allosteric signaling and communication. Here we compare per-residue node 

degeneracies computed with SOAN to ones obtained with other network analysis approaches. 

Suboptimal paths computed from SOAN were mapped to the individual structures, in addition to 

node degeneracies computed from paths determined with each method (Fig. 3 and 4). For 

GlcCerase, SOAN was found to be consistent with the results of WISP, NetworkView and 

CNAPATH. Minor deviations were observed for the individual node degeneracies, the largest of 

which was 0.034 for residue F417 of GlcCerase. Similarly, for Pol III, SOAN is consistent with 

CNAPATH and NetworkView with the largest deviation coming from residue L494 (0.069). For 

larger systems (TFIIH and PIC), the SOAN results are in excellent agreement with CNAPATH. 

We observed very minor deviations in node degeneracies for TFIIH, with the largest being 0.003 

for residue N299. For PIC, the node distributions determined from SOAN and CNAPATH match 

exactly. Surprisingly, for the TFIIH and the PIC systems, node degeneracies computed with 

NetworkView deviate substantially from the ones computed with SOAN or CNAPATH. Notably, 8 

out of the 22 node degeneracies computed for TFIIH have a difference of 0.12 or higher. For PIC, 

NetworkView’s consistency with SOAN and CNAPATH is considerably worse. Nearly 40% of the 

node degeneracies calculated with NetworkView have a deviation of 0.10 or higher. Strikingly, 

53% of these nodes are not predicted at all with NetworkView. A possible explanation is that 

NetworkView is based on Floyd’s algorithm45, while the SOAN and CNAPATH codes are all based 

on some variant of Yen’s algorithm. In addition to algorithmic differences, NetworkView ignores 

the decimal when summing the edge weights (i.e. 0.94 becomes 94). Combined with manually 

setting an offset, this could potentially lead to accumulation of errors and substantial deviations in 

the suboptimal path distribution for larger systems. Thus, as the search space grows, the 

NetworkView algorithm could become more numerically unstable. Indeed, in the calculated top 

1000 suboptimal paths, both SOAN and CNAPATH give the same range of path length for all the 

test systems (e.g., 1.507‒1.512 for PIC), which is shorter than NetworkVIew (1.528‒1.544). This 

indicates that SOAN and CNAPATH are more accurate because suboptimal paths are defined by 

a set of unique loopless shortest paths. However, we note that without access to the source code 
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of subopt (the program for searching suboptimal paths in the NetworkView package), it is 

impossible for us to pinpoint the exact source of this numerical behavior of NetworkView for large 

biological systems. In any case, SOAN appears to be extremely accurate when compared with 

its algorithmically related predecessor CNAPATH for all system sizes. 

Minor deviations in node degeneracies are easily attributable to the reduced search space from 

taking a subset of the original network graph. To evaluate how the reduction of search space 

affects the SOAN protocol, we tested the algorithm at different expansion levels (up to 10 levels), 

assessing both the accuracy and runtime at each level in relation to the full graph (Fig. 5 and 
Table 3). For each level, the first 1000 shortest paths were computed.  The accuracy of each level 

was determined using the root mean square error (RMSE), a global metric which measures the 

standard deviation of the differences in the node degeneracies between any given expansion 

level and the full graph. In general, the SOAN protocol demonstrates a linear increase in runtime 

(except for GlcCerase, in which the increase of runtime substantially slows down after level 3), 

accompanied by only minor increases in the overall accuracy. Runtimes between levels 1 and 2 

appear to show the most increase with a factor of ~ 3 in every case. Importantly, the RMSE 

converges to full graph result within the first two levels. The only exception to this is GlcCerase 

which converges at level 3. Thus, as system size increases, less expansion around the optimal 

path is required to achieve accuracy comparable to the evaluation on the full graph. It is important 

to note that the global error of the first level is relatively small for every test case. Expanding to 

the second level results in marginal improvements in accuracy. Considering the larger systems 

(TFIIH and PIC), the loss in accuracy at the first level is negligible, and in the case of the PIC, 

nonexistent. Thus, larger systems benefit from the speedup of level 1, while suffering minimal 

losses in accuracy. 

Another free parameter of the SOAN method is the number of suboptimal paths, k. To evaluate 

how node degeneracy varies over k, we scanned a range of k from 1 up to 5000 (Fig. 6). From 

the result, we verified that computing 1000 suboptimal paths is sufficient to obtain converged node 

degeneracies and determine the critical nodes along allosteric communication pathways. The 

maximal degeneracy difference between k=1000 and k=5000 is 0.07‒0.11 depending on the 

system. In general, smaller systems converge slightly faster than larger systems (Fig. 6 A and 
6B versus Fig. 6C and 6D).

