Induced graphs of uniform spanning forests

Russell Lyons* Yuval Peres' Xin Sunt

Abstract

Given a subgraph H of a graph G, the induced graph of H is the largest subgraph
of G whose vertex set is the same as that of H. Our paper concerns the induced graphs
of the components of WSF(G), the wired uniform spanning forest on G, and, to a
lesser extent, FSF(G), the free uniform spanning forest. We show that the induced
graph of each component of WSF(Z?) is almost surely recurrent when d > 8. Moreover,
the effective resistance between two points on the ray of the tree to infinity within a
component grows linearly when d > 9. For any vertex-transitive graph G, we establish
the following resampling property: Given a vertex o in G, let 7T, be the component of
WSF(G) containing o and 7, be its induced graph. Conditioned on 7,, the tree 7, is
distributed as WSF(7,). For any graph G, we also show that if 7, is the component of
FSF(G) containing o and 7, is its induced graph, then conditioned on 7, the tree 7, is

distributed as FSF(7,).

Résumé

Etant donné un sous-graphe H d’un graphe G, le graphe induit de H est le plus
grand sous-graphe de G dont ’ensemble de sommets est le méme que celui de H.
Notre article concerne les graphes induits des composants connexes de WSF(G), la
forét recouvrante uniforme cablée sur G, et, dans une moindre mesure, FSF(G), la forét
recouvrante uniforme libre. Nous montrons que le graphe induit de chaque composant
de WSF(Z?) est presque stirement récurrent lorsque d > 8. De plus, la résistance
effective entre deux points du rayon de 'arbre a l'infini au sein d’un composant croit
linéairement lorsque d > 9. Pour tout graphe transitif & sommets G, nous établissons
la propriété de rééchantillonnage suivante: Etant donné un sommet o dans G, soit 7T,
le composant de WSF(G) qui contient o et 7, son graphe induit. Conditionné sur 7,
I'arbre 7, est distribué comme WSF(7,). Pour tout graphe G, nous montrons également
que si T, est le composant de FSF(G) qui contient o et 7T, est son graphe induit, alors
conditionné sur 7,, 'arbre 7, est distribué comme FSF(7,).
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1 Introduction

Given a finite, connected graph G, the uniform spanning tree (UST) on G, which we denote by
UST(G), is the uniform measure on the set of spanning trees of G. Given a (locally finite) infinite,
connected graph G, notions of “uniform spanning tree” can be defined via limiting procedures.
Suppose (G,) is a sequence of finite, connected subgraphs of G. We call (G,,) an exhaustion of
G if G, C Gpy1 and |Gy, = G. According to [Pem91], given an exhaustion (G,) of G and a
fixed, finite subgraph H of G, the weak limit of UST(G,) N H exists. Varying H, one obtains a
probability measure on subgraphs of G, which is called the free spanning forest (FSF) of G and
denoted by FSF(G). On the other hand, for any finite, connected subgraph H of G, let H be the
graph obtained by identifying all vertices not in H to a single vertex. We call UST(fI ) the wired
spanning forest (WSF) of H (relative to G), which we denote by WSF(H). Given an exhaustion
(Gp) of G consisting of induced subgraphs and a fixed, finite subgraph H of G, the weak limit of
WSF(G,) N H exists. Varying H, one obtains a probability measure on subgraphs of G, which is
called the wired spanning forest of G and denoted by WSF(G).

Neither WSF and FSF can have no cycles, but both can have more than one (connected)
component. This justifies the notion of spanning forest. UST and its infinite-volume extensions have
been an important object in probability and mathematical physics for the last three decades. See
[BLPSO1, LP16] for a basic reference for some of the theory. See [Sch00, LSW04, Dub09, Shel6,
Sunl19] for the important role that UST played in the recent development in two dimensional
statistical physics and Schramm-Loewner evolution.

For infinite graphs, WSF is much better understood than FSF. In [Wil96], David Wilson provided
an efficient algorithm to sample UST on finite graphs. It was soon extended to sample WSF on
infinite graphs [BLPS01] (see also Section 3). This powerful tool allows one to study WSF directly
via simple random walk. In particular, it is proved in [BLPSO01] that WSF(G) is concentrated on
the set of forests with a unique component if and only if two simple random walks on G intersect
a.s. In contrast, there is no known simple condition to determine whether an FSF has a unique
component. If G is a Cayley graph of the d-dimensional integer lattice Z? for d € N, then WSF(Z?)
and FSF(Z?) coincide. Moreover, it was shown in [Pem91] that WSF(Z?) has a unique component
when 1 < d < 4 and infinitely many components when d > 5. In the latter case, the collections of
components exhibit an intriguing geometry [BKPS04, HP19].

If H is a subgraph of a graph G, including the case that H may have no edges, then the induced
subgraph determined by H is the largest subgraph of G whose vertex set is the same as that of
H. If H is a subgraph of a graph G, we define the induced-component graph H of H to be the
largest subgraph of G whose vertex set is the same as that of H and that has the same connected
components as H. Thus, an edge of G belongs to H if and only if both its endpoints belong to the
same component of H. We also have that H is the union of the induced subgraphs determined by
the components of H.

Before stating our main results, we make the following conventions throughout the paper.
We will use WSF, FSF, UST to denote either probability measures or their samples as long as it
is clear from the context what we are referring to. When there is a risk of ambiguity, we use
UST(G), FSF(G),WSF(G) to represent probability measures and ¥(G), §t(G), Fw(G) to represent
their corresponding samples. Similarly, we write WSF(G) for either the law of §w(G) or for its
sample, Fw(G), and likewise for the free versions.

The main object of interest in this paper is WSF(Z4), which reflects the geometry of WSF(Z?)

as a subgraph embedded in Z?. Since WSF(Z?) = Z% when 1 < d < 4, the only interesting case is
when d > 5. On the one hand, components of WSF(Z?) have stochastic dimension 4 for all d > 5




[BKPS04]. On the other hand, Morris [Mor03] proved that for every graph G, simple random walk
on each component of WSF(G) is a.s. recurrent. This leads to the intriguing question of whether
the components of WSF(Z?) are recurrent or transient.

Theorem 1.1. If d > 8, almost surely each connected component of WSF(Z4) is recurrent.

For a graph G = (V, E), let f be a real function from V' to R, and let

Ef) =5 > (fla) - f), (1.1)

T, YyeG ; x~vy

where z ~ y means = and y are adjacent in G. Given two disjoint subsets A and B of V, the
effective resistance between A and B is defined by

RG(4.B) := (f{E(/): fla=1.71p=0}) .

