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0. Introduction

Let k be a global field, and L be a finite dimensional commutative étale algebra over k. 
We say that the Hasse norm principle holds for L if the local-global principle holds for 
the equation

NL/k(t) = c (0.1)

for all c ∈ k×; this terminology is inspired by Hasse’s result that the norm principle holds 
in the case of cyclic extensions ([7], [8] §I (3.11) and §II (15)). Over the years, the norm 
principle for separable field extensions attracted a lot of attention; it is known not to 
hold in general, and many positive results are also available, see for instance [11], pages 
308-309 for a survey; for more recent results, see [1], [5], and the references therein.

It is natural to ask for Hasse principles in the case when L is a finite dimensional 
commutative étale algebra, and not just a field extension. Since L is by definition a 
product of separable extensions, the equation (0.1) is often called a multinorm equation.

This more general problem was also studied extensively, in particular by Hürlimann 
([9]), Colliot-Thélène and Sansuc (unpublished), Platonov and Rapinchuk (see [11], sec-
tions 6.3 and 9.3), Prasad and Rapinchuk ([14], Section 4), Pollio and Rapinchuk ([13]), 
Demarche and Wei ([4]), Pollio ([12]). Multinorm equations also arise when dealing with 
classical groups of type An (see for instance [14] Prop. 4.2).

In spite of many interesting results, some quite simple cases were still open. We 
illustrate this, as well as our results, by the following example:

Example. Assume that L is a product of n non-isomorphic quadratic field extensions 
of k. If n = 1 or n = 2, then the Hasse principle holds for L - this is clear for n = 1, 
and easy for n = 2 (for instance, it is a consequence of [9], Proposition 3.3). It is also 
well-known that it does not hold in general when n = 3 (see for instance [3]). In the 
present paper, we show that the Hasse principle holds if n ≥ 4.

To obtain this result and others, let us assume that one of the factors of L is a cyclic 
field extension of k. Under this hypothesis, we construct a finite abelian group X(L)
having the property that

X(L) = 0 ⇐⇒ the Hasse principle holds for L

(cf. Section 5). Assume now that X(L) �= 0, and that c ∈ k× is such that (0.1) has a 
solution locally everywhere. Then we construct a homomorphism

αc : X(L) → Q/Z

such that
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(0.1) has a solution over k ⇐⇒ αc = 0

(see Sections 6 and 7, in particular Theorem 7.1).
These results can be summarized as follows: let IL be the idèle group of L. Then 

sending c ∈ k× to αc gives rise to an isomorphism

k× ∩ NL/k(IL)/NL/k(L×) → X(L)∗

(where X(L)∗ is the dual of X(L), cf. Corollary 7.12).
We also give a necessary and sufficient condition for the Hasse principle to hold when 

one of the factors is metacyclic (see Proposition 7.13).
The results are easy to use. To illustrate this, we consider the case where L is a 

product of cyclic extensions; assume that L =
∏
i∈J

Ki, where Ki/k is a cyclic extension 

of degree di. Let P be the set of prime numbers dividing 
∏
i∈J

di. For all p ∈ P and all 

i ∈ J , let Ki(p) be the largest subfield of Ki such that [Ki(p) : k] is a power of p, and 
set L(p) =

∏
i∈J

Ki(p). Then we have

X(L) = ⊕
p∈P

X(L(p)),

(see Proposition 8.6).
For any cyclic field extension K/k of prime power degree, we denote by Kprim the 

unique subfield of K of degree p over k. Set

L(p)prim =
∏

i∈J

Ki(p)prim.

Then we have

X(L) = 0 ⇐⇒ ⊕
p∈P(L)

X(L(p)prim) = 0,

(cf. Theorem 8.1), and

X(L(p)prim) 
 (Z/pZ)mp(L),

where P(L) is a set of prime numbers (subset of P), and mp(L) is a positive integer; 
both are determined explicitly (see Theorem 8.2).

The paper is structured as follows. Sections 1–4 contain some preliminary results, 
including a new proof of a proposition of Hürlimann, [9] Prop. 3.3. The group X(L)
is defined in Section 5, and the homomorphism αc in Section 6. In both sections, we 
start with the case where the étale algebra L has a cyclic factor of prime power degree, 
which is the essential case. We also show how one can reduce the exponent of the prime 
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number, using the exact sequence of Proposition 5.10 - this is then used in inductive 
arguments. The main result is proved in Section 7 (see Theorem 7.1). Section 8 contains 
the application of the above results to the special case where all the factors of the étale 
algebra are cyclic.

Note that the results of this paper are related to the Brauer-Manin obstruction. In-
deed, for c = 1, the equation (0.1) yields the so-called norm-one-torus defined by L/k

(see 1.2 for details); we denote this torus by TL/k. When k is an algebraic number 
field, then one can deduce from [15] that the only obstruction to the Hasse principle is 
the Brauer-Manin obstruction, and is an element of the group X2(k, T̂L/k)∗. We show 
that X(L) 
 X2(k, T̂L/k) (see Proposition 5.16), hence our results provide an explicit 
description of the Brauer-Manin obstruction.

We thank the referee for several very useful comments. The second named author 
wishes to acknowledge support from the Alexander von Humboldt Foundation. The 
third named author is partially supported by the NSF grants DMS 1801951 and FRG 
1463882.

1. Notation, definitions and basic facts

1.1. Weil restriction

If f : R → R′ is a homomorphism of commutative rings such that R′ is a projective 
R-module of finite type, and if W is an affine R′-scheme, then we denote by RR′/RW

the Weil restriction (see for instance [10], Appendice 2).

1.2. Etale algebras, tori and characters

Let k be a field, let ks be a separable closure of k and set Γk = Gal(ks/k). We 
fix once and for all this separable closure ks, and all separable extensions of k that 
will appear in the paper will be contained in ks. We use standard notation in Galois 
cohomology; in particular, if M is a discrete Γk-module and i is an integer ≥ 0, we set 
Hi(k, M) = Hi(Γk, M).

If L is a commutative étale k-algebra of finite rank, we denote by NL/k the norm map, 
and set TL/k = R(1)

L/k(Gm); then TL/k is the k-torus determined by the exact sequence

1 TL/k RL/k(Gm)
NL/k−−−−→ Gm 1 . (1.1)

For a k-torus T , we denote by T̂ = Hom(T, Gm) its character group. If K/k is a finite 
separable extension, set ΓK = Gal(ks/K). If moreover M is a discrete ΓK-module, set 
IK/k(M) = IndΓk

ΓK
(M).

The following lemmas will be used several times in the sequel
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Lemma 1.1. Let F/k be a separable extension of finite degree, and let L be the product 
of n copies of F . Then we have

(i) TL/k 
 RF/k(Gm)n−1 × TF/k.
(ii) H1(k, T̂L/k) 
 H1(k, T̂F/k).

Proof. The isomorphism (RF/k(Gm))n → (RF/k(Gm))n sending (b1, ..., bn) to (b1, ...,

bn−1, b1...bn−1bn) induces an isomorphism TL/k 
 RF/k(Gm)n−1 ×TF/k. This proves (i). 
By (i), we have T̂L/k 
 IF/k(Z)n−1 ⊕ T̂F/k; since H1(k, IF/k(Z)) = 0, this implies (ii).

Lemma 1.2. Let K/k be a cyclic extension of degree d. Then there exists an isomorphism

H1(k, T̂K/k) → Z/dZ

which is functorial with respect to base change.

Proof. Let σ be a generator of Gal(K/k). Consider the exact sequence

1 → Gm → RK/k(Gm) → TK/k → 1,

where the map from RK/k(Gm) to TK/k sends x to x/σ(x), and its dual sequence

0 → T̂K/k → IK/k(Z) → Z → 0.

This exact sequence induces

IK/k(Z)Γk
ε−→ Z H1(k, T̂K/k) H1(k, IK/k(Z)) = 0 .

We have IK/k(Z)Γk 
 Z, generated by the sum of the elements of Gal(K/k), and the 
map ε is multiplication by d; hence we obtain an isomorphism H1(k, T̂K/k) → Z/dZ

which is independent of the choice of the generator σ.

1.3. The multinorm problem

Let L be an étale k-algebra, and let c ∈ k∗. Let Xc be the affine k-variety determined 
by the equation NL/k(t) = c. Then Xc is a torsor under the torus TL/k defined in 1.2, 
hence defines a class [Xc] ∈ H1(k, TL/k); the variety Xc has a k-point if and only if 
[Xc] = 0. Hence we have

c ∈ NL/k(L×) ⇐⇒ Xc(k) �= ∅ ⇐⇒ [Xc] = 0.
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2. A construction

Let k be a field, and let L be a commutative étale k-algebra of finite rank; assume that 
L is not a field. We keep the notation of the previous section. The aim of this section is 
to introduce a k-torus that will play a basic role in the study of the cohomology of the 
torus TL/k, and of the multinorm problem.

Let us write L = K ×K ′, where K and K ′ are étale k-algebras, and set E = K ⊗k K ′.
The norm maps NK/k : K → k and NK′/k : K ′ → k induce NE/K′ : E → K

and NE/K : E → K ′. Let f : RE/k(Gm) → RL/k(Gm) be defined by f(x) =
(NE/K(x)−1, NE/K′(x)). It is clear that the image of f is contained in TL/k. More-
over, f is surjective as a map of algebraic groups (easily checked after base change to 
the separable closure ks of k).

Consider the torus SK,K′ defined by the exact sequence

1 SK,K′ RE/k(Gm) f−→ TL/k 1 .

Note that SK,K′ also fits in the exact sequence

1 SK,K′ RK′/k(TE/K′)
NE/K−−−−→ TK/k 1 , (2.1)

where TE/K′ is defined by the exact sequence of K ′-tori

1 → TE/K′ → RE/K′(Gm)
NE/K′
−→ Gm → 1.

3. Tate-Shafarevich groups

We keep the notation of the previous sections, and assume that k is a global field. Let 
Ωk be the set of all places of k; if v ∈ Ωk, we denote by kv the completion of k at v.

For any k-torus T , set Xi(k, T ) = Ker(Hi(k, T ) →
∏

v∈Ωk

Hi(kv, T )). If M is a 

Γk-module, set Xi(k, M) = Ker(Hi(k, M) →
∏

v∈Ωk

Hi(kv, M)). Recall that by Poitou-

Tate duality, we have X2(k, T̂ ) 
 X1(k, T )∗.

3.1. Hasse principle for the multinorm problem

Let L be an étale k-algebra, and let c ∈ k×. If Xc(kv) �= ∅ for all v ∈ Ωk, then we 
have [Xc] ∈ X1(k, TL/k). In particular, the Hasse principle holds for all c ∈ k× if and 
only if X1(k, TL/k) = 0.

We have the following relationship between the Tate-Shafarevich groups of the torus 
TL/k, and the torus SK,K′ defined in §2:
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Lemma 3.1. We have X1(k, TL/k) 
 X2(k, SK,K′).

Proof. By the definition of the torus SK,K′ , we have the exact sequence

1 SK,K′ RE/k(Gm) f−→ TL/k 1 ,

giving rise to the cohomology exact sequence

0 → H1(k, TL/k) → H2(k, SK,K′) → H2(k, RE/k(Gm)).

By the corresponding cohomology exact sequence over kv for all v ∈ Ωk and the 
Brauer-Hasse-Noether Theorem, we have X2(k, RE/k(Gm)) = 0, hence X1(k, TL/k) 

X2(k, SK,K′), as claimed.

We now compute the group X2(k, T̂K/k) for a cyclic extension K/k - note that by 
Poitou-Tate duality, this is equivalent to Hasse’s cyclic norm principle, which is the 
following proposition:

Proposition 3.2. Let K/k be a cyclic extension. Then X1(k, TK/k) = 0.

Proof. We give a proof for the convenience of the reader. Let σ be a generator of 
Gal(K/k). Consider the exact sequence

1 → Gm → RK/k(Gm) → TK/k → 1,

where the map from RK/k(Gm) to TK/k sends x to x/σ(x). This sequence gives rise to 
an injection H1(k, TK/k) → H2(k, Gm). By the Brauer-Hasse-Noether theorem, we have 
X2(k, Gm) = 0, hence X1(k, TK/k) = 0.

Corollary 3.3. Let K/k be a cyclic extension. Then X2(k, T̂K/k) = 0.

This follows from the previous proposition, combined with Poitou-Tate duality.

4. A result of Hürlimann

Using the above lemmas, we generalize a result of Hürlimann ([9] Prop. 3.3).

