
Noise-tolerant Similarity Search in Temporal Medical Data

Luca Bonomi1, Liyue Fan2, Xiaoqian Jiang3

Abstract

Temporal medical data are increasingly integrated into the development of data-driven methods to deliver
better healthcare. Searching such data for patterns can improve the detection of disease cases and facilitate
the design of preemptive interventions. For example, specific temporal patterns could be used to recognize
low-prevalence diseases, which are often under-diagnosed. However, searching these patterns in temporal
medical data is challenging, as the data are often noisy, complex, and large-scale. In this work, we propose an
effective and efficient solution to search for patients who exhibit conditions that resemble those specified in
the input query. In our solution, we propose a similarity notion based on the Longest Common Subsequence
(LCSS), which is used to measure the similarity between the query and the patient’s temporal medical
data and to ensure robustness against noise in the data. Our solution adopts locality sensitive hashing
techniques to address the high dimensionality of medical data, by embedding the recorded clinical events
(e.g., medications and diagnosis codes) into compact signatures. To perform the pattern search in large EHR
datasets, we propose a filtering approach based on tandem patterns, which effectively identifies candidate
matches while discarding irrelevant data. The evaluations conducted using a real-world dataset demonstrate
that our solution is highly accurate while significantly accelerating the similarity search.

Keywords: Temporal Medical Data, Pattern Search, Similarity Search, EHR Data

1. Introduction

The wide adoption of electronic healthcare records
(EHRs) has enabled the collection of an unprece-
dented quantity of temporal medical data. A vari-
ety of studies have shown that analyzing temporal
patterns in EHR data, e.g., a sequence of medical
events occurring over time, holds great promises for
facilitating clinical decisions and improving patient
care [1, 2, 3]. Current data-driven methods rely on
two tasks, i.e., pattern extraction and pattern search,

1lbonomi@ucsd.edu, UCSD Health Department of Biomed-
ical Informatics, University of California, San Diego

2liyue.fan@uncc.edu, College of Computing and Informatics
at the University of North Carolina at Charlotte

3Xiaoqian.Jiang@uth.tmc.edu, UTHealth School of
Biomedical Informatics, Houston

to integrate temporal patterns into clinical applica-
tions.

For pattern extraction, the goal is to discover use-
ful patterns for predictive analysis. Typically, these
patterns are unknown a priori, and are discovered
using machine learning methods [4, 5, 6, 7, 8, 9]
and data mining techniques [10, 11, 12, 13]. Pattern
search generally aims at efficiently searching for pa-
tients who exhibit known patterns (e.g., a sequence
of diagnoses over time), which are given as input
queries. Several solutions have been proposed by ex-
tending traditional database query languages [14, 15],
and using a variety of search methods [16, 17, 18, 19].
In fact, pattern search can enable clinicians to iden-
tify patients with target health conditions, facilitat-
ing the diagnosis and preemptive intervention, espe-
cially for low prevalence diseases that are likely to be
under-diagnosed. As an example, the query: “Find

Preprint submitted to Journal of Biomedical Informatics May 6, 2021

all patients of age ≤ 5 years who experience fever for
more than 5 days, or fever in conjunction with cervi-
cal lymphadenopathy” could be used to facilitate the
diagnose of Kawasaki disease, which is a rare disease
that affects children [20].

In this work, we focus on the task of pattern search
in temporal medical data. Our solution aims at ad-
vancing current pattern search approaches by en-
abling clinicians to effectively identify patients whose
data resemble the patterns of interest. Specifically,
current approaches mainly focus on exact search,
which provides limited robustness against noise in the
data. Consequently, data that contain errors, missing
values, and patient-specific variations may not match
the query patterns exactly, potentially resulting in
patients to be under-diagnosed. Although recent re-
search (e.g., [18]) has proposed to use similarity mea-
sures in pattern search, those solutions may incur sig-
nificant computational burdens for high-dimensional
and large-scale temporal medical data, which limits
their applicability in real-world settings.

To this end, we propose a novel solution that en-
ables clinicians to perform robust and efficient pat-
tern similarity search in large-scale EHR datasets.
Our solution is based on a similarity measure, which
quantifies the variations in the medical events (e.g.,
diagnoses and medications) and in the temporal di-
mension (e.g., the time of the event). Furthermore,
we develop efficient and accurate similarity search
methods to address the high-dimensional (e.g., mul-
tiple diagnosis codes given to the patient at the same
time) and longitudinal (e.g., observations of the pa-
tient over time) nature of temporal medical data, to
enable pattern search over large datasets. Our spe-
cific contributions are reported as follows.

• To perform similarity search in EHR data, we
adopt a similarity measure based on the Longest
Common Subsequence (LCSS), which provides
robustness against noise in the recorded events
(i.e., event-level distortion) and in the event
times (i.e., temporal distortion). As a result,
patients exhibiting patterns that resemble the
query pattern can be detected, as long as their
LCSS similarity is within a given threshold.

• Evaluating the LCSS similarity between the

query pattern and every patient’s data can be
computationally challenging in practice. There-
fore, we construct an offline probabilistic in-
dex based on locality sensitive hashing (LSH)
techniques, embedding high-dimensional medi-
cal events into compact signatures while allowing
for accurate similarity evaluation. We further
develop an effective filtering approach to discard
patients’ data in which the query pattern could
not occur, and only the remaining data is evalu-
ated for LCSS similarity against the query pat-
tern. Our method leverages gapped dyadic pat-
terns (i.e., events with a temporal gap) and can
recover false negatives caused by the LSH index.

• We conducted extensive evaluations on a large
scale, real-world EHR dataset. Our results show
that our solution guarantees zero false posi-
tive and with high probability zero false neg-
ative, while significantly accelerating the simi-
larity search. In addition, we consider a case
study on inflammatory bowel disease where tem-
poral patterns are utilized to build a classi-
fier. Our study shows that temporal patterns
may help improving the performance of distance-
based prediction models compared to the use of
static features (e.g., single diagnosis codes).

The rest of the paper is organized as follows. Sec-
tion 2 reviews related works on similarity search. Sec-
tion 3 introduces the background, definitions, and
an overview of our solution. In Section 4, we pro-
vide a detailed description of our proposed meth-
ods. We report comprehensive evaluations on a real-
word dataset in Section 5. We discuss potential im-
provements in Section 6 and conclude the paper in
Section 7. Supplemental technical material, such
as proofs and additional experiment results, are re-
ported in the Appendix.

2. Related Work

Researches have developed query systems to en-
able clinicians to search for patients exhibiting clini-
cal conditions with temporal information to analyze
large-scale EHR data. Among these works, temporal

2

query languages, such as TSQL [14, 15], extend tra-
ditional SQL queries to account for the time dimen-
sion of longitudinal medical events. While these ap-
proaches have been applied in practical settings [16],
they provide limited robustness in the presence of
noise in the data: only those patients who match the
query in an exact manner are reported.

Several similarity search methods based on flexible
similarity measures have been proposed to develop
more robust approaches. For example, Hajihashemi
and Popescu [21] designed a framework for detect-
ing health patterns in temporal sequences generated
from sensor networks. In their approach, sensor data
are mapped into one-dimensional sequences where
the similarity is computed using sequence alignment
techniques based on the standard Smith-Waterman
algorithm. A similar idea has been adopted by
Sha et al. [18] to measure patient-to-patient similar-
ity. Specifically, the authors proposed a similarity
measure based on the longest common subsequence
(LCSS) to capture the similarity between the tra-
jectories of medical events (i.e., lab measurements)
among patients. The authors showed that the use
of a similarity measure could produce patterns with
better predictive power. However, the efficiency of
their approach is limited, as the similarity measure
relies on the classic Smith-Waterman algorithm, thus
requiring quadratic time for each temporally anno-
tated sequence in the data. In a recent work, Gian-
noula et al. [22] studied the problem of disease pro-
gression via temporal patterns. In their work, pa-
tients’ data are mapped into one-dimensional tempo-
ral trajectories representing the relationship between
pairs of diseases, where the identification of disease
progression patterns is performed using the Dynamic
Time Warping (DTW) similarity measure. While
this study provides interesting insights on patterns
of disease progression, these patterns only provide
limited information as they are constructed by tak-
ing into account only the primary diagnoses codes,
leaving out medications, labs, and procedures that
could provide additional important clinical insights.
Furthermore, DTW is known to be less robust than
LCSS in the presence of noise in the data, while still
requiring quadratic time.

In this work, we address the computational limita-

Figure 1: Example of temporal data modeling. EHR data of
patient ID=101 are represented with a temporally annotated
sequence S, comprising four sets of medical events S1, S2, S3,
and S4 recorded over a period of two days. Each medical event
Mi may represent a diagnosis code, procedure, or medication.
Multiple events may be recorded at the same time.

tions of current solutions and propose a more robust
similarity notion that better captures the similarity
between high dimensional events (e.g., sets of diagno-
sis codes, medications, and procedures) in temporal
data. Specifically, we develop an effective filtering ap-
proach that significantly reduces the running time by
limiting the similarity evaluation to only a small num-
ber of sequences. Our approach uses an LCSS-based
similarity measure, which has been shown to be very
robust in the presence of noise in the data [23]. Pat-
terns are matched with allowed temporal distortions
and similarity for medical event sets (e.g., measured
by Jaccard index), which takes into account multiple
events recorded at the same time (e.g., a patient may
receive more than one diagnosis codes concurrently).

