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Allosteric regulation is a key functional feature of many proteins and protein complexes, involving
communication between distal protein regions. The process is initiated by ligand binding or other structural
or dynamic perturbation, which occurs at one site and is subsequently propagated through the protein to
influence the activities at a distal site. We present a new method for rapidly computing suboptimal paths
between defined sites in protein dynamic networks. The method allows identification of allosteric residue
paths in large proteins and macromolecular assemblies. Knowledge of allosteric communication
10 mechanisms has impact on the fields of rational drug discovery and protein design.
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Abstract

Suboptimal path analysis in a protein structural or dynamical network becomes increasingly
popular for identifying critical residues involved in allosteric communication and regulation.
Several software packages have been developed for calculating suboptimal paths, including
NetworkView, WISP, and CNAPATH (Bio3D). Although these packages work well for biological
systems of moderate sizes, they either dramatically slow down or are subjected to accuracy
issues when applied to large systems such as supramolecular complexes. In this work, we
develop a new method called SOAN, which implements a modified version of Yen'’s algorithm for
finding loopless k-shortest paths. Instead of searching the entire protein network, SOAN builds
up a subgraph for path calculations based on an initial evaluation of the optimal path and its
neighboring nodes. We test our method on four systems of increasing size and compare to the
NetworkView, WISP, and CNAPATH methods. The result shows that SOAN is approximately five
times faster than NetworkView and orders of magnitude faster than CNAPATH and WISP. In
terms of accuracy, SOAN is comparable to CNAPATH and WISP and superior to NetworkView.
We also discuss the influence of SOAN input parameters on performance and suggest optimal

values.

Introduction

Allosteric regulation is a key functional feature of many proteins and protein complexes, involving
communication between distal protein regions. The process is initiated by ligand binding or some
other structural or dynamic perturbation, which occurs at one site and is subsequently propagated
through the protein to influence the activities at a distal site. Knowledge of allosteric
communication mechanisms has impact on the fields of rational drug discovery' and protein
design?. While classical models of allosteric regulation have suggested that a binding event
induces substantial conformational changes in the distal site34, other studies have observed
allostery in the absence of large-scale conformational change®%. This suggests that subtle
differences in dynamics can alter the population distribution of the conformational ensemble

without drastically altering the average conformation of the biomolecule.

In recent years, numerous computational methods have been developed to elucidate this subtle
form of allosteric communication. Many of these methods represent the protein topology as a
graph and use network algorithms to provide a link between the connectivity of protein residues

and their functional significance in the regulatory allosteric response. In the graph, nodes (or
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vertices) represent the protein residues. Edges between the nodes are weighted according to
geometric’-1"14-16 or energetic criteria’?'3. An underlying assumption is that allosteric coupling can
be described as the propagation of information facilitated by the network of interacting residues.
One such method, dynamic network analysis'?, incorporates dynamic information from molecular
dynamics (MD) simulations and has found exceptionally wide applicability to many biological
systems'"17-21 Specifically, residue-residue cross-correlations are computed from the MD
trajectories and mapped onto the edges of the network. Using edge weights based on dynamic
correlation has advantages compared to static contact networks, accounting for dynamic
conformational rearrangements occurring during MD. Once constructed, these dynamic networks
encapsulate a wealth of information on the hierarchical organization and communication
pathways of a biomolecule in a particular functional state. Conveniently, these important network
features can be readily computed using methods derived from graph theory???*. One such feature
is suboptimal paths (or shortest paths) between a source and target residue (e.g. residues located
on two distinct sites in a protein). Dynamic network models have traditionally focused on the
shortest path (or optimal path), presumed to be the most significant contributor to protein allostery.
However, suboptimal paths, slightly longer than the optimal, have also been shown to have
outsized influence on allosteric responses. Determining these paths and their statistical
distribution through the nodes of the protein network could help identify key functional residues

involved in allosteric regulation.