Proposition 4.1. Let K/k be a cyclic extension of k, and let K ′/k be a separable extension 
of finite degree. Let c ∈ k×. Then the local-global principle holds for the multinorm 
equation NK/k(x)NK′/k(y) = c.

Proof. Set L = K × K ′; the assertion is equivalent to the vanishing of X1(k, TL/k). 
By Lemma 3.1, we have X1(k, TL/k) 
 X2(k, SK,K′). By Poitou-Tate duality we have 
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X2(k, SK,K′) 
 X1(k, ŜK,K′)∗, hence it suffices to prove that X1(k, ŜK,K′) = 0. Since 
K/k is a cyclic extension, the algebra E = K ⊗k K ′ is isomorphic to a product of copies 
of F , where F/K ′ is some cyclic field extension. Set d = [K : k] and f = [F : K ′].

Consider the dual sequence of (2.1):

0 T̂K/k
ι−→ IK′/k(T̂E/K′) ρ−→ ŜK,K′ 0 , (4.1)

and the sequence induced by (4.1)

H1(k, T̂K/k) ι1

−→ H1(k, IK′/k(T̂E/K′)) ρ1

−−→ H1(k, ŜK,K′) δ−→ H2(k, T̂K/k). (4.2)

We have H1(k, IK′/k(T̂E/K′)) 
 H1(K ′, T̂E/K′); Lemmas 1.1 (ii) and 1.2 imply 
that H1(K ′, T̂E/K′) 
 H1(K ′, T̂F/K′) 
 Z/fZ. The map ι1 is the natural projection 
from Z/dZ → Z/fZ, therefore ι1 is surjective. This implies that δ : H1(k, ŜK,K′) →
H2(k, T̂K/k) is injective; moreover, δ induces an injection X1(k, ŜK,K′) → X2(k, T̂K/k). 
Since K/k is a cyclic extension, we have X2(k, T̂K/k) = 0 by Corollary 3.3. The propo-
sition then follows.

5. The group XXX(K, K′)

We keep the notation of the previous sections: in particular, L = K × K ′, where K
and K ′ are étale k-algebras, and E = K ⊗ K ′. In addition, we now assume that K/k

is a cyclic extension. Under this hypothesis, we define a finite abelian group X(K, K ′)
using the local splitting patterns of E, and we show that X1(k, TL/k) is isomorphic to 
the dual of X(K, K ′).

Let K ′ =
∏

i∈I Ki, where the Ki/k are field extensions. Then we have E =
∏

i∈I Ei, 
with Ei = K ⊗ Ki.

If v ∈ Ωk and if A is a commutative k-algebra, set Av = A ⊗k kv.

5.1. The prime power degree case

Suppose that K is a cyclic extension of degree pe, where p is a prime number. We 
start with some notation and definitions. For each i ∈ I, let Mi be a cyclic extension of 
Ki such that Ei is isomorphic to a product of copies of Mi. Let pei = [Mi : Ki]; without 
loss of generality, we assume that ei ≥ ei+1 for 1 ≤ i ≤ m − 1.

Let s and t be positive integers. For s ≥ t, let πs,t be the canonical projection Z/psZ →
Z/ptZ. For x ∈ Z/psZ and y ∈ Z/ptZ, we say that x dominates y if s ≥ t and πs,t(x) = y; 
if this is the case, we write x � y. For x ∈ Z/psZ and y ∈ Z/ptZ, let δ(x, y) be 
the greatest nonnegative integer d ≤ min{s, t} such that πs,d(x) = πt,d(y). We have 
δ(x, y) = min{s, t} if and only if x � y or y � x.
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Let I = {1, ..., m}. For a = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ and n ∈ Z/pe1Z, let In(a) be the 

set {i ∈ I| n � ai} and let I(a) = (I0(a), ..., Ipe1 −1(a)).
Let E be the set of pe1-tuples (I0, ..., Ipe1 −1), where I0, ..., Ipe1 −1 are subsets of I such 

that 
⋃

0≤n≤pe1 −1
In = I. Now we characterize the image of the map

I : ⊕
i∈I

Z/peiZ → E .

An element (I0, ..., Ipe1 −1) ∈ E is said to be coherent if for all n1, n2 ∈ Z/pe1Z we have:

(1) If i ∈ In1 ∩ In2 , then πe1,ei
(n1) = πe1,ei

(n2).
(2) If i ∈ In1 and πe1,ei

(n1) = πe1,ei
(n2), then i ∈ In2 .

Let Ec be the subset of all coherent elements in E . For a ∈ ⊕
i∈I

Z/peiZ, it is clear that 

I(a) is a coherent element. Conversely for a coherent element (I0, ..., Ipe1 −1) ∈ Ec, we set 
ai = πe1,ei

(n) for i ∈ In. Note that condition (1) of the definition of a coherent element 
ensures that the ai’s are well-defined. Hence a = (a1, ..., am) is a well-defined element 
in ⊕

i∈I
Z/peiZ; condition (2) implies that I(a) = (I0, ..., Ipe1 −1). This shows that I is a 

bijection between ⊕
i∈I

Z/peiZ and Ec.
If w is a place of Ki, we denote by Kw

i the completion of Ki at w. Given a positive 
integer 0 ≤ d ≤ e and i ∈ I, let Σd

i be the set of all places v ∈ Ωk such that at each 
place w of Ki above v, the algebra K ⊗ Kw

i is isomorphic to a product of isomorphic 
field extensions of degree at most pd of Kw

i . Let Σi = Σ0
i , in other words, Σi is the set 

of all places v ∈ Ωk where Ev
i is isomorphic to a product of copies of Kv

i .
Let (I0, ..., Ipe1 −1) ∈ Ec. For n1 ∈ Z/pe1Z and i ∈ I, set δ(n1, i) = δ(n1, πe1,ei

(n2)), 
where n2 is an element in Z/pe1Z such that i ∈ In2 . Since (I0, ..., Ipe1 −1) is coherent, 
δ(n1, i) is independent of the choice of n2 and hence is well-defined. Note that if we 
let a = (a1, ..., am) be the element in ⊕

i∈I
Z/peiZ corresponding to (I0, ..., Ipe1 −1), then 

δ(n1, i) = δ(n1, ai). For In � I, define

Ω(In) = ∩
i/∈In

Σδ(n,i)
i . (5.1)

For In = I, we set Ω(In) = Ωk.
Set

G = Gk(K, K ′) = {(a1, ..., am) ∈ ⊕
i∈I

Z/peiZ|
⋃

n∈Z/pe1Z

Ω(In(a)) = Ωk}.

Lemma 5.1. The set G is a subgroup of ⊕ Z/peiZ.

i∈I
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Proof. Let a = (a1, ..., am) and b = (b1, ..., bm) be elements of G. By the definition 
of G, for each v ∈ Ωk, there exist some n, n′ ∈ Z/pe1Z such that v ∈ Ω(In(a)) and 
v ∈ Ω(In′(b)). We claim that

v ∈ Ω(In+n′(a + b)).

This is clear when In+n′(a + b) = I. Suppose that In+n′(a + b) �= I. First note that 
δ(n + n′, ai + bi) ≥ min{δ(n, ai), δ(n′, bi)} and that min{δ(n, ai), δ(n′, bi)} ≤ ei for all 
i ∈ I. Pick an arbitrary i /∈ In+n′(a + b). Without loss of generality, we suppose that 
min{δ(n, ai), δ(n′, bi)} = δ(n, ai). If i /∈ In(a), we have v ∈ Σδ(n,ai)

i ⊆ Σδ(n+n′,ai+bi)
i ; 

hence we have v ∈ Ω(In+n′(a + b)).
If i ∈ In(a), then by definition δ(n, ai) = ei. We have δ(n, ai) ≤ δ(n′, bi) by assump-

tion, hence δ(n′, bi) ≥ ei. But δ(n′, bi) ≤ ei, therefore we have δ(n′, bi) = ei, and hence 
i ∈ In′(b). This implies that i ∈ In+n′(a + b), and this is a contradiction. This completes 
the proof of the lemma.

Let D be the subgroup of ⊕
i∈I

Z/peiZ generated by the diagonal element (1, ..., 1), and 

note that D is contained in G. Set

Xk(K, K ′) = G/D.

Example 5.2. Assume that k = Q, and that L = Q(
√

a) × Q(
√

b) × Q(
√

ab), where 
a, b are distinct square-free integers. Set K = Q(

√
a), K1 = Q(

√
b) and K2 = Q

√
ab). 

Then with the above notation we have I = {1, 2}, and E1 = E2 = Q(
√

a, 
√

b), hence 
e = e1 = e2 = 1. This implies that either X(K, K ′) = 0, or X(K, K ′) 
 Z/2Z. Note 
that

there exists v ∈ Ωk such that Ev
1 is a field ⇐⇒ Σ1 ∪ Σ2 �= Ωk,

hence

X(K, K ′) = 0 ⇐⇒ there exists v ∈ Ωk such that Ev
1 is a field.

Set now a = 13, b = 17: then there exists no v ∈ Ωk such that Ev
1 is a field, therefore 

X(K, K ′) = Z/2Z. Note that it is well-known that the multinorm principle fails in this 
case (see for instance [3], Proposition 5.1).

Theorem 5.3. Suppose that K/k is a cyclic extension of degree pe, where p is a prime 
number. Then X1(k, ŜK,K′) 
 X(K, K ′).

Proof. Consider the dual sequence of (2.1),

0 T̂K/k
ι−→ IK′/k(T̂E/K′) ρ−→ ŜK,K′ 0 , (5.2)
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and the exact sequence induced by (5.2),

H1(k, T̂K/k) ι1

−→ H1(k, IK′/k(T̂E/K′)) ρ1

−−→ H1(k, ŜK,K′) → H2(k, T̂K/k). (5.3)

We have X2(k, T̂K/k) = 0 by Corollary 3.3, therefore X1(k, ŜK,K′) is in the image 
of ρ1.

Note that H1(k, IKi/k(T̂Ei/Ki
)) 
 H1(Ki, T̂Ei/Ki

), and that by Lemma 1.1 (ii), 
we have H1(Ki, T̂Ei/Ki

) 
 H1(Ki, T̂Mi/Ki
). Moreover, by Lemma 1.2, we have 

H1(Ki, T̂Mi/Ki
) 
 Z/peiZ.

In the following we identify H1(k, T̂K/k) to Z/peZ and H1(k, IKi/k(T̂Ei/Ki
)) to Z/peiZ

for 1 ≤ i ≤ m. Under this identification, the map

ι1 : H1(k, T̂K/k) → H1(k, IK′/k(T̂E/K′)) = ⊕
i∈I

H1(k, IKi/k(T̂Ei/Ki
))

sends Z/peZ to ⊕
i∈I

Z/peiZ by the natural projections. Therefore we can rewrite the exact 

sequence (5.3) as follows:

Z/peZ
ι1

−→ ⊕
i∈I

Z/peiZ
ρ1

−−→ H1(k, ŜK,K′) → H2(k, T̂K/k), (5.4)

where ι1 is the natural projection from Z/peZ to Z/peiZ for each i. Note that the image 
of ι1 is the subgroup D, and we have the exact sequence

0 → ( ⊕
i∈I

Z/peiZ)/D
ρ1

−−→ H1(k, ŜK,K′) → H2(k, T̂K/k). (5.5)

Let a = (a1, ..., am) ∈ ⊕
i∈I

Z/peiZ and [a] be its image in ( ⊕
i∈I

Z/peiZ)/D. We claim 

that ρ1([a]) is in X1(k, ŜK,K′) if and only if a ∈ G.
We denote by av the image of a in 

m
⊕

i=1
H1(kv, IKv

i /kv
(T̂Ev

i /Kv
i
)), and by Dv the image 

of D in this sum.
By the exact sequence (5.5) over kv, we have ρ1([a]) ∈ X1(k, ŜK,K′) if and only if 

av ∈ Dv for all places v ∈ Ωk. Therefore, it suffices to prove that a ∈ G if and only if 
av ∈ Dv for all places v ∈ Ωk.

Suppose that a ∈ G, and let v ∈ Ωk. Then there exists n ∈ Z/pe1Z such that 
v ∈ Ω(In(a)). If In(a) = I, then clearly a ∈ D ⊆ G. Suppose that In(a) �= I. This 
implies that for each i /∈ In(a) and for each place w of Ki above v, the étale algebra 
Kw

i ⊗ K is isomorphic to a product of field extensions of Kw
i of degree at most δ(n, i). 