3. Preliminaries

Our goal is to identify patient records in tempo-
ral medical data (e.g., EHR), which approximately
match a query pattern, e.g., progression of clinical
conditions over time. This section describes how our
approach models temporal medical data, our problem
formulation, and an overview of our solution.

3.1. Modeling Temporal Medical Data

Temporal Representation. To perform a sim-
ilarity search on temporal medical data, we need
a well-defined representation to model the recorded

3

information. Several temporal data models have
been proposed previously for analyses and applica-
tions [24, 25, 26] (e.g., data mining, classification,
prediction). In this work, we use the notion of tempo-
rally annotated sequences, which has shown promising
results in several data mining tasks [26, 19].

Definition 3.1 (Temporally Annotated Sequence).
A temporally annotated sequence S of length n > 0
(i.e., n = |S|) is a sequence of n pairs (Si, ti), where
Si is a set of observations representing the recorded
medical events (e.g., diagnosis codes, medications),
and ti denotes the time of event, where ti < ti+1 for
all i (i.e., temporally ordered).

An example of a temporally annotated se-
quence from EHR data is reported in Figure 1.
Given sequence S = 〈(S1, t1), . . . , (Sn, tn)〉, X =
〈(Si1 , ti1), . . . , (Sim , tim)〉 is a subsequence of S if
1 ≤ i1 ≤ i2 ≤ · · · ≤ im ≤ n.

Similarity Measure. To evaluate the similarity be-
tween temporally annotated sequences, we consider a
measure based on the Longest Common SubSequence
(LCSS), which was first proposed for time series data
by Vlachos et al. [23]. In this work, we generalize
this measure to discrete, set-valued temporal medical
data. The LCSS similarity measure is based on the
well-known longest common subsequence notion for
one-dimensional sequential data, e.g., strings, where
the similarity between two sequences is measured by
the length of their longest common subsequence. To
measure the similarity of multi-dimensional tempo-
ral medical data, we consider two parameters ε and
δ, which define the allowed distortion between set-
valued data (i.e., recorded events) and on the time
axis (i.e., time of the observation), respectively.

Definition 3.2 (Longest Common SubSe-
quence). Given two temporally annotated se-
quences X = 〈(X1, t1),. . . ,(Xn, tn)〉 and Y=〈(Y1, t1),
. . . ,(Ym, tm)〉, the (δ,ε)-Longest Common SubSe-
quence, denoted as LCSS(δ,ε)(X ,Y) can be computed
using a cumulative similarity function γ among
the prefixes of X and Y. For any pair of indexes
0 < i ≤ n, 0 < j ≤ m in the sequences X and Y
respectively, the value of γδ,ε(i, j) is computes as
follows:


0 if i, j = 0,
1 + γδ,ε(i− 1, j − 1) if de(Xi, Yj) < 1− ε

and |ti − tj | ≤ δ,
max{γδ,ε(i− 1, j),
γδ,ε(i, j − 1)} otherwise

where de is a distance measure for event sets, 0 <
ε ≤ 1, and δ is a positive integer. Finally,
LCSS(δ,ε)(X ,Y) = γδ,ε(|X |, |Y|).

In practice, any set distance measure may be
adopted in Definition 3.2. In this work, we define
de(X,Y) = 1 − J(X,Y), where J(X,Y) denotes the
Jaccard index between two medical event sets X and
Y , i.e., J(X,Y) = |X∩Y |

|X∪Y | . The Jaccard index has

been commonly used to measure set similarity, e.g., in
recent studies on EHR data [2, 27]. We also provide
evaluations with the containment similarity measure,
i.e., a fraction of the query contained in the patient
data, in the supplementary material.

3.2. Problem Formulation

We aim at finding subsequences in the patient’s
temporal medical data that highly preserve clinically
useful patterns given as an input query. Specifi-
cally, the input query pattern is modelled as a pair
Q = (P,∆T), where P = 〈P1, . . . , Pk〉 is a sequence of
k event sets and ∆T = 〈∆t1, . . . ,∆tk−1〉 is a sequence
of temporal gaps representing the progression of med-
ical events, e.g., Pi+1 is observed ∆ti time units after
Pi. In addition, δ and ε are considered in input, to
approximately match the query pattern with a pa-
tient’s data, when computing their LCSS similarity.

Definition 3.3 (θ-match). Give parameters δ and ε,
a subsequence S ′ = 〈(Si1 , ti1), . . . , (Sim , tim)〉 is a θ-

match for the query Q = (P,∆T) if
LCSS(δ,ε)(S′,P)

|P| ≥
θ, where P = 〈(P1, ti1), . . . , (Pk, ti1 +

∑k−1
i=1 ∆ti)〉 is

the sequence induced by Q and S ′.

Intuitively, θ ∈ [0, 1] represents the fraction of the
query pattern contained in the subsequence. Higher
θ requires the data to contain a higher portion of the
query pattern. Given a query Q and the threshold θ,
our goal is to identify every subsequence in the data,

4

Figure 2: Example of similarity search in temporally
annotated sequences. Given sequence S and query
Q = (P,∆T), the longest common subsequence be-
tween Q and S for δ = 2 and ε = 0.65 is S ′ =
〈(S4, 10), (S6, 15), (S7, 18)〉. Furthermore, this subse-
quence is a θ-match for the query Q for θ = 0.75, as
S ′ contains 3 out of 4 event sets in query Q.

which is a θ-match for Q. An illustrative example of
the similarity search problem is reported below.

Example 3.1. Let M1, . . . ,M4 denote distinct med-
ical events recorded during a patient’s visit (e.g., diag-
noses, medications, and procedure codes). A tempo-
rally annotated sequence S as in Figure 2 contains 8
sets of events, observed across t = 1 and 20. Consider
a query Q = (P,∆T), where P = 〈P1, P2, P3, P4〉,
∆T = 〈2, 4, 4〉 and de is computed using the Jac-
card index. The subsequence S ′ = 〈(S4, 10), (S6, 15),
(S7, 18)〉 is a θ-match for Q in S, for δ = 2, ε = 0.65,
and θ = 0.75.

3.3. Overview of our solution

In this paper, we propose a novel framework
that enables clinical researchers to query large EHR
datasets and identify patients who exhibit condi-
tions specified as temporal query patterns (Figure 3).
Specifically, our solution entails three main steps: in-
dexing, filtering, and verification. The three steps

combined effectively manage the complex EHR data
while reducing the similarity computation to only a
small number of temporally annotated sequences rel-
ative to the overall dataset.

1. Indexing Medical Events. We pre-process the
data sequences and embed the sets of medical
events into compact signatures that retain the
original similarity (e.g., Jaccard). These signa-
tures are indexed using locality-sensitive hashing
(LSH) techniques to support efficient similarity
searches given the input query.

2. Filtering. We perform a filtering step to iden-
tify candidate subsequences in the dataset that
are likely to be a match. Our filtering approach
uses tandems (i.e., dyadic patterns separated by
a flexible temporal gap) extracted from the in-
put query Q. Subsequences that share a large
number of tandems with the query Q are likely
to be candidate θ-matches for Q. As a result,
this step significantly reduces the number of se-
quences that need to be verified.

3. Verification. The surviving subsequences after
the filtering step are verified to determine if they
are θ-matches for Q. This step entails comput-
ing the LCSS measure between the query and
each subsequence (as in Definition 3.3), which is
achieved with dynamic programming [18].

Given the high computational cost for the similar-
ity measure between a data sequence and the input
query, it is important to develop indexing and filter-
ing methods that improve the efficiency and lower the
number of data sequences for the verification step.
On the other hand, indexing and filtering should not
be overly restrictive to miss real matches, i.e., incur-
ring false negatives. In Section 4, we propose innova-
tive methods for indexing and filtering that strike a
balance between computational efficiency and accu-
racy.

4. Material and Methods

In this section, we provide a detailed description of
the steps in our method as shown in Figure 3. First,
in the offline phase, we index the medical events in

5

Figure 3: Overview of our proposed similarity search solution.

the data by mapping them into compact signatures
while preserving their similarity. Second, we illus-
trate our similarity search approach using filtering
and verification, given a query on-the-fly.

4.1. Offline Indexing for Medical Events

Searching temporal medical data can be compu-
tationally challenging on large datasets, requiring to
examine every event set (e.g., a set of diagnosis codes
and medications) recorded at each observation (e.g.,
one patient encounter). Here we present our ap-
proach to index medical events offline, and the index
structures can be used to search for medical event sets
efficiently in the online phase. Specifically, our ap-
proach adopts locality-sensitive hashing (LSH) tech-
niques to embed the high dimensional set-valued data
(i.e., medical event sets) into compact signatures and
enable to efficiently search for similar medical event
sets (i.e., within ε threshold) in the online phase.

Our approach adopts LSH-MinHash [28] to es-
timate the Jaccard similarity between event sets.
Given the similarity threshold ε in a query Q, the
LSH-index can be optimally constructed to minimize
false positives and false negatives caused by the prob-
abilistic nature of LSH. However, when answering
queries with different thresholds (i.e., values of ε),
the index is no longer optimal and may yield higher
errors. Moreover, reconstructing the LSH-index for
every query is infeasible, as it would incur signifi-
cant computational and storage overhead. To this

end, we develop a workload-aware LSH-index, which
comprises a small number of sub-indexes (i.e., LSH-
MinHash), which achieves minimum error given a
workload of queries.

