
Active Learning a Convex Body in Low

Dimensions

Sariel Har-Peled

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

sariel@illinois.edu

Mitchell Jones

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

mfjones2@illinois.edu

Saladi Rahul

Dept. of Computer Science and Automation, Indian Institute of Science, Bangalore, India

saladi@iisc.ac.in

Abstract

Consider a set P ⊆ R
d of n points, and a convex body C provided via a separation oracle. The task

at hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We

show that one can solve this problem in two and three dimensions using O(9P log n) queries, where

9P is the largest subset of points of P in convex position. In 2D, we provide an algorithm which

efficiently generates these adaptive queries.

Furthermore, we show that in two dimensions one can solve this problem using O(�(P, C) log2 n)

oracle queries, where �(P, C) is a lower bound on the minimum number of queries that any algorithm

for this specific instance requires. Finally, we consider other variations on the problem, such as using

the fewest number of queries to decide if C contains all points of P .

As an application of the above, we show that the discrete geometric median of a point set P

in R
2 can be computed in O(n log2 n (log n log log n + 9P )) expected time.
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1 Introduction

1.1 Background

Active learning

Active learning is a subfield of machine learning, in which at any time, the learning algorithm

is able to query an oracle for the label of a particular data point. One model for active

learning is the membership query synthesis model [2]. Here, the learner wants to minimize

the number of oracle queries, as such queries are expensive – they usually correspond to

either consulting with a specialist, or performing an expensive computation. In this setting,

the learning algorithm is allowed to query the oracle for the label of any data point in the

instance space. See [21] for a more in-depth survey on the various active learning models.
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We stress that the above argument does not necessarily imply these types of hypothesis

classes are unlearnable in practice. In general, there are other ways for learning algorithms

to handle hypothesis classes with high (or even infinite) VC-dimension (for example, using

regularization or assuming there is a large margin around the decision boundary).

Weak ε-nets

Because ε-nets for convex ranges do not exist, an interesting direction to overcome this

problem is to define weak ε-nets [13]. A set of points R in the plane, not necessarily a subset

of P , is a weak ε-net for P if for any convex body C containing at least εn points of P , it

also contains a point of R. Matoušek and Wagner [16] gave a weak ε-net construction of

size O(ε−d(log ε−1)O(d2 log d)), which is doubly exponential in the dimension. The state of

the art is the recent result of Rubin [20], that shows a weak ε-net construction in the plane

of size (roughly) O(1/ε3/2). However, these weak ε-nets cannot be used for learning such

concepts. Indeed, the analysis above required an ε-net for the symmetric difference of two

convex bodies of finite complexity, see Figure 1.1.

PAC learning with additional parameters

If one assumes the input instance obeys some additional structural properties, then random

sampling can be used. For example, suppose that the point set P has at most k points in

convex position. For an arbitrary convex body C, the convex hull CH(P ∩ C) has complexity

at most k. Let R ⊆ P be a random sample, and C ′ be the learned classifier for R. The

region of error is the symmetric difference between C and C ′. In particular, since k-vertex

polytopes in R
d have VC-dimension bounded by O(d2k log k) [15], this implies that the error

region also has VC-dimension at most O(d2k log k). Hence if R is a random sample of size

O(d2k log kε−1 log ε−1), the ε-net Theorem [13] implies that this sampling algorithm has

error at most εn. However, even for a set of n points chosen uniformly at random from the

unit square [0, 1]2, the expected number of points in convex position is O(n1/3) [1]. Since we

want |R| < n, this random sampling technique is only useful when ε is larger than log2 n/n2/3

(ignoring constants).

To summarize the above discussions, random sampling on its own does not seem powerful

enough to learn arbitrary convex bodies, even if one allows some error to be made. In this

paper we focus on developing algorithms for learning convex bodies in low dimensions, where

the algorithms are deterministic and do not make any errors.