Let δi = δ(n, i) = δ(n, ai). Note that

H1(kv, IKv/kv
(T̂Ev/Kv )) = H1(Kv

i , T̂Ev/Kv ).

i i i i i
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We have

H1(Kv
i , T̂Ev

i /Kv
i
) 
 ⊕

w|v
H1(Kw

i , T̂Kw
i ⊗K/Kw

i
) 
 ⊕

w|v
Z/pei,wZ,

where ei,w ≤ δi, and the localization map H1(Ki, T̂Ei/Ki
) → H1(Kv

i , T̂Ev
i /Kv

i
) is the 

canonical projection πei,ei,w
from Z/peiZ to each component Z/pei,wZ. Since for all 

i /∈ In(a) we have ei,w ≤ δi, and πei,δi
(ai) = πe1,δi

(n), this implies that av = (n, ..., n)v.
Suppose conversely that av ∈ Dv for all v ∈ Ωk and a /∈ G. Then a /∈ D, and there 

exists a place v ∈ Ωk such that v /∈ ∪
n∈Z/pe1Z

Ω(In(a)). Since av ∈ Dv, there exists 

n′ ∈ Z/peZ such that av = (ι1(n′))v. Let n = πe,e1(n′). As v /∈ Ω(In(a)), there exists 
i /∈ In(a) and a place w of Ki above v such that Kw

i ⊗K is isomorphic to a product of field 
extensions of degree pei,w of Kw

i , with ei,w > δi. Then by the definition of δi = δ(n, ai), 
we have πei,ei,w

(ai) �= πe1,ei,w
(n). Hence the localization av

i of the i-th coordinate of a is 
not equal to the localization of the i-th coordinate of (n, ..., n), which is a contradiction. 
Our claim then follows. Therefore, we have X1(k, ŜK,K′) 
 X(K, K ′).

Corollary 5.4. Suppose that K/k is a cyclic extension of degree pe, where p is a prime 
number. Then X1(k, TK,K′) 
 X(K, K ′)∗.

Proof. By Lemma 3.1, we have X1(k, TL/k) 
 X2(k, SK,K′). Theorem 5.3 implies 
that X1(k, ŜK,K′) 
 X(K, K ′). By Poitou-Tate duality, we have X2(k, SK,K′) 

X1(k, ŜK,K′)∗, hence the corollary is proved.

5.2. The group X(K/K0, K ′)

Let K0 be the unique subfield of K such that [K0 : k] = pe−1. The proof of the 
main theorem in the prime power case uses induction on e, and the comparison of the 
groups X(K, K ′) and X(K0, K ′). We first define a homomorphism F : X(K0, K ′) →
X(K, K ′), and then determine the cokernel of F , denoted by X(K/K0, K ′).

Note that if e = 1, then K0 = k, and hence X(K0, K ′) is trivial; in this case, 
X(K/K0, K ′) is the group X(K, K ′) itself.

The homomorphism X(K0, K ′) → X(K, K ′).

Recall that we have K ′ =
∏
i∈I

Ki, that Ei = K ⊗ Ki, and that Ei is the product of 

copies of a cyclic extension of degree pei of Ki. Set E0
i = K0 ⊗ Ki. Then E0

i also splits 
as a product of copies of a cyclic extension of Ki; let us denote by pfi the degree of this 
extension.

Proposition 5.5. For all i ∈ I, we have fi ≤ ei. If moreover ei �= 0, then ei = fi + 1.

This is an immediate consequence of the following proposition:
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Proposition 5.6. Let F/k be a field extension, and let K ⊗k F be a product of cyclic field 
extensions of F of degree peF ; let K0 ⊗k F be a product of cyclic field extensions of F of 
degree pfF . Then we have

(i) fF ≤ eF ;
(ii) fF ≥ eF − 1;
(iii) If eF �= 0, then eF = fF + 1.

Proof. If n is a positive integer, let us denote by Cn the cyclic group of order n. Let us 
consider the homomorphisms

ΓF
ι→Γk

φK−→Cpe
π−→Cpe−1 → 1,

where ι is the inclusion of ΓF into Γk, the homomorphism φK : Γk → Cpe corresponds 
to the cyclic extension K/k, and π : Cpe → Cpe−1 is the quotient of Cpe by its unique 
subgroup of order p. Note that the image of φK ◦ι is the Galois group of the cyclic factors 
of K ⊗k F , and hence is of order peF ; similarly, the image of π ◦φK ◦ ι is the Galois group 
of the cyclic factors of K0 ⊗k F , and hence is of order pfF . Therefore we have fF ≤ eF . 
Moreover, if eF �= 0, then the image of φK ◦ ι contains the unique subgroup of order p
of Cpe , and hence eF = fF + 1. This completes the proof of the proposition.

For all i ∈ I, let Fi : Z/pfiZ → Z/peiZ be the inclusion of the subgroup of order pfi

in the group Z/peiZ, and set FK/K0 = F = ⊕
i∈I

Fi.

Proposition 5.7. The map F : ⊕
i∈I

Z/pfiZ → ⊕
i∈I

Z/peiZ induces an injective homomor-

phism F : X(K0, K ′) → X(K, K ′).

Proof. Let us recall some notation from 5.1, for K and K0: For all i ∈ I and for all 
positive integers d, we denote by Σ(K)d

i (respectively Σ(K0)d
i ) the set of all places v ∈ Ωk

such that at each place w of Ki above v, the algebra K ⊗ Kw
i (respectively K0 ⊗ Kw

i ) is 
isomorphic to a product copies of a cyclic extension of degree at most pd of Kw

i . Recall 
that

G = G(K, K ′) = {a ∈ ⊕
i∈I

Z/peiZ |
⋃

n∈Z/pe1Z

Ω(In(a)) = Ωk},

and that D is the diagonal subgroup of G. Similarly, set

G0 = G(K0, K ′) = {b ∈ ⊕
i∈I

Z/pfiZ |
⋃

n∈Z/pf1Z

Ω(In(b)) = Ωk},

and let D0, be the diagonal subgroup of G0. Then we have X(K, K ′) = G/D and 
X(K0, K ′) = G0/D0.
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Let b ∈ G0, and let us show that F (b) ∈ G. Let v ∈ Ωk. Then there exists r ∈
Z/pf1Z such that v ∈ Σ(K0)δ(r,i)

i for all i ∈ I such that i /∈ Ir(b). Note that for all 
positive integers δ, we have Σ(K0)δ

i ⊂ Σ(K)δ+1
i . Set n = F1(r) ∈ Z/pe1Z; then we have 

δ(n, Fi(bi)) = δ(r, bi) + 1. Hence we have v ∈ Σ(K)δ(r,bi)+1
i , and therefore F (b) ∈ G.

It is clear that F is injective.

Remark 5.8. For any subextension N/k of K/k, let FK/N : X(N, K ′) → X(K, K ′) be 
the injective homomorphism obtained by successive applications of Proposition 5.7.

The group X(K/K0, K ′).

As we will see, the cokernel of F is isomorphic to the group X(K/K0, K ′), defined 
as follows:

For all i ∈ I, set ri = min{1, ei}. For all c ∈ ⊕
i∈I

Z/priZ and n ∈ Z/pZ, set I1
n(c) =

{i ∈ I |n � ci}. If I1
n(c) �= I, set Ω(I1

n(c)) = ∩
i/∈I1

n(c)
Σi; if I1

n(c) = I, set Ω(I1
n(c)) = Ωk. 

Set

G(K/K0, K ′) = {c ∈ ⊕
i∈I

Z/priZ |
⋃

n∈Z/pr1Z

Ω(I1
n(c)) = Ωk},

let D(K/K0, K ′) be the diagonal subgroup of G(K/K0, K ′), and set

X(K/K0, K ′) = G(K/K0, K ′)/D(K/K0, K ′).

Lemma 5.9. The projection π : ⊕
i∈I

Z/peiZ → ⊕
i∈I

Z/priZ induces a homomorphism π :

X(K, K ′) → X(K/K0, K ′).

Proof. Let a ∈ G, and set a = π(a). Let us show that a ∈ G(K/K0, K ′). Let v ∈ Ωk; 
then there exists s ∈ Z/pe1Z such that v ∈ Ω(Is(a)). Set n = πe1,1(s), and let us prove 
that v ∈ Ω(I1

n(a)). This is clear if I1
n(a) = I. Suppose that I1

n(a) �= I. If i ∈ I is such 
that i /∈ I1

n(a), then we have i /∈ Is(a), and therefore v ∈ Σδ(s,ai)
i . Since n = πe1,1(s) and 

i /∈ I1
n(a), we have δ(s, ai) = 0, and hence v ∈ Σi. Therefore we have a ∈ G(K/K0, K ′), 

as claimed, and this completes the proof of the lemma.

Proposition 5.10. The sequence

0 → X(K0, K ′) F−→ X(K, K ′) π−→ X(K/K0, K ′) → 0

is exact.

Proof. It is clear that F is injective, and that π ◦ F = 0; it remains to check that π

is surjective, and that Ker(π) ⊂ Im(F ). Let us check the second assertion first. Let 
a ∈ X(K, K ′) be such that π(a) = 0. Then there exists b ∈ ⊕ Z/pfiZ such that 
i∈I
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F (b) = a; let us check that b ∈ X(K0, K ′). Let v ∈ Ωk. Then there exists n ∈ Z/pe1Z

such that v ∈ Ω(In(a)). If i ∈ In(a), then we have πe1,ei
(n) = ai. Since ai = Fi(bi), 

this implies that there exists r ∈ Z/pf1Z such that n = F1(r) and In(a) = Ir(b). Let 
us show that v ∈ Ω(Ir(b)). For all i ∈ I such that i /∈ In(a), we have v ∈ Σ(K)δ(n,ai)

i . 
Note that δ(n, ai) = δ(r, bi) + 1 and [K : K0] = p. Hence v ∈ Σ(K)δ(n,ai)

i implies that 
v ∈ Σ(K0)δ(r,bi)

i . Therefore we have v ∈ Ω(Ir(b)), as claimed, and this implies that 
b ∈ X(K0, K ′). Let us now prove that π is surjective. Let a ∈ X(K/K0, K ′). For each 
n ∈ Z/pZ, let us fix a lifting r(n) ∈ Z/pe1Z. If i ∈ I1

n(a), set ai = πe1,ei
(r(n)). Let 

us check that ai ∈ Z/peiZ is well-defined. Suppose that n1, n2 ∈ Z/pZ are such that 
i ∈ I1

n1
(a) ∩ I1

n2
(a); then we have π1,ri

(n1) = π1,ri
(n2). If n1 �= n2, then this implies 

that ri = 0, hence ei = 0. We have πe1,ei
(r(n1)) = πe1,ei

(r(n2)) in this case, hence 
ai is well-defined. Let us check that a ∈ X(K, K ′). Since a ∈ X(K/K0, K ′), we have ⋃
n∈Z/pr1Z

Ω(I1
n(a)) = Ωk. Let v ∈ Ωk; then there exists n ∈ Z/pZ such that v ∈ Ω(I1

n(a)). 

Let r = r(n); we claim that v ∈ Ω(Ir(a)). If I1
n(a) = I, then we have Ir(a) = I, and 

the claim is clear. Suppose that I1
n(a) �= I. If i /∈ Ir(a), then we have i /∈ I1

n(a) by 
construction, hence v ∈ Σi. Since Σi ⊂ Σi(K)δ(r,ai), the claim follows. This completes 
the proof of the proposition.

The group X(K/K0, K ′) and partitions.

In this section we give some properties of G(K/K0, K ′) in terms of partitions of I. 
This will be useful in the proof of the main theorem (Theorem 7.1).

Lemma 5.11. The set G(K/K0, K ′) is in bijective correspondence with the partitions 
(J0, ..., Jp−1) of the set {i ∈ I | ri = 1} such that ∪

n∈Z/pZ
Ω(Jn) = Ωk.

Proof. Recall that we have ri = 0 or 1. Set I ′ = {i ∈ I | ri = 1}. Let a ∈ G(K/K0, K ′), 
and set I1(a) ∩ I ′ = (I1

0 (a) ∩ I ′, ..., I1
p−1(a) ∩ I ′); note that I1(a) ∩ I ′ is a partition of 

I ′. Hence the set G(K/K0, K ′) is then in bijective correspondence with the partitions 
(J0, ..., Jp−1) of I ′ such that ∪

n∈Z/pZ
Ω(Jn) = Ωk, as claimed.

