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0. Introduction

Let k be a global field, and L be a finite dimensional commutative étale algebra over k.
We say that the Hasse norm principle holds for L if the local-global principle holds for
the equation

for all ¢ € k*; this terminology is inspired by Hasse’s result that the norm principle holds
in the case of cyclic extensions ([7], [8] §I (3.11) and §II (15)). Over the years, the norm
principle for separable field extensions attracted a lot of attention; it is known not to
hold in general, and many positive results are also available, see for instance [11], pages
308-309 for a survey; for more recent results, see [1], [5], and the references therein.

It is natural to ask for Hasse principles in the case when L is a finite dimensional
commutative étale algebra, and not just a field extension. Since L is by definition a
product of separable extensions, the equation (0.1) is often called a multinorm equation.

This more general problem was also studied extensively, in particular by Hiirlimann
([9]), Colliot-Thélene and Sansuc (unpublished), Platonov and Rapinchuk (see [11], sec-
tions 6.3 and 9.3), Prasad and Rapinchuk ([14], Section 4), Pollio and Rapinchuk ([13]),
Demarche and Wei ([4]), Pollio ([12]). Multinorm equations also arise when dealing with
classical groups of type A,, (see for instance [14] Prop. 4.2).

In spite of many interesting results, some quite simple cases were still open. We
illustrate this, as well as our results, by the following example:

Example. Assume that L is a product of nm non-isomorphic quadratic field extensions
of k. If n = 1 or n = 2, then the Hasse principle holds for L - this is clear for n = 1,
and easy for n = 2 (for instance, it is a consequence of [9], Proposition 3.3). It is also
well-known that it does not hold in general when n = 3 (see for instance [3]). In the
present paper, we show that the Hasse principle holds if n > 4.

To obtain this result and others, let us assume that one of the factors of L is a cyclic
field extension of k. Under this hypothesis, we construct a finite abelian group II(L)
having the property that

III(L) =0 < the Hasse principle holds for L

(cf. Section 5). Assume now that III(L) # 0, and that ¢ € k* is such that (0.1) has a
solution locally everywhere. Then we construct a homomorphism

ae (L) > Q/Z

such that
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(0.1) has a solution over k <= a, =0

(see Sections 6 and 7, in particular Theorem 7.1).
These results can be summarized as follows: let I;, be the idele group of L. Then
sending ¢ € k* to «a. gives rise to an isomorphism

k* "W Np(IL)/Npye(L™) — HI(L)*

(where III(L)* is the dual of III(L), cf. Corollary 7.12).

We also give a necessary and sufficient condition for the Hasse principle to hold when
one of the factors is metacyclic (see Proposition 7.13).

The results are easy to use. To illustrate this, we consider the case where L is a
product of cyclic extensions; assume that L = [] K, where K;/k is a cyclic extension

ieJ
of degree d;. Let P be the set of prime numbers dividing []d;. For all p € P and all
ieJ

i € J, let K;(p) be the largest subfield of K; such that [K;(p) : k] is a power of p, and

set L(p) = [] K;(p). Then we have
ic€J

(see Proposition 8.6).
For any cyclic field extension K/k of prime power degree, we denote by Kpyiy, the
unique subfield of K of degree p over k. Set

L(p)prim = HKz (p)prim-
i€J

Then we have

]_I_I(L) =0 < 5 H-I(L(p)prim) = 07
peP(L)

(cf. Theorem 8.1), and

HI(L(p)prim) =~ (Z/pz)mp(L)7

where P(L) is a set of prime numbers (subset of P), and m,(L) is a positive integer;
both are determined explicitly (see Theorem 8.2).

The paper is structured as follows. Sections 1-4 contain some preliminary results,
including a new proof of a proposition of Hiirlimann, [9] Prop. 3.3. The group III(L)
is defined in Section 5, and the homomorphism «. in Section 6. In both sections, we
start with the case where the étale algebra L has a cyclic factor of prime power degree,
which is the essential case. We also show how one can reduce the exponent of the prime
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number, using the exact sequence of Proposition 5.10 - this is then used in inductive
arguments. The main result is proved in Section 7 (see Theorem 7.1). Section 8 contains
the application of the above results to the special case where all the factors of the étale
algebra are cyclic.