1.2 Problem and motivation

The problem

In this paper, we consider a variation on the active learning problem, in the membership

query synthesis model. Suppose that the learner is trying to learn an unknown convex body

C in R
d. Specifically, the learner is provided with a set P of n unlabelled points in R

d, and

the task is to label each point as either inside or outside C, see Figure 1.2. For a query

q ∈ R
d, the oracle either reports that q ∈ C, or returns a hyperplane separating q and C

(as a proof that q 6∈ C). Note that if the query is outside the body, the oracle answer is

significantly more informative than just the label of the point. The problem is to minimize

the overall number of queries performed.

ICALP 2020



64:4 Active Learning a Convex Body in Low Dimensions

Hard and easy instances

Note that in the worst case, an algorithm may have to query the oracle for all input points

– such a scenario happens when the input points are in convex position, and any possible

subset of the points can be the points in the (appropriate) convex body. As such, the purpose

here is to develop algorithms that are instance sensitive – if the given instance is easy, they

work well. If the given instance is hard, they might deteriorate to the naive algorithm that

queries all points.

Natural inputs where one can hope to do better, are when relatively few points are in

convex position. Such inputs are grid points, or random point sets, among others. However,

there are natural instances of the problem that are easy, despite the input having many

points in convex position. For example, consider when the convex body is a triangle, with

the input point set being n/2 points spread uniformly on a tiny circle centered at the origin,

while the remaining n/2 points are outside the convex body, spread uniformly on a circle

of radius 10 centered at the origin. Clearly, such a point set can be fully classified using a

sequence of a constant number of oracle queries. See Figure 3.1 for some related examples.

1.3 Additional motivation & previous work

Separation oracles

The use of separation oracles is a common tool in optimization (e.g., solving exponentially

large linear programs) and operations research. It is natural to ask what other problems can

be solved efficiently when given access to this specific type of oracle. For example, Bárány

and Füredi [3] study the problem of computing the volume of a convex body in R
d given

access to a separation oracle.

Other types of oracles

Various models of computation utilizing oracles have been previously studied within the

community. Examples of other models include nearest-neighbor oracles (i.e., black-box access

to nearest neighbor queries over a point set P ) [11], proximity probes (which given a convex

polygon C and a query q, returns the distance from q to C) [18], and linear queries. Recently,

Ezra and Sharir [7] gave an improved algorithm for the problem of point location in an

arrangement of hyperplanes. Here, a linear query consists of a point x and a hyperplane h,

and outputs either that x lies on h, or else which side of h contains x. Alternatively, their

problem can be interpreted as querying whether or not a given point lies in a halfspace h+.

Here, we study the more general problem as the convex body can be the intersection of many

halfspaces.

Furthermore, other types of active learning models (in addition membership query model)

have also been studied within the learning community, see, for example, [2].
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Active learning

As discussed, the problem at hand can be interpreted as active learning a convex body in

relation to a set of points P that need to be classified (as either inside or outside the body),

where the queries are via a separation oracle. We are unaware of any work directly on

this problem in the theory community, while there is some work in the machine learning

community that studies related active learning classification problems [6, 9, 21, 14].

For example, Kane et al. [14] study the problem of actively learning halfspaces with access

to comparison queries. Given a halfspace h+ to learn, the model has two types of queries: (i)

label queries (given x ∈ R
d, is x ∈ h+?), and (ii) comparison queries (given x1, x2 ∈ R

d, is

x1 closer to the boundary of h+ than x2?). For example, they show that in the plane, one

can classify all points using O(log n) comparison/label queries in expectation.

1.4 Our results

Due to space constraints, not all of the results listed below are included in this version. We

refer the reader to the full version of the paper [12] for proofs of missing results.

(A) We develop a greedy algorithm, for points in the plane, which solves the problem using

O(9P log n) oracle queries, where 9P is the largest subset of points of P in convex

position. See Theorem 8. It is known that for a random set of n points in the unit

square, E[9P ] = Θ(n1/3) [1], which readily implies that classifying these points can be

solved using O(n1/3 log n) oracle queries. A similar bound holds for the
√

n×√n grid.

An animation of this algorithm is on YouTube [10]. We also show that this algorithm

can be implemented efficiently, using dynamic segment trees, see Lemma 9.

