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Air-sea and air-sea-ice fluxes in the Southern Ocean play a critical role in global
climate through their impact on the overturning circulation and oceanic heat and
carbon uptake. The challenging conditions in the Southern Ocean have led to sparse
spatial and temporal coverage of observations. This has led to a “knowledge gap”
that increases uncertainty in atmosphere and ocean dynamics and boundary-layer
thermodynamic processes, impeding improvements in weather and climate models.
Improvements will require both process-based research to understand the mechanisms
governing air-sea exchange and a significant expansion of the observing system. This
will improve flux parameterizations and reduce uncertainty associated with bulk formulae
and satellite observations. Improved estimates spanning the full Southern Ocean will
need to take advantage of ships, surface moorings, and the growing capabilities of
autonomous platforms with robust and miniaturized sensors. A key challenge is to
identify observing system sampling requirements. This requires models, Observing
System Simulation Experiments (OSSEs), and assessments of the specific spatial-
temporal accuracy and resolution required for priority science and assessment of
observational uncertainties of the mean state and direct flux measurements. Year-
round, high-quality, quasi-continuous in situ flux measurements and observations of
extreme events are needed to validate, improve and characterize uncertainties in
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blended reanalysis products and satellite data as well as to improve parameterizations.
Building a robust observing system will require community consensus on observational
methodologies, observational priorities, and effective strategies for data management

and discovery.

Keywords: air-sea/air-sea-ice fluxes, Southern Ocean, ocean-atmosphere interaction, climate, ocean-ice

interaction

INTRODUCTION

Air-sea fluxes determine how properties, such as momentum,
heat, freshwater, and gasses, exchange between the atmosphere
and the ocean. They are essential to understanding the
global energy budget (Trenberth and Fasullo, 2010), evaluating
and improving weather prediction and climate models, and
understanding oceanic and atmospheric processes that depend
on the upper ocean [ocean heat uptake, mixed-layer temperature,
Sea Surface Temperature (SST) variability] (Dong et al., 2007).
This is exemplified in the Southern Ocean (SO), where extreme
winds and sea states, strong temperature gradients, and strong
seasonal changes (e.g., sea-ice cover) enhance air-sea exchanges
in a region that is key to global climate (e.g., Sabine et al., 2004;
Frolicher et al., 2015; Rintoul, 2018) and highly responsive to
changing climate conditions (e.g., Andrews et al., 2015).

In situ observations of variables needed to estimate fluxes,
in particular, meteorological measurements, are sparse in the
SO (Figure 1), with almost no observations from autumn
or winter months or at any time in the regions impacted
by permanent or seasonal sea-ice cover. This results in large
errors in SO reanalysis products (see section “Status of Flux
Reanalyses and Requirements to Reduce Uncertainty,” Figure 2)
and poor representation in climate models, with significant
inter-related biases in SSTs, ocean thermal structure, winds and
clouds, due to its strongly coupled dynamics (e.g., Thompson
et al, 2011; Bodas-Salcedo et al, 2014, 2016; Hermanson
et al., 2018; Hyder et al., 2018). The lack of in situ data also
limits our ability to improve remote sensing products and
optimize blending of model and remote sensing inputs (e.g.,
Objectively Analyzed Flux - Yu and Weller, 2007), and increases
uncertainty in atmosphere and ocean dynamics and boundary-
layer thermodynamic processes. The consequent uncertainties
in climate projections further hinder our ability to develop
climate mitigation and adaptation measures. To assess and
improve flux estimates and understand key processes in the
SO there is an urgent requirement for accurate, direct air-
sea-ice flux observations, and the meteorological variables on
which they depend.