Recent advances in computer architecture have made the simulation of large macromolecular
complexes computationally feasible. However, conventional suboptimal paths analysis may be ill-
suited to handle networks derived from large systems since the runtime is expected to increase
significantly with the increased number of edges. In this work, we propose a neighbors-based
approach for rapidly computing suboptimal paths between two protein residues in a dynamic
network. Our protocol is written in the Python programming language and takes advantage of
well-established Python packages, including NumPy and NetworkX2%-2°, To establish the utility
and computational efficiency of our approach, we provide benchmark calculation on four biological
systems of increasing size: (i) acid-p-glucosidase (GlcCerase) comprised of ~ 500 residues, (ii)
the E.coli replication machinery DNA polymerase Il (Pol IIl) comprised of ~ 2000 residues, (iii)
the human transcription factor IIH (TFIIH) comprised of ~ 4000 residues and (iv) the human pre-
initiation complex (PIC) comprised of ~ 10000 residues. Additionally, we compare the
computational efficiency and accuracy of our approach with widely used network analysis
methods: CNAPATH in the Bio3D R package3®-%, the Weighted Implementation of Suboptimal
Paths (WISP)33, and NetworkView?*.
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Methods

Building the network. Prior to computing suboptimal paths using the neighbors-based approach
the adjacency matrix C must be constructed. Embedded within the adjacency matrix is the
connectivity of graph G=(V,E), where G is an undirected graph containing vertices (or nodes) V
and edges E. Note that C is a n x n symmetric matrix whose rank equals the total number of

vertices in the graph (n). For weighted graphs, the value of the matrix element Cj is,

WE,» lf El] EG
Cy= {O, ’ etser (1)

where wg; is the weight of the edge connecting nodes i and j. Our protocol has been designed to
work with adjacency matrices that have been derived in a manner consistent with dynamic
network analysis''. As discussed previously, the dynamical network model represents each Ca
atom in the protein as a node, although other choices are possible. Edges between nodes are
then determined and weighted based on the interdependence among protein residues. In the
case of MD, an edge is drawn between two nodes if the minimal (non-hydrogen) atomic distance
between the two corresponding residues is < 4.5 A for more than 75% of the MD trajectory.
Additionally, residues adjacent to the node under consideration and directly connected through
chemical bonds are ignored (i.e. residues (i £ 1)), as these are expected to be within the distance
cutoff and highly correlated. In some network models, this definition of adjacency is further
extended to include second or third neighbors in the amino acid sequence (e.g. i+ 2 or i £+ 3).
The weight of an edge is determined by the cross-correlation, c;, between the two corresponding

residues,

<(ri - <r[)) ' (l'j - <rj>)>

_ (2
5= (et (e, — ey 2)

Here, <-> is the ensemble average (estimated from MD simulations) and r; (r; ) is the positional
vector of node i (j). Prior to the calculation, all simulation frames are structurally superimposed
onto a reference structure (e.g., the first frame) based on the backbone or Ca atoms. There are
numerous software packages available that can compute these values directly from MD
trajectories, including Carma3+4, CPPTRAJ®®, WISP33, and Bio3D3%-%2, to name a few. In order to
examine the shortest paths in protein networks, the elements of the cross-correlation matrix C

are transformed to distances using,

wi=d;= —log (lc;]). (3)
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Note that dj in equation 3 is not a physical distance (e.g. Cartesian-based) but rather a distance
metric in correlation space. Moreover, taking the negative logarithm of the cross-correlation
ensures that strongly correlated and anticorrelated residues will correspond to shorter distances
dj.

Employing neighbors to identify an initial set of suboptimal paths. Upon construction of the
C matrix, the first step in our protocol is to find the single, most direct route (the optimal path) in
the network between a source (s) and target (t) node. This is readily accomplished using Dijkstra’s
algorithm. However, we are interested in paths connecting s and t that are slightly longer than the
optimal path. This general definition of suboptimal paths, based on length, allows us to make an
important assumption: if the suboptimal paths are only slightly longer than the optimal path, then
it follows that at some point these paths will diverge from the optimal path via a node that is directly
adjacent to the optimal pathway. In other words, the neighbors of the optimal path will be the most
likely candidates for suboptimal pathway composition. To clarify, a node j is considered a neighbor
of node i if there is an edge E; between them. Thus, the terms neighbor and adjacent are used

interchangeably.

For each node comprising the optimal path we identify all nodes that are directly adjacent. The
shortest paths are then computed, again using Dijkstra’s algorithm, from s — n;and n; - t, where
n; is the neighbor. These paths are then stitched together at the n; junction. Any path that folds
back on itself (i.e. s,...,n.4,n;,n.4,...,t) is discarded as these do not constitute a direct route to the
target. By default, our code expands away from the optimal path by 1 neighbor. However, this is
a free parameter that permits any level of expansion up to including the entire graph. Thus, one
can, in principle, include the neighbors of the optimal path neighbors and so on. This would,

however, increase the run time of the code.