Workload-Aware Index Construction. Our ap-
proach constructs the index by considering a work-
load of queries W = {Q1, Q2, . . . , Qn}, which may
represent a set of historical or batched similarity
search queries. Our approach utilizes the similar-
ity thresholds associated with queries in W (i.e., εi
for every Qi) to optimally construct the index, such
that the error can be minimized for queries in W as
well as future queries with similar thresholds. Specif-
ically, we define the range of similarity thresholds
for W as [ε−, ε+), where ε− = mini=1...n{εi} and
ε+ = maxi=1...n{εi}. By incorporating the distri-
bution of query similarity thresholds, our approach
constructs m LSH indexes that minimize the overall
error for the workload. An overview of the offline
indexing is depicted in Figure 4. When the work-
load information is unavailable, our method assumes
an uniform distribution of similarity thresholds for
input queries in the range [ε− = 0, ε+ = 1).

Typically, an LSH-index is configured with two pa-
rameters (b, r), where b is the number of bands and
r is the number of rows per band used in computing
the hash signatures [28]. Given a similarity thresh-
old ε, we can compute the false positive rate FPb,r(ε)
and the false negative rate FNb,r(ε) as a function of
the index parameters b and r. We define the index

6

Figure 4: An illustrative example of offline indexing.
Given a workload of queries, we identify the range, i.e.,
ε− and ε+ for the queries’ similarity thresholds. Our ap-
proach constructs an optimal partition of the similarity
threshold range, and for each partition an LSH-index i
with parameter (bi, ri). For each LSH-index, the high di-
mensional medical event sets are mapped into compact
signatures and hashed into bins, where similar event sets
are placed in the same bin. In the online phase, the index
constructed for the range [εi, εj) is used to answer queries
with ε ∈ [εi, εj).

error for the similarity threshold ε (i.e., errb,r(ε)) as
the weighted average between false positive and false
negative:

errb,r(ε) = wFP × FPb,r(ε) + wFN × FNb,r(ε) (1)

where wFP and wFN are weights for the false positive
and false negative rates, respectively. Given a simi-
larity range [εl, εr), the total error for answering all
queries in W with a similarity threshold in the range
can be defined as:

Eb,r(εl, εr) =
∑

Qi∈W,εi∈[εl,εr)

errb,r(εi)

≤ |W (εl, εr)| × max
εi∈[εl,εr)

{errb,r(εi)}

where |W (εl, εr)| denotes the number of queries in W
with εi ∈ [εl, εr).

Our goal is to construct a small number (m) of
LSH indexes for the workload W , where each in-
dex is responsible for answering the queries with
ε ∈ [εl, εr), and such that the overall error is

minimized. Specifically, we aim at identifying
an m-partition of [ε−, ε+], such that [ε−, ε+] =
[ε0, ε1)

⋃
[ε1, ε2)

⋃
· · ·
⋃

[εm−1, εm] where each sub-
range [εj , εj+1) is associated with an LSH-index j
constructed with parameters bj and rj and the overall

error Err∗m(ε−, ε+) =
∑m−1
j=0 Ebj ,rj (ε

j , εj+1) is mini-
mized. In Appendix A.1, we show that this prob-
lem can be efficiently solved using dynamic program-
ming. As a result of this partitioning process, we
obtain m LSH indexes, each tuned to answer the
queries with similarity in the predefined range. In
the online phase, the m LSH-indexes will be used to
efficiently retrieve all medical events within the sim-
ilarity threshold of the input query.

4.2. Online Filtering and Verification

Recall in Figure 3, given a query pattern, our
framework performs online filtering and verification
to identify matching patients. Specifically, for an in-
put query Q, the filtering step uses the LSH-index
to identify those sequences that are likely to match
the query Q, while discarding the others. Subse-
quently, in the verification step, only the surviving
sequences are processed to determine if they exhibit
an actual θ-match for the query Q. Our intuition is
that in practical applications, only a small percentage
of data sequences would match the query pattern Q.
As a result, our approach may significantly accelerate
the similarity search compared to the exhaustive ap-
proach, i.e., by verifying every sequence in the data.

4.2.1. Filtering via Tandem Patterns

In the filtering step, we utilize tandem patterns
(i.e., two event sets separated by a variable time
gap) to capture the temporal dependence between
medical events in the query and identify those tem-
porally annotated sequences that may contain a θ-
match. Specifically, given a query of length k de-
noted as Q = (P = 〈P1, . . . , Pk〉, ∆T = 〈∆t1, . . . ,
∆tk−1〉), we decompose Q into a set of tandems Tij =
{(Pi, Pj),∆tij}, 1 ≤ i < j ≤ k, where Pi and Pj are

separated by the temporal gap ∆tij =
∑j−1
l=i ∆tl (see

Figure 6a for examples). In the following, we first
search for the occurrences of these tandems in the
temporally annotated sequences, and then use these

7

Figure 5: Searching for tandem pattern occurrences. In
this example, the LSH index misses the occurrence of P1

at time t2 in the data sequence. As a result, the simple
tandem search approach will miss the occurrences of T12

and T14 in the sequence, for which P1 is the first compo-
nent. With our approach, when the LSH index detects
the set P2 at time t3, we do not only find the occurrence
of T24 but also test the event sets in the vicinity of P2

in the sequence for possible occurrence of other tandems,
using a wider temporal gap adjusted to account for the
temporal distortion δ. In this way, the occurrences of
tandems T12 and T14 can be recovered.

tandems to filer out those subsequences that cannot
be a θ-match for Q.

Searching for Tandem Occurrences. To de-
tect the occurrences of the tandems, the LSH-index
constructed offline will be utilized to identity where
the tandem event sets occur in the data sequences.
Specifically, the occurrences of a tandem Tij =
{(Pi, Pj),∆tij} can be found by identifying the first
component Pi in the data and testing whether the
second component Pj occurs in the vicinity of Pi. A
problem with this approach is that if the first com-
ponent Pi is missed due to the probabilistic nature
of LSH, the occurrence of Tij will be also missed. To
overcome this limitation, we propose a different ap-
proach, in which the detection of Tij does not solely
rely on the first component Pi: an occurrence of any
set Pm of Q can be used to identify the occurrences
of Tij . Our approach can recover a missed occurrence
of Tij as long as some event sets of the query Q occur

in its temporal vicinity. An illustrative example is
reported in Figure 5. Here, we briefly describe our
approach as follows. Each time an occurrence Xm of
a set Pm is detected in the data, all set pairs Xi and
Xj in the temporal vicinity of Xm are tested to de-
termine whether (Xi, Xj) matches a real tandem. As
a result, a tandem occurrence is missed, only when
all the event sets in Q are missed, thus exponentially
reducing the false negative probability compared to
the standard approach. In the evaluation section,
we refer to the former approach as single-seed ex-
pansion and the latter as multiple-seed expansion, re-
spectively. The accuracy and running time for these
methods are analyzed in Appendix A.2.

Filtering with Tandems. Given the tandem oc-
currences, it is challenging to determine whether the
tandem occurrences warrant a θ-match for Q. As
a simple filtering criterion, one could use the num-
ber of shared tandems between the query and the
subsequence in the data (Figure 6b). However, this
approach may have little filtering power, resulting in
a large number of candidate subsequences that re-
quire verification. For example, a subsequence con-
taining out-of-order tandems is likely to pass this sim-
ple count-based filter even though it does not exhibit
a real θ-match. Therefore, to design a more effec-
tive filter, we must consider the temporal order of
the tandems found.

Given a length-k query Q = (P,∆T) where
P = 〈P1, P2, . . . , Pk〉, and a temporally annotated
sequence S, our method constructs a directed acyclic
graph G = (V,E), where the node set V is parti-
tioned into k layers L1, L2, . . . , Lk, and each v ∈ Li
denotes an occurrence of set Pi. A directed edge e
between layers Li and Lj represents an occurrence
for the tandem Tij = {(Pi, Pj),∆tij}. As shown in
our previous study [19], this graph model can be used
for effectively matching patterns in temporally anno-
tated sequences. In this work, we adapt the graph
model to track the tandems in S as well as their tem-
poral order.

Specifically, our method constructs the graph G
by processing the tandems starting from the leftmost
set P1, and proceed in the order as they appear in Q.
For each set Pi, a new node v with label ti is added

8

(a) Decomposition of the input
query into tandem patterns.

(b) Occurrences of the tandem pat-
tens in the temporally annotated
sequence.

(c) We construct G = (V,E) a
directed acyclic graph to identify
tandems that are in order.