This paper builds on the high-latitude flux review of
Bourassa et al. (2013). The objectives of this paper are
to highlight the Southern Ocean-specific observational gaps,
scales, and challenges in estimating air-sea-ice fluxes, to
summarize key focus areas for future flux research, and
to offer recommendations for improving estimates of fluxes.
In particular, recent technological progress, such as surface
flux moorings and autonomous surface vehicles, provide new
mechanisms to improve high-latitude flux observations and

research in the coming decade. For details on broad-scale heat
and momentum fluxes for the global ice-free ocean the paper
by Cronin et al. (2019) should also be referred to. This paper
articulates a charge for the SO air-sea flux community to come
together to plan, collect and share air-sea-ice flux information,
experience and knowledge. It is a product of the Southern
Ocean Observing System (SOOS) international working group
on SO air-sea fluxes (SOFLUX; Gille et al, 2016), which
coordinates observing-system capabilities and requirements for
SO air-sea-ice fluxes.

KEY SPATIAL AND TEMPORAL SCALES
OF FLUXES

The short time- and length-scale variability of SO air-sea fluxes
makes quantifying exchanges challenging (Lenton et al., 2006;
Monteiro et al., 2015). This variability is predominantly driven
by the high-frequency structure of winds (Yuan et al, 2009)
and high-wavenumber structure of the ocean state (Chelton
et al., 1998). However, one may exploit the low-frequency
variability of ocean properties and low-wavenumber structure
of the atmospheric properties to constrain the fluxes. For
example, Observing System Simulation Experiments (OSSEs)
show that the Argo float array is able to constrain the upper-
ocean climate signals of heat, carbon, and freshwater content
on seasonal timescales (Majkut et al., 2014; Kamenkovich et al,,
2017; Mazloff et al., 2018). Spatial and temporal integrals of
oceanic heat content change provide information on net heat
fluxes, which can be used to assess biases in the bulk formulae
derived from point measurements. Yet large-scale budgets do
not provide information about the mechanisms driving small-
scale air-sea fluxes, which are vital to understanding the
system and can be revealed by in situ time-series observations
(Ogle et al., 2018).

SOFLUX has prioritized the collection of high-quality in situ
point measurements necessary to understand true small-scale
flux variability, while also measuring the large-scale properties
that reveal integrated flux values. High-frequency measurements
suggest that Subantarctic air-sea CO; fluxes should be measured
at a 3-day frequency to provide an unbiased constraint,
particularly during the more stratified summer period. Sampling
at lower temporal frequency would potentially alias the more
rapid response of mixing and entrainment to storm events
(Monteiro et al, 2015). Alternatively, Mazloff et al. (2018)
suggest that maintaining platforms every 20° longitude by 6°
latitude would constrain the climate-scale heat and carbon
inventory, and validate integrated air-sea fluxes. While fluxes
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FIGURE 1 | Observation count for critical air-sea flux ocean and atmospheric parameters for austral winter (June—August) on the left versus summer
(December-February) on the right, for 10 years (2008-2017): (A,F) SST, (B,G) air temperature, (C,H) humidity, (D,l) wind speed, and (E,J) latent heat flux (LHF).
Humidity observations include dew point temperature and relative humidity. LHF observations include co-located measurements of SST, air temperature, humidity
and wind speed. Data from International Comprehensive Ocean-Atmosphere Data Set (ICOADS), as described by Freeman et al. (2017). The two existing surface
mooring sites, OOl and SOFS, are indicated in panel (E) using a blue and green arrow, respectively. Black contour denotes the 10-year mean of the 15% sea ice
concentration from NCEP/DOE AMIP-II Reanalysis, representing the sea-ice edge in winter (left panels) and summer (right panels).
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themselves have significant high-frequency variability, the low-
frequency component has large spatial scales of approximately
90° longitude by 10° latitude. Climate-scale fluxes for the ocean
between 35°S and 70°S, could therefore be determined with 100