Definition 1.2. An end of a tree is an equivalence classes of infinite simple paths in the tree, where
two paths are equivalent if their symmetric difference is finite. Given a vertex v in a forest, write T,
for the component of the forest that contains v. If T, has one end, then write Ray, = (Ray,(n))n>0
for the unique infinite, simple path in T, starting at v. Given v € Z%, let T, be the component of
WSF(Z%) containing v.

As discussed following Corollary 1.7, every tree T, has one end a.s.

Theorem 1.3. Let v € Z¢. Ifd > 9, then liminf, n_lRE(v, Rayv(n)) > 0 almost surely.

Since RZT%(U, Ray,(n)) < n, Theorem 1.3 means RZT&(U, Ray,(n)) grows linearly.
Theorems 1.1 and 1.3 leave open the natural questions whether components of WSF(Z2) are

recurrent or transient for d = 5,6, 7 and what the growth rate of RZ;f” (v, Rayv(n)) is for d = 5,6,7,8.
Although we do not address those problems here, we prove the following resampling property
of WSF(Z?) for all dimensions, which has implications for the behavior of random walks on the
components of WSF(Z?).

We will use the following notion. Given a graph G, let H be a random subgraph of G whose
components are infinite graphs. We write WSF(H) for the unconditional law of the random subgraph
of G obtained by first sampling H and then sampling a WSF independently on each component of
this instance of H. We similarly define FSF(H).

Theorem 1.4. For all d € N, WSF(F(Z%)) = WSF(Z9), that is, the two measures agree.

Theorem 1.4 implies that for each v € Z¢, WSF(T,) a.s. has a single component for 7, as in
Definition 1.2. Therefore, two independent simple random walks on 7, a.s. intersect.

Theorems 1.1 and 1.3 are proved in Section 3 and 4 respectively, using quantitative arguments.
A wvertex-transitive graph is a graph such that given any two vertices, there exists a graph
automorphism mapping one vertex to the other (see Section 3.2). Theorem 1.1 can be extended
to all vertex-transitive graphs whose volume growth is at least » — %, while the argument for
Theorem 1.3 works for unimodular vertex-transitive graphs whose volume growth is at least 7 —
(see the definition of unimodular preceding Theorem 4.3).

On the other hand, Theorem 1.4 is a corollary of the following set of general results, which will
be proved in Section 5 by qualitative arguments.



Theorem 1.5. For any locally finite, infinite, connected graph G, we have

FSF(3w(G)) = WSF(G) and FSF(:(G)) = FSF(G). (1.2)

In particular, the FSF on each component of Fw(G) and §¢(G) has a unique component a.s.

An immediate corollary of Theorem 1.5 is

Corollary 1.6. WSF(§w(G)) = WSF(G) if and only if each component of §w(G) has the property
that FSF = WSF. O

Corollary 1.6 implies Theorem 1.4 as follows. Recall £ defined as in (1.1). A necessary and
sufficient condition for FSF(G) = WSF(G) is that the only harmonic functions f on G with £(f) < oo
are constant functions [BLPS01]. This is known to be the case when G is transitive and amenable,
ie., infx #0K/#K = 0, where the infimum is over all finite vertex sets K of G. By [BLS99,
Theorem 5.5], every amenable transitive graph has the property that each component of every
random subgraph with automorphism-invariant law also a.s. has no nonconstant harmonic functions
f with £(f) < co. This gives Theorem 1.4.

Corollary 1.7. WSF(Fw(G)) = WSF(G) (resp., FSF(3w(G)) = FSF(G)) if each component of
Sw(G) (resp., Fe(G)) is one-ended, that is, has a single end a.s.

In [LMSO08], it is proved that the one-end property of WSF components holds for all transient
vertex-transitive graphs (also see [LP16, Theorem 10.49]). Thus WSF(Fw(G)) = WSF(G) in this
case. This in particular gives another proof of Theorem 1.4. For more general results on the
one-ended property of FSF and WSF, see [LMS08, Hut18].

Inspired by Morris’ aforementioned result that each component of WSF on every graph is a.s.
recurrent, we conjecture that WSF(Fw(G)) = WSF(G) for every locally finite, connected graph G as
in Theorem 1.5.

Neither WSF(F:(G)) = FSF(G) nor WSF(§¢(G)) = WSF(G) holds for all graphs. For counterex-
amples to the first equality, let G be a tree with the property that §w(G) # G a.s. (For example, G
could be a regular tree.) Then §¢(G) = G a.s. while WSF(F¢(G)) = WSF(G). A counterexample for

the second equality will be given in Section 5.2.

Acknowledgment. We thank Pengfei Tang for assistance in completing the proof of Proposition
2.8, which simplifies arguments in an earlier version of our paper. We are grateful to the referee for
several comments that improved the paper. This work was begun while the third author was an
intern in the Theory Group at Microsoft Research, Redmond.

2 Preliminaries

2.1 Basic notations

The set of positive integers is denoted by N. Given a finite set A, we write # A for the cardinality of
A. Given two sets A, B, their symmetric difference (A \ B) U (B \ A) is denoted by A A B. We use
the asymptotic notation that two nonnegative functions f(z) and g(x) satisfy f < g if there exists a
constant C' > 0 independent of = such that f(z) < Cg(z). We write f = g if g S f and write f < g
if f<gand f2g.

Given a graph G, write V(G) and E(G) for the vertex and edge sets of G, respectively. When
G = 74 for some d € N, we write o for its origin. If v,u € V(G) are adjacent, we write v ~ u
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and write (u,v) for the edge between them. For v € V(G), let deg(v) be the degree of v, which is
the number of vertices adjacent to v. In our paper, graphs are assumed to be locally finite, that
is, deg(v) < oo for every v € V(G). A graph H is called a subgraph of G if V(H) C V(G) and
E(H) C E(G). If H and H' are subgraphs of G, we write E(G)\ E(H) as G\ H and E(H) A E(H')
as H A H'.

Given a family of probability measures (u)ier with index set T, a coupling of (u)ier is a
family of random variables (X¢);er on a common probability space such that X; is distributed as p
for all t € T. Suppose A and B are two probability measures on the space of subgraphs of a graph
G. If there is a coupling (2, B) of (A, B) such that 2 C B a.s., we say that A is stochastically
dominated by B, written as A < B.

Let I be an interval in Z. Suppose P = (v;);cs is a sequence of vertices in G indexed by I such
that v; ~ v;41 whenever ¢ and ¢+ 1 are both in I. Then we call P a path in G. If v; # v; as long as
i # j, wesay P is stmple. If I = {0,...,n}, then P is called a finite path and |P| := n is called the
length of P. We call the path (v,_;)o<i<n the reversal of P. If we further have vy = v, then we
call P a (rooted) loop' and vy the root of P. If I = NU {0} (resp., I = Z), we call P an infinite
(resp., bi-infinite) path. We call t a cut time of P if {v;}ict N {v;}ise = 2.