We remark that Kane et al. [14] develop a framework and randomized algorithm for

learning a concept C, where the expected number of queries depends near-linearly on a

parameter they define as the inference dimension [14, Definition III.1] of the concept

class. For our problem, one can show that the inference dimension is O(9P ). As a

corollary of their framework, one can obtain a randomized algorithm which solves our

problem where the expected number of queries is O(9P log9P log n). Our algorithm

shaves a logarithmic factor in the number of queries and is deterministic.

(B) The above algorithm naturally extends to three dimensions, also using O(9P log n)

oracle queries. While the proof idea is similar to that of the algorithm in 2D, we believe

the analysis in three dimensions is also technically interesting. See Theorem 10.

(C) For a given point set P and convex body C, we define the separation price �(P, C) of

an instance (P, C), and show that any algorithm classifying the points of P in relation

to C must make at least �(P, C) oracle queries (Lemma 11).

As an aside, we show in [12] that when P is a set of n points chosen uniformly at random

from the unit square and C is a (fixed) smooth convex body, E[�(P, C)] = O(n1/3), and

this bound is tight when C is a disk (our result also generalizes to higher dimensions).

For randomly chosen points, the separation price is related to the expected size of the

convex hull of P ∩ C, which is also known to be Θ(n1/3) [23]. We believe this result

may be of independent interest/

(D) In Section 3 we present an improved algorithm for the 2D case, and show that the

number of queries made is O(�(P, C) log2 n). This result is O(log2 n) approximation to

the optimal solution, see Theorem 12.

(E) We consider the extreme scenarios of the problem: Verifying that all points are either

inside or outside of C. For each problem we present a O(log n) approximation algorithm

to the optimal strategy. The results are presented in the full version of the paper [12].
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(F) Section 4 presents an application of the above results, we consider the problem of

minimizing a convex function f : R2 → R over a point set P . Specifically, the goal is to

compute arg minp∈P f(p). If f and its derivative can be efficiently evaluated at a given

query point, then f can be minimized over P using O(9P log2 n) queries to f (or its

derivative) in expectation. We refer the reader to Lemma 17.

Given a set of n points P in R
d, the discrete geometric median of P is a point p ∈ P

minimizing the function
∑

q∈P ‖p − q‖2. As a corollary of Lemma 17, we obtain an

algorithm for computing the discrete geometric median for n points in the plane. The

algorithm runs in O(n log2 n · (log n log log n + 9P )) expected time. See Lemma 18. In

particular, if P is a set of n points chosen uniformly at random from the unit square, it

is known E[9P ] = Θ(n1/3) [1] and hence the discrete geometric median can be computed

in O(n4/3 log2 n) expected time.

While there has been ample work on approximating the geometric median (recently,

Cohen et al. [5] gave a (1 + ε)-approximation algorithm to the geometric median in

O(dn log3(1/ε)) time), we are unaware of any exact sub-quadratic algorithm for the

discrete case even in the plane.

◮ Remark. Throughout this paper, the model of computation we have assumed is unit-cost

real RAM.

2 The greedy algorithm in two and three dimensions

2.1 Preliminaries

For a set of points P ⊆ R
2, let CH(P ) denote the convex hull of P . Given a convex

body C ⊆ R
d, two points p, x ∈ R

d \ int(C) are mutually visible, if the segment px

does not intersect int(C), where int(C) is the interior of C. We also use the notation

P ∩ C = {p ∈ P | p ∈ C}.
For a point set P ⊆ R

d, a centerpoint of P is a point c ∈ R
d, such that for any closed

halfspace h+ containing c, we have |h+ ∩ P | ≥ |P | /(d + 1). A centerpoint always exists, and

it can be computed exactly in O(nd−1 + n log n) time [4].

Let C be a convex body in R
d and q ∈ R

d be a point such that q lies outside C. A

hyperplane h separates q from C if q lies in the closed halfspace h+ bounded by h, and C

is contained in the open halfspace h− bounded by h. This definition allows the separating

hyperplane to contain the point q, and will simplify the descriptions of the algorithms.