optimally spaced platforms. The current Argo array of >600
floats results in non-negligible uncertainty in estimating climate
signals, with crucial gaps in the sea-ice impacted regions (Mazloft
et al, 2018). Nevertheless, the results imply that reducing
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FIGURE 2 | (A-C) The 10-year (2008-2017) mean net heat flux (W m~2) for three reanalysis products: ERA5, JRA-55 and NCEP-II. (D-F) The 10-year mean
difference in daily net heat flux (in W m~2) between the products. (G-I) Standard deviation of the daily differences (in W m~2) shown in panel (D-F). Positive
(negative) values denote a heat flux into (out of) the ocean. Magenta line denotes the 10-year mean of the 15% sea ice concentration from NCEP/DOE AMIP-II
Reanalysis representing the maximum sea-ice edge. Gray lines contour the mean (=120 to 120 W m~2 intervals of 40 W m~2), the daily difference (-40 to 40 W m~2
intervals of 20 W m~2), and standard deviation (50 and 100 W m~2). Solid (dashed) contours represent positive (negative) values. Black contours indicate the
10-year mean position of the Sub-Antarctic Front (north) and Antarctic Polar Front (south) from the AVISO Absolute Dynamic Topography (as in Swart et al., 2010).
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uncertainty in fluxes and their parameterizations, is feasible.
Statistical significance of observed trends will improve as fixed-
point time series are sustained. Constraining the marginal ice
zone (MIZ), however, remains a priority (Figures 1A,F).

STATUS OF FLUX REANALYSES AND
REQUIREMENTS TO REDUCE
UNCERTAINTY

Gridded satellite and reanalysis datasets in the SO suffer
from a large inter-product spread in estimates of the net
air-sea heat flux (e.g, Liu et al, 2011), stemming from
insufficient observations, particularly in winter (Figures 1A-E),
and the need to determine the net exchange as the sum of

four individual components (latent — Figures 1E,J, sensible,
shortwave, longwave; Bentamy et al.,, 2017). Evaluation of the
spread in net heat flux between atmospheric reanalysis products
has revealed regional differences up to 60 Wm ™2 (Liu et al., 2011).
These differences persist when zonally averaged and show ship-
based and reanalysis products differing by 30-40 Wm~2 at a
given latitude (e.g., Josey et al., 2013).

To further demonstrate first-order uncertainties around SO
air-sea fluxes, a comparison is made between three commonly
used reanalysis products of net heat flux (NCEP-II, ERA5,
and JRA-55; Figure 2). Large mean state (10 year) differences
(up to 50 W m~2; Figures 2A-C) and mean daily differences
(reaching up to 40 W m~2; Figures 2D-F) exist between
products for large swaths of the SO (e.g., in Figure 2E: mean
daily differences >20 W m~2 for 35% of area south of 35°S),
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particularly in the NCEP-II comparisons. These differences are
highest in the central Antarctic Circumpolar Current (ACC)
domains, at the boundaries to strong subtropical originating
currents (Malvinas Confluence and Agulhas Return Current),
and around the southern ACC to the edge of the winter sea-ice
extent (especially in the Pacific and Indian sectors). The standard
deviation of these daily differences (Figures 2G-I) emphasizes
the larger range of differences (reaching > 100 W m~2) found
in both the northern ACC domain and at the winter sea-ice edge
and extending into the MIZ. The larger uncertainty associated
with the edge or within sea-ice regions suggests complexities in
constraining fluxes impacted by ice-ocean processes and/or the
limitation of satellites/reanalysis products to estimate fluxes in
ice-impacted domains (Yu et al., 2017). Strong ocean gradients
at the boundary to the subtropical gyres could be leading to
enhanced heat flux differences (Figures 2D-I; see section “Ocean
Impact on Fluxes”) and these regions should be targeted for
enhanced observational coverage to reduce uncertainty (see
section “Specific Recommendations for the Coming Decade”).

The momentum (wind stress) flux is better determined in
a climatological sense than the heat flux, as it is a function
of fewer, more easily determined variables that are reasonably
estimated from satellite observations. However, significant wind
speed differences still exist between gridded products and in situ
data (Schmidt et al., 2017) with biases of up to 7.5 m s~!
depending on the wind speed magnitude (higher wind speeds
are subject to considerably higher errors). Consequently, there
is only medium confidence that SO wind-stress forcing has
strengthened on decadal timescales (Swart and Fyfe, 2012; Rhein
et al., 2013) as is expected from coupled model-based studies
(Russell et al., 2018).