Figure 6: Filtering with Tandem Patterns: (a) Decomposition of the input query into tandem patterns. In this case
the input query has four sets of medical events, resulting into six different tandem patterns, which are used to find
potential occurrences of the query pattern. (b) Tandem occurrences in the temporally annotated sequences. We
point out that tandems may occur out of order in the sequence without forming a real θ-match for the input query.
In our example, the tandems in the dashed box represent a real match of the query pattern at time t2. (c) Acyclic
directed graph for coverage computation. In this example, the coverage for the edge e1 is two, as there are two paths
that connect the nodes t5 and t2: the path formed by e1 itself and the path formed by e3 and e2. The tandems T14,
T24, and T12 associated with these edges preserve their original order, identifying the occurrence at time t2.

to the layer Li when an occurrence of Pi is iden-
tified in the sequence at time ti. Edges are added
to capture tandem occurrences and form paths in G
across multiple layers. Because the set occurrences
are processed in order during the graph construction,
any pair of consecutive edges e1 = (vi, vj) and e2 =
(vj , vz) forming a path in G, correspond to tandems
Tij = {(Pi, Pj),∆tij} and Tjz = {(Pj , Pz),∆tjz} that
share the same event set Pj . Therefore, the num-
ber of paths between two nodes provides information
about how many tandems preserve their original or-
der. Our idea is to use these paths to identify a θ-
match for the query (Figure 6c). Specifically, given
an edge e = (vi, vj), we denote by c(e) the number of
paths from vi to vj , named the coverage of e. Intu-
itively, edges with large coverage indicate that a large
number of the query’s tandems are in order, thus the
subsequence is likely to be a θ-match for the input
query.

Our method adopts a two-step filtering criterion
based on the following necessary conditions extracted
from G and c(e).

Lemma 4.1. Let ti be a time index in a tempo-
rally annotated sequence representing a θ-match for a
length-k query pattern.Then the following conditions

hold:

1. Counting: There are at least th1 = α×(α−1)
2 − 1

distinct tandems shared between the subsequence
starting at time ti and the input query pattern.

2. Coverage: In the directed acyclic graph G =
(V,E) there exists an edge e, such that c(e) ≥
th2 = 2α/4

where α = bθ × kc.

Only when both conditions are satisfied, the subse-
quence will be verified subsequently. The technical
analysis is reported in Appendix A.3 and Appendix
A.4.

Verification. The verification step examines the
surviving subsequences and determines the presence
of θ-matches for the query using the (δ, ε)-LCSS sim-
ilarity measure. This step eliminates false positives
from the final matching results. In our evaluations on
real-world clinical data, only a small fraction of the
sequences pass the filtering step, resulting in a signif-
icant speed-up compared to exhaustively computing
the LCSS similarity distance for each data sequence.

9

5. Empirical Evaluation

Data. We adopt the de-identified real-word clinical
dataset MIMIC-III [29], which comprises over 58,000
ICU hospital admissions for 38,645 adults and 7,875
neonates. For each patient, a temporally annotated
sequence S = 〈(S1, t1), . . . , (Sn, tn)〉 is constructed,
where each Si contains the diagnoses, procedures,
and medications recorded by the institution at the
time of hospitalization. Each ti has been adjusted to
record the number of days elapsed since the patient’s
first hospitalization. As we only consider patients
that have at least two observations, i.e., n ≥ 2, the
total number of temporally annotated sequences con-
structed from the original data is 46,498 with 650,245
observations in total.

Parameters. We evaluate our methods by varying
parameter values in Table 1 and the default values
are boldfaced. Among them, θ, ε, and δ allow to
retrieve data sequences that are sufficiently similar
to the query patterns. It may be beneficial to set
higher values for θ and ε and lower values for δ when
the user queries known patterns and obtains results
that well preserve the query patterns. On the other
hand, lower values of θ and ε (and higher values of
δ) allow data sequences to match the input query in
a more flexible manner, and therefore may be more
suitable when data contain high noise or the user is
uncertain about the query patterns.

Metrics. We measure the recall of the retrieved se-
quences and the running time of our approach in sec-
onds. The ground truth is provided by computing
the similarity of every sequence in the dataset to a
given query, i.e., exhaustive verification. Note that
our approach produces no false positives thanks to
the verification step, but possibly false negatives due
to the probabilistic nature of LSH-indexing. The re-
sults below were obtained using the Jaccard index be-
tween event sets. Experiments conducted using the
containment similarity measure are reported in Ap-
pendix B.

5.1. Evaluation for Indexing

We compare our workload-aware index ap-
proach based on dynamic programming (denoted

Parameter Description Values
k Length of the query pattern [2,3,4,6]
ε Event-level similarity [0.25,0.5,0.75,0.9]
δ Temporal distortion in days [1,2,7,14,31]
θ Threshold for LCSS similarity [0.5,0.75,0.9,1]
d Data dimensionality [2,4,10,20]

Table 1: Parameter settings. Default values are boldfaced.

by DP-Index) with LSH-Forest [30], which searches
nearest neighbor event sets approximately when the
similarity threshold ε varies. To construct DP-Index,
we consider a wide range of ε values, i.e., [0.25, 0.9],
to enable our approach to answer a variety of query
workloads. To evaluate the indexing performance,
we generated 100 target event sets for every ε value
and searched both indexes for those sets. We set
WFP = 0.3 and WFN = 0.7 for the indexing er-
ror in Equation 1. Because the reported false pos-
itives (i.e., event sets that do not meet the ε simi-
larity threshold) will be removed by the verification
step eventually, we assign a higher weight to the false
negative. The recall results for different values of ε
are reported in Figure 7. We observe that for both
approaches, the recall increases as ε increases (i.e.,
requiring higher similarity) and our DP-Index con-
sistently dominates LSH-Forest. It shows that LSH-
Forest, designed for finding top-k nearest neighbors,
is only suitable for answering queries with high sim-
ilarity thresholds, e.g., ε ≥ 0.8. We notice that the
number of indexes (m) used in our approach does not
significantly impact the performance for ε ≥ 0.5. In
practice, DP-Index works well even when only one
or two indexes are constructed. This is not surpris-
ing, since one carefully constructed LSH-index may
capture the structure of the data [31].

Furthermore, our index structure is built offline in
an efficient manner. Additional evaluations demon-
strating the scalability of our indexing method are
reported in the Appendix B.

5.2. Evaluation for Filtering

We evaluate the impact of tandem-based filtering
on similarity search. We compare two tandem search
methods of Section 4.2.1, namely: single-seed expan-
sion (TF) and multiple-seed expansion (TF∗). The

10

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
e
c
a
ll

m=1
m=2
m=3
m=4

LSH-Forest
DP-Index
DP-Index
DP-Index
DP-Index

Figure 7: Indexing performance vs. LSH-Forest [30]. m:
number of indexes used in our approach.

0.2 0.4 0.6 0.8 1

0.7

0.8

0.9

1

R
e

c
a

ll

TF (k=2)
TF* (k=2)
TF (k=4)
TF* (k=4)

Figure 8: Performance of Similarity Search with Tandem-
based Filtering. k: length of the query pattern.

ground truth of similarity search is computed using
an adaptation of the approach proposed by Sha et
al. [18] to suit our similarity notion, which evaluates
the similarity between every sequence in the dataset
and the query pattern (SScan), i.e., without any fil-
tering. Queries Q = (P, T) were constructed by ran-
domly sampling length-k subsequences from the tem-
porally annotated sequences of the MIMIC-III pa-
tients. Each experiment was run with 20 queries,
and the average result was reported.

Varying the similarity threshold ε. Figure 8 re-
ports the recall of similarity search, i.e., finding θ-
match of a given query using (δ,ε)-LCSS measure.
First, we observe that the recall improves signifi-
cantly as the similarity threshold ε for event sets
increases, thanks to our LSH-based index, which is
more accurate with higher ε values. Second, we no-
tice that given the query length k, searching tandems
with the TF∗ method achieves significantly higher re-
calls than TF, which demonstrates the robustness of

0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 [
s
e

c
] TF (k=2)

TF* (k=2)
TF (k=4)
TF* (k=4)
SScan (k=2)
SScan (k=4)

Figure 9: Running Time of Similarity Search Compared
to SScan [18].

2 3 4 5 6

len (k)

10
-4

10
-2

10
0

10
2

10
4

T
im

e
 [
s
e

c
]

TF TF* SScan

Figure 10: Running time vs. query length.

TF∗ in finding tandem occurrences. By using a longer
query pattern (from k = 2 to k = 4), higher recalls
are achieved for both TF and TF∗, as more tandems
will be searched in the filtering step and fewer false
negatives are incurred. From the run time evaluation
in Figure 9, we observe that our filtering-based ap-
proach achieves a speed-up of several orders of mag-
nitude compared to the baseline SScan.

Impact of the query length (k). Figure 10 re-
ports the running time while varying the length of
the query pattern. For all the approaches, we observe
that the running time increases when longer patterns
are used in the query Q. Intuitively, longer patterns
require higher computational cost for the LCSS sim-
ilarity evaluation, and for our approach, they also
generate a greater number of tandems. The results
show that our filtering-based approach significantly
outperforms the baseline SScan. Between our tan-
dem search methods, TF∗ incurs a very small compu-
tational overhead compared to TF, when queries are
longer (k ≥ 4).

11

5 10 15 20 25 30

[days]

10
-4

10
-2

10
0

10
2

10
4

T
im

e
 [
s
e

c
]

TF TF* SScan

Figure 11: Running time vs. time distortion.

0.5 0.6 0.7 0.8 0.9 1
0.94

0.95

0.96

0.97

0.98

0.99

1

R
e
c
a
ll

TF
TF*

Figure 12: Recall vs. LCSS threshold.

Impact of the temporal distortion (δ). The tem-
poral distortion parameter, δ, does not affect the util-
ity of our approach for similarity search. Varying
δ does not introduce additional false negatives. Re-
garding the running time, we observe a small increase
as δ increases (see Figure 11), due to the enlarged
search space. Note that the EHR data in MIMIC-
III were collected in the ICU, and patients tend to
have only a limited number of hospitalizations that,
in general, last for only a few days (i.e., ≤ 10 days).
Therefore, larger temporal distortions are unlikely to
cause observable changes in the algorithm’s behavior.