2.2 The greedy algorithm in 2D

2.2.1 Operations

Initially, the algorithm copies P into a set U of unclassified points. The algorithm is going

to maintain an inner approximation B ⊆ C. There are two types of updates (Figure 2.1

illustrates the two operations):

(A) expand(p): Given a point p ∈ C \B, the algorithm is going to:

(i) Update the inner approximation: B ← CH(B ∪ {p}).
(ii) Remove (and mark) newly covered points: U ← U \B.

(B) remove(l): Given a closed halfplane l+ such that int(C)∩ l+ = ∅, the algorithm marks

all the points of Ul = U ∩ int(l+) as being outside C, and sets U ← U \ Ul.
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If an expand operation was performed, the centerpoint c of U+ is added to the current

inner approximation Bi. Let r be a point in l∩ Bi, and let ci be the center point of Ui

computed by the algorithm. By Lemma 5 applied to r, c and U+, we have that at least

ω2/36 pairs of points of U+ are no longer mutually visible to each other in relation to Bi+1.

We conclude, that at least ω2/36 edges of Gi are no longer present in Gi+1. ◭

◮ Definition 7. A subset of points X ⊆ P ⊆ R
2 are in convex position, if all the points

of X are vertices of CH(X) (note that a point in the middle of an edge is not considered to

be a vertex). The index of P , denoted by 9P , is the cardinality of the largest subset of P of

points which are in convex position.

◮ Theorem 8. Let C be a convex body provided via a separation oracle, and let P be a set of

n points in the plane. The greedy classification algorithm performs O
(

(9P + 1) log n
)

oracle

queries. The algorithm correctly identifies all points in P ∩ C and P \ C.

Proof. By Lemma 1, the number of iterations (and also queries) in which the inner ap-

proximation is empty is O(log n), and let z = O(log n) be the first iteration such that the

inner approximation is not empty. It suffices to bound the number of queries made by the

algorithm after the inner approximation becomes non-empty.

For i ≥ z, let Gi = (Ui, Ei) denote the visibility graph of the remaining unclassified points

Ui in the beginning of the ith iteration. Any independent set in Gi corresponds to a set of

points X ⊆ P that do not see each other due to the presence of the inner approximation Bi.

That is, X is in convex position, and furthermore |X| ≤ 9P .

For 0 ≤ t ≤ n, let s(t) be the first iteration i, such that depth(Gi) ≤ t. Since the depth

of Gi is a monotone decreasing function, this quantity is well defined. An epoch is a range

of iterations between s(t) and s(t/2), for any parameter t. We claim that an epoch lasts

O(9P ) iterations (and every iteration issues only one oracle query). Since there are only

O(log n) (non-overlapping) epochs till the algorithm terminates, as the depth becomes zero,

this implies the claim.

So consider such an epoch starting at i = s(t). We have m = mi = |E(Gi)| = O(9P t2),

by Lemma 4, since 9P is an upper bound on the size of the largest independent set in Gi. By

Lemma 6, as long as the depth of the intervals is at least t/2, the number of edges removed

from the graph at each iteration, during this epoch, is at least Ω(t2). As such, the algorithm

performs at most O(mi/t2) = O(9P ) iterations in this epoch, till the maximum depth drops

to t/2. ◭

2.2.4 Implementing the greedy algorithm

With the use of dynamic segment trees [17] we show that the greedy classification algorithm

can be implemented efficiently.

◮ Lemma 9. Let C be a convex body provided via a separation oracle, and let P be a set

of n points in the plane. If an oracle query costs time T , then the greedy algorithm can be

implemented in O
(

n log2 n log log n + T · 9P log n
)

expected time.

