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Numerical study of anomalous diffusion of light in semicrystalline polymer structures
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From the spread of pollutants in the atmosphere to the transmission of nutrients across cell membranes,
anomalous diffusion processes are ubiquitous in natural systems. The ability to understand and control the
mechanisms guiding such processes across various scales has important application to research in materials
science, finance, medicine, and energetics. Here we present a numerical study of anomalous diffusion of
light through a semicrystalline polymer structure where transport is guided by random disorder and nonlocal
interactions. The numerical technique examines diffusion properties in one-dimensional (1D) space via the
spectrum of an Anderson-type Hamiltonian with a discrete fractional Laplacian operator (−�)s, s ∈ (0, 2) and
a random distribution of disorder. The results show enhanced transport for s < 1 (superdiffusion) and enhanced
localization for s > 1 (subdiffusion) for most examined cases. An important finding of the present study is that
transport can be enhanced at key spatial scales in the subdiffusive case, where all states are normally expected to
be localized for a (1D) disordered system.

DOI: 10.1103/PhysRevResearch.2.043375

I. INTRODUCTION

The ubiquity of anomalous diffusion processes observed in
laboratory experiments and in nature is well captured by the
words of Klafter and Sokolov [1]: “although these phenomena
are called anomalous, they are abundant in everyday life:
anomalous is normal.” Superdiffusion has been observed in
the search patterns of animals [2–4], the spread of pollutants
in the ocean and the atmosphere [5,6], and particle transport
in turbulent plasmas [7–9]. Subdiffusion has been found char-
acteristic of electron transport in amorphous materials [10],
gas transport in porous media [11], signal transmission across
cell membranes [12,13], and protein fluctuation patterns [14].
The variety of natural systems exhibiting anomalous diffu-
sion requires the development of generalized mathematical
techniques together with appropriate physical interpretations,
adapting such techniques to specific problems. In this paper
we study, numerically, anomalous diffusion using the frac-
tional Laplacian spectral (FLS) method [15], which is suitable
for modeling transport guided by nonlocal interactions and
random disorder. Although this technique is general (applica-
ble to any Anderson-type Hamiltonian of the form defined in
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Ref. [16]), here we focus on a Hamiltonian appropriate for the
problem of light transport in semicrystalline polymers, where
both disorder and nonlocal interactions can occur [17,18].

The study of light transport in random media and pho-
tonic crystals has resulted in the advancement of a large
class of groundbreaking imaging techniques, including coher-
ent backscattering [19,20], dynamic light scattering [21,22],
and optical coherence tomography [23]. Due to the variety
and complexity of disordered media examined with these
techniques, both classical and quantum formulations have
been used to account for the possibility of various processes
affecting light transport, such as Anderson localization, non-
linear effects, and nonlocal interactions [24–27]. Quantum
field-theoretical methods have been proposed for the charac-
terization of disordered complex media with short laser pulses
in an optical coherence tomography setup [28,29]. These
models investigate light transport in the presence of highly
nonlinear and discontinuous processes, including interference
effects and transition to Anderson localization. An interesting
question arises in the case of photon transmission through
disordered gain or loss media, where the interplay between
strong Anderson localization of light and nonlinear effects can
yield reduction of the gain or loss induced correlation length,
even though no truly localized modes are predicted in this
regime [30,31]. An important application of such theoretical
methods is the development of random lasers, where multiple
scattering of photons from active resonators within the dis-
ordered gain media yields amplification without the need to
use external feedback or a mirror system [28]. Polymers have
been proposed as candidate gain media for random lasers due
to the complexity of their molecular structure and inherent
network-mediated interactions [32]. Generally speaking, the
physical origin of nonlocal interactions in polymers can be
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attributed to their microstructure and the way branch points
or folding processes lead to deviations from a simple 1D
chain structure [33,34] (see Fig. 3 and related discussion in
Sec. III B).

Motivated by such applications, the present work aims
to extend the theory of Anderson localization of light to
include many-body nonlocal interactions and to investigate
the resulting anomalous diffusion transport in a semicrys-
talline polymer medium. Anderson localization describes the
absence of diffusion due to lattice impurities (disorder) [35]
and has been examined in various systems, including quantum
walkers, Bose-Einstein condensates, photon lattices, and gran-
ular chains [25,36–39]. A long-standing question in the theory
of Anderson localization is the effect of many-body nonlocal
interactions on diffusion in disordered media [40]. Many-body
transport has been investigated in fermionic systems at high
temperatures, quantum spin chains, and weakly correlated
electrons [41–43]. The interplay between stochastic disorder
and nonlocal interactions can lead to the excitation of various
dynamical instabilities, such as turbulence in plasma [8], as
well as solitary waves and solitons in soft matter [44,45].
Thus, generalizing the theory of Anderson localization to ac-
count for nonlocality may address important questions beyond
the realm of condensed-matter physics.

In this paper, we use results from spectral theory and
fractional calculus to investigate, numerically, anomalous dif-
fusion of light due to nonlocal interactions in a semicrystalline
polymer medium with Anderson-type random disorder. One
of the main interesting aspects of the spectral approach is that
it represents a different way of approaching the localization
problem: the spectral method does not assume the (commonly
accepted but not rigorously physical) scaling hypothesis, as
discussed in Refs. [46,47]. In particular, long-range interac-
tions do not arise from an upscaling effect or procedure, but
rather directly from the explicit numerical model as described
in Ref. [15]. In this approach, nonlocal interactions are mod-
eled using the fractional Laplace operator (−�)s, s ∈ (0, 2),
which is often employed in the study of anomalous diffu-
sion [48,49]. In the regime s ∈ (0, 1), the fractional Laplacian
has been used to demonstrate the emergence of anomalous
diffusion and Lévy flights in the dynamics of both networks
and lattices with nonlocal interactions [50–52]. The related
fractional Laplacian matrix of networks was further used to
define a fractional random walk and a fractional Schrödinger
equation, establishing a fractional formulation of quantum
mechanics that combines long-range dynamics with the quan-
tum superposition of states [53–55]. Thus, this operator is
suitable for both classical and quantum formulations of the
diffusion problem.

The properties of the discrete fractional Laplacian
(−�)s, s ∈ (0, 2) were examined in detail in our previ-
ous work [15], where we also discussed its application in
a spectral approach [46] to the Anderson localization prob-
lem. The resulting fractional Laplacian spectral (FLS) model
was employed in one-dimensional numerical simulations [15]
which demonstrated qualitative transport enhancement in the
superdiffusive case, s ∈ (0, 1), and enhanced localization in
the subdiffusive regime, s ∈ (1, 2). Here we extend the ap-
plication of the FLS technique by examining transport as a
function of disorder concentration, exponent of the Laplacian,

and vector scales in the Hilbert space. These parameters are
interpreted as physical properties of a polymer medium, such
as molecular chain structure and orientation.

In Sec. II, we summarize the main theoretical results used
as a basis for the FLS model. Section III introduces the
problem of light transport through a semicrystalline polymer
and discusses the physical meaning of the key quantities in
the FLS simulation in this context. Specifically, we discuss
the choice of 1D geometry, the interpretation of disorder
concentration, and the physical origins of nonlocal interac-
tions within polymer media. Section IV presents a numerical
investigation of anomalous diffusion for various disorder con-
centrations, properties of the nonlocal operator, and vector
scales in the Hilbert space. A major finding of the present
study is the existence of enhanced transport at key vector
scales in the subdiffusive regime, where all states are typically
expected to be localized in a 1D disordered system. The pos-
sible physical origins of these results are discussed in Sec. V.
Section VI provides a summary of the results and outlines
directions for future research. The details of the numerical
simulation are summarized in Appendix A. (A detailed de-
scription of the simulation and related proofs can be found in
Ref. [15].) In Appendix B, we examine numerical instabilities
due to roundoff errors and other approximations.