Note that the results of this paper are related to the Brauer-Manin obstruction. In-
deed, for ¢ = 1, the equation (0.1) yields the so-called norm-one-torus defined by L/k
(see 1.2 for details); we denote this torus by 77 ,,. When k is an algebraic number
field, then one can deduce from [15] that the only obstruction to the Hasse principle is
the Brauer-Manin obstruction, and is an element of the group I_HQ(k‘,TL/k)*. We show
that (L) ~ IH2(k,TL/k) (see Proposition 5.16), hence our results provide an explicit
description of the Brauer-Manin obstruction.

We thank the referee for several very useful comments. The second named author
wishes to acknowledge support from the Alexander von Humboldt Foundation. The
third named author is partially supported by the NSF grants DMS 1801951 and FRG
1463882.

1. Notation, definitions and basic facts
1.1. Weil restriction

If f: R — R’ is a homomorphism of commutative rings such that R’ is a projective
R-module of finite type, and if W is an affine R'-scheme, then we denote by Rz gW
the Weil restriction (see for instance [10], Appendice 2).

1.2. Etale algebras, tori and characters

Let k be a field, let ks be a separable closure of k and set I'y, = Gal(ks/k). We
fix once and for all this separable closure k;, and all separable extensions of k that
will appear in the paper will be contained in ks. We use standard notation in Galois
cohomology; in particular, if M is a discrete I'y-module and 7 is an integer > 0, we set
Hi(k,M) = H Ty, M).

If L is a commutative étale k-algebra of finite rank, we denote by Ny, ;. the norm map,

and set 17,/ = RY

I /k(Gm); then Tp, ;. is the k-torus determined by the exact sequence

For a k-torus T', we denote by 7' = Hom(T, G,,) its character group. If K/k is a finite
separable extension, set I'x = Gal(k;/K). If moreover M is a discrete I'x-module, set
L/ (M) = Ind% (M),

The following lemmas will be used several times in the sequel
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Lemma 1.1. Let F'/k be a separable extension of finite degree, and let L be the product
of n copies of F. Then we have

(1) Tk ZARF/k(Gm)n_lAX Ty
(it) H'(k,Tpjp) = H (k, Tryr).

Proof. The isomorphism (Rp/i(Gm))” — (Rr/k(Gi))" sending (b1, ...,b,) to (b1, ...,
bn—1,b1...b,_1b;,) induces an isomorphism 77, /, ~ Rp/k(Gm)”_l X Tp/i,. This proves (i).
By (i), we have TL/k ~Ip(Z)" ' & TF/k; since H'(k,1p/x(Z)) = 0, this implies (ii).
Lemma 1.2. Let K/k be a cyclic extension of degree d. Then there exists an isomorphism
H(k, Ty) — Z/dZ
which is functorial with respect to base change.
Proof. Let o be a generator of Gal(K/k). Consider the exact sequence
1= G = Riyu(Gm) = Ty — 1,
where the map from R /i (Gm) to Tk /i, sends x to z/0(z), and its dual sequence
0— TK/k — Ig/p(Z) = 7 — 0.

This exact sequence induces
IK/k(Z)Fk =7 — Hl(kaTK/k) —_— Hl(kaK/k(Z)) =0.

We have I/, (Z)'s ~ Z, generated by the sum of the elements of Gal(K/k), and the
map € is multiplication by d; hence we obtain an isomorphism H 1(k,TK/k) — Z/dZ
which is independent of the choice of the generator o.

1.3. The multinorm problem

Let L be an étale k-algebra, and let ¢ € k*. Let X, be the affine k-variety determined
by the equation Ny ;(t) = c. Then X is a torsor under the torus 77,/ defined in 1.2,
hence defines a class [X.] € H'(k, Ty ;); the variety X, has a k-point if and only if
[X.] = 0. Hence we have

CENL/k(LX) <~ Xc(k)#@ — [XC]:O
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2. A construction

Let k be a field, and let L be a commutative étale k-algebra of finite rank; assume that
L is not a field. We keep the notation of the previous section. The aim of this section is
to introduce a k-torus that will play a basic role in the study of the cohomology of the
torus 1, /x, and of the multinorm problem.