In the sequel, we identify G(K/K0, K ′) with the set of these partitions. We also note 
a consequence for the case where K is of degree p, in other words, if e = 1. If K/k is of 
prime degree, then either Ei is a field extension of Ki, or Ei is a product of copies of 
Ki. Let J be the subset of I such that Ei is a field extension of Ki if i ∈ J , and that Ei

is a product of copies of Ki if i /∈ J .

Lemma 5.12. Assume that K/k is a degree p extension. Then G(K, K ′) is in bijective 
correspondence with the partitions (J0, ..., Jp−1) of J such that ∪

n∈Z/pZ
Ω(Jn) = Ωk.

Proof. Since e = 1, we have K0 = k and G(K/K0, K ′) = G(K, K ′). Hence the lemma 
follows from Lemma 5.11.
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Let Kprim be the unique subfield of K of degree p over k.

Proposition 5.13. The group X(K/K0, K ′) is a subgroup of X(Kprim, K ′).

Proof. J be the subset of i ∈ I such that Kprim ⊗k Ki is a field extension. Then 
G(Kprim, K ′) is in bijection with the set of partitions (I0, . . . , Ip−1) of J such that 

∪
n∈Z/pZ

ΩKprim(In) = Ωk, where ΩKprim(In) = ∩i/∈In
Σi(Kprim) (see Lemma 5.12).

Note that J = {i ∈ I | ri = 1}. Hence by Lemma 5.11, the set G(K/K0, K ′) is in 
bijection with the set of partitions (I0, . . . , Ip−1) of J such that ∪

n∈Z/pZ
ΩK(In) = Ωk, 

where ΩK(In) = ∩i/∈In
Σi(K).

Note that Σi(Kprim) ⊂ Σi(K) for all i ∈ I. Hence G(K/K0, K ′) ⊂ G(Kprim, K ′), and 
this implies that X(K/K0, K ′) is a subgroup of X(Kprim, K ′).

Proposition 5.14. If X(Kprim, K ′) = 0, then X(K, K ′) = 0.

Proof. By Proposition 5.13, we have X(K/K0, K ′) = 0; hence Proposition 5.10 im-
plies that X(K, K ′) = X(K0, K ′). Repeating this argument, we see that X(K, K ′) =
X(Kprim, K ′). But X(Kprim, K ′) = 0 by hypothesis, hence X(K, K ′) = 0, as claimed.

The following lemma will be useful in the sequel.

Lemma 5.15. Let (I0, . . . , Ip−1) ∈ G(K/K0, K ′), and let r, r′ be two distinct ele-
ments of Z/pZ. Set Jr = Ir, Jr′ = ∪

n �=r
In, and Jn = ∅ if n �= r, r′. Then 

(J0, . . . , Jp−1) ∈ G(K/K0, K ′). If moreover (I0, . . . , Ip−1) /∈ D(K/K0, K ′) and Ir �= ∅, 
then (J0, . . . , Jp−1) /∈ D(K/K0, K ′).

Proof. Let us show that Ω(Jr) ∪ Ω(Jr′) = Ωk. Let v ∈ Ωk be such that v /∈ Ω(Jr). 
Since we have ∪

n∈Z/pZ
Ω(In) = Ωk, there exists n(v) ∈ Z/pZ with n(v) �= r such that 

v ∈ Ω(In(v)). Since n(v) �= r, we have Ω(In(v)) ⊂ ∩
i∈Ir

Σi = Ω(Jn′). Therefore we have 

Ω(Jr) ∪ Ω(Jr′) = Ωk, and hence (J0, . . . , Jp−1) ∈ G(K/K0, K ′).
Let us prove the second statement. If (J0, . . . , Jp−1) ∈ D(K/K0), then either Jr = I ′

or Jr′ = I ′; we have Ir = I ′ in the first case, hence (I0, . . . , Ip−1) ∈ D(K/K0, K ′), and 
Ir = ∅ in the second case. This completes the proof of the lemma.

5.3. The general case

Recall that K/k is a cyclic extension of degree d, and let P be the set of prime numbers 
dividing d. For all p ∈ P, let K(p) be the largest subfield of K such that [K(p) : k] is a 
power of p and set d(p) = [K(p) : k]. Set
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X(K, K ′) = ⊕
p∈P

X(K(p), K ′).

Proposition 5.16. We have X1(k, ŜK,K′) 
 X(K, K ′).

Proof. By 5.3 we have X1(k, ŜK(p),K′) 
 X(K(p), K ′), hence it suffices to show that 
X1(k, ŜK,K′) 


∏
p∈P

X1(k, ŜK(p),K′). For every p ∈ P, set E(p) = K(p) ⊗k K ′ and 

L(p) = K(p) × K ′. The inclusion K(p) → K induces maps εp : TK(p)/k→TK/k, εp :
TE(p)/K′ → TE/K′ and εp : SK(p),K′ → SK,K′ . We have the commutative diagram, 
coming from cohomology exact sequences associated to the dual sequences of (2.1):

H1(k, T̂K/k)

⊕ε̂1
p

ι1

H1(k, IK′/k(T̂E/K′))

⊕ε̂1
p

ρ1

H1(k, ŜK,K′)

⊕ε̂1
p

...

⊕
p∈P

H1(k, T̂K(p)/k) ι1

⊕
p∈P

H1(k, IK′/k(T̂E(p)/K′))
ρ1

⊕
p∈P

H1(k, ŜK(p),K′) . . .

(5.6)

where the vertical maps are induced by the maps εp. Set ε̂1 = ⊕ε̂1
p.

For all i ∈ I, let Mi be a cyclic extension of Ki such that Ei is isomorphic to a 
product of copies of Mi, and let di = [Mi : Ki]. If p is a prime divisor of [K : k], 
set Ei(p) = K(p) ⊗k Ki, and let Mi(p) be a cyclic extension of Ki such that Ei(p) is 
isomorphic to a product of copies of Mi(p); set di(p) = [Mi(p) : Ki]. Note that di(p) is 
the highest power of p dividing di, and that di =

∏
p∈P

di(p).

Note that H1(k, IKi/k(T̂Ei/Ki
)) 
 H1(Ki, T̂Ei/Ki

), and that by Lemma 1.1 (ii), 
we have H1(Ki, T̂Ei/Ki

) 
 H1(Ki, T̂Mi/Ki
). Moreover, by Lemma 1.2, we have 

H1(Ki, T̂Mi/Ki
) 
 Z/diZ. Similarly, we have H1(k, IKi(p)/k(T̂Ei(p)/Ki

)) 
 Z/di(p)Z. 
Note that the morphism ε1

p restricted to each H1(k, IKi/k(T̂Ei/Ki
))

ε̂1
p : H1(k, IKi/k(T̂Ei/Ki

)) 
 Z/diZ → H1(k, IKi/k(T̂Ei(p)/Ki
)) 
 Z/di(p)Z

is the canonical projection Z/diZ → Z/di(p)Z. Hence by the Chinese reminder theorem, 
the morphism ε̂1 restricted to each H1(k, IKi/k(T̂Ei/Ki

))

⊕
p∈P

ε̂1
p : H1(k, IKi/k(T̂Ei/Ki

)) → ⊕
p∈P

H1(k, IKi/k(T̂Ei(p)/Ki
))

is an isomorphism. Similarly,

⊕
p∈P

ε̂1
p : H1(k, T̂K/k) 
 Z/dZ → ⊕

p∈P
H1(k, T̂K(p)/k) 
 ⊕

p∈P
Z/d(p)Z

is also an isomorphism.
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By Corollary 3.3, we have X2(k, T̂K/k) = 0 and X2(k, T̂K(p)/k) = 0, hence 
X1(k, ŜK,K′) and X1(k, ŜK(p),K′) are in the image of the maps ρ1. Now we show that 
ε̂1 : X1(k, ŜK,K′) → ⊕

p∈P
X1(k, ŜK(p),K′) is injective. Let β ∈ X1(k, ŜK,K′). Suppose 

that ε̂1(β) = 0. As X1(k, ŜK,K′) is in the image of ρ1, there is γ ∈ H1(k, IK′/k(T̂E/K′))
such that ρ1(γ) = β. By the commutativity of the diagram, we have ρ1(ε̂1(γ)) =
ε̂1(ρ1(γ)) = 0. Hence there is ζ ∈ ⊕

p∈P
H1(k, T̂K(p)/k) such that ι1(ζ) = ε̂1(γ). Then 

ε̂1 ◦ ι1 ◦ (ε̂1)−1(ζ) = ε̂1(γ). As

ε̂1 : H1(k, IK′/k(T̂E/K′)) → ⊕
p∈P

H1(k, IK′/k(T̂E(p)/K′))

is an isomorphism, we have ι1 ◦ (ε̂1)−1(ζ) = γ and hence β = ρ1(γ) = 0. This proves the 
injectivity.

As X2(k, T̂K(p)/k) = 0 by Corollary 3.3, the group X1(k, ŜK(p),K′) is in the image of 
the maps ρ1 for all p ∈ P. Since H1(k, IKi/k(T̂Ei/Ki

)) → ⊕
p∈P

H1(k, IKi/k(T̂Ei(p)/Ki
)) is 

an isomorphism, we see that

ε̂1 : X1(k, ŜK,K′) → ⊕
p∈P

X1(k, ŜK(p),K′)

is surjective. This completes the proof of the proposition.

Note that the proposition, together with Lemma 3.1, implies that X(K, K ′) does 
not depend on the decomposition of L as L = K × K ′. We will also use the notation 
X(L) = X(K, K ′), where L = K × K ′ is any decomposition of L with K/k a cyclic 
extension.

In summary, we proved

Corollary 5.17. We have X(L)∗ 
 X1(k, TL/k).

Example 5.18. Let p and q be two distinct odd prime numbers, with p > q. For all 
positive integers n, let ζn be a primitive nth root of unity. Let k = Q, and

L = Q(ζp2) × Q(ζpq) × Q(ζq2).

Since Q(ζp2) and Q(ζq2) are both cyclic, we can determine X(L) in two ways; this shows 
that the order of X(L) divides p − 1, and that

X(L) = X(Q(ζp) × Q(ζpq) × Q(ζq2)).

But since Q(ζp) is a subfield of Q(ζpq), we have X(Q(ζp) ×Q(ζpq) ×Q(ζq2)) = X(Q(ζp) ×
Q(ζq2)). Note that by Proposition 4.1 we have X(Q(ζp) × Q(ζq2)) = 0, hence we have

X(L) = 0.
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6. The Brauer-Manin map

We keep the notation of the previous section: in particular, L = K × K ′, where K is 
a cyclic extension of k of degree d, K ′ is an étale k-algebra, and E = K ⊗ K ′. We write 
K ′ =

∏
i∈I Ki, where the Ki/k are field extensions, and E =

∏
i∈I Ei, with Ei = K⊗Ki. 

The group X(L) = X(K, K ′) is defined in the previous section.
Let c ∈ k× and recall that Xc is the affine k-variety defined by the equation

NL/k(t) = c.

Assume that Xc(kv) �= ∅ for all v ∈ Ωk. In the following, we define a homomorphism 
αc : X(L) → Q/Z such that Xc(k) �= ∅ if and only if αc = 0; the map αc will be called 
the Brauer-Manin map associated to c. We choose this terminology, because this map is 
an analog of the map given by the Brauer-Manin pairing on Xc.

6.1. Local points

We start with some preliminary results. We are assuming that 
∏

Xc(kv) �= ∅; as we 
will see, this set contains elements satisfying certain finiteness conditions. More precisely, 
we introduce the notion of local points - these can be thought of as adelic points of Xc.

We first recall the notion of cyclic algebra. Let us choose a generator g of the cyclic 
group Gal(K/k), and let φ : Γk → Z/dZ be given by the composition of the isomorphism 
Gal(K/k) → Z/dZ sending g to 1 with the surjection Γk → Gal(K/k). Let us consider 
the exact sequence 0 → Z

×d−→Z → Z/dZ → 0, and let δ : H1(k, Z/dZ) → H2(k, Z) be 
the connecting homomorphism of the associated cohomology exact sequence. If c ∈ k×, 
let us denote by (c) the corresponding element of H0(k, Gm). The cup product δ(φ).(c)
is an element of H2(k, Gm), and via the identification H2(k, Gm) 
 Br(k) it is mapped 
to the class of the cyclic algebra defined by K and c (see for instance [6], Proposition 
4.7.3). We denote this cyclic algebra by (K, c).

The first observation is the following:

Lemma 6.1. Suppose that Ei is isomorphic to a product of copies of a field Mi, and set 
[Mi : Ki] = di. Then for any x ∈ K×

i , the order of the cyclic algebra (K, NKi/k(x))
divides di. In particular, if di = 1, then for any x ∈ K×

i , the algebra (K, NKi/k(x))
splits.