Given the uncertainties noted above, improvement in SO
heat and momentum flux accuracies is vital. This has long been
recognized (e.g., OceanObs’'99 and '09 - Fairall et al., 2010) and
the deployment of two surface flux moorings' is progressing
towards this goal. The time-series are currently insufficient
to evaluate whether reanalysis products accurately represent
interannual and decadal variability, thus sustaining these time-
series is key to reducing these uncertainties. Recently, analysis
of ship data across the open ocean to the MIZ has enabled
better understanding of air-sea interaction in this key transition
region (Yu et al,, 2017), although winter measurements remain
lacking (Figure 1).

OCEAN IMPACT ON FLUXES

The exchange of tracers and energy across the air-sea interface
is modulated by a complex upper-ocean “mixed layer” structure
(Kilbourne and Girton, 2015). Instruments that quantify upper-
ocean turbulence (e.g., Air-Sea Interaction Profiler; Ward et al,,
2014) provide direct estimates of the mixing and mixed-layer
depths from measurements of the dissipation rate of turbulent
kinetic energy (e) and density (p), respectively. Combined

lIntegratecl Marine Observing System (IMOS) SO Flux Station (SOFS) south
of Tasmania (Schulz et al., 2012) and the Ocean Observatories Initiative (OOI)
mooring upstream of Drake Passage at 55°S, 90°W (Ogle et al,, 2018).

with velocity scales associated with wind, wave, and buoyancy
(e.g., after Belcher et al, 2012), improved parameterizations
of mixing in the SO can be determined. It is anticipated
turbulence from wave breaking and Langmuir circulation
will play a dominant role in the turbulence generation and
scaling (Esters et al., 2018). As ocean turbulence is a major
driver for air-sea fluxes, such studies will lead to improved
parameterizations in the SO.

Additionally, small-scale turbulence in the mixed-layer is
influenced by oceanic motions spanning a few hundred meters
(submesoscale) to hundreds of kilometers (mesoscale). For
example, Ardhuin et al. (2017) show a strong covariance of
mesoscale currents and surface-wave energy, especially in the
Drake Passage. This implies a change in mesoscale surface
roughness and thus effective surface-ocean stress (Small et al.,
2008; O'Neill et al., 2012). This dependence impacts gas exchange
via surface wave breaking (Brumer et al, 2017), although
the magnitude remains to be directly measured. Furthermore,
remote-sensing products indicate up to 20% of South Atlantic
turbulent heat flux variance is explained by mesoscale eddies
(Villas Boas et al, 2015; Figure 2). Autonomous surface
vehicles (ASVs) are key for augmenting in situ measurements
of surface ocean variability, which is dominated by small-
scale, submesoscale gradients (Thomson and Girton, 2017).
Strong coupling exists between both waves and surface currents
as well as between oceanic and atmospheric temperatures
(Villas Boas et al., 2015). This supports earlier work showing that
fronts and eddies (and associated SST gradients) can substantially
impact the air-sea exchange and near-surface atmospheric
conditions in vigorous SO boundary-current regions (Pezzi et al.,
2005, 2009; Messager et al., 2012; de Camargo et al., 2013;
Rouault et al., 2016).

Submesoscale (0.1-20 km) lateral density gradients in the
upper ocean can also significantly modulate the depth of the
mixed-layer on sub-seasonal time scales (Rosso et al., 2015;
du Plessis et al., 2017, 2019), with implications for heat and
carbon uptake, water mass modification due to surface buoyancy
fluxes, and the timing of biological processes (Swart et al,
2015). The intensity of these features is strongly localized by
the circulation of the ACC and its interaction with topographic
features (Viglione et al., 2018). The MIZ may also be a site
of enhanced vertical velocities due to the coupling between
thin sea ice and near-surface oceanic flows (Manucharyan and
Thompson, 2017). This can lead to enhanced lateral and vertical
heat fluxes toward sea-ice, as well as modifying air-sea fluxes
through, for example, changes in sea-ice concentration and floe
size distributions (Horvat et al., 2016).