II. FRACTIONAL LAPLACIAN SPECTRAL MODEL

A. Random fractional discrete Schrödinger operator

In this paper, we extend the 1D Anderson localization
problem to include nonlocal interactions by considering the
random fractional discrete Schrödinger operator

Hs,ε := (−�)s +
∑
i∈Z

εi〈·, δi〉δi, (1)

where (−�)s, s ∈ (0, 2) is the discrete fractional Laplacian,
δi is the ith standard basis vector of the one-dimensional
(1D) integer space Z, 〈·, ·〉 is the �2(Z) inner product, and
εi are independent variables, identically distributed according
to a uniform (flat) distribution on the interval [−c/2, c/2 ],
with c > 0. The operator in (1) is appropriate for studying
particle transport characterized by nonlocal interactions, such
as positive or negative correlations in a many-body disordered
system. It is expected that in the superdiffusive regime s ∈
(0, 1), transport is enhanced due to positive correlations, while
in the subdiffusive regime s ∈ (1, 2), propagation through
the medium is impeded due to negative correlations [48,49].
In the limit where s → 1, the fractional Laplacian reduces
to the classical case. Note that, in our model, the effect of
random disorder is considered as a localization mechanism,
which is distinct from the effect of negative correlations in the
subdiffusive regime.

Throughout the literature, there are numerous definitions
of the fractional Laplacian involving singular integrals, semi-
groups of operators, and harmonic extensions [56]. Caffarelli
and Silvestre [57] demonstrated that the operator (−�)s, s ∈
(0, 1) can be constructed from a harmonic extension problem
to the upper half space via an operator that maps Dirichlet
to Neumann boundary conditions. Recently, Chen et al. [58]
derived similar extension results for the case (−�)s, s > 1.
Starting with a hypersingular integral form of the fractional
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Laplacian, Padgett et al. [15] combined these techniques to
obtain the following 1D series representation of (−�)s for the
interval s ∈ (0, 2),

(−�)su(n) =
∑

m∈Z;m �=n

[u(n) − u(m)]Ks(n − m), (2)

where

Ks(m) =
{ 4s�(1/2+s)√

π |�(−s)|
�(|m|−s)

�(|m|+1+s) , m ∈ Z\{0},
0, m = 0.

(3)

Here u is a discrete function on Z and � is the Gamma
function. Numerical simulations by Padgett et al. [15] pro-
vided preliminary confirmation that the representation in (2)
yields enhanced transport (superdiffusion) for s ∈ (0, 1) and
enhanced localization (subdiffusion) for s ∈ (1, 2) when com-
pared to the classical case s = 1. The present work expands
on this study by investigating how transport at different 1D
spatial scales depends on the interplay between disorder con-
centration and the characteristics of the nonlocal interactions.

B. Physical Interpretation of s and c

A detailed discussion on the physical interpretation of the
exponent s can be found in Sec. 2.2. of [15] and in Ref. [59].
Here we summarize the basic logic of this interpretation. In
the classical case, where s = 1, the function u from Eq. (2) is
a discrete harmonic function on the space Z, that is (−�)u =
0. The discrete harmonic function u represents a physical
situation in which a particle is equally likely to “jump” to
either one of its nearest neighbors under the action of the
discrete Laplacian. In other words, in 1D space u satisfies the
following mean value property:

u(n) = P(n + 1)u(n + 1) + P(n − 1)u(n − 1)

= 1
2 u(n + 1) + 1

2 u(n − 1), (4)

where P(n + 1) and P(n − 1) are the probabilities that a par-
ticle located at the lattice point n will jump to the lattice
points n + 1 or n − 1, respectively. Following the same logic,
assume that the function u is a fractional discrete harmonic
function, that is, (−�)su = 0. Then from Eq. (2), u satisfies
the following fractional mean value property:

u(n) =
∑

m∈Z;m �=n

u(m)Ps(n − m) =
∑

m∈Z;m �=n

u(m)Ks(n − m)

Ks(m)
,

(5)
where Ps(n−m) is the probability that a particle located at the
lattice point n will jump to any other lattice point m in the
space Z. From the definition of Ks(m) in Eq. (3), one can show
that a fraction s ∈ (0, 1) yields increased probability for parti-
cle transport away from its initial position when compared to
the classical case s = 1. In the s ∈ (1, 2) case, while the time-
evolved dynamics is likely to enhance particle localization,
as compared to the s = 1 case, the particle transport in this
regime is still guided by the action of the nonlocal operator
(−�)s, s ∈ (1, 2). The resulting process can be thought of as
a superposition between the action of the classical Laplacian
plus the action of a fractional Laplacian with exponent s̃ ∈
(0, 1), i.e., the subdiffusive operator can be decomposed into
(−�)s = (−�)s̃(−�). When the two actions are combined

together, there is an increased probability that the particle
jumps back to the original position. This point will be further
discussed in Sec. V, where we interpret the results from the
numerical simulation.

Generally speaking, the operator in (1) describes a lat-
tice with atoms located at the integer lattice points in Z.
The random disorder part in (1), given by the variables εi ∈
[−c/2, c/2 ], can be interpreted as fluctuations of the lattice
on-site potential energies, i.e., energy varies randomly from
site to site. Such fluctuations can be physically caused by
different mechanisms, including random spacing of impuri-
ties, random displacements of atoms from the geometrical
lattice points, or random arrangements of electronic or nuclear
spins. In the present study of light transport in a semicrys-
talline polymer, the randomness describes fluctuations in the
molecular orientation due to folding of the polymer chains
(further discussed in Sec. III). As the disorder concentration
c is increased beyond a certain threshold value, diffusion
comes to a halt, which is commonly referred to as Anderson
localization [35]. For the one-dimensional case, in the nearest-
neighbor (local) approximation, it is known that Anderson
localization is induced by any nonzero concentration of dis-
order [60]. However, in the nonlocal approximation studied
here, the localization behavior can be either enhanced or sup-
pressed by varying the fractional exponent s on the Laplacian
in Eq. (1). This allows the identification of qualitative differ-
ences between classical and anomalous diffusive transport and
will be used as a criterion for the interpretation of numerical
results (see Appendix A for details).

C. Spectral approach to transport

In our model, the time evolution of the initial state ϕ0

of the system is generated under the iterative application of
the Hamiltonian Hs,ε in (1). For convenience, let ϕ0 ≡ δ0,
where δ0 is located at the origin of the 1D integer space Z.
Features of the resulting transport behavior are then deter-
mined from a numerical test, called the spectral approach,
where one computes the mathematical distance between the
time evolution sequence of the initial state δ0 and any other
fixed state ν in the same Hilbert space, such that ν �= δ0.
The time evolution of δ0 under the action of Hs,ε is given
by the sequence {δ0, Hs,εδ0, H2

s,εδ0, . . . , H τ
s,εδ0}, where τ ∈ N

is the number of time steps (equivalently, τ is the number
of iterations of the Hamiltonian). Let {ϕ′

0, ϕ′
1, ϕ

′
2, . . . , ϕ

′
τ } be

the sequence of �2(Z) orthogonal vector states obtained from
Gram-Schmidt orthogonalization of the original sequence
{δ0, Hs,εδ0, H2

s,εδ0, . . . , H τ
s,εδ0}. This step allows for a proper

definition of a mathematical distance in the Hilbert space.
Then, for any nontrivial vector ν �= δ0, we define the distance
parameter (mathematical distance) as

Dτ
s,ε :=

√√√√1 −
τ∑

k=0

( 〈ν, ϕ′
k〉

‖ν‖‖ϕ′
k‖

)2

, (6)

where ϕ′
k is the kth term of the sequence {ϕ′

0, ϕ′
1, ϕ

′
2, . . . , ϕ

′
τ }.

Here, 〈·, ·〉 is the �2(Z) inner product and ‖ · ‖2 = 〈·, ·〉. Equa-
tion (6) was originally derived in Liaw [46], where results
from spectral theory were used to verify the following con-
jecture:
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FIG. 1. (a) Schematic representation of semicrystalline polymer showing regions of ordered and disordered structures, consisting of
folded molecular chains. (b) Birefringent spectroscopy: light, initially polarized at an angle α0 is transmitted through a polymer sample
with birefringent properties. The resulting ordinary and extraordinary rays are then passed through an analyzer filter with a fixed polarization
β �= α0, which yields a measurable retardation between the two rays.

Extended States Conjecture: For an Anderson-type Hamil-
tonian, if one can find a nontrivial vector ν, for which the
limit of the distance parameter approaches a positive value as
time approaches infinity, then the spectrum of the Hamiltonian
includes an absolutely continuous (ac) part,1 which indicates
the existence of extended energy states.