Proof. Given x ∈ K×
i , consider the class of the cyclic algebra (Mi, x) = δ(φ|Ki

).(x), 
where φ|Ki

: ΓKi
→ Z/dZ is the restriction of φ to ΓKi

. Let r be the order of (Mi, x)
in Br(Ki). Since Mi is of degree di over Ki, we have r|di. By the projection formula 
([6] Prop. 3.4.10), the corestriction of (Mi, x) is (K, NKi/k(x)). Therefore the order of 
(K, NKi/k(x)) divides di.
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Let x = (xv) ∈
∏

v∈Ωk

Xc(kv), and let us write xv = (xv
0, xv

1, . . . , xv
m), with xv

0 ∈ Kv

and xv
i ∈ Kv

i for i ∈ I. Let us consider the invariant map inv : Br(kv) → Q/Z and set 
bv

i (x) = bv
i (xv

i ) = inv(Kv, NKv
i /kv

(xv
i )) ∈ 1

di
Z/Z ⊂ Q/Z. Note that if di is odd, then 

bv
i (x) = 0 for all infinite places v ∈ Ωk.

We say that x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) is a local point of Xc if for each i ∈ I, we have 

bv
i (x) = 0 for almost all v ∈ Ωk. The following lemma implies the existence of local points 

whenever 
∏

v∈Ωk

Xc(kv) �= ∅.

Lemma 6.2. Assume that 
∏

v∈Ωk

Xc(kv) �= ∅. Then there exists

x = (xv
i ) ∈

∏

v∈Ωk

Xc(kv)

such that bv
i (x) = 0 for almost all v ∈ Ωk, and for all i ∈ I.

Proof. For each v ∈ Ωk such that (K, c)v is split, there exists xv
0 ∈ Kv such that 

NKv/kv
(xv

0) = c. Then x = (xv
0, 1, ..., 1) is a kv-point of Xc, and bv

i (x) = 0 for all i ∈ I. 
Since (K, c)v is split for almost all places v ∈ Ωk, the lemma follows.

We now prove some properties of local points which will be used later. The next 
lemma is an analog of the classical reciprocity formula that appears in the classical 
Brauer-Manin obstruction.

Lemma 6.3. Let x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) be a local point of Xc. Then we have

∑

v∈Ωk

∑

i∈I
bv

i (x) = 0.

Proof. Let us write xv = (xv
0, xv

1, . . . , xv
m), with xv

0 ∈ Kv and xv
i ∈ Kv

i for i ∈ I. For all 
i ∈ I, set yv

i = NLv
i /kv

(xv
i ). Set yv

0 = NKv/kv
(xv

0), and note that yv
0

∏
i∈I

yv
i = c. We have

∑

i∈I
bv

i (x) =
∑

i∈I
inv(Kv, yv

i ) = inv(Kv,
∏

i∈I
yv

i ) = inv(Kv, c/yv
0) = inv(Kv, c).

Since c ∈ k×, the Brauer-Hasse-Noether Theorem implies that 
∑

v∈Ωk

inv(Kv, c) = 0. Hence 

we have 
∑

v∈Ωk

∑
i∈I

bv
i (x) = 0, as claimed.

Lemma 6.4. Let x = (xv
i ) be a local point of Xc, and set bv

i = bv
i (x) = inv(Kv,

NKv/kv
(xv

i )). For all i ∈ I, let x̃v
i ∈ Kv

i and set

i
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b̃v
i = inv(Kv, NKv

i /kv
(x̃v

i )).

Suppose that for all i ∈ I we have b̃v
i = 0 for almost all v ∈ Ωk, and that 

∑
i∈I

bv
i =

∑
i∈I

b̃v
i

for all v ∈ Ωk. Then for all v ∈ Ωk, there exists x̃v
0 ∈ Kv such that x̃ = (x̃v

i ) is a local 
point of Xc.

Proof. Let ỹv
i = NKv

i /kv
(x̃v

i ) and yv
i = NKv

i /kv
(xv

i ). Since 
∑
i∈I

bv
i =

∑
i∈I

b̃v
i , the algebras 

(Kv, 
∏
i∈I

yv
i ) and (Kv, 

∏
i∈I

ỹv
i ) are isomorphic, hence there exists some z ∈ Kv such that 

(
∏
i∈I

yv
i )(

∏
i∈I

ỹv
i )−1 = NKv/kv

(z). Therefore (xv
0z, ̃xv

1, ..., ̃xv
m) is a kv-point of Xc.

Lemma 6.5. Let x = (xv
i ) be a local point of Xc, and set bv

i = bv
i (x) = inv(Kv,

NKv
i /kv

(xv
i )). Suppose that for all i ∈ I, we have 

∑
v∈Ωk

bv
i = 0. Then Xc has a k-point.

Proof. By the Brauer-Hasse-Noether Theorem, for every i ∈ I there exists a central 
simple algebra Ai over k such that inv(Ai) = bv

i for all v ∈ Ωk. Set yv
i = NKv

i /kv
(xv

i ). 
Since (Kv, yv

i ) splits over Kv for all v, the algebra Ai also splits over K. Hence there 
exists ỹi ∈ k such that Ai is Brauer equivalent to (K, ỹi) (see [6] Cor. 4.7.6). Since 
(K, 

∏
i∈I

ỹi)v 
 (Kv, 
∏
i∈I

yv
i ) 
 (K, c)v, the Brauer-Hasse-Noether Theorem implies that 

(K, 
∏
i∈I

ỹi) 
 (K, c), and hence 
∏
i∈I

ỹi = cNK/k(w) for some w ∈ K×. Moreover, we claim 

that the element ỹi belongs to the group NK/k(K×)NKi/k(K×
i ). To see this, we note 

that

(K, ỹi)v = (K, yv
i ) = (K, NKv

i /kv
(xv

i )).

Hence we have ỹi ∈ NK/k(JK)NKi/k(Ji) where Ji is the idèle group of Ki, for all i ∈ I, 
and JK is the idèle group of K. By Proposition 4.1, we have ỹi = NK/k(wi)NKi/k(zi)
for some wi ∈ K× and zi ∈ K×

i . Therefore 
∏
i∈I

ỹi =
∏
i∈I

NK/k(wi)NKi/k(zi) = cNK/k(w)

and (w−1 ∏
i∈I

wi, z1, ..., zm) is a k-point of Xc. This completes the proof of the lemma.

6.2. Brauer-Manin map - the prime power degree case

Now suppose that K is a cyclic extension of degree d = pe, where p is a prime. Let 
x = (xv

i ) ∈
∏

v∈Ωk

Xc(kv) be a local point of Xc. Let Mi be a cyclic extension of Ki such 

that the algebra Ei is isomorphic to a product of copies of Mi; then the degree of Mi

is pei for some 0 ≤ ei ≤ e. Without loss of generality, we assume that (e1, ..., em) is a 
decreasing sequence. Let us define

αc : X(K, K ′) → Q/Z
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by αc(a1, ..., am) =
∑

v∈Ωk

∑
i∈I

aib
v
i (x), where (a1, ..., am) ∈ G ⊆ ⊕

i∈I
Z/peiZ. Note that 

by Lemma 6.1, we have bv
i (x) ∈ 1

pei
Z/Z. Hence aib

v
i (x) is well-defined. Moreover, 

by Lemma 6.3, the map αc vanishes on the subgroup D of G; hence, the map αc :
X(K, K ′) → Q/Z is well-defined.

Note that the map αc is an analogue of the map given by the Brauer-Manin pairing. 
In the following we show that αc has a classical property of the Brauer-Manin pairing.

Proposition 6.6. The map αc : X(K, K ′) → Q/Z is independent of the choice of the 
local point x = (xv

i ).

Proof. We use the notation of section 5.1. Let a ∈ G and I(a) = (I0, ...., Ipe1 −1). If 
a ∈ D, then by Lemma 6.3, we have αc(a) = 0. In the following, we assume that a /∈ D.

By the definition of G, we have Ω(I0) ∪... ∪Ω(Ipe1 −1) = Ωk. Given a place v ∈ Ωk, there 
exists n(v) ∈ Z/pe1Z such that v ∈ Ω(In(v)). Set δi = δ(n(v), ai) and let Kv

i =
∏
w|v

Kw
i , 

where Kw
i are field extensions of kv. Then for all i /∈ In(v), the algebra Ev

i is isomorphic to 
a products of field extensions of Kw

i of degree at most pδi . Set bv
i = bv

i (x); by Lemma 6.1, 
we have bv

i ∈ 1
pδi

Z/Z. By the definition of δi, we have πei,δi
(ai) = πe1,δi

(n(v)). Hence 
for i /∈ In(v), we have

aib
v
i = πei,δi

(ai)bv
i = πe1,δi

(n(v))bv
i = n(v)bv

i .

Hence for all v ∈ Ωk, we have
∑

i∈I
aib

v
i = n(v)

∑

i∈I
bv

i = n(v)inv(K, c)v,

which is again independent of the xv
i ’s. Therefore, the map αc is independent of the 

choice of the local point, and the proposition is proved.

The map αc : X(K, K ′) → Q/Z will be called the Brauer-Manin map for Xc.
Let K0 be the unique subfield of K such that [K0 : k] = pe−1, and set L0 = K0 × K ′. 

If c ∈ k×, let X0
c be the affine k-variety determined by NL0/k(t) = c. There is a natural 

map ρ : Xc → X0
c defined as ρ(x0, ..., xm) = (NK/K0(x0), x1, ..., xm).

If X0
c (kv) �= ∅ for all v ∈ Ωk, we denote by α0

c : X(K0, K ′) → Q/Z the corresponding 
Brauer-Manin map.

If ti ∈ Kv
i , set

bv
i (K, ti) = inv(Kv, NKv

i /kv
(ti)), and bv

i (K0, ti) = inv(Kv
0 , NKv

i /kv
(ti)).

Recall that a local point of Xc is x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) such that for each i ∈ I, we 

have bv
i (K, xv

i ) = 0 for almost all v ∈ Ωk.
The following lemma is an analogue of the functoriality of the Brauer-Manin pairing.
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Lemma 6.7. Assume that Xc(kv) �= ∅ for all v ∈ Ωk. Then we have

(i) X0
c (kv) �= ∅ for all v ∈ Ωk.

(ii) αc ◦ F = α0
c .

Proof. If xv ∈ Xc(kv), then NLv/Lv
0
(xv) ∈ X0

c (kv). This proves (i). Let us check (ii). Let 
x = (xv

i ) be a local point of Xc. Note that bv
i (K0, xv

i ) = pbv
i (K, xv

i ). Let a ∈ X(K0, K ′). 
Then we have

αc(F (a)) =
∑

v∈Ωk

∑

i∈I
ai(pbv

i (K, xv
i )) =

∑

v∈Ωk

∑

i∈I
aib

v
i (K0, xv

i ) = α0
c(a).

This completes the proof of the lemma.

6.3. Brauer-Manin map - the general case

Recall that K/k is a cyclic extension of degree d, and that L = K × K ′, where K ′

is an étale k-algebra. We keep the notation of 5.3, in particular, P is the set of prime 
divisors of d. For all p ∈ P, we denote by K(p) the largest subfield of K of degree a 
power of p, and we set L(p) = K(p) × K ′. For all c ∈ k× and p ∈ P, we let Xc(p) be the 
TL(p)/k-torsor defined by

NL(p)/k(x) = c.

Let x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) be a local point of Xc, and let us write x = (xv
0, x′ v) with 

xv
0 ∈ Kv and x′ v ∈ K ′ v. Then (NKv/K(p)v (xv

0), x′ v) is a local point of Xc(p).
Let α(p) be the Brauer-Manin map of Xc(p), as defined above. By Proposition 6.6

the map α(p) is independent of the choice of the local point. Recall that X(K, K ′) =
⊕

p∈P
X(K(p), K ′), and let us define αc : X(K, K ′) → Q/Z by αc = ⊕

p∈P
αc(p). Hence αc

is also independent of the choice of the local point. We call αc the Brauer-Manin map
for Xc.

7. Necessary and sufficient condition

We keep the notation of the previous sections. The main theorem is the following:

Theorem 7.1. The affine k-variety Xc has a k-point if and only if Xc has a kv-point at 
each place v ∈ Ωk and αc is the zero map.