Impact of the LCSS similarity threshold (θ).
Figure 12 reports the recall of our approach by in-
creasing the LCSS similarity threshold θ. Our tan-
dem search method TF∗ achieves perfect recall for
all θ values, while the simple method TF achieves a
slightly lower recall that fluctuates between 0.95 and
1. TF∗ search the tandem occurrences by extending
each matched event set, the probability of missing a
tandem is exponentially lower than that of TF, thus
providing more robust utility. Regarding the run-

0.5 0.6 0.7 0.8 0.9 1

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 [
s
e

c
]

TF
TF*
SScan

Figure 13: Running time vs. LCSS threshold.

Figure 14: Overview of the case study for classifying IBD
patients. The case study includes four steps: (1) feature
extraction, (2) pattern construction, (3) vector represen-
tation, and (4) applying a distance-based classifier. The
feature-based approach, following the steps (1), (3), and
(4), maps the temporally annotated sequences into bi-
nary vectors according to the presence of every feature ex-
tracted in step (1). The pattern-based approach, follow-
ing all the steps (1)-(4), maps the temporally annotated
sequences into binary vectors according to the presence
of a θ-match for each pattern constructed in step (2). As
a proof of concept, KNN classifier is adopted in step (4).

ning time, we show in Figure 13 that TF∗ incurs a
small overhead compared to TF. In conclusion, the θ
parameter does not significantly impact the running
time for all methods.

5.3. Case Study: Temporal Patterns for Inflamma-
tory Bowel Disease

We further study the applicability of similarity
search in clinical predictive tasks for low prevalence
diseases. Specifically, we consider the task of identify-
ing patients with Inflammatory Bowel Disease (IBD)
in MIMIC-III dataset. IBD broadly refers to chronic
inflammation of the gastrointestinal tract [32]. Our
goal is thus to study whether temporal patterns ex-
tracted from the data sequences could facilitate the
identification of patients with IBD.

12

We address the binary classification task (i.e., IBD
vs. non-IBD), by mapping patient data into vectors
and applying a distance-based classifier in the vector
space. As a proof of concept, we adopt the K-nearest
neighbors (KNN) classifier with K = 5 and calculate
the distance between patient vectors with Euclidean
distance. To generate the vector for each patient, we
consider two approaches. The first approach employs
a set of features (i.e., medical events) and generates
one bit for each feature, i.e., 1 if the patient’s data
contains the event and 0 otherwise. The second ap-
proach constructs temporal patterns using the same
set of features and generates one bit for each temporal
pattern, i.e., 1 if the patient’s data contains a θ-match
of the pattern and 0 otherwise. A detailed descrip-
tion of our methodology, such as feature extraction
and temporal pattern construction, is reported in Ap-
pendix B.3.

Figure 15 reports the classification results in F1

score and accuracy, when features (i.e., medical
events) and patterns (i.e., temporal subsequences of
medical event sets) are adopted. Overall, we ob-
serve that the same classifier may achieve better
results when adopting the temporal patterns, com-
pared to adopting static features. This demonstrates
that temporality among medical events is informative
in distinguishing patients. Furthermore, we observe
lower values of ε and θ (ε = 0.2 and θ = 0.1) produce
higher accuracy, as they are less restrictive and thus
retrieve similar patients despite the noise in the data.
This shows that our similarity search framework can
benefit applications based on EHR data, where vari-
ation among patients should be considered.

6. Discussion

Here, we discuss potential limitations and alterna-
tive strategies to improve our proposed methods.

Similarity between medical events. While our
approach enables approximate search for EHR data
by detecting query patterns even in the presence of
noise (e.g., missing data and temporal distortion), it
builds on standard similarity measures for event sets
(i.e., Jaccard index and containment), which may not
capture the similarity between medical events. In

fact, different medical codes may be related to each
other. For instance, diagnosis codes may overlap with
each other (e.g., a higher level ICD9 code is a “par-
ent” of those ICD9 codes in its subtree). A future
direction is to incorporate such relations into patient
similarity search. To represent the similarity between
medications, a possible solution is to consider the
drug’s chemical structure to incorporate the drug-to-
drug similarity. Zhang et al. [33] showed promising
results in drug analytic tasks using such a drug-to-
drug similarity model.

Constructing query patterns.. In our method,
temporal patterns are used to identify patients with
queried clinical conditions. However, formulating ap-
propriate queries may be challenging when there is a
lack of medical guidelines. As shown in the IBD case
study, unsupervised approaches could be adopted to
identify candidate patterns associated with a target
condition. There are several ways to extract patterns.
For example, temporally annotated sequences associ-
ated with a target condition can be clustered, and
common subsequences can be identified to represent
candidates’ patterns [34, 35]. Alternatively, associ-
ation rule based methods can be adopted to mine
common patterns across multiple sequences [36, 37].
Those patterns can be obtained in a pre-processing
step, after which clinicians and domain experts can
incorporate their knowledge to construct effective
queries.

(a) F1 score (b) Accuracy

Figure 15: IBD classification with KNN classifier (K = 5):
pattern-based vs. feature only. For the pattern-based
classification, we constructed 40 temporal patterns and
apply similarity search while varying values of ε and θ.
We set δ = 5 days for all experiments.

13

7. Conclusions

In this work, we presented a framework for similar-
ity search in temporal medical data. Our framework
takes as input query patterns that express target
health conditions and searches large EHR datasets
for patients whose temporal medical data is similar
to the query pattern. The search criterion is designed
with the LCSS similarity measure, which accounts for
noise in medical events (e.g., diagnoses and medica-
tions) and in time (e.g., recorded event times). As
a result, our framework provides robustness against
noise in the EHR data. We develop a novel filtering
approach to boost the efficiency of similarity search,
which eliminates non-relevant data and results in no
false negatives with high probability. Empirical eval-
uations demonstrate that our solution significantly
accelerates the similarity search, compared to the
start-of-the-art approaches, while providing highly
accurate search results.

Acknowledgements

LB is supported in part by the National Institute
of General Medical Sciences grant R01GM118609,
and National Human Genome Research Institute
grant K99HG010493. LF is supported in part by
the National Science Foundation grant CNS-1951430
and CNS-1949217, and UNC Charlotte. XJ is
CPRIT Scholar in Cancer Research (RR180012), and
he was supported in part by Christopher Sarofim
Family Professorship, UT Stars award, UTHealth
startup, the National Institute of Health (NIH) un-
der award number R01AG066749, R01GM118609,
R01GM114612 and U01TR002062. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors.

Appendix A. Additional Material

Appendix A.1. Optimal Indexing

In the construction of our workload-aware index,
our goal is to minimize the total error Err∗m(ε−, ε+).
Given the range [ε−, ε+], we divided it into h dis-
crete values of ε. On this range of discrete values,

the optimal partition can be found by considering all
the possible m ranges and finding the best parameter
values (b, r) for each range. This step can be compu-
tationally intense if performed naively. We observe
that the optimal error Err∗m(ε−, ε+) with m indexes
can be formulated in a iterative manner as follows:

min

{
Err∗m−1(ε−, ε+),

minεj∈[ε−,ε+]{Err∗m−1(ε−, εj) + Err∗1(εj , ε+)}

We can use the dynamic programming strategy to
solve this problem efficiently. In fact, there are
at most h2 non overlapping ranges in the interval
[ε−, ε+) and at most m indexes that need to con-
structed. Given a range [εi, εj), we can assume a
constant time for initialize the LSH index for [εi, εj),
for example by tuning (b, r) to minimize the error
for = (εi + εj)/2. Then, the m indexes associ-
ated with the partition of [ε−, ε+] that minimizes
Err∗m−1(ε−, ε+) can be computed in O(m× h2).

Appendix A.2. Searching Tandem Occurrences

Here, we analyze the time complexity and accu-
racy for searching tandem pattern occurrences. The
single-seed expansion approach identifies tandem oc-
currences by searching forward in time after detect-
ing the first component of a tandem, while multiple-
seed expansion approach tests all sets in the tempo-
ral vicinity of a detected component, i.e., searching
both forward and backward in time. Let |Occ(P)|
denote the maximum number of occurrences for any
set Pi in the query pattern and ∆ represent the max-
imum temporal interval on which the query spans
(i.e., ∆ = ∆t1,k + 2δ).

Time Complexity. The running time of single-seed
expansion is O(|Occ(P)|×∆), since we do a constant
number of similarity tests for each set occurrence. For
multiple-seed expansion, each time a set occurrence is
identified with the LSH index, we test if any tandem
pattern occurs in its temporal vicinity. There are at
most ∆2 pairs of sets that need to be tested in the
set’s vicinity. Therefore, the overall running time is
O(|Occ(P)| ×∆2).