In other words, if one demonstrates with positive probabil-
ity that

lim
τ→∞ Dτ

s,ε > 0, (7)

then the time-evolved transport behavior of the system under
the action of the examined Hamiltonian includes extended
energy states. This spectral analysis was previously used
to demonstrate numerically the existence of extended states
in two-dimensional (2D) lattices of various geometries at
small disorder in the nearest-neighbor (local) approxima-
tion [62–65]. Here we use the spectral method to investigate
how the transport behavior in 1D media with random disorder
is affected by nonlocal interactions. Since it is a well-known
result that for s = 1 in one-dimensional space all energy states
are localized in the presence of disorder [60], examination of
the same problem using both s = 1 and s �= 1 allows us to
identify how nonlocality affects the energy spectrum. This
choice of 1D geometry is also appropriate for the problem
of light transport through a semicrystalline polymer due to
the discrete nature of photon interactions, the 1D nature of
molecular chains in polymers, and the presence of network-
mediated interactions originating from chain folding. The
extension of the fractional Laplacian spectral model to trans-
port problems in 2D media with random disorder and nonlocal
interactions is a topic of our future work.

1The spectrum of a Hamiltonian H consists of (i) an absolutely
continuous part, corresponding to extended states and (ii) a singular
part, which includes discrete eigenvalues and poorly behaved tran-
sitional states (called singular-continuous part of the spectrum). If
the spectrum of H coincides with the singular part (i), transport in
the examined problem is localized. In the presence of nonvanishing
absolutely continuous part of the spectrum, delocalization occurs in
the form of extended states (by the RAGE theorem; see, e.g., Sec. 1.2
of [61]).

III. LIGHT TRANSPORT THROUGH A
SEMICRYSTALLINE POLYMER

As semicrystalline polymers are characterized both by dis-
order and nonlocal interactions [17,18], the operator in (1) is
appropriate for describing the Hamiltonian structure of such
materials. Light transport in disordered media is characterized
by a multiple-scattering process resulting from random fluc-
tuations of the refractive index in space [66]. The addition of
nonlocal interactions can yield anomalous diffusion of light,
which has been experimentally observed in heterogeneous di-
electric materials [67] and in hot atomic vapors [68]. Although
polymers are often highly disordered, network-mediated non-
local interactions can naturally arise from the intricate folding
of their molecular chains (e.g., protein folding [69]) or can
be artificially induced by doping (e.g., organic semiconduc-
tors [70]). Figure 1(a) shows a schematic representation of a
semicrystalline polymer structure, which exhibits both disor-
der and crystalline regions of characteristic scale.

A fundamental topic in the study of both artificial polymers
and biopolymers is understanding how the molecular structure
and orientations of polymer chains determine the macroscopic
properties of the material. The molecular orientation within
a polymer sample can be determined by measuring its bire-
fringence properties. Birefringence is a phenomenon where
an incident light beam is split into two mutually orthogonal
rays, called ordinary ray and extraordinary ray [Fig. 1(b)],
which travel with different velocities inside the birefringent
material. The ordinary ray travels through the material with
the same velocity in every direction, as it would have traveled
in an isotropic crystal, while the extraordinary ray travels with
a velocity dependent on the propagation direction within the
crystal. Birefringent spectroscopy (Sec. 2.5.4 of [71]) is an
optical technique in which the sum of the polarizability of
all molecular chains within the polymer yields a measurable
retardation between the ordinary and extraordinary rays pro-
duced by light transmission through a sample material. In this
section, we provide a physical interpretation of Eq. (6) in the
context of such retardation between orthogonal components.

A. Formulation of the problem

Here we consider a problem where a plane-polarized light
beam is transmitted through a semicrystalline polymer, and
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then passed through another polarization filter [Fig. 1(b)].
Assume that the initial polarization direction α of the beam
changes due to successive interactions of the photons with the
spatial structures within the lattice. A photon-based descrip-
tion of this process requires discretization and probabilistic
interpretation, such as the one provided by Dirac in Sec. 2
of [72]. Dirac proposed that light plane-polarized in a certain
direction, say at an angle α with respect to the axis ẑ, can be
described as consisting of photons, each polarized in the same
direction α. When α-polarized light passes through a single
slit, aligned with ẑ, the probability of a photon being trans-
mitted approaches sin2α, while the probability of a photon
being blocked approaches cos2α. As the number of photons
becomes large, the conservation of probability is ensured by
the relation 1 = sin2α + cos2α. These probabilities coincide
with the measurable fractions of transmitted and blocked light,
which justifies the discretized representation. This problem
includes a single contact event for each photon with a slit
representing single fixed direction in space.

We generalize Dirac’s representation to another discretized
problem where the photons interact with many contact points
within a polymer medium, and are then transmitted through an
analyzer filter structure, which can only transmit light polar-
ized along a fixed subset of directions in space. The question
of interest is how photon interactions with the complex molec-
ular structures within the sample affect the probability of light
retardation, with respect to the analyzer filter. In the following,
the iterative application of the operator in (1) guides the time
evolution of light propagation due to successive interactions
with contact points in the polymer sample.2 In this represen-
tation, we show that the distance parameter Dτ

s,ε in Eq. (6) now
quantifies the probability that a photon is transmitted away
from the optical axis, defined by the choice of an analyzer
filter.

Specifically, consider the 1D Hilbert space H whose ba-
sis vectors δi represent the lattice points in space along the
direction of light propagation where the light beam interacts
with the sample molecules. The Hamiltonian structure of the
polymer sample is modeled by the operator Hs,ε in Eq. (1),
where the random disorder term now corresponds to stochas-
tic fluctuations {εi} in the polarizability of molecular bonds
(e.g., due to spatial defects), while the fractional Laplacian
accounts for nonlocal scattering events [e.g., due to folding
of the molecular chains, as shown in Fig. 1(a)]. Following
the discretized description by Dirac, let the incident light
beam consist of photons, each initially polarized in the same
direction, and let this light beam enter the sample at an initial
contact point in space δ0. In other words, at the 0th time
step, the initial spatial state is given by the delta vector δ0

of the 1D lattice, with probability 1. The iterative applica-
tion of the Hamiltonian Hs,ε to the initial state δ0 yields the
time evolution of light transport through the sample, given by
the sequence {δ0, Hs,εδ0, H2

s,εδ0, . . . , H τ
s,εδ0}, where τ is the

number of time steps. Using the Gram-Schmidt procedure,
one can orthogonalize the members of this sequence to obtain

2The use of unitary and Hermitian operators that evolve the polar-
ization state of photons in time is common in the study of birefringent
crystals [73].

the sequence {ϕ′
0, ϕ′

1, ϕ
′
2, . . . , ϕ

′
τ }, which now represents the

light beam propagation to new contact points δi after each
scattering event.

Assume that the semicrystalline polymer sample contains
regions of ordered structures, which behave like uniaxial crys-
tals of characteristic scale. To model such regions, consider a
unit vector of the form

ν̂ = ν

‖ν‖ = 1

L

L∑
j=1

δ j, (8)

which is a linear combination of L number of basis vectors
in the Hilbert space, with equal weights. This vector cor-
responds to a perfectly ordered 1D lattice with L distinct
contact points, which represent a subspace of L indepen-
dent elementary directions defined by the corresponding base
vectors in the Hilbert space. This vector can be viewed as
a test lattice (or analyzer filter) probing for the existence
of crystalline regions of similar scale within the semicrys-
talline polymer [Figs. 2(a)–2(c)]. After each contact event
(iteration of Hs,ε), the polarization state changes in such a
way that allows photons to travel either along the directions
defined by ν̂ or along the direction orthogonal to ν̂ with a
certain probability. Substituting expression (8) into Eq. (6)
gives

Dτ
s,ε :=

√√√√1 −
τ∑

k=0

( 〈ν, ϕ′
k〉

‖ν‖‖ϕ′
k‖

)2

=
√√√√1 −

τ∑
k=0

cos2αk, (9)

where αk is the generalized angle between the vector direc-
tions in ν̂ and the directions perpendicular to ν̂ at the kth time
step of the iteration process. Due to the Gram-Schmidt orthog-
onalization used to obtain the sequence {ϕ ′

0, ϕ
′
1, ϕ

′
2, . . . , ϕ

′
τ }

and the normalization in Eqs. (8) and (9), at each time step,
the component cos2αk and the component Dk

s,ε are orthogonal.
Thus, in this representation, the distance parameter has an
analogous role as sin2α in the Dirac example, which allows
for a similar interpretation. For a large number of scattering
events (large τ ),

∑τ
k=0 cos2αk represents the probability that

the photon belongs to an ordinary light ray that propagates
in a perfectly ordered crystalline region of fixed finite size
L, while (Dτ

s,ε )2 = 1 − ∑τ
k=0 cos2αk quantifies the probability

that new directional information is generated away from the
fixed region due to the dissimilarity between the idealized
reference lattice and the examined polymer structure. The
conservation of probability in this case is ensured by the
Pythagorean theorem in the Hilbert space.