7.1. The prime power degree case

We suppose that K is cyclic of degree pe, where p is a prime number and e ≥ 1. The 
proof of Theorem 7.1 uses induction on e.
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The proof can be divided into three parts. Recall that ρ : Xc → X0
c is the map given by 

(x0, x1, . . . , xm) �→ (NK/K0(x0), x1, . . . , xm). (See §6.2.) Suppose that Xc has a kv-point 
for all v ∈ Ωk and that X0

c has a k-point z = (z0, ..., zm). In the first part we use the 
point z to get a system of local solutions (x̃v

i ) of Xc such that 
∑

v∈Ωk

bv
i (K, ̃xv

i ) ∈ 1
pZ/Z. 

(See Lemma 7.3-Lemma 7.5.)
In Lemma 7.6-Lemma 7.9, we show that one can further modify (x̃v

i ) so that ∑
v∈Ωk

bv
i (K, ̃xv

i ) = 0. In the end we conclude our main theorem by induction on e and 

Lemma 6.5.
We would like to mention that an alternative way to prove the theorem is to find the 

generators of the unramified Brauer group of Xc and show that the Brauer-Manin map 
defined here is the evaluation on the unramified Brauer group. However, here we choose 
to prove the theorem in a more elementary way and keep the unramified Brauer group 
for our future work.

We start with some preliminary results.
Recall that Ei = K ⊗k Ki.

Lemma 7.2. Suppose that K is a cyclic extension of degree pe, where p is a prime and e ≥
1. Let v ∈ Ωk and i ∈ I be such that Ev

i is not isomorphic to a product of copies of Kv
i . 

Then for all b ∈ 1
pZ/Z ⊆ Q/Z, there exists x ∈ Kv

i such that inv(Kv, NKv
i /kv

(x)) = b.

Proof. Suppose that Kv is isomorphic to a product of copies of a field extension M of 
kv, and set [M : kv] = pf . Since by hypothesis Ev

i is not isomorphic to a product of 
copies of Kv

i , we have f ≥ 1. Assume that Kv
i 


∏
j∈J

Mi,j , where Mi,j is a field extension 

of kv for all j ∈ J .
It suffices to prove that 1

pZ/Z ⊆ inv(M, NMi,j/kv
(M×

i,j)) for some j ∈ J ; hence we 
may assume that Kv is a field extension of kv of degree pe with e ≥ 1, and that Kv

i is a 
field.

Let Br(Kv/kv) be the subgroup of the Brauer group of kv split by Kv; this group is 
isomorphic to Z/peZ 
 k×

v /N((Kv)×). (See [6] Cor. 4.4.10 and [2] Chap. VI §1.1 Thm. 3 
Cor. 2.)

For all i ∈ I, let Mi be a field such that Ev
i = K ⊗k Kv

i is a product of 
copies of Mi, and set [Mi : Kv

i ] = pev
i ; the hypothesis implies that ev

i ≥ 1. The 
corestriction map Br(Kv

i ) → Br(kv) is an injection and restricts to an injection of 
Br(Mi/Kv

i ) into Br(Kv/kv), the image being the unique subgroup of order pev
i of the 

cyclic group of order pe. By the projection formula ([6] Prop. 3.4.10), the image con-
sists of cyclic algebras of the type (Kv, NKv

i /kv
(z)) with z an element of Kv

i . Hence 
1
pZ/Z ⊆ 1

pev
i
Z/Z = inv(Kv, NKv

i /kv
(Kv

i )×). This completes the proof of the lemma.

Let K0 be the unique subfield of K such that [K0 : k] = pe−1.
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Recall that we have K ′ =
∏
i∈I

Ki, that Ei = K ⊗ Ki, and that Ei is the product of 

copies of a cyclic extension of degree pe
i of Ki. Set E0

i = K0 ⊗ Ki. Then E0
i also splits 

as a product of copies of a cyclic extension of Ki; let us denote by pf
i the degree of this 

extension. Recall that for all i ∈ I, we have fi ≤ ei. If moreover ei �= 0, then ei = fi + 1
(cf. Lemma 5.5). For all i ∈ I, the map Fi : Z/pfiZ → Z/peiZ is the inclusion of the 
unique subgroup of order pfi in the group Z/peiZ, and we set F = ⊕

i∈I
Fi.

The map F : ⊕
i∈I

Z/pfiZ → ⊕
i∈I

Z/peiZ induces a homomorphism F : X(K0, K ′) →
X(K, K ′). Recall that the cokernel of F is isomorphic to the group X(K/K0, K ′), 
defined in section 5.

For all i ∈ I, set ri = min{1, ei}. For all c ∈ ⊕
i∈I

Z/priZ and n ∈ Z/pZ, set I1
n(c) =

{i ∈ I |n � c}. If I1
n(c) �= I, set Ω(I1

n(c)) = ∩
i/∈I1

n(c)
Σi; if In(c) = I, set Ω(I1

n(c)) = Ωk. 

Set

G(K/K0, K ′) = {c ∈ ⊕
i∈I

Z/priZ |
⋃

n∈Z/pr1Z

Ω(In(c)) = Ωk},

let D(K/K0, K ′) be the diagonal subgroup of G(K/K0, K ′), and recall that

X(K/K0, K ′) = G(K/K0, K ′)/D(K/K0, K ′).

Recall that the projection π : ⊕
i∈I

Z/peiZ → ⊕
i∈I

Z/priZ induces a homomorphism 

F : X(K, K ′) → X(K/K0, K ′) (cf. Lemma 5.9).
If ti ∈ Kv

i , set bv
i (K, ti) = inv(Kv, NKv

i /kv
(ti)), and bv

i (K0, ti) = inv(Kv
0 , NKv

i /kv
(ti)).

Recall that a local point of Xc is x = (xv
i ) ∈

∏
v∈Ωk

Xc(kv) such that for each i ∈ I, we 

have bv
i (K, xv

i ) = 0 for almost all v ∈ Ωk.

Lemma 7.3. Let x = (xv
i ) be a local point of Xc, and let z = (zi) be a global point of X0

c . 
Then for all v ∈ Ωk, we have

p
∑

i∈I
bv

i (K, xv
i ) = p

∑

i∈I
bv

i (K, zi).

Proof. Since x is a local point of Xc, we have 
∑
i∈I

bv
i (K, xv

i ) = inv(Kv, c) for all v ∈ Ωk. 

Similarly, we have 
∑
i∈I

bv
i (K0, zi) = inv(Kv

0 , c) for all v ∈ Ωk. Note that inv(Kv
0 , c) =

p inv(Kv, c), and inv(Kv
0 , zi) = p inv(Kv, zi) for all i ∈ I. Hence we have

p
∑

i∈I
bv

i (K, xv
i ) = p inv(Kv, c) = inv(Kv

0 , c) =
∑

i∈I
bv

i (K0, zi) = p
∑

i∈I
bv

i (K, zi),

as claimed.
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Lemma 7.4. Let x = (xv
i ) be a local point of Xc, and assume that X0

c (k) �= ∅. Then there 
exist x̃v

i ∈ Kv
i such that

(i) For each i ∈ I, we have bv
i (K, ̃xv

i ) = 0 for almost all v ∈ Ωk.
(ii) For all i ∈ I, we have 

∑
v∈Ωk

bv
i (K, ̃xv

i ) ∈ 1
pZ/Z.

(iii) For all v ∈ Ωk, we have
∑

i∈I
bv

i (K, xv
i ) =

∑

i∈I
bv

i (K, x̃v
i ).

Proof. Let z = (zi) be a global point of X0
c . Set bv

i = bv
i (K, xv

i ) and hv
i = bv

i (K, zi). 
By Lemma 7.3, we have p

∑
i∈I

bv
i = p

∑
i∈I

hv
i . Since bv

i = 0 and hv
i = 0 for almost all 

v ∈ Ωk, for almost places v ∈ Ωk we have 
∑
i∈I

hv
i =

∑
i∈I

bv
i . Suppose that there is v ∈ Ωk

such that 
∑
i∈I

hv
i �=

∑
i∈I

bv
i . If v ∈ ∩

i∈I
Σi, then bv

i = hv
i = 0 for all i ∈ I, which is a 

contradiction. Hence there exists i ∈ I such that v /∈ Σi. Since p
∑
j∈I

bv
j = p

∑
j∈I

hv
j in Q/Z, 

we know that 
∑
j∈I

bv
j −

∑
j∈I

hv
j ∈ 1

pZ/Z. By Lemma 7.2, there exists x̃v
i ∈ Kv

i such that 

inv(Kv, NKv
i /kv

(x̃v
i )) = hv

i −
∑
j∈I

(hv
j − bv

j ).

Set h̃v
i = inv(Kv, NKv

i /kv
(x̃v

i )); for all j �= i, let x̃v
j = zj , h̃v

j = hv
j = bv

j (K, zj). Then 
we have 

∑
j∈I

h̃v
j =

∑
j∈I

bv
j ; this proves (iii).

Since h̃v
i = hv

i for almost all v ∈ Ωk, (i) holds. As z = (zi) is a global point of X0
c , we 

have 
∑

v∈Ωk

bv
i (K0, zi) = 0, hence 

∑
v∈Ωk

hv
i ∈ 1

pZ/Z; moreover, hv
i − h̃v

i ∈ 1
pZ/Z for all i ∈ I

and all v ∈ Ωk. Therefore we have 
∑

v∈Ωk

h̃v
i ∈ 1

pZ/Z, and this proves (ii).

Lemma 7.5. Assume that Xc(kv) �= ∅ for all v ∈ Ωk, and that X0
c (k) �= ∅. Then there 

exists a local point x̃ = (x̃v
i ) of Xc such that for all i ∈ I, we have

∑

v∈Ωk

bv
i (K, x̃v

i ) ∈ 1
p
Z/Z.

Proof. Let x = (xv
i ) be a local point of Xc. By Lemma 7.4, there exist x̃v

i ∈ Kv
i such 

that bv
i (K, ̃xv

i ) = 0 for almost all v ∈ Ωk, that 
∑
i∈I

bv
i (K, xv

i ) =
∑
i∈I

bv
i (K, ̃xv

i ), and that for 

all i ∈ I, we have 
∑

v∈Ωk

bv
i (K, ̃xv

i ) ∈ 1
pZ/Z. By Lemma 6.4, for all v ∈ Ωk, there exists 

x̃v
0 ∈ (Kv)× such that (x̃v

0, ̃xv
1, ..., ̃xv

m) ∈ Xc(kv). This completes the proof of the lemma.

Recall that if Xc(kv) �= ∅ for all v ∈ Ωk, and that for all c ∈ k×, we have a ho-
momorphism αc : X(K, K ′) → Q/Z. We now show that αc induces a homomorphism 
αc : X(K/K0, K ′) → Q/Z such that αc ◦ π = αc.
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Lemma 7.6. Assume that Xc(kv) �= ∅ for all v ∈ Ωk and that X0
c (k) �= ∅. Then there 

exists a homomorphism αc : X(K/K0, K ′) → Q/Z such that αc ◦ π = αc.

Proof. Let x = (xv
i ) be a local point of Xc, and set bv

i = inv(Kv, NKv
i /kv

(xv
i )) for all 

i ∈ I and all v ∈ Ωk. Let a = (a1, ..., am) ∈ G. Then by Lemma 5.9 π(a) = (a1, ..., am) ∈
G(K/K0, K ′) ⊆ ⊕

i∈I
Z/priZ. Note that ri = min{1, ei} by definition. If ei = 0, then 

ei = ri = 0 and ai = ai = 0. If not, then ri = 1 and ai = a (mod p). By Lemma 7.5, we 
may assume that 

∑
v∈Ωk

bv
i ∈ 1

pZ/Z for all i ∈ I; hence ai(
∑

v∈Ωk

bv
i ) = ai(

∑
v∈Ωk

bv
i ). We then 

have

αc(a1, ..., am) =
∑

i∈I
ai(

∑

v∈Ωk

bv
i ) =

∑

i∈I
ai(

∑

v∈Ωk

bv
i ).

Hence αc induces a homomorphism αc : X(K/K0, K ′) → Q/Z, as claimed.

Lemma 7.7. Let x = (xv
i ) be a local point of Xc, and set bv

i = bv
i (K, xv

i ). Assume that αc =
0, and that X0

c (k) �= ∅. Let (I0, . . . , Ip−1) ∈ G(K/K0, K ′). Then we have 
∑

i∈In

∑
v∈Ωk

bv
i = 0

for all n ∈ Z/pZ.