Let us write L = K x K’, where K and K’ are étale k-algebras, and set £ = K @, K'.

The norm maps Nk, : K — k and Nk, © K’ — k induce N/ : £ — K
and Ng/x + E — K'. Let f : Rg/(Gn) — Rp/p(Gm) be defined by f(z) =
(Ng/k(x)™", Ng/k(2)). It is clear that the image of f is contained in T}, /5. More-
over, f is surjective as a map of algebraic groups (easily checked after base change to
the separable closure kg of k).

Consider the torus Sk g+ defined by the exact sequence

1 — SK,K’ — RE/k(Gm) i)TL/k — 1.

Note that Sk x+ also fits in the exact sequence

N
1 — SK,K’ — RK’/k(TE/K’) ﬂ) TK/k — 1 s (21)

where T/ is defined by the exact sequence of K'-tori

Ng g
1= Tg/x = Rp/x'(Gm) — Gy — 1.
3. Tate-Shafarevich groups

We keep the notation of the previous sections, and assume that k is a global field. Let
Q. be the set of all places of k; if v € Q, we denote by k, the completion of k at v.
For any k-torus T, set II'(k,T) = Ker(H'(k,T) — [] H'(k,,T)). If M is a
veEQ
I'j-module, set II*(k, M) = Ker(H*(k, M) — T[] H'(k,,M)). Recall that by Poitou-
vEQ

Tate duality, we have II1(k, T) ~ III*(k, T)*.
3.1. Hasse principle for the multinorm problem

Let L be an étale k-algebra, and let ¢ € k*. If X (k,) # 0 for all v € Qy, then we
have [X.] € Hll(k,TL/k.). In particular, the Hasse principle holds for all ¢ € k* if and
only if I (k, Ty 1) = 0.

We have the following relationship between the Tate-Shafarevich groups of the torus
Tr,/k, and the torus Sk x+ defined in §2:
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Lemma 3.1. We have II' (k, T}, /) ~ II*(k, Sk, k7).

Proof. By the definition of the torus Sk, x/, we have the exact sequence

1 — SK,K’ — RE/k(Gm) i) TL/k — 1,
giving rise to the cohomology exact sequence
0— H'(k,Tr /) — H*(k, Sk,x/) = H*(k,Rp/1(Gp)).

By the corresponding cohomology exact sequence over k, for all v € € and the
Brauer-Hasse-Noether Theorem, we have III?(k, REg/k(Gm)) = 0, hence H_Il(k:,TL/k) ~
1% (k, Sk k), as claimed.

We now compute the group H_I2(k,TK/k) for a cyclic extension K/k - note that by
Poitou-Tate duality, this is equivalent to Hasse’s cyclic norm principle, which is the
following proposition:

Proposition 3.2. Let K/k be a cyclic extension. Then Hll(k:,TK/k) =0.

Proof. We give a proof for the convenience of the reader. Let o be a generator of
Gal(K/k). Consider the exact sequence

1 = G — Riyu(Gm) = Ty — 1,
where the map from R/ (Gpm) to Tk /i sends x to x/o(x). This sequence gives rise to
an injection H'(k, Tk 1,) — H?(k,G,,). By the Brauer-Hasse-Noether theorem, we have
1% (k, G,,) = 0, hence I (k, Tx /i) = 0.
Corollary 3.3. Let K/k be a cyclic extension. Then H_I2(k,TK/k) =0.
This follows from the previous proposition, combined with Poitou-Tate duality.

4. A result of Hiirlimann

Using the above lemmas, we generalize a result of Hiirlimann ([9] Prop. 3.3).

Proposition 4.1. Let K/k be a cyclic extension of k, and let K'/k be a separable extension
of finite degree. Let ¢ € k*. Then the local-global principle holds for the multinorm
equation Ng i (x) Nk /i (y) = c.

Proof. Set L = K x K’; the assertion is equivalent to the vanishing of Hll(k;,TL/k).
By Lemma 3.1, we have III'(k, Trk) =~ 1% (k, Sk k). By Poitou-Tate duality we have
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II2(k, Sk i) ~ I (k, Sk x+)*, hence it suffices to prove that III' (k, Sk x+) = 0. Since
K /k is a cyclic extension, the algebra E = K ®, K’ is isomorphic to a product of copies
of F, where F/K' is some cyclic field extension. Set d = [K : k] and f = [F: K'].