The plot Dτ
s,ε (τ ) now provides a measure of the difference

between spatial directions accumulated under the action of the
Hamiltonian Hs,ε and the spatial directions in ν̂, defined by the
perfectly ordered crystalline region of characteristic scale L.
Therefore, by varying the number L of basis vectors δ j in the
reference lattice and/or the weights for each δ j (fluctuations
in the atomic order), one can examine the presence of simpler
spatial structures within the more complex polymer medium.
If the successive iterations continue to generate new direc-
tions as τ → ∞, the distance parameter Dτ

s,ε is nonvanishing
with respect to the reference lattice, indicating dissimilarity
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FIG. 2. (a) Crystalline and (b) partially ordered amorphous structures can be (c) superimposed to determine the scale of crystalline regions.
The distance parameter in Eq. (6) can be used to quantify the scale of crystalline regions within the semicrystalline sample.

between the assumed scale of crystalline regions and the ac-
tual structure of the sample.

As discussed in Sec. II, limτ→∞Dτ
s,ε > 0 indicates the ex-

istence of extended states, or transport. Thus, in the present
representation, a nonvanishing limiting value of the distance
parameter suggests transport beyond the chosen reference lat-
tice scale. In contrast, if limτ→∞Dτ

s,ε = 0 for a certain choice
of the reference lattice ν̂, the structure of the sample is
expected to exhibit regions of crystallinity characterized by
size/order, comparable to ν̂. Based on the above formulation,
in Sec. IV we present a numerical study of light transport
through the semicrystalline polymer structure described by
the Hamiltonian in Eq. (1). In the present work, we fix the
weights on the reference lattice vector from Eq. (8) and only
vary its size for different choices of disorder concentration
and properties of the fractional Laplacian. The application of
Eq. (6) when the calculation is performed using a reference
lattice with randomly selected vector weights will be explored
in our future work.

B. Range of nonlocality in a finite simulation

While the classical Laplacian � models nearest-neighbor
(local) interactions, the application of a fractional Laplacian
(−�)s results in interactions that, in principle, extend to in-
finity. In other words, the analytical expression in Eq. (2) is
exact when the summation is performed over an infinite num-
ber of nearest neighbors at each time step. Due to the finite
nature of the numerical simulation, calculation is restricted to
a finite number of nearest neighbors, called the effective range
of nonlocal interactions, which sets the upper limit for the
summation in Eq. (2). For all cases considered in this work,
this limit was varied in the interval range ∈ [50, 1000] and the
corresponding remainder removed by the truncation was R ∼
1/(range)2 ∼ (10−4–10−6). As in all cases the remainder is
small, the numerical cutoff yields a good approximation to the
fractional Laplacian. See Appendix B for further discussion
on the choice of truncation and its possible effect on numerical
results.

Introducing a numerical cutoff is not entirely unphysical
since nonlocal forces in nature can also exhibit characteristic
scales beyond which resulting interactions are not appreciable
(for example, consider shielding lengths in plasmas, beyond
which electric fields are screened). However, the proper in-
terpretation of numerical results depends on the choice of

reference vector size L. When L � range, the resulting cal-
culation models a transport problem, where after the first time
step the nonlocal interactions determined from the fractional
Laplacian (−�)s yield a nonzero probability for transport
beyond the reference scale examined. Since this probability
rapidly increases with the number of time steps, in these cases
the nonlocal interactions are effectively infinite with respect to
the fixed scale. In contrast, when L > range, a few iterations
of the Hamiltonian (time steps) are needed before the calcu-
lation yields a nonzero probability for transport beyond the
reference scale examined. Physically, this can be interpreted
as shielding of the nonlocal interactions, with the shielding
length related to the mismatch between the scales defined by
L and range.

Initially, we examine cases where the reference vector
size is equal to the assumed range of nonlocal interac-
tions, i.e., L = range. This intuitive choice makes sense when
one considers the folded chains forming the semicrystalline
polymer structure in Fig. 1(a) and the simplified picture
in Fig. 3. While classical diffusive transport occurs only
through nearest-neighbor interactions along a single molec-
ular chain, the presence of folding yields the possibility of
nonlocal transport across topological neighbors. In case of
symmetric folding, characteristic of crystalline regions within
the polymer, the nonlocal effects yield enhanced transport
(or superdiffusion) for smaller molecular weight (number of
molecules per chain). However, larger molecular weight re-
sults in increased thickness of the amorphous regions [74–77],
where the complexity of folds can result in transport retarda-
tion (or subdiffusion). Thus, it is reasonable to expect that
a correspondence exists between the characteristic size of

FIG. 3. Relation between molecular chain fold and the corre-
sponding diffusion regime.
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crystalline or amorphous regions and the characteristic range
of nonlocal effects, mediated by the molecular chain structure
and length. However, in complex materials, such as polymers,
the presence of random disorder further complicates such a
relation. Therefore, in the following analysis, we consider
both cases where range = L and where range �= L.

IV. NUMERICAL RESULTS

In this section, we conduct a numerical experiment where
the distance parameter in Eq. (6) is computed for various
choices of disorder concentration c, three types of nonlocal
interactions (determined by s), and scale L of a reference
lattice vector ν̂. Further details on the numerical simulation
and criteria for interpreting numerical results can be found
in Appendix A. The effect of numerical instabilities due to
roundoff errors and other approximations is discussed in Ap-
pendix B. The loss of orthogonality during the Gram-Schmidt
procedure is not considered likely to affect the present model,
as discussed in detail in Ref. [15].

In this section, each plot Dτ
s,ε (τ ) is an average of at least

ten realizations for the selected parameters, which minimizes
inaccuracies due to the random realization of disorder values.
Here, we are interested in the rate of decrease of each dis-
tance plot relative to the transport time within the medium.
The total transport time is defined by the total number of time
steps, which is fixed to τ = 10 000 in all simulations. In the
following discussion, the phrase rapidly drops to zero refers
to Dτ

s,ε plots which drop to zero within the first 10–20% of the
time steps considered, and the phrase slowly decreasing refers
to plots which do not drop to zero within the total number of
time steps considered.

The semicrystalline polymer structure is modeled by the
Hamiltonian in Eq. (1), with a discrete fractional Laplacian
given in Eqs. (2) and (3). Throughout this study, the con-
centration of disorder c is allowed to vary in magnitude,
but in all numerical experiments, the random disorder values
εi ∈ [−c/2, c/2 ] are selected according to a uniform (flat)
distribution. (See Kostadinova et al. [62] for a study of trans-
port in a 2D lattice, where disorder is selected from a Gaussian
and a modified Gaussian distribution.) To model the different
diffusion regimes resulting from nonlocal interactions, one
can vary the fraction on the Laplacian in the interval s ∈ (0, 1)
for superdiffusion, s ∈ (1, 2) for subdiffusion, or fix it to s = 1
for normal (Fickian) diffusion. The present study is focused
on three choices s = 0.9, 1, 1.1, which are considered rep-
resentative for each regime. Once the distribution of disorder
and fraction on the Laplacian are fixed, we vary the size L of
the reference lattice vector ν̂, which is given in Eq. (8).