Improving path statistics using a subgraph derived from the initial set of suboptimal paths.
The previous step represents a first pass through the graph since the paths produced are highly
unique. This is a consequence of Dijkstra’s algorithm, which will only identify multiple paths
between two nodes if the path lengths are equal. Unfortunately, a set of unique paths will provide
very poor path statistics, making the computation of statistical quantities like node degeneracies
impractical. Node degeneracy is particularly important, as it aids in the identification of critical
node residues in the allosteric network. A natural remedy, then, is to utilize the node composition
of the paths found in the previous step to limit the search space and apply more robust path
exploration techniques to improve the statistics. Hence, we can use the initial set of shortest paths

and the nodes that comprise them to build a subgraph S of the original graph G. Let P={py,...,pn}
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be the set of shortest paths between s and ¢ found previously. For each p; in P there is a set of
nodes that is unique to p; but collectively belong to the graph G. These nodes form the basis of
the subgraph S and retain the connectivity to each other defined by G. In short, the subgraph S
is simply a subset of the original graph G, bound by the nodes that make up the initial set of
shortest path P,

S=W,E)viE € pandc- (4)

The benefits of this approach are two-fold: (i) the complexity of the search space is significantly
reduced, thus decreasing the overall run time and (ii) a search space bound by an initial set of

shortest paths virtually guarantees that every new path found is, by definition, suboptimal.

From the subgraph S we can now find the shortest paths between s and t by employing the k-
shortest paths algorithm proposed by Yen36. This algorithm computes the single-source k-shortest
loopless paths for a graph with non-negative weights. Upon finding the shortest path, the k-
shortest paths algorithm then proceeds to find the next shortest path and so forth, up to k, which
is a free parameter (optimal values selection for free parameters is covered under Discussion).
Since we already have an initial set of suboptimal paths found in the previous steps, our code
discards any paths identified with k-shortest paths that overlap with this set, thus avoiding
redundancy. If it is not possible to find k-shortest paths within the subgraph, our code will then
expand to the next level of neighbors, rebuild the subgraph and continue Yen'’s algorithm until k

is reached.

An overview of the method can be seen in Figure 1. In general, our methodology proceeds through

the following steps:

Compute the optimal path between s and ¢ using Dijkstra’s algorithm.

Identify all nodes adjacent to the optimal path computed in step 1.

Compute all shortest paths between s — n; and n; — t using Dijkstra’s algorithm.
Combine paths from step 3 at the n; junction.

Identify all unique nodes from the initial set of shortest paths computed in steps 3 and 4.

o gk~ w b~

Build a subgraph S of the original graph G using the nodes identified in step 5 and the

interconnectivity defined by G.

7. Find k shortest paths between s and ¢ in the subgraph S using the k-shortest paths
algorithm by Yen.

8. If the number of specified paths (k) is found within the subgraph, output the results; else,

return to step 2 and expand to the next level of neighbors.
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Molecular dynamics simulations. Modeling, system setup and system equilibration have been
described previously for GlcCerase®, Pol 11138, TFIIH2' and PIC?'. In this work, production MD runs
totaling 2.1 ps (GlcCerase), 200 ns (Pollll) and 300 ns (TFIIH and PIC) in the isothermal-isobaric
ensemble were obtained using the Amber18 or Amber16 (GlcCerase) CUDA code3%40, In the
simulations, temperature and pressure were set to 300 K and 1 atm, respectively. For analysis,
snapshots from the MD trajectories were collected at 1-ps intervals for the GlcCerase system, 5-

ps intervals for the Pol Ill system and 20-ps intervals for the TFIIH and PIC systems.

Adjacency matrix construction. For each system, nodes were positioned at all Ca atoms of
protein residues and P atoms of DNA (if applicable). Edges were then drawn between nodes if
the physical distance between them was less than 4.5 A for more than 75% of the trajectory
frames. Additionally, we ignored residues directly attached via atomic bonds (i.e. i+71 and i-7). The
cross-correlations between residues were then computed with CPPTRAJ3® and used to weight
the edges of in-contact nodes in the manner described above. Sources and targets for all

suboptimal path calculations are included in Table 1.

Weighted implementation of suboptimal paths (WISP) protocol. As input for WISP, we
provided the adjacency matrix and the contact map of each simulated system. One of the benefits
of WISP is that it will compute both of these objects directly from the MD trajectories. However,
for consistency and to ensure that the runtime only reflects the suboptimal paths calculation, we
supplied pre-computed adjacency matrices and contact maps to initiate WISP. Another benefit of
WISP is the parallelization, which enables the code to utilize multiple cores on a CPU. Thus, for
each system, the WISP calculation employed 6 cores on a Linux 64-bit machine with an Intel i7-

5930K processor.