Consider the dual sequence of (2.1):
OHTK/]CL)IK//k(TE/K/)i)SK)K/ — 0, (41)

and the sequence induced by (4.1)

N 1 N 1 N 5 N
HY(k, Ty i) ~— H (kX /e (Tpyer)) L HY(k, Sreicr) = H2(k, Tiey). (4.2)

We have Hl(k,IK//k(TE/K/)) ~ Hl(K’,TE/K/); Lemmas 1.1 (ii) and 1.2 imply
that Hl(K’,TE/K/) ~ Hl(K’7TF/K/) ~ Z/fZ. The map ¢! is the natural projection
from Z/dZ — 7./fZ, therefore ¢! is surjective. This implies that & : H'(k, Sk /) —
H2(k,TK/k) is injective; moreover, § induces an injection IIT*(k, SK,K’) — H_I2(k,TK/k).
Since K /k is a cyclic extension, we have 1112 (k, Ty /i) = 0 by Corollary 3.3. The propo-
sition then follows.

5. The group III(K, K')

We keep the notation of the previous sections: in particular, L = K x K’, where K
and K’ are étale k-algebras, and E = K ® K'. In addition, we now assume that K/k
is a cyclic extension. Under this hypothesis, we define a finite abelian group II(K, K')
using the local splitting patterns of £, and we show that I_Hl(k, T1,/1) is isomorphic to
the dual of IIT(K, K').

Let K" = [[;c7 K, where the K;/k are field extensions. Then we have E =[], ; Ei,
with E; = K ® K.

If v € Q and if A is a commutative k-algebra, set AY = A ® k.

5.1. The prime power degree case

Suppose that K is a cyclic extension of degree p¢, where p is a prime number. We
start with some notation and definitions. For each i € Z, let M; be a cyclic extension of
K; such that E; is isomorphic to a product of copies of M;. Let p¢ = [M; : K;]; without
loss of generality, we assume that e; > e;41 for 1 <7 <m — 1.

Let s and ¢ be positive integers. For s > t, let 7 ; be the canonical projection Z /p°Z —
Z/p'Z.¥orx € Z/p°Z and y € Z/p'Z, we say that x dominates y if s > t and 7 4(z) = y;
if this is the case, we write * = y. For x € Z/p°Z and y € Z/p'Z, let (x,y) be
the greatest nonnegative integer d < min{s,t} such that 75 4(x) = m 4(y). We have
d(z,y) = min{s,t} if and only if z > y or y = x.
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Let Z ={1,...,m}. For a = (a1, ....,am) € ® Z/p*Z and n € Z/p**Z, let I,,(a) be the
=
set {i € Z| n = a;} and let I(a) = (Io(a), ..., Iper —1(a)).
Let & be the set of p*-tuples (lo, ..., Iper —1), where Iy, ..., Iye1 _1 are subsets of Z such

that U I, = Z. Now we characterize the image of the map
0<n<per—1

I: ®Z/p“T —E.
€T

An element (I, ..., Ipes —1) € € is said to be coherent if for all ny, ny € Z/p®*7Z we have:

(1) If i € I, N I, then me, ¢, (N1) = ey ¢, (n2)-
(2) If i € I,, and Te, ¢, (n1) = Tey e, (N2), then i € I,,.

Let £¢ be the subset of all coherent elements in £. For a € & Z/p®Z, it is clear that
icT

I(a) is a coherent element. Conversely for a coherent element (Io, ..., Iper—1) € £°, we set
a; = Te, e, (n) for i € I,,. Note that condition (1) of the definition of a coherent element
ensures that the a;’s are well-defined. Hence a = (ay, ..., a,,) is a well-defined element
in EB Z/peiZ' condition (2) implies that I(a) = (1o, ..., Iyer—1). This shows that I is a

leeCtIOn between 6]9 Z/p“Z and E°.