Accuracy. Here, we analyze the probability of miss-
ing tandem occurrences (i.e., false negatives). For

14

the single-seed expansion method, anytime the LSH
index fails to identify an occurrence of Pi, we miss
the tandem occurrences having Pi as the first com-
ponent. Therefore, a real θ-match will be missed
as long as one of the tandem occurrence is missed;
and the probability of missing a tandem is equals to
the false negative probability of the LSH index, i.e.,
missing the occurrence of its first component. As a
result, Pr[single-seed fails] ≥ pFN . For the multi-
seed expansion approach, the LSH failure to detect
Pi occurrence can be remedied by detecting any other
set in the query pattern. In other words, a real θ-
match is missed if only the LSH index fails to de-
tect all sets in the query (e.g., when θ = 1). Thus,
Pr[multi-seed fails] = pkFN , which reduces the false
negative rate for θ-matches exponentially compared
to single-seed expansion.

Appendix A.3. Finding Temporally Ordered Tan-
dem Occurrences

Here, we provide details on how our method keeps
track of the identified tandem occurrences in order to
match the query pattern. We first describe the con-
struction of the acyclic graph G introduced in Sec-
tion 4.2.1, and then provide further details on the
estimation of the tandem coverage.

Algorithm 1 GraphConstrution

Require: S - temporally annotated sequence, P - pat-
tern in Q, T - set of tandem occurrences

1: Li ← {φ} for i = 1, . . . , |P |
2: G = (V = φ,E = φ) . Empty graph
3: for Tij = {(Pi, Pj),∆tij,} ∈ T do . Occurrences of

the tandems in order of i in S
4: vi, vj ← occurrences associated with Pi and Pi

5: Li ← Li

⋃
vi . Add a new node to layer Li

6: Lj ← Lj

⋃
vj . Add a new node to layer Li

7: V ← V
⋃
{vi, vj}

8: E ← E
⋃

(vi, vj)
9: end for

10: G = (V,E)

Graph Construction. Algorithm 1 constructs the
multi-partite graph G in an iterative manner, by con-
sidering the set of tandem occurrences and the order

of the tandems in the query Q. The main loop ex-
amines all the tandem occurrences in T , and for each
occurrence an edge is added to the graph. It is easy
to see that the algorithm runs in O(|T |) time, and
the final graph G has |E| = |T | edges and at most
|V | = 2× |T | nodes.

Coverage Computation. Here, we formally define
tandem coverage and illustrate how it relates to the
order of the tandems.

Definition Appendix A.1 (Tandem Coverage).
Let e = (vi, vj) be an edge in G connecting vi and vj
associated with the tandem Tij = {(Pi, Pj),∆tij} in
Q. Then, the coverage of e, denoted as c(e) is the
number of paths between vi and vj.

Lemma Appendix A.1. Let e = (vi, vj) be an edge
in G connecting vi and vj associated with the tandem
Tij = {(Pi, Pj),∆tij} in Q, with coverage c(e) = m.
Then, all the tandems associated with the edges in the
m paths preserves the temporal order of Q.

Proof. (Sketch) We prove an intuitive proof for this
theorem using induction on the number of paths cov-
ered by e.

• Base Case: We start with m = 1. In this case,
we have the path formed by the edge e itself. Be-
cause, e is associated with Tij = {(Pi, Pj),∆tij},
for which i < j by definition of tandems, we have
that the base case holds.

• Inductive Step: We assume that the condition
holds for all m′ < m and here we prove it for
m. Let πz = 〈vi, . . . , vz, . . . , vj〉 be a path be-
tween layers Li and Lj , where the node vz is
contained in the layer Lz, with i < z < j, which
is part of the coverage of e = (vi, vj). For such
a path πz, the subpaths π′z = 〈vi, . . . , vz〉 and
π′′z = 〈vz, . . . , vj〉 must have coverage m′ < m,
and therefore by induction the tandems in their
coverage are in order. Since, the layers in G
are constructed to preserve the order of the sets
of Q, we have that Li < Lz < Lj resulting
in the tandems on the two subpaths to be in
order. In fact, the tandems associated with

15

the layers Li, . . . , Lz precede those in the lay-
ers Lz, . . . , Lj . Therefore, all the tandems in as-
sociated with the path πz = 〈vi, . . . , vz, . . . , vj〉
are in order. Since the edge e = (vi, vj) is as-
sociated with Tij = {(Pi, Pj),∆tij}, the largest
tandems among those covered, we have that all
the tandems covered by e are in order.

Appendix A.4. Filtering with Tandem Patterns

Here, we provide the accuracy and time complex-
ity of our tandem filtering approach.

Lemma Appendix A.2. Let ti be a time index
in a temporally annotated sequence representing a θ-
match for a query pattern P with k sets P1, P2, . . . ,
Pk. The following conditions hold:

1. Counting: There are at least th1 = α×(α−1)
2 − 1

distinct tandems shared between the subsequence
starting at time ti and the input query pattern.

2. Coverage: In the directed acyclic graph G =
(V,E) there exists an edge e = (vi, vj), such that
the number of distinct paths between vi and vj is
at least 2α/4 (i.e., c(e) ≥ th2 = 2α/4).

where α = bθ × kc.

Proof. (1) As ti is the time index for a θ-match, there
exists a common subsequence between the query pat-
tern P and the subsequence starting at time ti of
length at least α = bθ × kc. This subsequence

can be decomposed into Nθ = α×(α−1)
2 − 1 distinct

tandems occurring starting from time ti. (2) Let
Tij = {(Pi, Pj),∆ij} be the longest tandem pattern
among the retrieved tandems in the θ-match, and let
Li and Lj the layers in the directed acyclic graph G
where the nodes representing the occurrences of Pi
and Pj are placed, respectively. For this tandem, we
notice that j ≤ i + α, as at least α sets must be
retained in the θ-match, and among all the Nθ the
edges of G representing the occurrences of tandems,
there are edges spanning between 1, 2, . . . , α layers
between Li and Lj . Therefore, the number of paths

between Li and Lj can be computed by considering
the total number of combinations for layers within Li
and Lj . Formally,

α−2∑
z=0

(
α− 2

z

)
= 2α−2

As a result, the edge e = (vi, vj) associated with Tij
has coverage c(e) = th2 = 2α−2, which proves (2).

Time Complexity. Here, we analyze the running
time for the filtering step, by evaluating the criteria
in Lemma Appendix A.2. First, the time complexity
for the counting criterion (1) is linear with the num-
ber of occurrences of the tandems, to verify a suffi-
cient number of tandems are present in the candidate
sequence. Second, the coverage criterion (2) requires
tracking all the paths between pairs of nodes in G. To
solve this problem, we can adapt standard recursive
algorithms for graph explorations (e.g., DFS, BFS).
Since this criterion evaluates whether there are at
least th2 paths between the start node and the end
node of any edge, the running time for such a test is
O(|G| + th2). The quantity |G| = |V | + |E| denotes
the size of the graph, where |V | ≤ 2|E| and |E| is lin-
ear with the number of occurrences on the tandems,
thus |G| is linear with the number of tandems oc-
currences in the region tested. Notice, that th2 may
be exponential with the size of G, as pointed out in
Lemma Appendix A.2.

Appendix B. Additional Experiments

Appendix B.1. Scalability Evaluation for Indexing

We evaluate the efficiency of indexing using two
similarity measures for event sets: Jaccard index
and containment. When Jaccard index is used, the
set signatures and the individual LSH-indexes are
constructed using LSH-MinHash [28] for Jaccard;
for containment, the same is achieved with LSH-
Ensemble [38]. Figure B.16 reports the overall run-
ning time for indexing when increasing the data di-
mensionality, i.e., the maximum number of events
recorded at a time. We use suffixes -J and -C to

16

indicate the use of Jaccard and containment simi-
larity measure. As can be seen, the overall run-
ning time increases as the dimensionality increases.
In Figure B.17, we break down the overall indexing
time in two parts: the time to compute the signa-
tures from the medical event sets (Sig-J/C), and the
time to optimize the index and to insert signatures
(IndexConst-J/C), while increasing the size of the
dataset to be indexed. We observe that the over-
all indexing time increases as the size of the data
increases, but the data size affects each part of the
process differently. For instance, the running time for
IndexConst-J does not grow significantly when data
size is larger, while the running time for Sig-J grows
much faster. From both figures, we notice that the
containment similarity measure has a higher compu-
tational cost compared to Jaccard. We believe that
this is due to a higher overhead of the LSH-Ensemble
technique in parameter optimization [38]. While in-
dexing the medical events takes more time compared
to the online similarity search, it is a one-time cost
as indexing is performed offline; our solution can effi-
ciently index EHR data for 50k patients in less than
600 seconds.

Appendix B.2. Experiments for Containment Simi-
larity

Number of Matching Patients. Figure B.18
compares the number of matching patients obtained
with Jaccard index (dJ) vs. that of containment
similarity (dC), while varying the value of threshold
ε. As ε increases (i.e., stronger similarity), the
number of matching patients obtained with both

2 4 10 20

Dimensions

0

500

1000

1500

T
im

e
 [
s
e

c
]

DP-Index-C
DP-Index-J

Figure B.16: Overall indexing time vs. dimensionality.

similarity measures decreases. We define the con-
tainment similarity between two sets X and Y as

dC(X,Y) = |X∩Y |
|Y | , assuming Y is an event set in the

query. Therefore, dC(X,Y) <= |X∩Y |
|X∪Y | = dJ(X,Y)

for any non-empty sets X and Y . As a result, the
number of matching patients obtained using dC
is higher than that of Jaccard dJ under the same
similarity threshold ε.