Conclusions
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Here, we present SOAN, a method for rapidly computing suboptimal paths between defined sites 

in dynamic networks of proteins and macromolecular assemblies. A unique feature of SOAN is 

that it searches a reduced representation of the protein network graph, one that is derived from 

neighbors of the optimal path. This feature drastically reduces the calculation runtime. Another 

powerful feature of the SOAN approach is the freedom to choose the level of graph reduction, 

allowing users to fine-tune the accuracy of the method. Thus, users can strike a balance between 

speed and accuracy. 

By benchmarking on four distinct biological systems we have demonstrated the utility and 

versatility of SOAN. Large systems benefit substantially from the SOAN approach. More 

importantly, SOAN outperforms other popular software packages. The SOAN method has been 

implemented in Python and made available on GitHub (https://github.com/tdodd3/SOAN).
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Figure Legends

Figure 1. Schematic representation of the SOAN protocol

Figure 2. Runtimes of SOAN, CNAPATH and NetworkView as a function of total network 
edges. Runtimes to compute 1000 shortest paths for each network (in seconds) are plotted on a 

logarithmic scale versus the number of edges. The inset denotes the method used.
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Figure 3. Suboptimal paths and node degeneracies generated with the SOAN method. The 

first 1000 suboptimal paths (red tubes) were generated using SOAN and mapped to the structure 

of (A) GlcCerase, (B) Pol III and (C) TFIIH. Source and target nodes are denoted by black spheres 

and labeled. Critical nodes are highlighted by green spheres. Node degeneracies of highlighted 

critical nodes for (D) GlcCerase, (E) Pol III and (D) TFIIH. Inset denotes method used to calculate 

node degeneracies.

Figure 4. Suboptimal paths generated from SOAN for the PIC. The first 1000 suboptimal paths 

(red tubes) mapped to the structure of the PIC. Critical nodes are highlighted by domain(s), 

colored and labeled in the inset. Node degeneracies are outlined by a colored box denoted by 

domain inset. The bar graph inset denotes method used to computed node degeneracies.

Figure 5. Comparison of different expansion levels for the SOAN method. Runtimes to find 

the first 1000 shortest paths at expansion levels 1-10 for (A) GlcCerase, (B) Pol III, (C) TFIIH and 

(D) PIC. The time to reach solution using the full graph is denoted by the dashed red line. RMSE 

of node degeneracies between levels 1-10 and full graph for (E) GlcCerase, (F) Pol III, (G) TFIIH 

and (H) PIC. 

Figure 6. Convergence of node degeneracy over the number of suboptimal paths for 
SOAN. Computed node degeneracies using varying number of suboptimal paths (k) up to 5000 

are displayed for select residues (as colored lines) in (A) GlcCerase, (B) Pol III, (C) TFIIH and (D) 

PIC. Residues are chosen if they show significant (>0.25) node degeneracy at any evaluated k 

value (1‒5000). 
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Table 1 – Sources and targets used for suboptimal paths calculations 

System Source Target

GlcCerase Asn19 Glu235

PolIII Asp403 Asp17

TFIIH Val185 Cys507

PIC Asp497 Cys291
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Table 2 – Timings (in seconds) to find 1000 paths in all systems using SOAN, WISP, 
NetworkView, and CNAPATH.

System Size (#nodes, #edges) SOAN WISP NetworkView CNAPATH

GlcCerase 497, 1279 3.67 1487.43 2.88 378.78

PolIII 2033, 7405 18.4 N/A1 59.18 985.71

TFIIH 3995, 12896 65.8 N/A1 130.47 7671.68

PIC 9900, 32851 277.1 N/A1 1200.02 29855.11

1 – Calculation did not finish within 20 days
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Table 3 – Timings (in seconds) at increasing expansion levels

Glucosidase Pol III TFIIH PIC

Level Time (s) % of 
Graph

Time (s) % of 
Graph

Time (s) % of 
Graph

Time (s) % of 
Graph

1 3.7 15 18.4 4 65.8 3 277.1 4

2 14.2 47 62.1 17 219.7 12 1259.0 14

3 17.9 68 94.4 27 291.7 15 1751.0 19

4 18.8 73 118.4 35 356.9 18 2259.4 24

5 19.0 79 148.7 44 393.8 20 3055.1 29

6 19.2 83 181.9 52 403.4 22 4982.3 34

7 19.4 85 206.5 57 435.4 24 5908.1 39

8 19.5 86 221.3 60 493.1 26 6005.2 44

9 19.6 88 225.5 63 526.3 27 6871.6 47

10 20.0 90 231.9 66 590.6 29 7776.8 52

Full Graph 20.8 100 285.4 100 921.2 100 13521.6 100

Values in bold indicate where node degeneracy converges with full graph
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