Given z,y € V(G), let dg(x,y) be the minimal length of a path starting from x and ending at y
if z,y are in the same component of G and oo otherwise. We call dg(-,-) the graph distance on
G. For v € V(G) and r > 0, let Bg(v,7) :={x € V(G); dg(v,x) < r}. We identify Bg(v,r) with
its induced subgraph.

A graph is called a forest if for any pair of distinct vertices there exists at most one simple path
connecting them. A connected forest is called a tree. Given a connected graph G, a spanning tree
(resp., forest) on G is a subgraph T' C G such that T is a tree (resp., forest) and V(T') = V(G).

The simple random walk on G is the Markov chain (S(n)),>0 on the state space V(G) such that
P[S(n+1) =u| S(n) =v] = deg(v)~! for all u ~ v and n > 0. The transition kernel p of G is
defined by pi(x,y) = P[S(t) = y] for z,y € V(G) and t € NU {0}, where S is a simple random walk
on G starting from z. When G = Z¢, it is well known that p;(0,0) < t~%? for even t > 2.

2.2 Wilson’s algorithm

Given a finite path P = (v;)o<i<n in a graph G of length n € N, the (forward) loop erasure of
P (denoted by LE[P]) is the path defined by erasing cycles in P chronologically. More precisely,
we define LE[P] inductively as follows. The first vertex ug of LE[P] equals vg. Supposing that u;
has been set, let k be the last index such that vy = u;. Set ujy1 := vp41 if & < n; otherwise, let
LE[P] = (u;)o<i<;j. If P is an infinite path that visits no vertex infinitely many times, then we define
LE[P] in a similar fashion. In particular, if S is a sample of simple random walk on a transient
graph G, then LE[S] is defined a.s. In such a case, we call the law of LE[S] the loop-erased
random walk (LERW) on G.

In [Wil96], Wilson discovered an algorithm for sampling uniform spanning trees on finite graphs
using loop-erased random walk. In [BLPS01], Wilson’s algorithm was adapted to sample WSF on
a transient graph G. This method is called Wilson’s algorithm rooted at infinity, which we
now review. The algorithm goes by sampling a growing sequence of subgraphs of G as follows.
Set To := @. Inductively, for each n € N, choose v, € V(G) \ V(7,-1) and run a simple random
walk starting at v,. Stop the walk when it hits 7,_1 if it does; otherwise, let it run indefinitely.
Denote the resulting path by Py, and set 7, := T,,—1 ULE[P,]. Write §y := J,, Tn. According to

I This is a topological loop, also called a cycle in graph theory, as opposed to the term “loop” in graph
theory.



[BLPSO1, Theorem 5.1], no matter how (v,),>1 are chosen, as long as V(Fw) = V(G), the law of
S is WSF(G).

2.3 Bounds on effective resistance

Nash-Williams’ inequality (see, e.g., [LP16, Section 2.5]) is a useful lower bound for the effective
resistance. Here we record a generalization of Nash-Williams’ inequality.

Lemma 2.1. Given a graph G with two disjoint subsets A and B of V(G), a set C C E(G) is
called a cut set between A and B if Yo € A and Vz € B, every path from o to z must use an
edge in C. Suppose Ci,...,Cp are cut sets between A and B for somen € N. For e € E, let

jle) = #{k; e € Cy}. Then RG(A, B) = Sy (Loee, d(e)ele) )

Proof. The proof is the same as the classical case in [LP16, Section 2.5], with a slight modification
when applying the Cauchy—Schwarz inequality. We leave the details to the reader. O

This is equivalent to having disjoint cutsets in a subdivided network. In that form but for
recurrence of infinite, locally finite networks, it was given by [NW59], who also proved that the
existence of such cutsets in a subdivided network is necessary for recurrence. See [McG91] for an
extension to non-locally finite networks.

The next lemma says that effective resistance is stable under local modification.

Lemma 2.2. Suppose H and H' are two connected subgraphs of a graph G such that #(HAH') < oo.
Then there exists a constant ¢ > 0 depending on G, H, H' such that R (u,v) < Rg{(u, v) + ¢ for all
u,v € V(H)NV(H').

Proof. Tt suffices to show that if H' C H and #(E(H) \ E(H’)) = 1, then there exists ¢ > 0
depending only on H and H' but not on u,v € V(H’) such that

0 < RHE (u,v) — R (u,v) < ¢. (2.1)

Once this is proved, a similar statement then follows for H' C H and #(E(H)\ E(H')) < co. Then
the general case follows by comparing both H and H' to the union graph H U H' of the two.

By Rayleigh’s monotonicity principle (see, e.g., [LP16, Section 2.4]), adding an edge can only
decrease the effective resistance, hence Rfﬁl (u,v) > RE(u,v). To prove the other direction of (2.1),
we use Thomson’s principle (see, e.g., [LP16, Section 2.4]) that the effective resistance between
two vertices is the minimum energy (i.e., the sum of the squares of all edge flows) among all unit
flows between the two vertices. We may start from the minimizing flow for H from u to v and then
construct a flow on H’ between the same vertices by replacing the current flow along the removed
edge e with a flow along a path in H’ connecting the two endpoints of e. This increases the flow
energy by an additive constant that depends only on H and H'. O

2.4 Indistinguishability of WSF components

In this subsection, we review a basic ergodic-theoretic property of components in WSF on transient
vertex-transitive graphs. We call a triple (G, p,w) a subgraph-decorated rooted graph if G is
a locally finite, connected graph, p is a distinguished vertex in G called the root, and w is a
function from E(G) to {0,1}. We think of w as a distinguished subgraph spanned by the edges
{e € E(G); w(e) = 1}. Given two such triples (G, p,w) and (G’, p/,w’), an isomorphism between



them is a graph isomorphism between G and G’ that preserves the root and the subgraph. Write
wp,r for the restriction of w to Bg(p, ). Let Q.{O’l} be the space of subgraph-decorated rooted graphs

{01}

modulo isomorphisms. We endow G with the local topology where two elements (G, p,w) and

(G, p W) in GO are close if and only if (Bg(p, 1), p,wp,r) and (Bg(p',7), p'sw), ) are isomorphic
to each other for some large r. 7

Given (G,v,w) € Gi0  we define K, (v) to be the connected component of v in w. A Borel-
measurable set A C Q;{O’l} is called a component property if (G,v,w) € A implies (G,u,w) € A
for all u € K,(v). Given a component property A, we say that a connected component K of
w has property A if (G,u,w) € A for some (and equivalently every) u € V(K). A component
property A is called a tail component property if (G,v,w) € A implies (G,v,w') € A for all
W' C E(G) such that w A w" and K, (v) A K,/ (v) are both finite.