OBSERVING FLUXES THROUGH ICE

Sea-ice presence and concentration dramatically affect physical,
gas, and aerosol fluxes (Bourassa et al.,, 2013), which in turn,
provide a significant feedback to sea-ice state, extent, and
thickness (e.g., Perovich et al,, 2008). As sea-ice parameters
change in a warming climate, a significant adjustment in
the balance of the high-latitudes air-sea-ice fluxes is likely.
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Ice-covered regions of the SO are acutely under sampled,
especially in autumn and winter — with the hypothesis that open
water in autumn before freeze-up is exposed to enhanced wind
stress and mixing, amplifying air-sea exchange. Fluxes within
open waters surrounded by sea ice (MIZ, leads and polynyas)
can be estimated by classical approaches, but must account for
(i) logistical constraints and (ii) ice-specific processes, such as
reduced fetch area, wave attenuation and scattering, shear in the
ice-ocean boundary layer, buoyant convection or stratification,
short period gravity waves, and ice-flow interactions.

Air-sea-ice fluxes are ‘in this sense’ dramatically different
from air-sea fluxes and often require separate methodology.
For instance, heat flux budgets require assessment of sea-ice
growth using ice mass-balance buoys, which provide spatially
restricted point-measurements and require consolidated ice for
deployment (i.e., not on unconsolidated ice formed in polynyas).
While sea-ice processes drive gas fluxes at the air-sea-ice
interface, assessment of these fluxes must take into account the
unique gas dynamics and transport within sea ice, which are
derived from techniques used for terrestrial fluxes. In addition,
snow load and structure affect energy and gas transfer in different
ways and are poorly constrained.

Finally, budgeting fluxes in ice-covered regions requires
understanding of spatial and temporal variability of the sea-ice
cover (Schroder et al., 2003; Matear et al., 2015), for which remote
sensing is critical. However, deriving sea-ice volume, growth,
type, temperature, snow load and structure, and momentum
absorption from remote sensing is challenging. These properties
are not measured directly and require models that are prone
to errors. Further field process studies (see section “Specific
Recommendations for the Coming Decade”) are needed in sea
ice to constrain these uncertainties so as to improve the accuracy
of fluxes that are reliant on satellite-derived information about
sea ice characteristics.

TECHNOLOGICAL REQUIREMENTS FOR
THE COMING DECADE

SO flux observations are almost exclusively collected by ships,
with valuable time-series observations provided by two moored
surface buoys (Figure 1). Expansion of these observing systems
are necessary (see recommendation 1 below). Yet, ships suffer
superstructure flow distortion effects on measurement accuracy
(Yelland et al., 2002) and collect data for relatively short
periods (days to weeks), while moorings provide point-location
estimates and have significant maintenance costs. Detailed
flow distortion calculations for research vessels operating in
the SO would help improve the analysis of ship-based flux
observations (e.g., Moat et al., 2006). Studies of the flow
distortion around the towers of surface moorings shows minimal
impact on wind velocity, although buoy position should be
tracked to allow the wind observations relative to the buoy
to be corrected to absolute wind velocity. More significant
challenges involve coping with icing, surface waves and sea
birds and so improvements to current surface buoy designs
are recommended. These include phasing-in heating of key

sensors to prevent ice and frost build up, including anemometers
and radiometers, adding cameras to document icing (being
implemented on Irminger Sea Buoy) and actively ventilating
air temperature and humidity sensor enclosures. In addition,
incorporation of turbulent flux sensors (3-D sonic anemometers,
fast response humidity, and temperature) and platform attitude
and motion sensors can be done now to allow computation
of the turbulent fluxes by the Direct Covariance Flux methods
(Edson et al., 1998).