Proof. The algorithm follows the proof of Theorem 8. We focus on efficiently implementing

the algorithm once inner approximation is no longer empty. Let U ⊆ P be the subset of

unclassified points. By binary searching on the vertices of the inner approximation B, we can

compute the collection of visibility intervals V for all points in U in O(|U | log m) = O(n log n)

time (recall that V is a collection of circular intervals on the unit circle). We store these

intervals in a dynamic segment tree T with the modification that each node v in T stores

the maximum depth over all intervals contained in the subtree rooted at v. Note that T can

be made fully dynamic to support updates in O(log n log log n) time [17].
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An iteration of the greedy algorithm proceeds as follows. Start by collecting all points

U+ ⊆ U realizing the maximum depth using T . When t = |U+|, this step can be done in

O(log n + t) time by traversing T . We compute the centerpoint of U+ in O(t log t) expected

time [4] and query the oracle using this centerpoint. Either points of U are classified (and we

delete their associated intervals from T ) or we improve the inner approximation. The inner

approximation (which is the convex hull of query points inside the convex body C) can be

maintained in an online fashion with insert time O(log n) [19, Chapter 3]. When the inner

approximation expands, the points of U+ have their intervals shrink. As such, we recompute

I(p) for each p ∈ U+ and reinsert I(p) into T .

As defined in the proof of Theorem 8, an epoch is the subset of iterations in which the

maximum depth is in the range [t/2, t], for some integer t. During such an epoch, we make

two claims:

1. there are σ = O(n) updates to T , and

2. the greedy algorithm performs O(n/t) centerpoint calculations on sets of size O(t).

Both of these claims imply that a single epoch of the greedy algorithm can be implemented

in expected time O(σ log n log log n + n log n + T · 9P ). As there are O(log n) epochs, the

algorithm can be implemented in expected time O(n log2 n log log n + T · 9P log n).

We now prove the first claim. Recall that we have a collection of intervals V lying on

the circle of directions. Partition the circle into k atomic arcs, where each arc contains

t/10 endpoints of intervals in V. Note that k = 20n/t = O(n/t). For each circular arc γ,

let Vγ ⊆ V be the set of intervals intersecting γ. As the maximum depth is bounded by t,

we have that |Vγ | ≤ t + t/10 = 1.1t. In particular, if G[Vγ ] is the induced subgraph of the

intersection graph G, then G[Vγ ] has at most
(

|Vγ |
2

)

= O(t2) edges.

In each iteration, the greedy algorithm chooses a point in an arc γ (we say that γ is hit)

and edges are only deleted from G[Vγ ]. The key observation is that an arc γ can only be

hit O(1) times before all points of γ have depth below t/2, implying that it will not be hit

again until the next epoch. Indeed, each time γ is hit, the number of edges in the induced

subgraph G[Vγ ] drops by a constant factor (Lemma 6). Additionally, when G[Vγ ] has less

than
(

t/2
2

)

edges then any point on γ has depth less than t/2. These two facts imply that an

arc is hit O(1) times.

When an arc is hit, we must reinsert |Vγ | = O(t) intervals into T . In particular,

over a single epoch, the total number of hits over all arcs is bounded by O(k). As such,

σ = O(kt) = O(n).

For the second claim, each time an arc is hit, a single centerpoint calculation is performed.

Since each arc has depth at most t and is hit a constant number of times, there are

O(k) = O(n/t) such centerpoint calculations in a single epoch, each costing expected time

O(t log t). ◭

In Section 4 we present an application of the greedy classification algorithm. Namely, we

present an efficient algorithm for computing the discrete geometric median of a point set

(Lemma 18).

2.3 The greedy algorithm in 3D

Consider the 3D variant of the 2D problem: Given a set of points P in R
3 and a convex

body C specified via a separation oracle, the task at hand is to classify, for all the points of

P , whether or not they are in C, using the fewest oracle queries possible.

The greedy algorithm naturally extends, where at each iteration i a plane ei is chosen

that is tangent to the current inner approximation Bi, such that it’s closed halfspace (which

avoids the interior of Bi) contains the largest number of unclassified points from the set Ui.

ICALP 2020
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If the queried centerpoint is outside, the oracle returns a separating plane and as such points

can be discarded by the remove operation. Similarly, if the centerpoint is reported inside,

then the algorithm calls the expand and updates the 3D inner approximation Bi.