As a corollary of [HN17, Theorem 1.20], we have

Lemma 2.3. Suppose G is a transient, vertex-transitive graph. For every tail component property
A, either almost surely every connected component of WSF(G) has property A, or almost surely
none of the connected components of WSF(G) have property A.

By Lemma 2.2, for a vertex-transitive graph, both the properties in Theorems 1.1 and 1.3 are
tail component properties. Therefore, we have

Lemma 2.4. Consider WSF(Z?) for d > 5. Recall the notations T, and Ray, in Definition 1.2.

Let E, be the event that T, is recurrent and F, be the event liminf,,_ .o 71*1RZ;Jlr (’U,Rayv(n)) > 0.
Then neither P[E,| nor P[F,] depends on v. Moreover, both P|E,| and P[F,] belong to {0,1}. The
same holds with Z¢ replaced by any transient, vertex-transitive graph. O

2.5 Two-sided random walk and loop-erased random walk

For d € N, let S' and S? be two independent simple random walks on Z¢ starting from the
origin of Z%. For n € Z, let S(n) := S1(n) if n > 0 and S(n) := S?(—n) if n < 0. We call the
law of the bi-infinite path (S(n)),ez the two-sided random walk on Z¢. Tt is standard that
P[S1([0,00)) N Sa([1,00)) = @] > 0 if and only if d > 5 (see, e.g., [LP16, Theorem 10.24]). For d > 5,
consider the event

E = {LE[S"|(m) # S*(n) for all m >0, n > 1}. (2.2)

Since with positive probability 0 is a cut time of S, we have that P[E] > 0. Define S(n) to be
LE[S?](—n) for n < 0 and LE[S*](n) for n > 0. The conditional law of (S(n)),ez conditioned on
E is called the two-sided loop-erased random walk on Z®. Tt is clear that without loop-erasures,
(S(n+ 1) — S(n))nez is stationary and ergodic; indeed, it is an IID sequence. In fact, two-sided
LERW also has stationary, ergodic increments:

Lemma 2.5. Suppose X is two-sided loop-erased random walk on Z¢ for d > 5. Then (X(n + 1) —
X(n))nez is stationary and ergodic.

Lawler [Law80] introduced the two-sided LERW on Z¢ (d > 5) and showed that it is the local
limit of the usual LERW viewed from nodes with large index. An essential ingredient to the proof
of Lemma 2.5 is the reversibility of the loop-erasing operation for simple random walk, which was
also first proved in [Law80]. Given the reversibility, we observe that Lemma 2.5 can be deduced
from the ergodicity of the two-sided random walk and the following basic fact from ergodic theory
(see, e.g., [Pet83]).



Lemma 2.6 (Kac’s Lemma). Suppose § is a measurable space and T: Q — § is measurable.
Suppose P is a probability measure on  which is preserved by T and is ergodic. Let A C €
be an event such that P[A] > 0 and let 7(w) := inf{n € N; T"(w) € A} for all w € Q. Let
Ty(w) =TT\ (w) for allw € A. Then Ty is an ergodic, measure-preserving map from A to A
under the conditional probability measure P[- | A]. Moreover, E[r | A] = P[A]~!.

To put Lemma 2.5 in the setting of Lemma 2.6, let us consider the two-sided simple random walk
S. Since S can be almost surely decomposed into finite paths separated by cut times, the forward
loop-erasure of the path (S(n)),<o is well defined, which we denote by LE[S(—o0,0]]. By the
reversibility of the loop-erasing operation, the path LE[S(—o0, 0]] has the same law as LE[S]0, co)].
Now we use the event A := {LE[S(—o00,0]] N S[1,00) = 0}, which plays the same role as the event
E in (2.2). Let T be the forward shift operator of (S(n))nez. Applying Lemma 2.6 to T" and A, we
get Lemma 2.5.

Using estimates for random walk on Z¢, it was shown in [Law80] that the two-sided LERW is
weakly mixing, which is a property stronger than ergodicity. For this paper, we need only stationarity
(see Section 4 for its use) and our argument can be readily extended to more general unimodular
vertex-transitive graphs.

A network is a graph with positive weights on its edges. The corresponding network random
walk is the Markov chain on its vertices that moves to a neighboring vertex of its present state with
probabilities proportional to the weights of the incident edges. Constant weights correspond to
simple random walk. For a vertex x in a general transient network, G, define

o0
Zi(z) = Z(t + 1)'pe(x, ).

t=0

When G is Z%, or, more generally, transitive, Z;(x) does not depend on z, and so we will write
simply Z; in the transitive case. Because Zy(x) is the expected number of visits to x by a network
random walk S starting from z, we have that Zo(z) = 1/P[Vn > 1 S(n) # z|. If L(x) denotes the
time of the last visit to z, it follows that for any loop 7 rooted at z, we have

P[S([0,171]) = ~]/Zo(x) = P[S([0, L(x)]) =], (2.3)
and so
E[L(z) + 1| = Zi(x)/Zo(x). (2.4)

Lemma 2.7. Let G be a network and x be a vertex of G. Let A be a set of vertices such that there
is positive probability that the network walk S from x avoids A forever: P[Vn >0 S(n) ¢ A] > 0.
Let L :=sup{n > 0; S(n) =z} be the last time the walk is at x. Then the probability that the first
L steps of the walk is equal to a particular loop v given that A is avoided forever is at most the
unconditional probability that the first |y| steps of the random walk is ~:

P[S([0,L]) =~ | Yn >0 S(n) ¢ A] <P[S([0,|~]]) =]
Proof. This is a simple modification of the proof of the display after (5.4) of [Hut19]. To be more

precise, given a path v avoiding A, we have

B[S0, ]7l)) =7, ¥n > ] S(n) ¢ AU {a)]

B P[vn >0 S(n) ¢ A]

_ P[S([0.11]}) =71 - Plvn > | S(n) ¢ AU {a}]

- P[Vn >0 S(n) ¢ A]

< P[S([0,[7]]) =] O

P[S([0,L]) =~ |Vn >0 S(n) ¢ A]
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Proposition 2.8. Let G be a transitive network and o be a vertex of G. Consider the network walk
S from o. Define K; := #{s; |LE[S([0,s])]| =i}. Then E[K;] < Zy for alli > 0.

Proof. That E[Ky] = Zy < Z is trivial. Define Tj := 0 and for i € N, let
T, =1+ sup{t >Ti—1; S(t) = S(Tn_l)}.

Then [LE([S[0,7}])| = j for all j > 0. Defining K; ; := #{s € [T}, Tj4+1);
0< j < i, we have Kz = Z;‘:O KiJ.