To examine the dependence on disorder concentration c
in the three diffusion regimes, we initially fix the range of
nonlocal interactions to range = 300 and consider only a
reference vector of the same size L = 300. Figure 4 shows
the time evolution of distance parameters, where the disorder
concentration c is varied across four scales from c ∼ 10−4

to c ∼ 10−1. In each plot, white dashed lines are used to
distinguish among the four disorder regions. For the smallest
examined disorder interval, c ∼ 10−4, the value of Dτ

s,ε
does not decrease appreciably from 1 in the superdiffusive
regime [Fig. 4(a)], while a substantial decrease is observed

FIG. 4. Time evolution of distance parameter for various choices
of disorder concentration in the (a) superdiffusive, (b) diffusive,
and (c) subdiffusive regime. The color (greyscale) bar indicates the
value of the computed distance parameter, with blue (dark) colors
corresponding to values closer to 0 and red (light) colors correspond-
ing to values closer to 1. Yellow-green (brightest) colored regions
correspond to intermediate values of 0.5–0.6. In each plot, the white
dashed lines identify the four examined disorder scales.

for the subdiffusive case [Fig. 4(c)]. The classical diffusion
case shows a small decrease in Dτ

s,ε for c ∼ 10−4, which is
clearly enhanced in the range where c ∼ 10−3 [Fig. 4(b)]. For
all three diffusion regimes, the distance values drop rapidly
to zero for the higher disorder ranges of c ∼ 10−2 and
c ∼ 10−1, while preserving the expected overall behavior
(i.e., the subdiffusive case decreases slower than the diffusive
case, which decreases slower than the superdiffusive one).

The regions where the distance plots transition from a
slow decrease (delocalized behavior) to rapid drops are clearly
visible in Fig. 4. The range c ∼ 10−3 seems transitional for
both superdiffusive and diffusive realizations. In the subdiffu-
sive case, while all distance plots decrease to zero within the
number of time steps considered, the drops are smallest for
disorder in the range c ∼ 10−4 [larger red (light) color region
on the bottom left corner of Fig. 4(c)]. Figure 5 shows the time
evolution of distance plots for representative values from these
two smallest disorder scales: c ∼ 10−3 and c ∼ 10−4. In the
smaller range of disorder, where c ∼ 10−4, for all examined
cases the superdiffusive realizations decrease more slowly
with time than the diffusive ones, which in turn decrease
more slowly than the subdiffusive ones. This is what we call
the expected behavior [Fig. 5(a)]. For values c > 1 × 10−3,
we observe deviations from the expected behavior, in which
both super-and subdiffusive realizations decrease faster than
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FIG. 5. Time evolution of distance parameter for super diffu-
sion (red dashed lines), normal diffusion (grey solid lines), and
subdiffusion (blue dash-dotted lines) in the disorder range where
(a) c ∼ 10−4 and (b) c ∼ 10−3.

the classical diffusion case [Fig. 5(b)]. Since transport in a
one-dimensional lattice is highly sensitive to the concentration
of disorder, higher concentrations lead to localization for all
examined diffusion regimes, even in the presence of long-
distance interactions. In this case, the possibility for nonlocal
interaction in the anomalous diffusion realizations does not
produce qualitatively different transport behavior; instead, it
allows the system to reach localization more rapidly. Since we
are interested in regimes where qualitatively different diffu-
sive transport is observable, the following analysis is focused
on cases where c � 1 × 10−3.

To determine the expected size of crystalline regions in
the semicrystalline polymer, we fixed the concentration of
disorder to c = 1 × 10−3 and examined how the distance
plots change as a function of a reference lattice scale L in the
three diffusion regimes. As discussed in Sec. III, the physical
interpretation of positive limiting value of Dτ

s,ε as τ → ∞ is
the existence of extended states, or transport, beyond a region
of size comparable to the selected reference lattice vector
size L. In other words, for a given choice of a Hamiltonian
Hs,ε , if limτ→∞Dτ

s,ε > 0, it is likely that transport is enhanced
beyond the examined scale L, with the likelihood proportional
to the limiting value of Dτ

s,ε . Conversely, if the distance rapidly
drops to zero for a given L, it is expected that localization
under the action of Hs,ε is enhanced at that scale. Thus, in the
following analysis, we associate slowly decreasing distance
plots with possible crystalline regions and rapidly decreasing
plots with unlikely scales for the development of crystalline
structures.

Assuming that the range of nonlocal interactions in the
sub- and superdiffusive cases is comparable to the size of
crystalline regions, in Fig. 6 we show the results for the three
diffusion regimes at fixed disorder c = 1 × 10−3 and increas-
ing size L of the reference vector, while keeping L = range.
The reference vector size was increased from L = 50 to L =
1000 in increments of �L = 50. In the superdiffusive regime,
the limiting Dτ

s,ε values are positive for scales in the range

FIG. 6. Time evolution of distance parameter as a function of
reference lattice scale in the (a) superdiffusive, (b) diffusive, and
(c) subdiffusive regime. All calculations are performed for disorder
c = 1 × 10−3 and assuming the range of nonlocal interactions is
equal to the reference vector size. The color (greyscale) bar indicates
the value of the computed distance parameter, with blue (dark) colors
corresponding to values closer to 0 and red (light) colors correspond-
ing to values closer to 1. Yellow-green (brightest) colored regions
correspond to intermediate values of 0.5–0.6. Regions where the
distance plots transition from positive to vanishing limiting values
are marked by a white dashed contour. White dotted contours mark
regions where the transport seems to deviate from the expected
overall behavior.

L � 450 with a sharp transition region between nonvanish-
ing and vanishing realizations [marked by the white dashed
contour in Fig. 6(a)]. The transition region for the classical
Fickian diffusion case [white dashed contour in Fig. 6(b)]
is much wider and smoother, which is to be expected from
the local (nearest neighbor) interactions assumed in this cal-
culation. In other words, for a fixed number of time steps,
the distance parameter approaches its limiting behavior more
slowly in the classical diffusion calculation as compared to
the anomalous diffusion cases, where long-distance interac-
tions are assumed. Nevertheless, examination of Fig. 6 clearly
shows that the assumed simulation size of τ = 10 000 time
steps is large enough to reveal the expected differences in the
transport behavior for the three regimes. Specifically, the tran-
sition region in the classical diffusion case is much broader
and shifted to include smaller scales in the range 150 � L �
400, where the limiting distance values decrease more rapidly
as compared to the same scales in the subdiffusive case. Fig-
ure 6(c) indicates that, for the selected conditions, transport
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FIG. 7. Time evolution of the distance parameter for increasing
range in the (a) superdiffusive and (b) subdiffusive regimes. All
calculations are performed for disorder c = 1 × 10−3 and assuming
a fixed reference vector size L = 300. The color (greyscale) bar
indicates the value of the computed distance parameter, with blue
(dark) colors corresponding to values closer to 0 and red (light)
colors corresponding to values closer to 1. Yellow-green (brightest)
colored regions correspond to intermediate values of 0.5–0.6. Tran-
sition regions are marked by a white dashed contour. White dotted
contours mark regions where the transport seems to deviate from the
expected overall behavior.

is suppressed at all scales, which is expected for subdiffusive
behavior.

Figure 6 also shows that both anomalous diffusion regimes
exhibit realizations where transport seems to deviate from the
overall behavior observed at the surrounding scales. Those
realizations are marked by dotted white contours in Fig. 6 and
correspond to range = L = [150, 200] in the superdiffusive
case and range = L ∼ 400 in the subdiffusive case. For each
set of conditions, the time evolution of the distance parameter
plotted in Fig. 6 is an average of ten realizations, which mini-
mizes fluctuations due to the random distribution of disorder.
Thus, the observed unusual realizations may represent physi-
cally observable effects, resulting from the nonlocal character
of the interactions. Possible numerical instabilities due to ran-
domness of the disorder and numerical round-off errors are
further discussed in Appendix B.

To explore the interplay between range of nonlocality and
reference scale, we performed numerical experiments where
range is varied, while keeping the reference scale fixed at
L = 300 and the disorder fixed at c = 1 × 10−3. The ques-
tion of interest in such experiments is how the cutoff of
nonlocality affects transport at a fixed scale of interest. Fig-
ure 7 shows the results for both anomalous diffusion cases,
where the nonlocality influence was increased from range =
50 to range = 1000 in increments of �range = 50. In both
regimes, the realizations corresponding to unusual trans-
port behavior [white dotted contours in Figs. 6(a) and 6(c)]
are again present and even enhanced, as shown by the white
dotted contours in Fig. 7. In addition, in the superdiffusive

FIG. 8. Time evolution of the distance parameter for increasing
reference vector scales in the (a) superdiffusive and (b) subdiffusive
regimes. All calculations are performed for disorder c = 1 × 10−3

and assuming a fixed range of nonlocal interactions range = 300.
The color (greyscale) bar indicates the value of the computed dis-
tance parameter, with blue (dark) colors corresponding to values
closer to 0 and red (light) colors corresponding to values closer to 1.
Yellow-green (brightest) colored regions correspond to intermediate
values of 0.5–0.6.White dotted contours mark the region, where the
transport seems to deviate from the expected overall behavior.

case [Fig. 7(a)], transport is impeded for range = 50, while
in the subdiffusive case [Fig. 7(b)], transport is enhanced
for range = 50, 100, 150. For both anomalous diffusion
regimes, characteristic features of the results for larger range
values are mostly unaffected as compared to the plots from
Fig. 6. Additionally, the transition region in the superdiffusive
case [white dashed contour in Fig. 7(a)] is preserved. This
implies that, for fixed disorder concentration and fixed scale
of interest L, the transport behavior can vary significantly for
a range of nonlocal interactions range � L that are smaller
or comparable to the examined scale. However, as the nonlo-
cality range exceeds the spatial scale range > L, transport is
determined solely by the type of nonlocal interactions (super-
or subdiffusive).