Recall and Running Time. Figure B.19 reports
the recall as the threshold for containment similar-
ity increases. Similarly to the results obtained with
the Jaccard index, our multi-seed expansion approach
TF∗ has significantly higher recalls compared to the
simple approach TF. Our filtering approach achieves
a speed-up of several orders of magnitude compared
to the baseline solution SScan, as shown in Fig-
ure B.20. We notice that when dC is used, the run-
ning time tends to be higher than that of Jaccard
dJ (in Figure 9), as containment similarity is likely
to generate more matching patients given ε (see Fig-
ure B.18). From Figures B.21, B.22, B.23, and B.24,
we conclude that the results are consistent with those
achieved with Jaccard index.

Appendix B.3. Case study for classifying IBD pa-
tients

Data Preparation. In the MIMIC-III dataset, we
identify 156 patients with IBD using the following
codes of the 9th revision of the International Statis-
tical Classification of Diseases (ICD9): 556, 556.0,
556.1, 556.2, 556.3, 556.4, 556.5, 556.6, 556.8, and

0

300

600

900

1200

T
im

e
 [
s
e

c
]

Sig-J

Sig-C
IndxConst-C

IndxConst-J

1k 5k 10k 50k
Size

Figure B.17: Indexing time breakdown vs. dataset size.

17

0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

M
a

tc
h

in
g

 P
a

tie
n

ts

d
J

d
C

Figure B.18: Number of matching patients vs. similarity
threshold ε: dC - containment similarity, dJ - Jaccard
index.

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

R
e

c
a

ll

TF (k=2)
TF* (k=2)
TF (k=4)
TF* (k=4)

Figure B.19: Performance of similarity search with con-
tainment measure. k: length of the query pattern.

556.9. We construct the temporally annotated se-
quences for each patient, where each event set con-
tains information about the medications, procedures,
and diagnosis codes recorded at the given time. We
randomly split the MIMIC-III patients to obtain a
80% training set and a 20% testing set. We balanced
the test set by subsampling the non-IBD patients,
i.e., the ratio of non-IBD to IBD is 1.

Features and Patterns Extraction. To construct
a pattern-based classifier, clinical experts may supply
known patterns directly. In this case study, we use
a data-driven approach to identify reasonable pat-
terns from the data. First, we adopt forward fea-
ture selection to extract features (i.e., medical events)
for IBD patients, by iteratively adding the medi-
cal events that best improve the prediction. Sub-
sequently, we combine these features into temporal
patterns by sampling subsequences of the original pa-
tient data sequences where the extracted features oc-

0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 [
s
e

c
]

TF (k=2)
TF* (k=2)

TF (k=4)
TF* (k=4)

SScan (k=2) SScan (k=4)

Figure B.20: Running time of similarity search with con-
tainment measure.

2 3 4 5 6

len (k)

10
-1

10
0

10
1

10
2

10
3

T
im

e
 [
s
e

c
]

TF TF* SScan

Figure B.21: Running time vs. query length with contain-
ment measure.

cur. Table B.2 presents three patterns constructed,
which model clinical events over time that are rele-
vant to IBD [39, 40], such as bleeding in the gastroin-
testinal tract, infection of the urinary tract, respira-
tory diseases, complications in pregnancy.

Vector Generation and Classification. To per-
form the classification task (i.e., IBD vs. non-IBD),
we use a K-nearest neighbors (KNN) classifier with

Query Patterns Clinical Events

Q = 〈{272},
{V 30.0}〉,∆T = 〈1〉

Hypercholesterolemia and Single liveborn

Q = 〈{599, Furosemide},
{599, Furosemide}〉,∆T =
〈1〉

Urinary tract infection and Furosemide for at
least two consecutive measures.

Q = 〈{411.1, 272},
{578.9},{486}〉,∆T =
〈1, 1〉

Intermediate coronary syndrome and Hyperc-
holesterolemia followed by Hemorrhage of gas-
trointestinal tract and Pneumonia

Table B.2: Three temporal patterns, out of 40 in total,
used in the case study.

18

5 10 15 20 25 30

[days]

10
-4

10
-2

10
0

10
2

10
4

T
im

e
 [
s
e

c
]

TF TF* SScan

Figure B.22: Running time vs. time distortion with con-
tainment measure.

0.5 0.6 0.7 0.8 0.9 1
0.94

0.95

0.96

0.97

0.98

0.99

1

R
e
c
a
ll

TF
TF*

Figure B.23: Recall vs. LCSS threshold with containment
measure.

K = 5, where patients are mapped into vectors and
their distance is computed using Euclidean distance.
In the vector generation process, we consider two ap-
proaches: a feature-based approach and a pattern-
based approach. For the feature-based approach,
each temporally annotated sequence is mapped into
a binary vector, where the i-th bit is set to 1 if the i-
th feature is present in the sequence and 0 otherwise.
For the pattern-based approach, the i-th bit is set to
1 if there is a θ-match (with ε, δ, and containment
similarity for LCSS) of the i-th pattern.

References

[1] N. J. Leeper, A. Bauer-Mehren, S. V. Iyer,
P. LePendu, C. Olson, N. H. Shah, Practice-
based evidence: profiling the safety of cilostazol
by text-mining of clinical notes, PloS one 8 (5)
(2013) e63499.

[2] A. B. Jensen, P. L. Moseley, T. I. Oprea, S. G.

0.5 0.6 0.7 0.8 0.9 1
10

-1

10
0

10
1

10
2

10
3

T
im

e
 [
s
e

c
]

TF
TF*
SScan

Figure B.24: Running time vs. LCSS threshold with con-
tainment measure.

Ellesøe, R. Eriksson, H. Schmock, P. B. Jensen,
L. J. Jensen, S. Brunak, Temporal disease trajec-
tories condensed from population-wide registry
data covering 6.2 million patients, Nature com-
munications 5 (1) (2014) 1–10.

[3] D. A. Hanauer, N. Ramakrishnan, Modeling
temporal relationships in large scale clinical as-
sociations, Journal of the American Medical In-
formatics Association 20 (2) (2013) 332–341.

[4] C. Xiao, E. Choi, J. Sun, Opportunities and
challenges in developing deep learning models
using electronic health records data: a system-
atic review, Journal of the American Medical In-
formatics Association 25 (10) (2018) 1419–1428.

[5] E. Choi, M. T. Bahadori, A. Schuetz, W. F.
Stewart, J. Sun, Doctor ai: Predicting clinical
events via recurrent neural networks, in: Ma-
chine Learning for Healthcare Conference, 2016,
pp. 301–318.

[6] R. Miotto, L. Li, B. A. Kidd, J. T. Dudley, Deep
patient: an unsupervised representation to pre-
dict the future of patients from the electronic
health records, Scientific reports 6 (1) (2016) 1–
10.

[7] Z. C. Lipton, D. C. Kale, C. Elkan, R. Wetzel,
Learning to diagnose with lstm recurrent neu-
ral networks, arXiv preprint arXiv:1511.03677
(2015).

19

[8] B. M. Marlin, D. C. Kale, R. G. Khemani, R. C.
Wetzel, Unsupervised pattern discovery in elec-
tronic health care data using probabilistic clus-
tering models, in: Proceedings of the 2nd ACM
SIGHIT international health informatics sympo-
sium, 2012, pp. 389–398.

[9] T. A. Lasko, J. C. Denny, M. A. Levy, Compu-
tational phenotype discovery using unsupervised
feature learning over noisy, sparse, and irregular
clinical data, PloS one 8 (6) (2013).

[10] I. Batal, D. Fradkin, J. Harrison, F. Moerchen,
M. Hauskrecht, Mining recent temporal patterns
for event detection in multivariate time series
data, in: Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery
and data mining, ACM, 2012, pp. 280–288.

[11] F. Wang, N. Lee, J. Hu, J. Sun, S. Ebadol-
lahi, A. F. Laine, A framework for mining signa-
tures from event sequences and its applications
in healthcare data, IEEE transactions on pattern
analysis and machine intelligence 35 (2) (2013)
272–285.

[12] R. Moskovitch, Y. Shahar, Medical temporal-
knowledge discovery via temporal abstraction,
in: AMIA annual symposium proceedings, Vol.
2009, American Medical Informatics Associa-
tion, 2009, p. 452.

[13] F. Altiparmak, H. Ferhatosmanoglu, S. Erdal,
D. C. Trost, Information mining over heteroge-
neous and high-dimensional time-series data in
clinical trials databases, IEEE Transactions on
Information Technology in Biomedicine 10 (2)
(2006) 254–263.

[14] R. Snodgrass, The temporal query language
tquel, ACM Transactions on Database Systems
(TODS) 12 (2) (1987) 247–298.

[15] R. T. Snodgrass, The TSQL2 temporal query
language, Vol. 330, Springer Science & Business
Media, 2012.

[16] C. Plaisant, S. Lam, B. Shneiderman, M. S.
Smith, D. Roseman, G. Marchand, M. Gillam,

C. Feied, J. Handler, H. Rappaport, Searching
electronic health records for temporal patterns
in patient histories: A case study with microsoft
amalga, in: AMIA annual symposium proceed-
ings, Vol. 2008, American Medical Informatics
Association, 2008, p. 601.

[17] C. Combi, G. Pozzi, R. Rossato, Querying
temporal clinical databases on granular trends,
Journal of biomedical informatics 45 (2) (2012)
273–291.