Let S’ be an independent simple random walk from o; let 77 be one more than the last time
S visits 0. Let R; := {s € [0,T"); |LE[S'([0,s])]| =i — j}; these sets are pairwise disjoint. By
Lemma 2.7 and equation (2.3), for i > j > 0 and k > 0,

LE[S([0, s])]| = i} for

IP’[KZ‘J' =k ‘ S[OaTjH < Zo P[#RJ = k},

whence , ‘ '
(2 (2 1
E(K] =Y EK <Y ZyE#R;) = ZOE[# U RJ} < ZoE[T'] = 71,
=0 §=0 §=0
where, in the last step, we used (2.4). O

3 Recurrence when d > 8

In this section, we first prove Theorem 1.1 and then extend the result to vertex-transitive graphs in
Section 3.2. Recall T, and Ray, as in Definition 1.2 for the origin o of Z¢. Given n € NU {0}, we
call the connected component of 7, \ (Ray,[0,n — 1] URay,[n + 1,00)) containing Ray,(n) the nth
bush of T, and denote it by Bush,. Given an edge e in Z? and two subgraphs H; and H, of Z¢
with V(H;) NV (Hz) = &, we say that e joins H; and Hj if one endpoint of e is in H; and the
other is in Hs.

Lemma 3.1. For 0 < j <n and ¢ > 1, let Nj,(n) be the number of edges joining Bush,_; and
Bush,,1¢. Suppose d > 8. Then there exists a constant C' > 0 such that

S ST EN ()] < Clog(l + %) for all m,n € N. (3.1)

0<j<n {>m
We postpone the proof of Lemma 3.1 to Section 3.1 and proceed to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.4, we see that Theorem 1.1 is equivalent to the statement that
T, is recurrent a.s.
By (3.1) with m = 1, there exists a constant C' > 0 and a sequence ny, € [k?*, 2k?¥] such that

Z ZE[NJJ(T%H < Clogny for all kK € N. (3.2)
0<j<ng £>1
Define C, to be the set consisting of edges joining Umgnk Bush,,, and Um>nk Bush,,,. Then removing

Ck from T, leaves o in a finite component. Since E[#Ci] < logny by (3.2) and

Zlog (ng) < 12logT for all T > 1,
k=1



the argument in [BLPS01, Lemma 13.5 and Remark 13.6] yields >"°(#Cx) ™! = oo a.s.

Let Ii be the event that there exists an edge joining [ Bush,,, and Umznkﬂ Bush,,,. Since
P nH"lk_ 7 < 00, by (3.1) and the Borel-Cantelli lemma, we know that almost surely only
finitely many events I occur. Therefore there exists a (random) K € N such that the elements in

{Cr; k > K} are all disjoint. By the Nash-Williams criterion (see, e.g. [LP16, Sec. 2.5]), it follows
that 7, is recurrent a.s. O

m<ng

3.1 Proof of Lemma 3.1

Fix d € N. For z € Z%, let Q% be the space of loops in Z% rooted at z (see Section 2.1 for the
definition). Define a measure p on Q7 by requiring u(7) := (2d)~1! for all v € Q%. We call ; the
loop measure and p(vy) the weight of v. Here we drop the dependence of p on z for simplicity
of notation. In different places, we will consider loops with additional markings. For example, let
QF = {(7,9); vy € Q% 1 €[0,]7] —1]NZ}. Each element in QF is a loop 7 rooted at z with a
marked step being the ordered pair (y(i),v(i + 1)). By assigning each element in QZ the weight of
its loop, we define a measure on €22, which we still denote by x in a slight abuse of notation.

Proof of Lemma 3.1. By linearity of expectation, we estimate E[N;,(n)] by estimating the proba-
bility of joining Bush,,_; and Bush,,, for each edge of 7%, Let x and y be two adjacent vertices
in Z¢ and S, S', and S? be three independent simple random walks on Z? starting from o, z,
and y respectively. Suppose that WSF(Z?) is sampled via Wilson’s algorithm rooted at infinity by
first sampling S, S', and S?, and then other random walks. Fix 0 < j < n and £,m € N. Given
5,8, € NU{0} and z,w € Z%, let E*¥(s,s’, ', z,w) be the event that

1. S(s) =z and ’LE[S([O, s])]| =n—J;

2. S1(s') = z and S?(t') = w;

3. A:=sup{k; S(k) =w} € [s,00) and ‘LE[S([S,)\])” =j+/¢; and
4. t = inf {k; S?(k) € LE[S([s,A])] }.

Then {.CL‘ € V(Bush,,—;) and y € V(BushnM)} c UE®Y(s,s,t',z,w), where the union ranges over
all possible tuples (s, s’,t', z, w).
Recall Z defined right above. Let QZ(z,y, w, s',t') C QZ be the set of (v,i) that satisfy

1. v(i) =y and v(i + 1) = z;

2. 8=y —i-1;

3. LE[y([0,2)](j + £) = w; and

4. max{k <i; y(k) =w}=i—1t.

On E%¥(s,s',t',z,w), by concatenating S([s, \]), the reversal of S2([0,#]), the edge from y to x,
and S'([0,5']), we obtain an element in QZ(z,y,w,s’,t') whose marked step is (y, ). Therefore
P[E®Y(s,s',t', z,w)] equals

P[S(s) = z and [LE[S([0, s])]| = n — j] - (2d) - p[QZ (z,y,w,s',t')], (3.3)

where the factor 2d comes from the fact that the step (y,x) need not be traversed by S, S!, or S2.
Note that QZ(x,y,w,s',t') C {(v,i) € QZ; |y| > j+ £}. Now let z and y vary. For different tuples
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(z,y,w,s’,t"), the corresponding sets QZ(x,y,w, s, t') are disjoint (because the definition (1)—(4)
determines x, y, w, s’ and t' from (,4)). Therefore

Y (@ yw, s )] < ul{(v,0) € 95 W =5+ 6. (3.4)

I?y7w7s/7t/
Let p be the transition kernel of Z?. By the definition of Q7 and pu, for all t € N, we have
pl{(v.i) € QZ5 7| = t}] = tpi(2, 2) = tp(0, 0).

Since d > 8 and p;(0,0) < t~%2, we see from (3.4) that

Yo ul(zyw s )] < Y tno,0) S GO

zy,w,s’ ! t>5+4

Set K; := #{s;

LE[S([0, s])]| = i} for all 0 < < n, as in Proposition 2.8. By (3.3), we have

> PE(s, 8, 2w)] S G +07TY P[S(s) = 2, |[LE[S([0,s])]| = n — 4]

141
z,y,s,s't",z,w

=+ 07 ) _P[[LE[S(0, )| = n—j] =E[Kn](i + O S G+ 072

by Proposition 2.8. Since E[N;o(n)] <32, ¢ o, PIETY(s, 8", ¢, 2,w)], we see that

SN ENMIS Y D G+H07S D] (G+m) Tt Slog(1+n/m). O

0<j<nt>m 0<j<nt>m 0<j<n

3.2 Extension to vertex-transitive graphs

Suppose G is a vertex-transitive graph and o € V(G). We call V(r) := #Bg(o,r) the volume
growth function of G. In this subsection, we explain the following extension of Theorem 1.1.