Recent advances in relatively cheap, small (2-7 m) and robust
ASV with associated miniaturized sensors, improved battery
capacity and energy harvesting, are demonstrating the capability
to collect multi-month time-series of high-resolution air-sea
flux and meteorology observations. The latest generation of
ASV, such as Wave Gliders and Saildrone, have been deployed
successfully in the SO (Monteiro et al, 2015; Schmidt et al,
2017; Thomson and Girton, 2017). Key technical issues for ASV
flux measurements center on the low height of the atmospheric
measurements and the effect of platforms tilts on observations,
such as incoming shortwave and longwave radiation. Bulk
algorithms for estimating fluxes rely on the gradients beyond the
ocean-atmosphere interface, which increase (and therefore are
more reliably measured) with height. Very close to the surface,
these measurements may have an insufficient signal-to-noise
ratio. Further, measurements within the wave-affected portion
of the atmospheric boundary layer may not be appropriate for
comparison to the larger scale fluxes used in circulation models
(e.g., Schmidtetal., 2017). These issues require careful calibration
and validation over the full dynamic range of conditions.

The question now becomes how best to coordinate the
distribution of these assets to ensure collection of high-quality
data for end users, including agreement on data standards
and management. To date, ASV deployments have been short-
term project-based missions. A sustained and coordinated
effort to deploy multiple ASVs (and Lagrangian platforms -
SWIFT/drifting buoys) in the SO, potentially centered around
key mooring sites, will require international resources and effort
(see Newman et al, 2019). This type of system will address
the data gaps between sparse vessel-based observations and
achieve year-round presence in harsh/remote regions. In order
to achieve this vision, recommended enhancements include;
extending deployment duration (harness alternate forms of
energy from current or wind; improved battery capability),
autonomous piloting techniques (on-board route decision
making), ocean/atmosphere feature tracking and automated
coordination between platforms, and upper ocean profiling
(e.g., automated hydrographic casts). Additionally, year-round
flux observations in the seasonal ice-covered regions of the SO
are required. Given that current ASV technology is limited to the
ice-free ocean, new technologies need to be developed for the
unique characteristics of Antarctic sea ice, which largely melts
and reforms on an annual basis thereby not allowing for multi-
season installations of platforms that are proven capabilities in
the Arctic (e.g., Ice Tethered Profilers, Arctic Ocean Flux Buoys,
and meteorological stations). One approach could be surface
floating platforms that are able to withstand being frozen into the
ice pack and then continue to operate once the sea ice melts and
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releases the platform into the ocean until the next freezing period
(e.g., UpTempO buoys).

Unmanned aerial vehicles (UAV) are a new platform
supplementing flux sensing capabilities from existing platforms,
with duration of fixed-wing missions of up to 24 h. UAVs, like
satellites and aircraft, can provide a synoptic view of a relatively
large area, while providing unprecedented ground resolutions
(as fine as 1 cm) due to their slower speed, making for an exciting
approach for process studies in particular. Significant progress
has been made in developing cutting-edge UAV payloads for
air-sea turbulent fluxes, radiative fluxes, surface albedo, SST
variability, ocean surface waves, and ocean biogeochemistry
(e.g., Reineman et al., 2016). Applications for UAVs in air-sea
interaction have been demonstrated in polar seas, such as from
polynyas (Cassano et al., 2010) and the MIZ.