To further examine these conclusions, we performed nu-
merical experiments where the reference vector scale L is
varied, while keeping the range of nonlocal interactions fixed
at range = 300 and the disorder fixed at c = 1 × 10−3. Here,
the question of interest is how a given (fixed) range of non-
local interactions affects transport at different spatial scales,
including scales exceeding the range. Figure 8 shows the re-
sults for both anomalous diffusion cases, where the reference
scale was increased from L = 50 to L = 1000 in increments
of �L = 50. For scales L < 500, which are comparable or
smaller than the fixed influence range = 300, transport is en-
hanced in the superdiffusive case [Fig. 8(a)] and suppressed
in the subdiffusive case [Fig. 8(b)]. As the reference scale
increases, the transport behavior exhibits fluctuations, espe-
cially visible in the range 500 < L < 800 for the subdiffusive
realizations. This result is highly unexpected since it implies
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FIG. 9. Typical particle trajectories, representing (a) Fickian diffusion, (b) superdiffusion, and (c) subdiffusion. A Gaussian PDF was used
to generate the trajectories in (a), while a Lévy PDF was used in (b). The trajectories in (c) and (d) were obtained from a superposition of
Gaussian and Lévy PDFs with truncation at ±4 for part (c) and at ±100 for part (d). The three PDFs used to generate particle trajectories are
superimposed in (e). The tails of the three distributions are shown in (f).

that extended states can exist in a disordered system, where
negative nonlocal correlations induce anomalous diffusion.

V. DISCUSSION

A possible physical explanation for the enhanced trans-
port observed in Fig. 8(b) is the interplay between the two
distinct localization mechanisms acting in this case: random
disorder and subdiffusive transport. In our model, subdiffu-
sion is represented by the fractional Laplacian (−�)s, with
exponents s ∈ (1, 2), which results in nonlinear transport (in
the form of mean-squared displacement that increases slower
than linear with time). Numerical and experimental studies of
one-dimensional granular crystals have recently demonstrated
that disorder and nonlinearity, which individually favor lo-
calization, can cancel out each other, yielding superdiffusive
transport in the system [78,79]. Based on an examination of
the various possible sources of numerical errors affecting the
computations (discussed in Appendix B), we conclude that
the results observed in Fig. 8(b) are likely to have physical
significance.

Initial insight into the mechanisms guiding transport in
the subdiffusion regime can be obtained by examination of
Fig. 9, which provides a visual representation of the charac-
teristic particle trajectories resulting from different choices
of probability distribution functions corresponding to the
three diffusion regimes. In each plot, the particle trajecto-
ries were artificially generated using numerical techniques
from Tarantino et al. [80]. For Fickian (classical) diffusion
[Fig. 9(a)], the probability distribution function (PDF) of par-
ticle positions approaches a Gaussian [Figs. 9(e) and 9(f),
black solid line]. In the presence of memory (or correlations),
the successive displacements of a walker are not fully in-
dependent, resulting in an anomalous diffusion process with
non-Gaussian PDF. Superdiffusion is commonly described as

a random walk where the particles can make big jumps in
displacement, called Lévy flights [Fig. 9(b)]. Therefore, such
a process can be characterized by a Lévy PDF [Figs. 9(e)
and 9(f), red dotted line]. In contrast, subdiffusion is a process
in which the walker’s motion is impeded, leading to enhanced
localization of the particle trajectories [Fig. 9(c)].

Since the driving mechanism, or generating process, for a
subdiffusive transport may be complex and highly dependent
on the physical system, the corresponding PDF is not unique.
However, it has been argued that irrespective of the generating
law for a Markovian walk on an undirected network, the
time-evolved probability distributions may converge only to
two types of limiting distributions: namely, either Gaussian
or Lévy distributions [81]. In other words, the asymptotic
behavior is unaffected by any further complication or sophisti-
cation in the generating laws. To reflect this logic, we consider
a case where the subdiffusive trajectories were obtained us-
ing a PDF that is a superposition of truncated Gaussian and
Lévy distributions. As can be seen in Figs. 9(e) and 9(f),
the resulting PDF is more concentrated at the origin, as
compared to the Lévy distribution, yet it still exhibits “fat”
tails further from the origin. Beyond a critical point, where
the tails of the mixed distribution cross above the tails of
the Gaussian [≈4.3 micrometer in Fig. 9(f)], nonlocal effects
become important. To simulate highly localized trajectories,
the tails of the mixed distribution can be truncated, such
that the probability for long-distance jumps is minimized.
In Fig. 9(c), particle trajectories were generated from the
mixed PDF truncated at ±4, which leads to suppression of
the nonlocal effects and particle transport. Such a distribution
is appropriate if one wants to model subdiffusion as a pro-
cess generated by increased waiting times between successive
displacements.

In Fig. 9(d), particle trajectories were generated from the
same mixed distribution, but the truncation is performed be-
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yond the critical point, at ±100. The resulting trajectories
exhibit small-scale jumps which resemble the dynamics of
the large-scale flights in Fig. 9(b). However, the ensemble
as a whole is localized in a small spatial region due to the
presence of backward jumps, which can result in particles
returning close to their original position. Although the data in
Fig. 9 was artificially generated for representation purposes,
the choice of a mixed (Gaussian + Lévy) PDF reflects the
physical interpretation of the subdiffusive fractional Laplacian
used in the present study. As discussed in Sec. 2, Theorem 2
of [15], in the case s ∈ (1, 2), one can write s = 1 + s̃, where
s̃ ∈ (0, 1) and the subdiffusive operator can be decomposed
into (−�)s = (−�)s̃(−�). In other words, mathematically,
subdiffusion can be considered as a superposition of two
successive actions (classical diffusion and superdiffusion).
When these two actions are combined together, there is an
enhanced probability that the particles jump backward toward
the origin, leading to temporary localization in an area of
space proportional to the scale of the jumps. In the absence
of disorder, this temporary localization amounts to trans-
port retardation when compared to the classical diffusion
case.

In the 1D classical diffusion problem, the addition of ran-
dom disorder introduces fluctuations of the corresponding
probability distribution functions of particle displacement.
Specifically, the probability for transport decreases exponen-
tially with localization length, which is determined from the
disorder concentration. In the superdiffusion case, the large-
scale Lévy flights always act to enhance transport beyond
the disorder-mediated localization length. In the subdiffusion
regime, one can expect that localization is enhanced when the
scale of the jumps is of smaller or comparable size to the local-
ization length. However, de-localization can also be achieved
if the scale of the jumps exceeds the expected localization
scales for a given disorder.

VI. CONCLUSIONS AND FUTURE WORK

Herein we presented a numerical study of transport in
disordered media, where nonlocal interactions can arise due to
positive or negative correlations. The numerical experiments
were performed using a fractional Laplacian spectral (FLS)
model, which combines the spectral approach to the Ander-
son localization problem [46] with a series representation
of the fractional Laplacian in one dimension [15]. The FLS
code models transport guided both by random disorder and
by nonlocal interactions resulting in anomalous diffusion. As
discussed in Refs. [46,47,63], the spectral approach provides
knowledge of the energy states available to the system from it-
erative application of a Hamiltonian H , which does not require
periodic boundary conditions or any up-scaling procedure.
Applying boundary conditions to the domain of H results in
restriction of the Hilbert space and can lead to false informa-
tion about the available energy states, specifically the a priori
exclusion of scattering states which belong to the absolutely
continuous spectrum of the Hamiltonian. Using an up-scaling
procedure, or averaging over subscale processes, can result in
transport behavior of the system which exhibits effective long-
range interactions. In contrast, the FLS technique employed
in the present study models nonlocal interactions explicitly

through the fractional Laplacian term and analysis of the
resulting spectral structure of the Hamiltonian. This advantage
of the technique makes it especially suitable for physical sys-
tems that are known to exhibit network-mediated interactions,
such as polymers.