Theorem 3.2. If G is a vertea-transitive graph with V (r) > r8, then almost surely each connected

component of WSF(G) is recurrent.

Let p be the transition kernel of G. It is standard that p;(0,0) < t~* when V(1) 2> r® (see, e.g.,
[LP16, Corollary 6.32]). Given this, Proposition 2.8 implies Lemma 3.1, hence Theorem 1.1 in the
same way with Z% replaced by G in Theorem 1.1.

If G is nonunimodular, then Theorem 3.2 is essentially already known (see the definition of
unimodular preceding Theorem 4.3). In fact, it is well known that G is nonamenable in this case,
that is, inf g #0K /#K > 0, where the infimum is over all finite vertex sets K of Gj see, e.g., [LP16,
Proposition 8.14]. Therefore, by [BLPS01, Theorem 13.1], we have E[# (T,ﬁ B (0, n))] = n?, where
7, is the component of WSF(G) containing 0. Now [BLPS01, Lemma 13.5] yields that 7, is a.s.
recurrent. Since (G is transient, Lemma 2.4 concludes Theorem 3.2 in the nonunimodular case.

4 Linear growth of resistance when d > 9

Recall the two-sided LERW defined in Section 2.5. Now we define the two-sided WSF.

Definition 4.1. Given d > 5, sample a random spanning forest S%V(Zd) on Z% as follows.

11



1. Sample a two-sided loop-erased random walk S.

2. Conditioning on 5, sample a WSF (denoted by Fv,) on the graph obtained from Z¢ by identifying
the trace of S as a single verter.

3. Set F2(Z%) to be the union of Fw and the trace of §, where §w s viewed as a random subgraph
of 7.2.

We call the law of §2(Z9) the two-sided wired spanning forest on Z¢ and denote it by WSF?(Z%).

It is clear that WSF?(Z9) can be sampled from a modified version of Wilson’s algorithm rooted
at infinity: first sample a two-sided LERW and treat it as the first walk in Wilson’s algorithm;
then proceed as in the original Wilson’s algorithm to form a spanning forest on Z¢. The stationary
two-sided LERW on Z? was extended to d = 4 in [LSW19] and to d = 2,3 in [Law18] by a limiting
procedure. Therefore WSF?(Z%) can be defined for all d € N. However, we will not need the
lower-dimensional cases.

By Lemma 2.5, as a subgraph-decorated rooted graph, (Z¢, o, 2 (Z%)) is stationary under shifting
along the trace of S. We will use this stationarity and the ergodic theorem to prove Theorem 1.3.
The following lemma will be needed.

Lemma 4.2. In the setting of Theorem 1.3, for v € Z¢ such that v # o, let N, be the number of
edges joining’ T, and Ty if To # To and be 0 otherwise. Then E[N,] < oo for d > 9.

Proof. We follow an argument similar to that in Lemma 3.1. Given two neighboring vertices x and
y, let Z, , be the event that = € 7, and y € 7,. Suppose that S°, S, S*, and SY are independent
simple random walks on Z? starting from o, v, x, and y, respectively. By Wilson’s algorithm,

P[Z,,] < P[S*([0,00)) N S°([0,00)) # @ and SY([0,00)) NSU([0,00)) # &].
Therefore

NI<Y T DT PS°(k) = 5%(1) and SY(m) = S°(n)]. (4.1)

xz~y k,l,mn>0

Now let Q%7 be the space of quadruples (v, o, 7,4) where v is a path in Z? from o to v, o, 7 € [0, |y|]NZ,
and i € [0, |y| — 1] N Z. Here, o and 7 are considered as two marked times of v and (vy(i),y(i + 1))
is considered as a marked step. Define the measure p on Q%" by assigning weight (2d)_|”/| to each
(v,0,7,1) € Q%Y. Then

o o0
QO”:ZM Y, 0,T,1) GQOU‘|’V|—t}=Ztt+1 *pi(0,v).
=0 =0

Since pi(o,v) < =42 (see [LP16, Corollary 6.32(ii)]), we see that u[Q°] < oo if d > 9.

Let Q%Y(k,l,m,n) = {(v,k,k+L+1+mk+0¢) € Q°; |y =k+{¢+1+m+n}. By
concatenating S°([0, k]), the reversal of S*(]0,/]), the edge from x to y, the path SY([0,m]), and
the reversal of S¥([0,n]), we see that >, P[S°(k) = S*(I) and SY(m) = S"(n)] is no larger
than 4[Q%Y(k,l,m,n)]. On the other hand, Q*(k,l,m,n) N Q> (K',I',m/,n') = @ if (k,l,m,n) #
(k',I',m',n’). Now interchanging the summations in (4.1), we get E[N,] < u[Q%?], which is finite if
d>9. O

2Recall the notion from Section 3.
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Proof of Theorem 1.3. By Lemma 2.4, it suffices to prove that

[hmlnfn Rzl—é’f(o Ray,(n)) > 0| > 0. (4.2)

n—oo
Let us make a particular choice in Wilson’s algorithm rooted at infinity to sample WSF(G).
1. Sample a simple random walk S' from o as the first walk in Wilson’s algorithm.

2. Run an independent simple random walk S? from o. Define 7 := inf{t > 1; S*(t) ¢ LE[S']}
and v := S%(7).

3. Use S?([r,00)) for the second simple random walk in Wilson’s algorithm.
4. Sample the rest of WSF(G) according to Wilson’s algorithm in an arbitrary way.

Let P be the probability measure from the above sampling and let P be P conditioned on the event
B:={r=1and T, # T,}. Then B is exactly the event E in (2.2). We define S in terms of (S, 5?)
as in Lemma 2.5, so that under P it is a two-sided LERW. On the event B, let §2 consist of the
edges of WSF(G) and the edge (o0,v), and let 7, consist of the edges of T, and T, and the edge (0,v).
By Lemma 2.5 and Definition 4.1, under P, we see that §2 is distributed as WSF?(G) and 7, is the
component of §2, containing o.