Proof. Let n ∈ Z/pZ. The statement is trivial if In is empty, and it follows from 
Lemma 6.3 if In = I ′. Assume that In is not empty, and In �= I ′. Let n′ ∈ Z/pZ

such that n′ �= n, and set Jn = In, Jn′ = ∪
r �=n

Ir, and Jr = ∅ if r �= n, n′. Then by 

Lemma 5.15, we have (J0, . . . , Jp−1) ∈ G(K/K0, K ′). Since X0
c (k) �= ∅, by Lemma 7.6

there exists a homomorphism αc : X(K/K0, K ′) → Q/Z such that αc ◦ π = αc. By 
hypothesis αc is the zero map, hence we have αc = 0. Therefore we have

∑

r∈Z/pZ

∑

i∈Jr

∑

v∈Ωk

rbv
i =

∑

i∈Jn

∑

v∈Ωk

nbv
i +

∑

i∈Jn′

∑

v∈Ωk

n′bv
i = 0.

By Lemma 6.3 we have 
∑

i∈I′

∑
v∈Ωk

bv
i = 0, hence (n −n′)

∑
i∈Jn

∑
v∈Ωk

bv
i = 0. Recall that n′ �= n

by hypothesis, therefore we have 
∑

i∈Jn

∑
v∈Ωk

bv
i = 0; since Jn = In, we have 

∑
i∈In

∑
v∈Ωk

bv
i = 0, 

as claimed.

Lemma 7.8. Let x = (xv
i ) be a local point of Xc. Assume that αc = 0, and that X0

c (k) �= ∅. 
Let (I0, . . . , Ip−1) ∈ G(K/K0, K ′), and let n ∈ Z/pZ. Then there exists a local point 
x̃ = (x̃v

i ) of Xc such that x̃v
i = xv

i if i /∈ In, and that 
∑

v∈Ωk

bv
i (K, ̃x) = 0 for all i ∈ In.

Proof. We prove this by induction on the cardinality of In. If |In| = 0 then the claim 
is trivial; if |In| = 1, then it follows from Lemma 7.7, since we have 

∑
v∈Ωk

bv
i (x) = 0

for all i ∈ In. Suppose that the claim is true for |In| < h. For |In| = h, suppose 
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that there are nonempty disjoint subsets I0
n and I1

n of In satisfying I0
n ∪ I1

n = In and 
( ∩
i∈I0

n

Σi) ∪ ( ∩
i∈I1

n

Σi) = Ωk. Then consider the element (J0, ...Jp−1) where Jr = Ir if 

r �= n, n + 1, Jn = I0
n and Jn+1 = I1

n ∪ In+1. Note that Ω(Ir) = Ω(Jr) if r �= n, n + 1
and that Ω(In+1) ⊂ Ω(Jn+1). Let us prove that (J0, ...Jp−1) represents an element of 
X(K, K ′); for this, we have to check that Ω(J0) ∪· · ·∪Ω(Jp−1) = Ωk. Since Ω(Ir) ⊂ Ω(Jr)
if r �= n and Ω(I0) ∪ · · · ∪ Ω(Ip−1) = Ωk, it suffices to check that if v ∈ Ω(In), then 
v ∈ Ω(J0) ∪ · · · ∪ Ω(Jp−1). If v ∈ ∩

i∈I1
n

Σi, then we have v ∈ Ω(Jn). Otherwise, we have 

v ∈ ∩
i∈I0

n

Σi because ( ∩
i∈I0

n

Σi) ∪( ∩
i∈I1

n

Σi) = Ωk. Hence we have v ∈ ( ∩
i/∈In∪In+1

Σi) ∩( ∩
i∈I0

n

Σi) =

Ω(Jn+1). Therefore (J0, ...Jp−1) represents an element of X(K, K ′). Since |Jn| < h, we 
can apply the induction hypothesis, and hence there exists a local point x̃ = (x̃v

i ) such 
that x̃v

i = xv
i if i /∈ Jn = I1

n, and that 
∑

v∈Ω
bv

i (K, ̃x) = 0 for all i ∈ Jn = I1
n. The same 

argument with I0
n instead of I1

n gives the desired result.
Assume now that In does not have any non-trivial subpartitions, in other words, 

that there are no nonempty disjoint subsets I0
n and I1

n of In satisfying I0
n ∪ I1

n = In

and ( ∩
i∈I0

n

Σi) ∪ ( ∩
i∈I1

n

Σi) = Ωk. Let us consider the graph with vertex set In, and edge 

set E = {(i, j)|Σi ∪ Σj �= Ωk}; since In has no non-trivial subpartitions, this graph is 
connected. Set bv

i = b(K, xv
i )v

i , and for all i ∈ In, set di =
∑

v∈Ωk

bv
i . Let us fix an ordering 

of In, say In = {i0, ..., it}. Since the graph is connected, there exists a loop-free path 
between i0 and i1. Along this path, for any two adjacent vertices i, j, there exists v ∈ Ωk

such that v /∈ Σi ∪ Σj . By Lemma 7.5 we may assume that bv
i ∈ 1

pZ/Z for all i ∈ In. 
Applying Lemma 7.2, by modifying xv

i and xv
j we can modify bv

i to bv
i − di0 and bv

j to 
bv

j + di0 . Note that this modification does not change 
∑
i∈I

bv
i . Therefore by Lemma 6.4, 

after changing also xv
0 if necessary, the modified (xv

i ) is still a local point of Xc. After 
these modifications, we have 

∑
v∈Ωk

bv
i0

= 0, 
∑

v∈Ωk

bv
i1

= di1 + di0 , and all the other di’s 

remain unchanged. We repeat this process along a loop-free path from i1 to i2, and we 
modify each adjacent pair along the path from i1 to i2 by di0 + di1 and so on. At the 

end, we modify each adjacent pair along the path from it−1 to it by 
t−1∑
r=0

dir
. After this 

process, we have 
∑

v∈Ωk

bv
ir

= 0 for r = 0, ..., t − 1 and 
∑

v∈Ωk

bv
it

= dit
+

t−1∑
r=0

dir
. However, 

by Lemma 7.7, we know that 
t∑

r=0
dir

= 0; hence, we have 
∑

v∈Ωk

bv
it

= 0. Moreover, only 

finitely many bv
i ’s are modified, so bv

i = 0 for almost all v; the lemma then follows.

Proposition 7.9. Let x = (xv
i ) be a local point of Xc. Assume that αc = 0, and that 

X0
c (k) �= ∅. Then there exists a local point x̃ = (x̃v

i ) of Xc such that for all i ∈ I, we 
have

∑
bi(K, x̃v

i ) = 0.

v∈Ωk
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Proof. This follows from Lemma 7.8.

Proof of Theorem 7.1 for K of prime power degree. It is clear that if Xc has a k-point, 
then Xc has a kv-point for all v ∈ Ωk and αc = 0. Conversely, suppose that Xc has a 
kv-point for all v ∈ Ωk and that αc = 0. Let us show that the variety Xc has a k-point. 
We show our claim by induction on the exponent e. Suppose that e = 1. Then K0 = k, 
and X0

c (k) �= ∅. By Proposition 7.9, there exists a local point x = (xv
i ) of Xc such that 

for all i ∈ I, we have 
∑

v∈Ωk

bi(xv
i ) = 0. Lemma 6.5 implies that Xc(k) �= ∅. Assume now 

that e > 1. Since Xc has a kv-point for all v ∈ Ωk, the variety X0
c also has a kv-point for 

all v ∈ Ωk. As αc is the zero map, by Lemma 6.7 the Brauer-Manin map α0
c for X0

c is also 
the zero map. Therefore X0

c has a k-point by induction hypothesis. By Proposition 7.9, 
there exists a local point x = (xv

i ) of Xc such that for all i ∈ I, we have 
∑

v∈Ωk

bi(xv
i ) = 0. 

Lemma 6.5 implies that Xc(k) �= ∅.

7.2. The general case

Recall that K/k is a cyclic extension of degree d, and that L = K × K ′, where K ′ is 
an arbitrary étale k-algebra. We keep the notation of 5.3, in particular, P is the set of 
prime divisors of d. For all p ∈ P, we denote by K(p) the largest subfield of K of order a 
power of p, and L(p) = K(p) × K ′. For all c ∈ k× and p ∈ P, the affine k-variety defined 
by

NL(p)/K(p)(x) = c,

is denoted by Xc(p). Recall that there is a natural map from Xc to Xc(p) (§6.3). 
We denote by αc(p) be the Brauer-Manin map of Xc(p). Recall that X(K, K ′) =
⊕

p∈P
X(K(p), K ′), and that αc : X(K, K ′) → Q/Z is given by αc = ⊕

p∈P
αc(p).

Lemma 7.10. Let c ∈ k×. Then Xc has a k-point if and only if Xc(p) has a k-point for 
all p ∈ P.

Proof. Let z ∈ Xc(k) be a k-point of Xc, and let us write z = (x, y) with x ∈ K and 
y ∈ K ′. Then (NK/K(p)(x), y) is a k-point of Xc(p) for all p ∈ P. Conversely, suppose 
that for all p ∈ P, the k-variety Xc(p) has a k-point (xp, yp) ∈ K(p) × K ′. For all p ∈ P, 
set

rp =
∏

q∈P,q �=p

[K(q) : k],

and let sp ∈ Z such that 
∑

p∈P
rpsp = 1. Set x =

∏
p∈P

x
sp
p , and y =

∏
p∈P

y
rpsp
p . Then (x, y) is 

a k-point of Xc.



30 E. Bayer-Fluckiger et al. / Advances in Mathematics 356 (2019) 106818
Remark 7.11. The above lemma is compatible with base change to any field extension l
of k.

Proof of Theorem 7.1. Suppose that Xc has a k-point. Then by Lemma 7.10, Xc(p) has 
a k-point for all p ∈ P. This implies that αc(p) = 0 for all p ∈ P, and hence αc = 0. 
Conversely, suppose that Xc has a kv-point for all v ∈ Ωk and that αc = 0. Then Xc(p)
has a kv-point for all v ∈ Ωk. Since αc = 0, we have αc(p) = 0 for all p ∈ P. But K(p)
is a cyclic extension of prime power degree, hence this implies that Xc(p) has a k-point 
for all p ∈ P. Therefore Xc has a k-point by Lemma 7.10.

Corollary 7.12. Let IL be the idèle group of L. Then sending c ∈ k× to αc gives rise to 
an isomorphism

(k× ∩ NL/k(IL))/NL/k(L×) → X(L)∗.

Proof. It is clear from the definition of αc that sending c ∈ k× to αc is a homomorphism; 
Theorem 7.1 implies that this homomorphism is injective. That it is an isomorphism 
follows from the fact that X(L)∗ 
 X1(k, TL/k) (see Corollary 5.17).

Metacyclic extensions

In the following we apply the main theorem to the case where K is a metacyclic 
extension of k (recall that a metacyclic extension is a Galois extension such that all the 
Sylow subgroups of its Galois group are cyclic). As before, let Xc be the k-variety defined 

by the equation (0.1). Assume that K/k is a metacyclic extension of degree q =
s∏

j=1
p

ej

j , 

where pj ’s are distinct primes. Let qj = p
ej

j and rj = q/qj . For 1 ≤ j ≤ s, let Gj be a 
pj-Sylow subgroup of Gal(K/k) and let Fj be the subfield of K fixed by Gj . Note that 
[Fj : k] = rj . Let Xj

c be Xc ⊗k Fj . Then the injection k → Fj induces a natural injection 
of Xc(k) to Xc(Fj) = Xj

c (Fj).

Suppose that Xc has a kv-point for all v ∈ Ωk. Then Xj
c has a Fj,w-point for all 

w ∈ ΩFj
. Since Fj is a cyclic extension of k, we can define the Brauer-Manin map αj for 

Xj
c . The necessary and sufficient condition for the Hasse principle for Xc to hold is the 

following:

Proposition 7.13. Assume that K is a metacyclic extension. Then Xc has a k-point if 
and only if Xc has a kv-point for all v ∈ Ωk and αj = 0 for 1 ≤ j ≤ s.

Proof. Assume that Xc has a kv-point for all v ∈ Ωk, and that αj = 0 for 1 ≤ j ≤ s. 
Then the variety Xj

c has a Fj,w-point for all w ∈ ΩFj
. Since αj = 0 for all 1 ≤ j ≤ s, 

by Theorem 7.1 the variety Xj
c has a Fj-point. Let (xj,i) be a Fj-point of Xj

c , where 

xj,i ∈ (Fj ⊗k Ki)×. Let bj ∈ Z such that 
s∑

j=1
bjrj = 1, and set zi =

s∏
j=1

NFj⊗Ki/Ki
(xj,i)bj ; 

then (zi) is a point of Xc. The other direction is trivial.
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8. Products of cyclic extensions

In this section, we suppose that L is a product of cyclic extensions, and we denote by 
X(L) the obstruction group. In the following, we give a simple criterion for the vanishing 
of X(L); in other words, an easy way to decide whether the Hasse principle holds for L.