The idea behind the analysis is similar to Theorem 8. The challenge in analyzing the

greedy algorithm in 3D is that mutual visibility between pairs of points is not necessarily

lost as the inner approximation grows. Thus we have to analyze mutual visibility between

triples of points. The analysis considers both the intersection graph Gi between pairs of

points, and a new hypergraph Hi, where there is an edge {p, q, r} in Hi if the triangle in R
3

formed by the points p, q, r avoids the inner approximation Bi. The main technical ingredient

involves bounding the number of edges in Hi by the maximum depth and size of the largest

independent set in Gi. Finally, we argue that in each iteration a constant number of edges

are deleted from Hi by the centerpoint property. The full details are presented in [12]. We

obtain the following result.

◮ Theorem 10 (Proof in [12]). Let C ⊆ R
3 be a convex body provided via a separation

oracle, and let P be a set of n points in R
3. The greedy classification algorithm performs

O
(

(9P + 1) log n
)

oracle queries. The algorithm correctly identifies all points in P ∩ C and

P \ C.

3 An instance-optimal approximation in two dimensions

Before discussing the improved algorithm, we present a lower bound on the number of oracle

queries performed by any algorithm that classifies all the given points. We then present the

the improved algorithm, which matches the lower bound up to a factor of O(log2 n).

3.1 A lower bound

Given a set P of points in the plane, and a convex body C, the outer fence of P is a

closed convex polygon Fout with minimum number of vertices, such that C ⊆ Fout and

C ∩ P = Fout ∩ P . Similarly, the inner fence is a closed convex polygon Fin with minimum

number of vertices, such that Fin ⊆ C and C ∩ P = Fin ∩ P . Intuitively, the outer fence

separates P \ C from ∂C, while the inner fence separates P ∩ C from ∂C. The separation

price of P and C is

�(P, C) = |Fin|+ |Fout| ,

where |F | denotes the number of vertices of a polygon F . See Figure 3.1 for an example.

◮ Lemma 11. Given a point set P and a convex body C in the plane, any algorithm that

classifies the points of P in relation to C, must perform at least �(P, C) separation oracle

queries.

Proof. Consider the set Q of queries performed by the optimal algorithm (for this input),

and split it, into the points inside and outside C. The set of points inside, Qin = Q ∩ C has

the property that Qin ⊆ C, and furthermore CH(Qin) ∩ P = C ∩ P – otherwise, there would

be a point of C ∩ P that is not classified. Namely, the vertices of CH(Qin) are vertices of a

fence that separates the points of P inside C from the boundary of C. As such, we have

that |Qin| ≥ |CH(Qin)| ≥ |Fin|.
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Figure 3.1 The separation price, for the same point set, is different depending on how “tight”

the body is in relation to the inner and outer point set.

Similarly, each query in Qout = Q \ Qin gives rise to a separating halfplane. The

intersection of the corresponding halfplanes is a convex polygon H which contains C, and

furthermore contains no point of P \ C. Namely, the boundary of H behaves like an outer

fence. As such, we have |Qout| ≥ |H| ≥ |Fout|.
Combining, we have that |Q| = |Qin|+ |Qout| ≥ |Fin|+ |Fout| = �(P, C), as claimed. ◭

◮ Remarks.

1. Naturally the separation price, and thus the proof of the lower bound, generalizes to

higher dimensions. See [12].

2. The lower bound only holds for d ≥ 2. In 1D, the problem can be solved using O(log n)

queries with binary search. The above would predict that any algorithm needs Ω(1)

queries. However it is not hard to argue a stronger lower bound of Ω(log n).

3. In [12], we show that when P is a set of n points chosen uniformly at random from a

square and C is a smooth convex body, E[�(P, C)] = O(n1/3). Thus, when the points

are randomly chosen, one can think of �(P, C) as growing sublinearly in n.