We developed a physical interpretation of the FLS model
adapted for the study of light diffusion through a semicrys-
talline polymer structure. A major finding of the numerical
experiments is an unexpected transport enhancement at key
spatial scales resulting from the interplay between com-
peting localization effects. The existence of this effect has
been recently discovered in experiments with 1D granular
chains [78]. As polymers consist of large molecular chains,
the presence of such anomalous transport may be related to
key properties of the polymer structure, such as the formation
of crystalline or amorphous regions resulting from particular
folding sequences of the molecular chains. Thus, we expect
that the findings of the present study can be extended and
adapted to specific problems of interest within the greater
scientific community, including research in electrorheological
fluids, organic semiconductors, proteins, and DNA.

As this study applies the fractional Laplacian spectral tech-
nique to the problem of light transport in a polymer medium,
our goal was to demonstrate the connection between the
analytical formulation model, the numerical results, and their
physical interpretation. Therefore, the focus of the present
study is the examination of the three qualitatively different
transport regimes modeled by three choices for the fraction
s = 0.9, 1, 1.1, which are considered representative for a su-
perdiffusive, diffusive, and subdiffusive regime, respectively.
For each of the three s values, we have varied disorder concen-
tration (Figs. 4 and 5), range of nonlocal interaction (Figs. 6
and 7) and reference scale (Fig. 8), as well as further assessed
the effects of randomness in the disorder (Figs. 11, and 12).

Preliminary results shown in Fig. 10 confirm that the qual-
itative diffusion properties established using the fixed choice
s = 0.9, 1, 1.1 are preserved when the fraction is varied
within the range s ∈ (0, 2) for the two scales of disorder con-
sidered c = 10−4 and c = 10−3. Namely, realizations where
s < 1 consistently enhance transport, while cases where s > 1
enhance localization when compared to the classical case s =
1. However, we do not expect that the regimes where s < 1
and s > 1 have a symmetric effect on the transport properties.
Therefore, while the case s = 0.5 is often recognized as rep-
resentative of superdiffusive behavior, the case s = 1.5 should
not be necessarily assumed as typical for the subdiffusive
regime. This becomes apparent from the discussion in Sec. V,
where we suggested that in the case s ∈ (1, 2), one can write
s = 1 + s̃, where s̃ ∈ (0, 1) and the subdiffusive operator can
be decomposed into (−�)s = (−�)s̃(−�). As the value s̃
is increased, the probability for nonlocal jumps is increased,
which can diminish the localization effect expected in that
regime. As this point is subtle, it will be further discussed in
our future work.

Another direction of future work includes testing the pre-
dictions of the FLS models in numerical and laboratory
experiments with multichain dusty plasmas. These are ar-
rangements of charged grains into stringlike structures, which
can be thought of as macroscopic analogs to molecular
chains in polymers. Dust grains immersed in plasma be-
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FIG. 10. Time evolution of distance parameter for various frac-
tions in the range s ∈ (0, 2) for disorder (a) c = 10−4 and (b) c =
10−3. As the realizations for s = 0.7, 0.8, and 0.9 in part (a) are
closely spaced, the inset shows a zoomed region marked by a black
rectangle on the plot. The three diffusion regimes are colored as
follows: superdiffusion (red dashed lines), normal diffusion (black
solid line), and subdiffusion (blue dash-dotted lines).

come negatively charged and are subject to both ion drag
forces and collective (nonlocal) interactions. As a result,
dusty plasmas can self-organize into strongly coupled fluids
with electrorheological properties, i.e., the ability to undergo
homogeneous-to-string structural transitions when acted upon
with electric fields [82,83]. More importantly, the dust parti-
cles are directly observable with a video camera, which makes
them ideal for the study of self-organization and stability,
phase transitions, and transport phenomena at the kinetic (in-
dividual particle) level. This allows for the direct examination
of anomalous diffusion as a function of scale and range of
nonlocal interactions. The former is defined by the number of
particles forming chains in the dusty plasma liquid, while the
latter can be varied by tuning the plasma parameters in the
experiment.
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APPENDIX A: DETAILS OF THE NUMERICAL
SIMULATION

Consider the random fractional discrete Schrödinger oper-
ator in Eq. (1), which we repeat here for convenience:

Hs,ε := (−�)s +
∑
i∈Z

εi〈·, δi〉δi, (A1)

with a fractional Laplacian (−�)s given by the series rep-
resentation in Eqs. (3) and (4) and random variables εi ∈
[−c/2, c/2 ], where the concentration of disorder c is a
nonzero positive number. The {δi} are the standard basis vec-
tors of the 1D integer space Z, i.e., each δi corresponds to a
discrete point in the 1D lattice space. The size of the 1D sim-
ulation Ntot is determined by the number of time steps Nτ and
number of neighbors contributing to the nonlocal interactions
at each time step, which we call range in the discussion. In
other words, the lattice size is given by

Ntot = 2(range)Nτ + 1. (A2)

In the classical case where s = 1, the assumed interac-
tions are local and range = 1 since interactions with only
one nearest neighbor in each direction are considered. In
each numerical experiment, we initially fix c and then obtain
a computer-generated realization of the random variables εi

according to a flat distribution in the interval [−c/2, c/2 ].
As the variables εi are independent and identically distributed
in this interval, they represent uncorrelated disorder, which
affects the interactions only locally. As given realization of εi

is kept fixed throughout the corresponding numerical experi-
ment, the disorder-induced effects are also time-independent.

The value of 1 is then assigned at the midpoint of
the lattice, which corresponds to letting the initial state
ϕ0 ≡ δ0. Next, we calculate the values of Dτ

s,ε for n ∈
{0, 1, 2, . . . , τ }, τ ∈ N, for each fraction s using Eq. (6).
Throughout this paper, we focused on three choices s =
0.9, 1, 1.1, which are considered representative for a su-
perdiffusive, diffusive, and subdiffusive regime, respectively.
Finally, the calculated distance values Dn

s,ε are plotted to de-
termine their limiting behavior as τ → ∞.

According to the spectral approach outlined in Sec. II,
the spectrum of the Hamiltonian in Eq. (1)/(A1) includes an
absolutely continuous (ac) part if one can demonstrate that
limτ→∞Dτ

s,ε > 0. The presence of ac spectrum can then be
interpreted as existence of extended (scattering) states. Due
to the finite nature of the simulation and the probabilistic
nature of random disorder, rescaling and function fitting can
be employed to determine the limiting value of the distance
parameter. Since Dn

s,ε is a positive, monotonically decreasing
sequence, one can construct approximate lower bounds (with
respect to the probability distribution) of limτ→∞Dτ

s,ε . In real-
izations of the experiment where limτ→∞Dτ

s,ε does not drop
rapidly to zero [e.g., Fig. 5(a), superdiffusion realizations],
the distance parameter can be plotted on a log-log scale to
distinguish rapidly decreasing from slowly decreasing realiza-
tions and the corresponding transport behavior. As described
in Ref. [15] Sec. 4.2, the following criterion can be used for
interpretation of the qualitative differences in the plots:

Numerical interpretation criterion 1. For a fixed realization
of εi and reference vector ν̂, and for sufficiently large number
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of time steps τ , if Dτ
s2,ε > Dτ

s1,ε , and Hs1,ε is known to exhibit
extended states, then the operator Hs2,ε also exhibits extended
states. Similarly, if Dτ

s2,ε < Dτ
s1,ε , and Hs1,ε is known to exhibit

localized states, then the operator Hs2,ε also exhibits localized
states.

Since it is known that for s = 1 in one dimension all
energy states resulting from the operator in (1)/(A1) are lo-
calized [60], the distance Dτ

1,ε limits to zero for all nonzero
realizations of disorder and all choices of a reference vector
ν̂ (as discussed in Sec. 6.2 of [46]). Thus, this case can be
used as a reference when interpreting the more complex cases
resulting from s �= 1 in the interval s ∈ (0, 2).