Assume that L =
∏
i∈J

Ki, where Ki/k is a cyclic extension of degree di. Let P be the 

set of prime numbers dividing 
∏
i∈J

di. For all p ∈ P and all i ∈ J , let Ki(p) be the largest 

subfield of Ki such that [Ki(p) : k] is a power of p, and set L(p) =
∏
i∈J

Ki(p).

For any cyclic field extension K/k of prime power degree, we denote by Kprim the 
unique subfield of K of degree p over k. Set L(p)prim =

∏
i∈J

Ki(p)prim.

The aim of this section is to prove the following two results:

Theorem 8.1.

X(L) = 0 ⇐⇒ ⊕
p∈P(L)

X(L(p)prim) = 0,

where P(L) is a set of prime numbers, subset of P.

The set P(L) is determined in Theorem 8.3, see below.

Theorem 8.2.

X(L(p)prim) 
 (Z/pZ)mp(L),

where mp(L) is a positive integer.

The value of mp(L) is given in Theorem 8.3.
We start with the proof of Theorem 8.2, which amounts to treating the case where L

is a product of cyclic extensions of prime degree.

Theorem 8.3. Let p be a prime number, and assume that L is a product of n non-
isomorphic cyclic extensions of degree p. Then we have

(a) If n ≤ 2, then X(L) = 0.
(b) If 3 ≤ n ≤ p + 1, then either X(L) = 0, or X(L) 
 (Z/pZ)n−2.
(c) If n ≥ p + 2, then X(L) = 0.

Note that Theorem 8.3 implies immediately Theorem 8.2, and gives the value of the 
integer mp(L). Note also that the case n = 1 is a special case Hasse’s cyclic norm theorem, 
the case n = 2 follows from Hürlimann’s result [9] Prop. 3.3, (see also Proposition 4.1), 
and that the case n = 3, p = 3 is a result of Colliot-Thélène, cf. [3], Théorème 4.1.
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In order to prove Theorem 8.3, we need to come back to the definition of X(L) =
X(K, K ′) in the case where K is cyclic of prime degree, and give a description of this 
group in terms of partitions.

We keep the notation of 5.1, with e = 1. In particular, p is a prime number, and 
L = K × K ′, where K is a cyclic extension of k of degree p. Recall that Ei = K ⊗ Ki, 
and note that Ei is either a cyclic field extension of Ki or a product of p copies of Ki. 
Let J be the subset of i ∈ I such that Ei/Ki is a field extension, and let r = |J |.

Recall that Σi is the set of v ∈ Ωk such that Ev
i is the product of p copies of Kv

i . 
For all J ′ ⊂ J with J ′ �= J , set Ω(J ′) = ∩

i/∈J ′
Σi, and let Ω(J) = Ωk. By Lemma 5.12, 

the group G(K, K ′) is in bijection with the set of partitions (J0, . . . , Jp−1) of J such 
that ∪

n∈Z/pZ
Ω(Jn) = Ωk. We identify G(K, K ′) with the set of these partitions. Note 

that under this identification, D(K, K ′) corresponds to the partitions where one of the 
subsets is J , and all the others are empty; these will be called the trivial partitions of J .

For all n ∈ Z/pZ and all a ∈ (Z/pZ)r, set Jn(a) = {i ∈ J | ai = n}. Then Lemma 5.12
can be reformulated as follows:

Lemma 8.4. G(K, K ′) is in bijection with the set

{a ∈ (Z/pZ)r | ∪
n∈Z/pZ

Ω(Jn(a)) = Ωk}.

Proof of Theorem 8.3. Note first that (a) follows from Proposition 4.1. From now on, 
we assume that n ≥ 3. Theorem 8.3, as well as a precise condition for when X(L) = 0
in case (b), is a consequence of Proposition 8.5 below.

For any positive integer d, a finite separable extension F of k is said to have local 
degrees ≤ d if for all places v ∈ Ωk, the étale algebra F ⊗k kv is a product of field 
extensions of kv with degrees ≤ d.

Proposition 8.5. Let p be a prime number, and assume that L is a product of distinct 
field extensions of degree p of k, at least one of which is cyclic.

Then X(L) �= 0 ⇐⇒ the factors of L are distinct subfields of a field extension F/k

of degree p2, and all the local degrees of F are ≤ p.
Moreover, if X(L) �= 0, and if L is a product of n distinct degree p field extensions 

of k, then X(L) 
 (Z/pZ)n−2.

Proof. Let K be a cyclic factor of L, and let us write L = K ×K ′, where K ′ is a product 
of field extensions of degree p of k. Suppose that X(L) �= 0. Then there exists a partition 
(I0, I1) of J such that Ω(I0) ∪ Ω(I1) = Ωk. Indeed, let (J0, . . . , Jp−1) be a non-trivial 
partition of J such that ∪

r∈Z/pZ
Ω(Ji) = Ωk. Without loss of generality, we can assume 

that J0 is not empty. Set I0 = J0, and let I1 = ∪
i�=0

Ji; then we have Ω(I0) = Ω(J0), and 

Ω(Jr) ⊂ Ω(I1) for all r �= 0. Therefore Ω(I0) ∪Ω(I1) = Ωk, as claimed. Let Ki and Kj be 
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two distinct factors of K ′, and let KiKj be the composite of Ki and Kj . For all v ∈ Σi, 
we have

K ⊗k (KiKj)v 
 K ⊗k Kv
i ⊗Kv

i
(KiKj)v,

and, since v ∈ Σi, this is isomorphic to the product of p copies of (KiKj)v.
Let i ∈ I0 and j ∈ I1. As we have Ω(I0) ∪Ω(I1) = Ωk, the tensor product K⊗k(KiKj)v

is isomorphic to the product of p copies of (KiKj)v for all v ∈ Ωk. This implies that K
is a subfield of KiKj . Recall that K is cyclic, and that Ki, Kj are not isomorphic; hence 
we have K ⊗k Ki 
 KKi ⊂ KiKj . The degree of KiKj is at most p2, hence we have 
KKi = KiKj = KKj , and Ki ⊗k Kj 
 KiKj is of degree p2 over k.

Let i ∈ I0, and set F = KKi; we just saw that F is independent of the choice of i, 
and that F = KiKj for all j ∈ I1. This shows that Ki is a subfield of F for all i ∈ J . 
Since (I0, I1) represents a non-trivial element of X(L), for all v ∈ Ωk there exists i ∈ J

such that F v 
 K ⊗k Kv
i is isomorphic to a product of p copies of Kv

i . Therefore all the 
local degrees of F are ≤ p.

Conversely, let F be a separable extension of degree p2 of k such that all the factors of L
are distinct subfields of F . It suffices to prove that all non-trivial partitions (J0, . . . , Jp−1)
of J satisfy ∪

r∈Z/pZ
Ω(Ji) = Ωk. Suppose that this is not the case. Let (J0, . . . , Jp−1) be 

a non-trivial partition of J with ∪
r∈Z/pZ

Ω(Ji) �= Ωk. Let v ∈ Ωk with v /∈ ∪
r∈Z/pZ

Ω(Ji). 

Since v /∈ Ω(J0), there exists i /∈ J0 such that iv /∈ Σi. Let r ∈ Z/pZ such that i ∈ Jr; 
since v /∈ Ω(Jr), there exists j /∈ Jr such that v /∈ Σj .

Since the degree p extensions K, Ki and Kj are distinct subfields of F , we have 
F 
 K ⊗ Ki 
 K ⊗ Kj . Note that [Kv : kv] = p, because v /∈ Σi. Let us write Kv

i

as a product of separable extensions of kv. If one of the factors Ms of Kv
i is such that 

1 < [Ms : kv] < p, then Ms and Kv are linearly disjoint, and this contradicts the 
assumption that all the local degrees of F are ≤ p. Hence Kv

i is either a degree p field 
extension of kv, or a product of p copies of kv. However, if Kv

i and Kv are both fields, 
then Ev

i is a field extension of degree p2 of kv. Since F v 
 Ev
i , this contradicts the 

hypothesis that all the local degrees of F are ≤ p. Therefore Kv
i is a product of p copies 

of kv, and hence F v 
 Ev
i is a product of p copies of Kv.

Set d = [KiKj : k]. Since v /∈ Σj , the same argument shows that Kv
j is a product 

of p copies of kv, hence (KiKj)v is a product of d copies of kv. Note that (KiKj)v is a 
subalgebra of F v, and that F v is a product of p copies of Kv; hence we have d ≤ p. As 
Ki and Kj are distinct subfields of KiKj , we have d = rp for some integer r > 1, and 
this leads to a contradiction.

Hence for all non-trivial partitions (J0, . . . , Jp−1) of J we have ∪
r∈Z/pZ

Ω(Ji) = Ωk. 

This shows that X(K, K ′) = X(L) 
 (Z/pZ)n−2.
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Proof of Theorem 8.1. Assume now that L is a product of n cyclic extensions, L =
K1 × · · · × Kn, where Ki/k is a cyclic extension of degree di, and let J = {1, . . . , n}. 
Note that X(L) = X(Ki, K ′

i) for any i ∈ J , where L = Ki × K ′
i. This will be used 

repeatedly in the sequel.
Let P be the set of prime numbers dividing d1 . . . dn. For all p ∈ P and all i ∈ J , 

let Ki(p) be the largest subfield of Ki such that [Ki(p) : k] is a power of p, and set 
L(p) = K1(p) × · · · × Kn(p).

Proposition 8.6. We have

X(L) = ⊕
p∈P(L)

X(L(p)).

Proof. This follows from Proposition 5.16, and from the fact that L is a product of cyclic 
extensions.

Lemma 8.7. Let p be a prime number, and let Ki/k, i ∈ J , be cyclic extensions of degree 
a power of p of k. For all i ∈ J , let Ni/k be a subextension of Ki/k. Then X(

∏
i∈J

Ni)

injects into X(
∏
i∈J

Ki).

Proof. This follows from Proposition 5.7, and Remark 5.8 following this proposition.

Proof of Theorem 8.1. Assume that X(L) = 0. By Lemma 8.7 and Proposition 8.6, the 
group X(Lprim) injects into X(L), hence this implies that X(Lprim) = 0. Conversely, 
suppose that X(Lprim) = 0. By Proposition 8.6, we may assume that L is a product of 
extensions of degree a power of a prime p. Let us write L = K × K ′, for some cyclic field 
extension K/k; then Lprim = Kprim ×K ′

prim. Since X(Lprim) = 0, by Proposition 5.14 we 
have X(K, K ′

prim) = 0. Permuting K with one of the other cyclic factors and repeating 
the same procedure, we obtain X(L) = 0.

Example 8.8. Let p be a prime number, and let F/k be an extension with Galois group 
Cp × Cp, where Cp denotes the cyclic group of order p. Let K1, . . . , Kp+1 be the distinct 
subfields of degree p of F . Set L = K1 × · · · × Kp+1. Then by Proposition 8.5, we have 
X(L) = 0 or X(L) = (Z/pZ)p−1. Moreover, we have

X(L) = 0 ⇐⇒ there exists v ∈ Ωk such that F v is a field.

• Assume first that there exists v ∈ Ωk such that F v is a field. Then X(L) = 0, hence 
for all c ∈ k×, we have Xc(k) �= ∅. In other words, we have

NL/k(L×) = k×

in this case.
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• Assume now that all the local degrees of F are ≤ p. Then by Proposition 8.5 we have 
X(L) = (Z/pZ)p−1.

Let Ωi be the set of v ∈ Ωk such that Kv
i is split. Note that we have Ω1 ∪· · ·∪Ωp+1 =

Ωk. This implies that Xc(kv) �= ∅ for all v ∈ Ωk and for all c ∈ k×.
Set K = Kp+1. For all c ∈ k× and for all v ∈ Ωk, let us denote by [K, c]v ∈ Z/pZ the 

image of inv(K, c)v by the isomorphism 1
pZ/Z 
 pZ/Z. Then the map

f : k×/NL/k(L×) → (Z/pZ)p−1

given by

c �→ (
∑

Ω1

[K, c]v, . . . ,
∑

Ωp−1

[K, c]v),

is an isomorphism.
When p = 2, we recover a well-known result of Serre and Tate, see [2], Exercise 5.2, 

page 360; see also [3], Proposition 5.1.
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