SPECIFIC RECOMMENDATIONS FOR
THE COMING DECADE

Targeted Field Observations

Enhanced flux observations are required almost everywhere
(Figure 1), however, we particularly require them in (i) varying
conditions (e.g., transient events/storms, different types of sea-
ice, and sea state); (ii) regions with higher uncertainty and
variability in reanalyses (marked on Figure 2, see section
“Status of Flux Reanalyses and Requirements to Reduce
Uncertainty”), which are predominantly in the boundary regions
of the SO (e.g., Agulhas Return Current, Malvinas Current
region), regions prone to higher energetics/eddy kinetic energy
(e.g., downstream of Campbell Plateau, Drake Passage), and in
the seasonal ice zone, especially in the region of the winter
maximum sea ice extent. Further, SOFLUX recommends efforts
towards achieving year-round time-series (i.e., mooring sites
supplemented with new technologies, such as ASVs that can
provide a spatial length-scale component to the time-series
observations). Seasonally, the autumn and winter are priority
periods to obtain even the most basic flux-related observations.
Given that almost no flux-related observations exist in the
seasonal and permanent sea-ice covered regions (approximately
the entire SO south of 60°S), the community should see this as
one of the highest priorities with potentially the most important
priority being areas prone to abrupt flux events driven by
spurious gaps in the sea ice (from coastal and open ocean
polynyas down to the scale of leads in the pack ice). The
SOCCOM float array is starting to address this, especially in the
seasonal ice zone, but higher “carbon capable” (pH) float density
is needed (further guidelines for density in Mazloff et al., 2018).
OSSEs are valuable for optimizing the quantity and locations
of time-series measurements, and flow distortion studies would
enable better interpretation of vessel flux observations.

Dedicated Studies to Understand

Air-Sea-Ice Flux Processes
Process studies are critical to improve flux and model
parameterizations. Experiments from both poles would deliver

process information on fluxes under various conditions. Studies
should leverage existing flux time-series provided by mooring
sites to enhance understanding of annual and inter-annual flux
variability. More specifically, observations able to resolve intra-
seasonal processes and variability that impact fluxes are needed,
such as those associated with oceanic eddies and fronts or the
passage of atmospheric storms. This would provide insight into
the temporal-spatial scales over which the atmosphere and ocean
respond to changes imposed by the other. This justifies targeted
process studies aimed at measuring flux differences over the scale
of the first baroclinic Rossby radius (50 km or less) and over
strong oceanic (temperature) gradients. Further detail can also
be found in Newman et al. (2019).

Improve Satellite Flux Capabilities

Satellite retrievals of air-sea-ice fluxes pose a series of challenges,
many of which are addressed by Bourassa et al. (2013). The
challenges vary depending on the flux: (1) Momentum fluxes
are well measured by scatterometers, but the global network of
scatterometers does not provide the spatio-temporal coverage
that is desired for tracking rapidly evolving and otherwise poorly
sampled SO storms. The proposed SKIM (waves and currents)
and WaCM (winds and currents) missions would be particularly
valuable for assessing the direct transfer of momentum from
atmosphere to wave and current fields. (2) Turbulent heat
fluxes are typically inferred using bulk formulae from ship or
buoy measurements. Satellites do not provide measurements of
temperature and humidity in the planetary boundary layer that
are necessary to apply bulk formulae, but they can measure
properties of the ocean surface. Therefore, further work to
develop reliable retrievals of turbulent heat fluxes would be
valuable, particularly for the high wind, high sea spray conditions
typical of the SO. The small Rossby radius in the SO means
narrow frontal features (ACC fronts and eddies) have the
potential to influence fluxes significantly, but are not necessarily
well resolved in existing retrievals — high spatial resolution
would be of value. (3) Freshwater fluxes depend on precipitation
and evaporation. The Global Precipitation Mission estimates
precipitation, but only in the latitude range from 65°S to
65°N (missing snow and rain within the Antarctic circle).
Future satellite missions providing full coverage of the high
latitudes would be valuable towards constraining air-sea-ice
freshwater fluxes.

Accessibility of Data

Flux and meteorological data must be made more accessible,
with uniformity of data processing and quality control. Polar-
specific data discovery may be a way to address this (e.g., through
SOOSmap). Likewise, the efforts of the Shipboard Automated
Meteorological and Oceanographic System (SAMOS), which
collects flux-related data from vessels and provides data
collection standardization information and targets, needs to be
supported/expanded (see Smith et al., 2015, 2019). Furthermore,
increased field and vessels access to conduct flux measurements
(e.g., available ship berth space or sensor installations) should be
encouraged. The SOOS tool “DueSouth: Database of Upcoming
Expeditions to the SO” provides support towards this end.
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