3.2 A sketch of the improved algorithm

We refer to reader to [12] for a complete description of the improved algorithm in 2D. The

idea of the algorithm is conceptually the same as the greedy algorithm of Section 2: at all

times a current inner approximation B ⊆ C and the set of unclassified points U ⊆ P are

maintained. We define a pocket to be a connected region of CH(U ∪B) \B (see Figure 3.2).

The algorithm will repeatedly choose points inside a pocket, and attempt to classify them,

while simultaneously dividing the pocket into two smaller pockets. In this way, we improve

the inner approximation B every time a pocket is handled. The algorithm continues in this

fashion until all points are classified. The analysis involves a careful charging argument.

Roughly speaking, whenever a pocket contains a vertex of Fin or Fout, we can charge the

work of creating and splitting the pocket to such a vertex. Otherwise, a pocket contains no

vertex from either fence. For such a pocket, we prove that when this pocket was created

by the algorithm, all of the points contained in the pocket must lie outside C. When all

points inside a pocket are outside C, we argue that they can all be classified as outside after

O(log n) queries by using centerpoints as the oracle queries.

◮ Theorem 12 (Proof in [12]). Let C be a convex body provided via a separation oracle,

and let P be a set of n points in the plane. The improved classification algorithm performs

O
([

1 + �(P, C)
]

log2 n
)

oracle queries. The algorithm correctly identifies all points in P ∩C

and P \ C.
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B B

Figure 3.2 Unclassified points and their pockets.

4 Application: Minimizing a convex function

Suppose we are given a set of n points P in the plane and a convex function f : R2 → R. Our

goal is to compute the point in P minimizing minp∈P f(p). Given a point p ∈ R
2, assuming

that we can evaluate f and the derivative of f at p efficiently, we show that the point in P

minimizing f can be computed using O(9P log2 n) evaluations to f or its derivative.

◮ Definition 13. Let f : Rd → R be a convex function. For a number c ∈ R, define the level

set of f as Lf (c) =
{

p ∈ R
d

∣

∣ f(p) ≤ c
}

. If f is a convex function, then Lf (c) is a convex

set for all c ∈ R.

◮ Definition 14. Let f : Rd → R be a convex (and possibly non-differentiable) function.

For a point p ∈ R
d, a vector v ∈ R

d is a subgradient of f at p if for all q ∈ R
d, f(q) ≥

f(p) + 〈v, q − p〉. The subdifferential of f at p ∈ R
d, denoted by ∂f(p), is the set of all

subgradients v ∈ R
d of f at p.

It is well known that when the domain for f is R
d and f is a convex function, then ∂f(p)

is a non-empty set of all p ∈ R
d (for example, see [8, Chapter 3]).

Let α = minp∈P f(p). We have that Lf (α)∩P = {p ∈ P | f(p) = α} and Lf (α′)∩P = ∅

for all α′ < α. Hence, the problem is reduced to determining the smallest value r such that

Lf (r) ∩ P is non-empty.

◮ Lemma 15. Let P be a collection of n points in the plane. For a given value r, let

Cr = Lf (r). The set Cr ∩ P can be computed using O(9P log n) evaluations to f or its

derivative. If T is the time needed to evaluate f or its derivative, the algorithm can be

implemented in O(n log2 n log log n + T · 9P log n) expected time.

Proof. The Lemma follows by applying Theorem 8. Indeed, let Cr = Lf (r) be the convex

body of interest. It remains to design a separation oracle for Cr.

Given a query point q ∈ R
2, first compute c = f(q). If c ≤ r, then report that q ∈ Cr.

Otherwise, c > r. In this case, compute some gradient vector v in ∂f(q). Using the vector

v, we can obtain a line l tangent to the boundary of Lf (c) at q. As Lf (r) ⊆ Lf (c), l is a

separating line for q and Cr, as desired. As such, the number of separation oracle queries

needed to determine Cr ∩ P is bounded by O(9P log n) by Theorem 8.