Suboptimal paths with NetworkView. Separate from the NetworkView plugin to VMD is the
subopt executable, written entirely in the C programming language. A natural benefit of this code
is that it is compiled for the specific machine architecture and, thus, tends to outperform programs
written in interpretive languages (e.g. Python or R). As input for subopt, we only provided the pre-
computed adjacency matrices. Additionally, subopt requires an offset value to be added to the
optimal path length. This value is set by the user. Large offsets tend to increase the search space,
while small offsets can severely limit the search space. To be consistent with both WISP and our
method, we subtracted the optimal path length from the largest path length found with our method
to determine the offset for subopt. Since subopt does not have a parameter for the number of

desired paths, fine-tuning the offset was the only way to control the number of computed
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suboptimal paths. Unlike WISP, subopt has not been parallelized to utilize multiple cores. Thus,

each calculation only used 1 core on a Linux 64-bit machine with an Intel i7-5930K processor.

Suboptimal paths with CNAPATH in Bio3D. This protocol implements the original Yen’s
algorithm?3® for finding k-shortest paths. First, a dynamical network is built using the ‘cna()’ function
from Bio3D. Then, the ‘cnapath() function of Bio3D is called to search for (sub)optimal paths. The
function is parallelized and was tested using 16 or 2 (for the PIC system) CPU cores (Intel Xeon
E5-2665) on a Linux 64-bit machine. A more detailed description of the protocol along with

examples of application is available32.

Suboptimal paths with the Subsets of Adjacent Nodes (SOAN) method. As input for our
method, we only provided the pre-computed adjacency matrices. Since our code will determine
when and if it needs to expand beyond the neighbors directly adjacent to the optimal path, we left
the neighbor level at the default value of 1. Like subopt, our code is not parallelized for multiple
cores, thus, each calculation was performed using 1 core on a Linux 64-bit machine with an Intel

i7-5930K processor.
Results and Discussion

We first tested the computational efficiency of each suboptimal path method using four distinct
biological systems of increasing size: (i) acid-B-glucosidase (GlcCerase), a 497 amino acid
lysosomal hydrolase*’, (ii) DNA polymerase Il (Pol lll), a 2033 residue replicative enzyme in E.
Coli bacteria*?, (iii) human transcription factor IIH (TFIIH), a complex comprised of 10 protein
subunits and 3995 amino acids involved in both transcription and nucleotide excision repair*?, and
(iv) human pre-initiation complex (PIC), a massive 22-subunit and 9900 amino acid complex
involved in transcription initiation#4. All systems have been previously characterized using graph
theory methods?'37:38 and, therefore, serve as excellent test cases for comparison of methods for
suboptimal path determination. For each system and method tested, we determined the runtime
needed to compute 1000 shortest paths (Table 2 and Fig. 2). In the case of Pol Ill, TFIIH and
PIC, WISP did not finish in a practical amount of time (see note in Table 2) and was, therefore,
excluded from direct efficiency comparison with the other methods. Overall, our results
demonstrate that SOAN is remarkably fast compared to the other approaches. The only exception
is the runtime of NetworkView for the smallest of our test systems, GlcCerase. However, even for
GlcCerase, both NetworkView and SOAN performed within a negligible difference of ~ 0.5
seconds. More importantly, as the number of edges in the simulated system increases, SOAN

demonstrates the best scalability. In contrast, the runtime of CNAPATH and NetworkView
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increases faster with the increase of the total number of edges (Fig. 2). NetworkView performs
well on small to medium size systems but its advantages disappear for protein networks the size
of PIC with ~ 35,000 edges. Moreover, SOAN still outperforms NetworkView for Pol Il (7,405
edges), TFIIH (12,896 edges) and PIC (32,851 edges), with speedups of ~ 3x or greater. Thus,

for larger systems SOAN appears to be an optimal choice.