Numerical Interpretation Criterion 2. For a fixed realiza-
tion of εi and reference vector ν̂, and for sufficiently large
number of time steps τ , if Dτ

s �=1,ε > Dτ
1,ε , then the operator

Hs �=1,ε is less likely to exhibit localization than the operator
H1,ε . Similarly, if Dτ

s �=1,ε < Dτ
1,ε , then the operator Hs �=1,ε is

more likely to exhibit localization than the operator H1,ε

Note that this second criterion is only valid for small con-
centrations of disorder (c = 10−4–10−3 in this paper) where
we expect that the scattering effect of nonlocality is compa-
rable to the localizing effect of disorder, which suggests that
it is possible for extended states to occur. For higher values
of c the disorder-induced localization behavior is expected to
dominate the dynamics. In those cases, the nonlocal nature of
the interactions induced by Hs �=1,ε can actually cause the plot
of Dτ

s �=1,ε to decrease more rapidly to zero than the plot of Dτ
1,ε ,

where the dynamics are guided by the nearest-neighbor inter-
actions. In other words, for this strongly localized regime, at
each time step the calculation of Dτ

s �=1,ε includes contributions
of many more neighbors and their corresponding on-site disor-
der than the calculation of Dτ

1,ε , which includes contributions
from only the two nearest neighbors at a time.

APPENDIX B: VALIDATION OF NUMERICAL RESULTS

Section IV presented numerical experiments studying
transport in disordered media where nonlocal interactions can
yield anomalous diffusion. The results demonstrated the pos-
sibility of transport enhancement in the regime where different
localization mechanisms compete and effectively cancel each
other out. As these results may have significant physical ap-
plications, in this section we examine possible sources of
numerical errors affecting the computation. Specifically, we
focus on (i) statistical fluctuations due to averaging over ran-
dom realizations of disorder and (ii) the effect of truncation on
the validity of asymptotic expressions. Instabilities due to loss
of orthogonality in the Gram-Schmidt procedure employed in
the calculations are expected to have negligible effect on the
results, as discussed in Sec. 4.3 of [15].

1. Randomness of disorder

Due to the 1D nature of the simulation, it is expected
that even small concentrations of random disorder can greatly
affect the observed transport behavior. In Sec. IV, we saw
that for small disorder concentrations c ∼ 10−4, the distance
plots follow the expected behavior: they decrease slower in
the superdiffusive regime and faster in the subdiffusive regime
when compared to the classical diffusion case. However, once

FIG. 11. Time evolution of the distance parameter for increasing
reference vector scales in the (a) superdiffusive and (b) subdiffusive
regimes. All parameters are the same as in Fig. 8 but computed at
smaller disorder c = 1 × 10−4. The color (greyscale) bar indicates
the value of the computed distance parameter, with blue (dark) colors
corresponding to values closer to 0 and red (light) colors correspond-
ing to values closer to 1. Yellow-green (brightest) colored regions
correspond to intermediate values of 0.5–0.6.White dotted contour
marks the region where the transport deviates from the expected
overall behavior.

a certain disorder threshold is crossed (resulting in strong
localization behavior) it was observed that both anomalous
diffusion cases yield distance parameters that decrease more
rapidly to zero than the classical case (Fig. 5). The devia-
tions from the expected behavior for c > 10−3 are due to
the nonlocal nature of the fractional Laplacian, which allows
for the propagation of “localization information” at a faster
rate as compared to the classical case, where the same pro-
cess is guided by nearest-neighbor interactions. Thus, at high
concentrations of disorder, the anomalous diffusion distance
plots decay more rapidly in response to the strong localization
effect. We expect that this phenomenon would be less promi-
nent in higher dimensions. However, for the 1D simulations of
Sec. IV, we set a threshold of c = 1 × 10−3 as the maximum
disorder concentration for which the diffusion dynamics is not
entirely dominated by disorder-driven localization.

Even at c = 1 × 10−3, the role of random disorder may
have a significant effect on the results, which is especially
important in light of the unexpected delocalization of distance
plots observed for scales 500 < L < 800 in the subdiffusive
regime [Fig. 8(b)]. To minimize the role of random disorder,
we performed numerical experiments with the same param-
eters as in Fig. 8 but using one order of magnitude smaller
disorder c = 1 × 10−4. The results presented in Fig. 11
demonstrate that although transport is naturally enhanced for
all realizations in the smaller disorder case, the region 500 <

L < 800 in the subdiffusive regime [Fig. 11(b)] still exhibits
the unexpected behavior observed in Fig. 8(b). This suggests
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FIG. 12. Time evolution of the distance parameter in the subdif-
fusive case for increasing reference scales in the range 400 � L �
800 calculated by averaging (a) 10 realizations and (b) 50 realiza-
tions for each set of parameters. All calculations are performed for
disorder c = 1 × 10−3 and assuming a fixed range of nonlocal
interactions range = 300. The color (greyscale) bar indicates the
value of the computed distance parameter, with blue (dark) colors
corresponding to values closer to 0 and red (light) colors correspond-
ing to values closer to 1. Yellow-green (brightest) colored regions
correspond to intermediate values of 0.5–0.6.

that the unusual transport behavior is not caused by a random
effect due to the disorder distribution.

Another test for the role of randomness is to examine how
improved averaging affects the outcome of the simulation. In
the previous section, we mentioned that each distance plot
is an average of ten realizations of the same numerical ex-
periment, which is needed to minimize fluctuations due to
the random realization of the disorder in each individual run.
Figure 12 shows the time evolution of the distance plots for
the same parameters as in Fig. 8 in the range 400 � L � 800
computed using ten realizations [Fig. 12(a)] and using 50
realizations [Fig. 12(b)]. As the number of realizations is
increased, the enhanced transport behavior is preserved and
identified more clearly in the region 550 � L � 750. This
suggests that averaging over ten realizations is sufficient to
identify interesting features of the transport behavior, which
ensures reasonable computation times. However, averaging
over a larger number of realizations should be used for a more
detailed study of interesting regions.

2. Truncation effects

In addition to randomness, the accuracy of the numerical
results can be affected by truncation due to the selected range

of nonlocal interactions. In Sec. II, we introduced the series
representation of the fractional Laplacian in Eq. (2), which
can be rewritten as

(−�)sun =
∑
m∈N

(2un − un−m − un+m)Ks(m) , (B1)

where the kernel Ks is given by Eq. (3). This form of the
equation is equivalent due to the symmetry of the kernel.
Although in the analytical expression the summation goes to
infinity, in the numerical simulation the explicit summation
is performed over a finite number of terms, determined by
the selected range of nonlocal interactions. Specifically, the
numerical equivalent of Eq. (B1) becomes

(−�)sun =
range∑
m=1

(2un − un−m − un+m )Ks(m) + Rrange(un),

(B2)
where the remainder is given by

Rrange(un) =
∞∑

m=range+1

(2un− un−m − un+m)Ks(m) ∼ 1

(range)2 .

(B3)

As discussed in Sec. 4 of [15], the remainder is inversely
proportional to the square of the range. In the present study,
the remainder Rrange is discarded. Thus, we expect that the
numerical results increase in accuracy with increasing range.
The smallest influence value used in the presented numerical
experiments is range = 50, which yields the largest remainder
R50 ∼ 4 × 10−4. All other results were obtained using a
larger range leading to a smaller remainder, with the most
common choice being range = 300, which yields R300 ∼
10−5. Even though the remainders are rather small, we ac-
knowledge the possibilities of numerical instability artifacts
due to the large number of time steps used, τ = 10 000.

Deviations from the expected transport behavior may also
correspond to some analytical feature of the model. Since
expressions related to the fractional Laplacian are exact in
the asymptotic limit, it is expected that larger values for
range (smaller truncation) yield improved results, assuming
other numerical instabilities are minimized. For smaller range
(larger truncation), the calculation using Eq. (B2) may not be
accurate, which would explain the small fluctuations observed
in Figs. 6 and 7 (marked by white dotted contours). How-
ever, the unusual delocalization in the subdiffusive regime
in Fig. 8(b) occurs at large values of range, which are ex-
pected to yield more accurate results. Finally, the subdiffusive
regime is not as well behaved as the superdiffusive case due
to the associated differential operator lacking a so-called max-
imum principle. Therefore, further validation of the present
numerical results will be sought by exploring alternative
implementation methods and comparing with experimental
results.
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