The implementation details of Theorem 8 are given in Lemma 9. ◭

The algorithm

Let α = minp∈P f(p). For a given number r ≥ 0, set Pr = Lf (r) ∩ P . We develop a

randomized algorithm to compute α.
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Set P0 = P . In the ith iteration, the algorithm chooses a random point pi ∈ Pi−1 and

computes ri = f(pi). Next, we determine Pri
using Lemma 15. In doing so, we modify

the separation oracle of Lemma 15 to store the collection of queries Si ⊆ P which satisfy

f(s) = ri for all s ∈ Si. We set Pi+1 = Pri
\ Si. Observe that all points p ∈ Pi+1 have

f(p) < ri. The algorithm continues in this fashion until we reach an iteration j in which

|Pj+1| ≤ 1. If Pj+1 = {q} for some q ∈ P , output q as the desired point minimizing the

geometric median. Otherwise Pj+1 = ∅, implying that Prj
= Sj , and the algorithm outputs

any point in the set Sj .

Analysis

We analyze the running time of the algorithm. To do so, we argue that the algorithm invokes

the algorithm in Lemma 15 only a logarithmic number of times.

◮ Lemma 16. In expectation, the above algorithm terminates after O(log n) iterations.

Proof. Let V = {f(p) | p ∈ P} and N = |V |. For a number r, define Vr = {i ∈ V | i ≤ r}.
Notice that we can reinterpret the algorithm described above as the following random process.

Initially set r0 = maxi∈V i. In the ith iteration, choose a random number ri ∈ Vri−1
. This

process continues until we reach an iteration j in which
∣

∣Vrj

∣

∣ ≤ 1.

We can assume without loss of generality that V = {1, 2, . . . , N}. For an integer i ≤ N ,

let T (i) be the expected number of iterations needed for the random process to terminate

on the set {1, . . . , i}. We have that T (i) = 1 + 1
i−1

∑i−1
j=1 T (i − j), with T (1) = 0. This

recurrence solves to T (i) = O(log i). As such, the algorithm repeats this random process

O(log N) = O(log n) times in expectation. ◭

◮ Lemma 17. Let P be a set of n points in R
2 and let f : R2 → R be a convex function. The

point in P minimizing f can be computed using O(9P log2 n) evaluations to f or its derivative.

The bound on the number of evaluations holds in expectation. If T is the time needed to

evaluate f or its derivative, the algorithm can be implemented in O(n log3 n log log n + T ·
9P log2 n) expected time.

Proof. The result follows by combining Lemma 15 and Lemma 16. ◭

4.1 The discrete geometric median

Let P be a set of n points in R
d. For all x ∈ R

d, define the function f(x) =
∑

q∈P −x ‖x−q‖2.

The discrete geometric median is defined as the point in P minimizing the quantity

minp∈P f(p).

Note that f is convex, as it is the sum of convex functions. Furthermore, given a point p,

we can compute f(p) and the derivative of f at p in O(n) time. As such, by Lemma 17, we

obtain the following.

◮ Lemma 18. Let P be a set of points in R
2. Then the discrete geometric median of P can

be computed in O(n log2 n · (log n log log n + 9P )) expected time.

◮ Remark. For a set of n points P chosen uniformly at random from the unit square, it is

known that in expectation 9P = Θ(n1/3) [1]. As such, the discrete geometric median for

such a random set P can be computed in O(n4/3 log2 n) expected time.
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5 Conclusion and open problems

In this paper we have presented various algorithms for classifying points with oracle access

to an unknown convex body. As far as the authors are aware, this problem has not been

studied within the community previously. However we believe that this is an interesting and

natural problem. We now pose some open problems.

(A) Develop a more natural instance-optimal algorithm in 2D which improves upon the

O(log2 n) approximation. Alternatively, develop algorithms in which the number of

queries is parameterized by different functions of the input instance.

(B) An algorithm in 3D which is instance-optimal up to some additional factors (see [12] for

the definition of the separation price in higher dimensions).

(C) Any results beyond three dimensions is unknown. The greedy algorithm (Theorem 8

and Theorem 10) easily extends to R
d. However the analysis in higher dimensions will

most likely reveal that the algorithm makes (ignoring logarithmic factors) of the order

of 9P
O(d) queries, which is only interesting when 9P is much smaller than n.
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