To prove (4.2), recall the notion of Bush,, in Section 3. For k& € N, let Ci, be the set of edges
joining (J,,,<; Bushy, and Um>k+1 Bush,,. For any edge e of Z%, let j(e) := #{k; e € C.}. Let

Ji = Zeeck i(¢). Under P, for n € Z, let Bush,, be the connected component of To\ S(Z\ {n})
containing S(n). Let Cj, be the set of edges joining U<k Bush,, and Unsktt Bush,,. Let jle) ==
#{k; e € 5k;} and Jj, = Zeec ;( ). By Lemma 4.2, #C_1 < 00 P-a.s. By the stationarity of

WSF2(Z%), both <Ck>keZ and <Jk>keZ are stationary under P. On the other hand, if e € Cj joins
Bush,, and Bush,, for some n > m, we must have e € Cr and j(e) = j(e) = n —m. Therefore
Cp CCp and J; < Jp < 00 P-as. for all k e NU {0}. By the stationarity of <Jk>keZ under P and
Birkhoft’s ergodic theorem, there exists a random variable Y such that EP Y] = EP[JO | >0 and
limy, oo n 1 Zz;é jk_ —Y P-as. Since Ji < Jk, with positive probability under P (hence under
P), we have

n—
liminf n~* Z Jk_1 > 0.

n—o0

By Lemma 2.1, RZT&(O,RayO(n)) > S0y it which gives (4.2). O

We conclude this section by the following straightforward extension of Theorem 1.3. Let .S be
the two-sided random walk on G defined as in Section 2.5 with Z¢ and its origin replaced by G and
0 € V(G). A vertex-transitive graph G is unimodular if the automorphism group Aut(G) of G is
unimodular, in other words, Aut(G) admits a nontrivial Borel measure that is invariant under both
left and right multiplication by group elements. In this case, G satisfies®

(S(n))nez is stationary and ergodic viewed as path-decorated rooted graphs. (4.3)

We will not elaborate on the notion of unimodularity, but refer to [BLPS99] or [LP16, Chapter 8]
for more background.

31t can be shown that unimodularity is, in fact, equivalent to (4.3).
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Theorem 4.3. Theorem 1.3 still holds if Z% is replaced by a unimodular, vertez-transitive graph G
such that V(r) 2 r°. (Recall the function V (r) in Section 5.2.)

Proof. Note that V(1) > 72 implies that the transition kernel satisfies p;(0, 0) < t~9/2. By inspection,
the proof of Theorem 1.3 still works given this transition-kernel estimate and the fact that 7, can be
coupled with the (stationary) two-sided WSF as in the proof of Theorem 1.3 via Wilson’s algorithm.
This holds as long as the two-sided LERW can be sampled from the two-sided simple random walk
as in Section 2.5. By (4.3) and Lemma 2.6, this is true if G is unimodular. O

We expect that the unimodularity assumption in Theorem 4.3 can be removed. However, this
would require a different approach, because for nonunimodular, vertex-transitive graphs, although
the two-sided LERW can still be defined by a limiting procedure, it is not related to the two-sided
simple random walk that we defined earlier.

5 Resampling property

In this section, we first prove Theorem 1.5 and Corollary 1.7 in Section 5.1. Then we provide a

counterexample to WSF(F¢(G)) = WSF(G) in Section 5.2.

5.1 Proof of Theorem 1.5 and Corollary 1.7

We introduce the following notation. Given a graph G, suppose H is a random finite subgraph of
G. Let us sample a random forest on G as follows. First sample H. Conditioning on H, uniformly
sample a spanning tree on each component of H. The unconditional law of the resulting random
forest is denoted by USF(H).

Proof of Theorem 1.5. We prove only FSF(Fw(G)) = WSF(G) since FSF(§¢(G)) = FSF(G) can be
proved in exactly the same way.

Fix o € V(G). For a positive integer n, let §4 be a sample of WSF(Bg(o,n)). For 0 < m < n,
thinking of §y N Bg(o,m) and §w N Bg(o,m) as subgraphs of Bg(o,m), let Ky, ,, and K, be their
induced-component graphs, respectively. For a fixed m, as n tends to oo, the laws of F7 N Bg(o, m)
and §w N Bg(o,m) can be coupled so that they are identical with probability 1 — 0,,(1). Hence the
same is true for K, , and K,,. Conditioning on K,, , = K, the conditional law of §Fy N Bg(o,m) is
USF(K) because every spanning forest of K that is connected in each component of K extends to a
spanning tree of B(;/(o,\n) in the same number of ways. Letting n tend to co, we see that the law of
Sw N Bg(o,m) is USF(K,,). Note that (K,)m>1 is an exhaustion of §w(G). (More precisely, each
component of Fy(G) is exhausted by the corresponding sequence of components of K,,.) Therefore
by the definition of FSF, the measures USF(K,,) converge to FSF(§w(G)) as m — oo (restricted to
any finite subgraph of G). Since the law of Fy N B (o, m) is USF(K,,), by letting m tend to oo, we

obtain WSF(G) = FSF(3w(G)). 0

Proof of Corollary 1.7. Recall that WSF(G) < FSF(G) for any locally finite connected graph G (see,
e.g., [LP16, Section 10.2]). Together with Theorem 1.5, we obtain

WSF($w(G)) < FSF(§w(G)) = WSF(G).

Let (3, 8w) be a coupling of WSF(Fw(G)) and WSF(G) such that §,, C Fw. Since each connected
component of F, is an infinite graph a.s., while each component of §y, has a single end, we must have
Sw = &% a.s. This proves the first assertion; the second is even simpler, because by Theorem 1.5,
we need only show that WSF(G) = FSF(G). O
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5.2 A counterexample for WSF(FSF(G)) = WSF(G)

Recall that for any graph G and neighbors z,y in G, Kirchhoff’s formula extended to the wired
spanning forest gives that P[(z,y) € §w(G)] = RS (=, y); see [LP16, Equation (10.3)]. Here, the

wired effective resistance between x and y is defined by

RE a(ey) = (f{E(7)5 £(2) =1, 7ly) =0, #(/ 'R\ {0}]) < oo})

If H is a subgraph of G that includes (x,y) but does not include at least one edge (u,w) for which
the wired current z‘(f ’y)(u, w) # 0, then Thomson’s principle (uniqueness of the minimizing-energy
unit flow) yields P[(z,y) € Fw(G)] < P[(z,y) € Fw(H)]; see [LP16, Section 9.1] for the definition of
wired current.

Now let G be the graph consisting of two copies of Z° which we denote by Z® x {0} and
75 x {1}, and an edge e connecting op := (0,0) and o1 := (0,1). As before, o represents the origin
of Z5. Since Z° is transient, the wired current i¢, is nonzero on infinitely many edges of Z° x {i}
for each 7 € {0,1}. (In fact, it can be proved that all edges have nonzero current.) Recall that
FSF(Z®) = WSF(Z). Since §¢(Z’) contains infinitely many trees a.s., its induced components are
not all of Z°. Furthermore, e is not contained in any cycle, whence e € F¢(G) a.s., and FSF(G) may
be coupled with FSF(Z° x {0}) and FSF(Z® x {1}) so that F¢(G) = {e} UT¢(Z° x {0}) UF¢(Z5 x {1}).
Let T be the component of F¢(G) containing e. Then 7. consists of e and the component of
F:(Z° x {i}) containing o;, where i = 0,1. Each edge of Z® has the same probability of being in
5t(Z5), whence infinitely many edges (u,w) with i€ (u,w) # 0 are not in T, a.s. It follows from the
preceding paragraph that P[(x,y) € Fw(G)] < P[(x,y) € Fw(Te) | To]. Taking the expectation gives
the result.