Next, we determined the node degeneracy for each residue in each set of computed paths. Node
degeneracy offers a quantitative approach to identify key residues in the protein topology that
may be critical for allosteric signaling and communication. Here we compare per-residue node
degeneracies computed with SOAN to ones obtained with other network analysis approaches.
Suboptimal paths computed from SOAN were mapped to the individual structures, in addition to
node degeneracies computed from paths determined with each method (Fig. 3 and 4). For
GlcCerase, SOAN was found to be consistent with the results of WISP, NetworkView and
CNAPATH. Minor deviations were observed for the individual node degeneracies, the largest of
which was 0.034 for residue F417 of GlcCerase. Similarly, for Pol Ill, SOAN is consistent with
CNAPATH and NetworkView with the largest deviation coming from residue L494 (0.069). For
larger systems (TFIIH and PIC), the SOAN results are in excellent agreement with CNAPATH.
We observed very minor deviations in node degeneracies for TFIIH, with the largest being 0.003
for residue N299. For PIC, the node distributions determined from SOAN and CNAPATH match
exactly. Surprisingly, for the TFIIH and the PIC systems, node degeneracies computed with
NetworkView deviate substantially from the ones computed with SOAN or CNAPATH. Notably, 8
out of the 22 node degeneracies computed for TFIIH have a difference of 0.12 or higher. For PIC,
NetworkView’s consistency with SOAN and CNAPATH is considerably worse. Nearly 40% of the
node degeneracies calculated with NetworkView have a deviation of 0.10 or higher. Strikingly,
53% of these nodes are not predicted at all with NetworkView. A possible explanation is that
NetworkView is based on Floyd’s algorithm*5, while the SOAN and CNAPATH codes are all based
on some variant of Yen'’s algorithm. In addition to algorithmic differences, NetworkView ignores
the decimal when summing the edge weights (i.e. 0.94 becomes 94). Combined with manually
setting an offset, this could potentially lead to accumulation of errors and substantial deviations in
the suboptimal path distribution for larger systems. Thus, as the search space grows, the
NetworkView algorithm could become more numerically unstable. Indeed, in the calculated top
1000 suboptimal paths, both SOAN and CNAPATH give the same range of path length for all the
test systems (e.g., 1.507-1.512 for PIC), which is shorter than NetworkVlew (1.528-1.544). This
indicates that SOAN and CNAPATH are more accurate because suboptimal paths are defined by

a set of unique loopless shortest paths. However, we note that without access to the source code
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of subopt (the program for searching suboptimal paths in the NetworkView package), it is
impossible for us to pinpoint the exact source of this numerical behavior of NetworkView for large
biological systems. In any case, SOAN appears to be extremely accurate when compared with

its algorithmically related predecessor CNAPATH for all system sizes.

Minor deviations in node degeneracies are easily attributable to the reduced search space from
taking a subset of the original network graph. To evaluate how the reduction of search space
affects the SOAN protocol, we tested the algorithm at different expansion levels (up to 10 levels),
assessing both the accuracy and runtime at each level in relation to the full graph (Fig. 5 and
Table 3). For each level, the first 1000 shortest paths were computed. The accuracy of each level
was determined using the root mean square error (RMSE), a global metric which measures the
standard deviation of the differences in the node degeneracies between any given expansion
level and the full graph. In general, the SOAN protocol demonstrates a linear increase in runtime
(except for GlcCerase, in which the increase of runtime substantially slows down after level 3),
accompanied by only minor increases in the overall accuracy. Runtimes between levels 1 and 2
appear to show the most increase with a factor of ~ 3 in every case. Importantly, the RMSE
converges to full graph result within the first two levels. The only exception to this is GlcCerase
which converges at level 3. Thus, as system size increases, less expansion around the optimal
path is required to achieve accuracy comparable to the evaluation on the full graph. It is important
to note that the global error of the first level is relatively small for every test case. Expanding to
the second level results in marginal improvements in accuracy. Considering the larger systems
(TFIIH and PIC), the loss in accuracy at the first level is negligible, and in the case of the PIC,
nonexistent. Thus, larger systems benefit from the speedup of level 1, while suffering minimal

losses in accuracy.

Another free parameter of the SOAN method is the number of suboptimal paths, k. To evaluate
how node degeneracy varies over k, we scanned a range of k from 1 up to 5000 (Fig. 6). From
the result, we verified that computing 1000 suboptimal paths is sufficient to obtain converged node
degeneracies and determine the critical nodes along allosteric communication pathways. The
maximal degeneracy difference between k=1000 and k=5000 is 0.07-0.11 depending on the
system. In general, smaller systems converge slightly faster than larger systems (Fig. 6 A and
6B versus Fig. 6C and 6D).

Conclusions
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Here, we present SOAN, a method for rapidly computing suboptimal paths between defined sites
in dynamic networks of proteins and macromolecular assemblies. A unique feature of SOAN is
that it searches a reduced representation of the protein network graph, one that is derived from
neighbors of the optimal path. This feature drastically reduces the calculation runtime. Another
powerful feature of the SOAN approach is the freedom to choose the level of graph reduction,
allowing users to fine-tune the accuracy of the method. Thus, users can strike a balance between

speed and accuracy.