[18] Y. Sha, J. Venugopalan, M. D. Wang, A novel
temporal similarity measure for patients based
on irregularly measured data in electronic health
records, in: Proceedings of the 7th ACM Inter-
national Conference on Bioinformatics, Compu-
tational Biology, and Health Informatics, ACM,
2016, pp. 337–344.

[19] L. Bonomi, X. Jiang, Patient ranking with tem-
porally annotated data, Journal of Biomedical
Informatics 78 (2018) 43 – 53. doi:https:

//doi.org/10.1016/j.jbi.2017.12.007.
URL http://www.sciencedirect.com/

science/article/pii/S1532046417302770

[20] K. Seaton, A. Kharbanda, Evidence-based man-
agement of kawasaki disease in the emergency
department., Pediatric emergency medicine
practice 12 (1) (2015) 1–20.

[21] Z. Hajihashemi, M. Popescu, An early illness
recognition framework using a temporal smith
waterman algorithm and nlp, in: AMIA Annual
Symposium Proceedings, Vol. 2013, American
Medical Informatics Association, 2013, p. 548.

[22] A. Giannoula, A. Gutierrez-Sacristán, Á. Bravo,
F. Sanz, L. I. Furlong, Identifying temporal pat-
terns in patient disease trajectories using dy-
namic time warping: A population-based study,
Scientific reports 8 (1) (2018) 1–14.

[23] M. Vlachos, M. Hadjieleftheriou, D. Gunopu-
los, E. Keogh, Indexing multi-dimensional time-
series with support for multiple distance mea-
sures, in: Proceedings of the Ninth ACM

20

http://www.sciencedirect.com/science/article/pii/S1532046417302770
http://www.sciencedirect.com/science/article/pii/S1532046417302770
https://doi.org/https://doi.org/10.1016/j.jbi.2017.12.007
https://doi.org/https://doi.org/10.1016/j.jbi.2017.12.007
http://www.sciencedirect.com/science/article/pii/S1532046417302770
http://www.sciencedirect.com/science/article/pii/S1532046417302770
http://doi.acm.org/10.1145/956750.956777
http://doi.acm.org/10.1145/956750.956777
http://doi.acm.org/10.1145/956750.956777

SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’03,
ACM, New York, NY, USA, 2003, pp. 216–225.
doi:10.1145/956750.956777.
URL http://doi.acm.org/10.1145/956750.

956777

[24] J. F. Roddick, M. Spiliopoulou, A survey of
temporal knowledge discovery paradigms
and methods, IEEE Trans. on Knowl.
and Data Eng. 14 (4) (2002) 750–767.
doi:10.1109/TKDE.2002.1019212.
URL http://dx.doi.org/10.1109/TKDE.

2002.1019212

[25] J. F. Allen, Maintaining knowledge about tem-
poral intervals, Communications of the ACM
26 (11) (1983) 832–843.

[26] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli,
Mining sequences with temporal annotations, in:
Proceedings of the 2006 ACM symposium on
Applied computing, ACM, 2006, pp. 593–597.

[27] X. Zeng, Z. Jia, Z. He, W. Chen, X. Lu, H. Duan,
H. Li, Measure clinical drug–drug similarity
using electronic medical records, International
journal of medical informatics 124 (2019) 97–
103.

[28] A. Broder, On the resemblance and contain-
ment of documents, in: Proceedings of the Com-
pression and Complexity of Sequences 1997, SE-
QUENCES ’97, IEEE Computer Society, Wash-
ington, DC, USA, 1997, pp. 21–.
URL http://dl.acm.org/citation.cfm?id=

829502.830043

[29] A. E. Johnson, T. J. Pollard, L. Shen, L.-w. H.
Lehman, M. Feng, M. Ghassemi, B. Moody,
P. Szolovits, L. A. Celi, R. G. Mark, Mimic-iii, a
freely accessible critical care database, Sci Data
3 (2016).

[30] M. Bawa, T. Condie, P. Ganesan, Lsh forest:
Self-tuning indexes for similarity search, in: Pro-
ceedings of the 14th International Conference on
World Wide Web, WWW ’05, ACM, New York,

NY, USA, 2005, pp. 651–660. doi:10.1145/

1060745.1060840.
URL http://doi.acm.org/10.1145/1060745.

1060840

[31] A. Gionis, P. Indyk, R. Motwani, Similarity
search in high dimensions via hashing, in: Pro-
ceedings of the 25th International Conference
on Very Large Data Bases, VLDB ’99, Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA, 1999, pp. 518–529.
URL http://dl.acm.org/citation.cfm?id=

645925.671516

[32] J. M. Dahlhamer, E. P. Zammitti, B. W. Ward,
A. G. Wheaton, J. B. Croft, Prevalence of in-
flammatory bowel disease among adults aged 18
years—united states, 2015, Morbidity and mor-
tality weekly report 65 (42) (2016) 1166–1169.

[33] P. Zhang, F. Wang, J. Hu, R. Sorrentino, To-
wards personalized medicine: leveraging patient
similarity and drug similarity analytics, AMIA
Summits on Translational Science Proceedings
2014 (2014) 132.

[34] D. Gotz, J. Sun, N. Cao, S. Ebadollahi, Visual
cluster analysis in support of clinical decision in-
telligence, in: AMIA Annual Symposium Pro-
ceedings, Vol. 2011, American Medical Informat-
ics Association, 2011, p. 481.

[35] F. Doshi-Velez, Y. Ge, I. Kohane, Comorbidity
clusters in autism spectrum disorders: an elec-
tronic health record time-series analysis, Pedi-
atrics 133 (1) (2014) e54–e63.

[36] H. Cao, M. Markatou, G. B. Melton, M. F. Chi-
ang, G. Hripcsak, Mining a clinical data ware-
house to discover disease-finding associations us-
ing co-occurrence statistics, in: AMIA Annual
Symposium Proceedings, Vol. 2005, American
Medical Informatics Association, 2005, p. 106.

[37] A. Wright, E. S. Chen, F. L. Maloney, An auto-
mated technique for identifying associations be-
tween medications, laboratory results and prob-
lems, Journal of biomedical informatics 43 (6)
(2010) 891–901.

21

https://doi.org/10.1145/956750.956777
http://doi.acm.org/10.1145/956750.956777
http://doi.acm.org/10.1145/956750.956777
http://dx.doi.org/10.1109/TKDE.2002.1019212
http://dx.doi.org/10.1109/TKDE.2002.1019212
http://dx.doi.org/10.1109/TKDE.2002.1019212
https://doi.org/10.1109/TKDE.2002.1019212
http://dx.doi.org/10.1109/TKDE.2002.1019212
http://dx.doi.org/10.1109/TKDE.2002.1019212
http://dl.acm.org/citation.cfm?id=829502.830043
http://dl.acm.org/citation.cfm?id=829502.830043
http://dl.acm.org/citation.cfm?id=829502.830043
http://dl.acm.org/citation.cfm?id=829502.830043
http://doi.acm.org/10.1145/1060745.1060840
http://doi.acm.org/10.1145/1060745.1060840
https://doi.org/10.1145/1060745.1060840
https://doi.org/10.1145/1060745.1060840
http://doi.acm.org/10.1145/1060745.1060840
http://doi.acm.org/10.1145/1060745.1060840
http://dl.acm.org/citation.cfm?id=645925.671516
http://dl.acm.org/citation.cfm?id=645925.671516
http://dl.acm.org/citation.cfm?id=645925.671516
http://dl.acm.org/citation.cfm?id=645925.671516

[38] E. Zhu, F. Nargesian, K. Q. Pu, R. J. Miller, Lsh
ensemble: Internet-scale domain search, Proc.
VLDB Endow. 9 (12) (2016) 1185–1196. doi:

10.14778/2994509.2994534.
URL http://dx.doi.org/10.14778/2994509.

2994534

[39] D. S. Pardi, E. V. Loftus Jr, W. J. Tremaine,
W. J. Sandborn, G. L. Alexander, R. K. Balm,
C. J. Gostout, Acute major gastrointestinal
hemorrhage in inflammatory bowel disease, Gas-
trointestinal endoscopy 49 (2) (1999) 153–157.

[40] M. D. Long, C. Martin, R. S. Sandler, M. D.
Kappelman, Increased risk of pneumonia among
patients with inflammatory bowel disease, The
American journal of gastroenterology 108 (2)
(2013) 240.

22

http://dx.doi.org/10.14778/2994509.2994534
http://dx.doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/2994509.2994534
https://doi.org/10.14778/2994509.2994534
http://dx.doi.org/10.14778/2994509.2994534
http://dx.doi.org/10.14778/2994509.2994534

	Introduction
	Related Work
	Preliminaries
	Modeling Temporal Medical Data
	Problem Formulation
	Overview of our solution

	Material and Methods
	Offline Indexing for Medical Events
	Online Filtering and Verification
	Filtering via Tandem Patterns

	Empirical Evaluation
	Evaluation for Indexing
	Evaluation for Filtering
	Case Study: Temporal Patterns for Inflammatory Bowel Disease

	Discussion
	Conclusions
	Additional Material
	Optimal Indexing
	Searching Tandem Occurrences
	Finding Temporally Ordered Tandem Occurrences
	Filtering with Tandem Patterns

	Additional Experiments
	Scalability Evaluation for Indexing
	Experiments for Containment Similarity
	Case study for classifying IBD patients