This same method answers negatively a long-standing question of whether WSF(F¢(G)) =
WSF(G) for Cayley graphs, G. We may take G to be the natural Cayley graph of the free product
of Z? with Zs to obtain a counterexample. The analysis is similar to the preceding.

References

[BKPS04] I. Benjamini, H. Kesten, Y. Peres, and O. Schramm. Geometry of the uniform spanning
forest: transitions in dimensions 4,8,12,.... Ann. of Math. (2), 160(2):465-491, 2004.
MR2123930 (2005k:60026)

[BLPS99] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm. Group-invariant percolation on
graphs. Geom. Funct. Anal., 9(1):29-66, 1999. MR99m:60149

[BLPSO01] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm. Uniform spanning forests. Ann.
Probab., 29(1):1-65, 2001. MR1825141 (2003a:60015)

[BLS99] I. Benjamini, R. Lyons, and O. Schramm. Percolation perturbations in potential theory
and random walks. In M. Picardello and W. Woess, editors, Random Walks and Discrete
Potential Theory, Sympos. Math., pages 56-84, Cambridge, 1999. Cambridge University
Press. Papers from the workshop held in Cortona, 1997. MR 1802426

[Dub09] J. Dubédat. SLE and the free field: partition functions and couplings. J. Amer. Math.
Soc., 22(4):995-1054, 2009. MR2525778

[HN17] T. Hutchcroft and A. Nachmias. Indistinguishability of trees in uniform spanning forests.
Probab. Theory Related Fields, 168(1-2):113-152, 2017. MR3651050

15


http://www.ams.org/mathscinet-getitem?mr=2123930
http://www.ams.org/mathscinet-getitem?mr=99m:60149
http://www.ams.org/mathscinet-getitem?mr=1825141
http://www.ams.org/mathscinet-getitem?mr=1802426
http://www.ams.org/mathscinet-getitem?mr=2525778
http://www.ams.org/mathscinet-getitem?mr=3651050

[HP19] T. Hutchcroft and Y. Peres. The component graph of the uniform spanning forest:
transitions in dimensions 9,10, 11,.... Probab. Theory Related Fields, 175(1-2):141-208,
2019. MR4009707

[Hut18] T. Hutchcroft. Interlacements and the wired uniform spanning forest. Ann. Probab.,
46(2):1170-1200, 2018. MR3773383

[Hut19] T. Hutchcroft. Universality of high-dimensional spanning forests and sandpiles. Probab.
Theory Related Fields, Jun 2019. http://dx.doi.org/10.1007/s00440-019-00923-3.

[Law80] G. F. Lawler. A self-avoiding random walk. Duke Math. J., 47(3):655-693, 1980. MR587173

[Law18] G. F. Lawler. The infinite two-sided loop-erased random walk. ArXiv e-prints, February
2018, 1802.06667.

[LMSO08] R. Lyons, B. J. Morris, and O. Schramm. Ends in uniform spanning forests. Electron. J.
Probab., 13:paper no. 58, 1702-1725, 2008. MR2448128

[LP16] R. Lyons and Y. Peres. Probability on trees and networks, volume 42 of Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, New York, 2016.
MR3616205

[LSW04] G. F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased
random walks and uniform spanning trees. Ann. Probab., 32(1B):939-995, 2004. MR2044671

[LSW19] G. F. Lawler, X. Sun, and W. Wu. Four dimensional loop-erased random walk. Ann.
Probab., 2019. To appear.

[McG91] S. McGuinness. Recurrent networks and a theorem of Nash-Williams. J. Theoret. Probab.,
4(1):87-100, 1991. MR1088394

[Mor03] B. Morris. The components of the wired spanning forest are recurrent. Probab. Theory
Related Fields, 125(2):259-265, 2003. MR1961344

[NW59] C. St. J. A. Nash-Williams. Random walk and electric currents in networks. Proc.
Cambridge Philos. Soc., 55:181-194, 1959. MR23:A2239

[Pem91] R. Pemantle. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab.,
19(4):1559-1574, 1991. MR1127715 (92¢:60014)

[Pet83] K. Petersen. Ergodic theory, volume 2 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1983. MR833286

[Sch00] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel
J. Math., 118:221-288, 2000. MR 1776084

[Shel6] S. Sheffield. Quantum gravity and inventory accumulation. Ann. Probab., 44(6):3804-3848,
2016. MR3572324

[Sun19] X. Sun. Random planar geometry through the lens of uniform spanning tree. Bernoulli
News, 26(2):10-13, 2019.

[Wil96] D. B. Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996), pages 296-303. ACM, New York, 1996. MR 1427525

16


http://www.ams.org/mathscinet-getitem?mr=4009707
http://www.ams.org/mathscinet-getitem?mr=3773383
http://dx.doi.org/10.1007/s00440-019-00923-3
http://www.ams.org/mathscinet-getitem?mr=587173
http://www.ams.org/mathscinet-getitem?mr=2448128
http://www.ams.org/mathscinet-getitem?mr=3616205
http://www.ams.org/mathscinet-getitem?mr=2044671
http://www.ams.org/mathscinet-getitem?mr=1088394
http://www.ams.org/mathscinet-getitem?mr=1961344
http://www.ams.org/mathscinet-getitem?mr=23:A2239
http://www.ams.org/mathscinet-getitem?mr=1127715
http://www.ams.org/mathscinet-getitem?mr=833286
http://www.ams.org/mathscinet-getitem?mr=1776084
http://www.ams.org/mathscinet-getitem?mr=3572324
http://www.ams.org/mathscinet-getitem?mr=1427525

	1 Introduction
	2 Preliminaries
	2.1 Basic notations
	2.2 Wilson's algorithm
	2.3 Bounds on effective resistance
	2.4 Indistinguishability of WSF components
	2.5 Two-sided random walk and loop-erased random walk

	3 Recurrence when d >= 8
	3.1 Proof of Lemma 3.1
	3.2 Extension to vertex-transitive graphs

	4 Linear growth of resistance when d >= 9
	5 Resampling property
	5.1 Proof of Theorem 1.5 and Corollary 1.7
	5.2 A counterexample 