By benchmarking on four distinct biological systems we have demonstrated the utility and
versatility of SOAN. Large systems benefit substantially from the SOAN approach. More
importantly, SOAN outperforms other popular software packages. The SOAN method has been
implemented in Python and made available on GitHub (https://github.com/tdodd3/SOAN).
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Figure Legends

Figure 1. Schematic representation of the SOAN protocol

Figure 2. Runtimes of SOAN, CNAPATH and NetworkView as a function of total network
edges. Runtimes to compute 1000 shortest paths for each network (in seconds) are plotted on a

logarithmic scale versus the number of edges. The inset denotes the method used.
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1

2

431 Figure 3. Suboptimal paths and node degeneracies generated with the SOAN method. The
5 first 1000 suboptimal paths (red tubes) were generated using SOAN and mapped to the structure
? of (A) GlcCerase, (B) Pol lll and (C) TFIIH. Source and target nodes are denoted by black spheres
8 and labeled. Critical nodes are highlighted by green spheres. Node degeneracies of highlighted
9 "

10 critical nodes for (D) GlcCerase, (E) Pol lll and (D) TFIIH. Inset denotes method used to calculate
n node degeneracies.

12

12 Figure 4. Suboptimal paths generated from SOAN for the PIC. The first 1000 suboptimal paths
15 (red tubes) mapped to the structure of the PIC. Critical nodes are highlighted by domain(s),
1

1? colored and labeled in the inset. Node degeneracies are outlined by a colored box denoted by
18 domain inset. The bar graph inset denotes method used to computed node degeneracies.

19

;? Figure 5. Comparison of different expansion levels for the SOAN method. Runtimes to find
22 the first 1000 shortest paths at expansion levels 1-10 for (A) GlcCerase, (B) Pol Ill, (C) TFIIH and
2 . , . . .

22 (D) PIC. The time to reach solution using the full graph is denoted by the dashed red line. RMSE
25 of node degeneracies between levels 1-10 and full graph for (E) GlcCerase, (F) Pol lll, (G) TFIIH
26

27 and (H) PIC.

28

29 Figure 6. Convergence of node degeneracy over the number of suboptimal paths for
2(1) SOAN. Computed node degeneracies using varying number of suboptimal paths (k) up to 5000
32 are displayed for select residues (as colored lines) in (A) GlcCerase, (B) Pol lll, (C) TFIIH and (D)
33

34 PIC. Residues are chosen if they show significant (>0.25) node degeneracy at any evaluated k
35 value (1-5000).

36
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Table 1 — Sources and targets used for suboptimal paths calculations

Molecular Physics

System Source Target
GlcCerase Asn19 Glu235
Pollll Asp403 Asp17
TFIH Val185 Cys507
PIC Asp497 Cys291
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Table 2 — Timings (in seconds) to find 1000 paths in all systems using SOAN, WISP,
NetworkView, and CNAPATH.

System Size (#nodes, #edges) SOAN WISP NetworkView CNAPATH

oNOYTULT D WN =

GlcCerase 497, 1279 3.67 1487.43 2.88 378.78
11 Pollll 2033, 7405 18.4 N/A! 59.18 985.71
13 TFIIH 3995, 12896 65.8 N/A' 130.47 7671.68

15 PIC 9900, 32851 2771 N/AT 1200.02 29855.11

1 — Calculation did not finish within 20 days
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Table 3 — Timings (in seconds) at increasing expansion levels
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Glucosidase Pol llI TFIIH PIC
Level Time(s) %of Time(s) %of Time(s) %of Time(s) % of
Graph Graph Graph Graph
1 3.7 15 18.4 4 65.8 3 2771 4

2 14.2 47 62.1 17 219.7 12 1259.0 14

3 17.9 68 94.4 27 291.7 15 1751.0 19

4 18.8 73 118.4 35 356.9 18 2259.4 24

5 19.0 79 148.7 44 393.8 20 3055.1 29

6 19.2 83 181.9 52 403.4 22 4982.3 34

7 19.4 85 206.5 57 435.4 24 5908.1 39

8 19.5 86 221.3 60 493.1 26 6005.2 44

9 19.6 88 225.5 63 526.3 27 6871.6 47

10 20.0 90 231.9 66 590.6 29 7776.8 52

Full Graph 20.8 100 285.4 100 921.2 100  13521.6 100

Values in bold indicate where node degeneracy converges with full graph
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