If w is a place of KZ, we denote by K" the completion of K; at w. Given a positive
integer 0 < d < e and i € Z, let Ef be the set of all places v € € such that at each
place w of K; above v, the algebra K ® K/’ is isomorphic to a product of isomorphic
field extensions of degree at most p? of K. Let ¥; = X9, in other words, ¥; is the set
of all places v € 2}, where E is isomorphic to a product of copies of K.

Let (Io, ..., Ipe1—1) € E°. For ny € Z/p“Z and i € I, set §(n1,1) = 06(n1, Teye; (N2)),
where ng is an element in Z/p®*Z such that ¢ € I,,,. Since (Io, ..., [pe1—1) is coherent,
d(n1,4) is independent of the choice of ny and hence is well-defined. Note that if we

let @ = (a1, ...,am) be the element in @& Z/p*Z corresponding to (Io, ..., Ipe1—1), then
1€L

6(n1,1) = 6(n1, a;). For I, G Z, define

Q(I,) = 0 5omd), (5.1)

For I, = Z, we set Q(I,,) = Q.
Set

G:Gk(K,K’):{(al,...,am)eéBIZ/peim U Q) =}
’ neZ/p1Z

Lemma 5.1. The set G is a subgroup of ® Z/p“Z.
=
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Proof. Let a = (a1,...,an,) and b = (by,...,by,) be elements of G. By the definition
of G, for each v € §y, there exist some n, n’ € Z/p**Z such that v € Q(I,,(a)) and
v € Q(I,,/(b)). We claim that

v € Qpsw(a +b)).

This is clear when I, 1, (a +b) = Z. Suppose that I,, 1, (a + b) # Z. First note that
d(n+n',a; + b;) > min{d(n,a;),d(n’,b;)} and that min{d(n,a;),0(n’,b;)} < e; for all
i € Z. Pick an arbitrary ¢ ¢ I,/ (a + b). Without loss of generality, we suppose that
min{d(n,a;),d(n',b;)} = d(n,a;). If i ¢ I,(a), we have v € Zf("’a”) C Ef(n+n/’ai+b"’);
hence we have v € Q(I,4n/(a +b)).

If i € I,(a), then by definition §(n,a;) = e;. We have d(n,a;) < §(n’,b;) by assump-
tion, hence §(n’,b;) > e;. But d(n’,b;) < e;, therefore we have §(n’,b;) = e;, and hence
i € I,/ (b). This implies that ¢ € I,, 1,/ (a + b), and this is a contradiction. This completes
the proof of the lemma.

Let D be the subgroup of @ Z/p%Z generated by the diagonal element (1,...,1), and
i€T
note that D is contained in G. Set

11, (K, K') = G/D.
Example 5.2. Assume that &k = Q, and that L = Q(y/a) x Q(vb) x Q(vab), where
a,b are distinct square-free integers. Set K = Q(v/a), K1 = Q(v/b) and Ky = QVab).
Then with the above notation we have Z = {1,2}, and E; = Fy = Q( /a,V/b), hence
e = e; = eg = 1. This implies that either II(K,K') = 0, or II(K, K') ~ Z/27Z. Note
that
there exists v € 0 such that E7 is a field <= X7 U Xy # Qy,

hence

HI(K,K') =0 <= there exists v € Q such that E} is a field.

Set now a = 13, b = 17: then there exists no v € €, such that E} is a field, therefore
(K, K') = Z/27Z. Note that it is well-known that the multinorm principle fails in this
case (see for instance [3], Proposition 5.1).

Theorem 5.3. Suppose that K/k is a cyclic extension of degree p¢, where p is a prime
number. Then 1T (k, S i) ~ (K, K).

Proof. Consider the dual sequence of (2.1),

0 —— Trpp = L (Teyrer) 2 Sy —— 0, (5.2)
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and the exact sequence induced by (5.2),

~ A ~ 1 N A~
HY(k, Tre i) — H (kX (Tipyrer)) £ HY(k, Seicr) — H?(k, Tie ). (5.3)

We have Hl2(k,TK/k) = 0 by Corollary 3.3, therefore Hll(k,S'KK/) is in the image
of pt.

Note that Hl(k,IKi/k(TEi/Ki)) ~ Hl(Ki,TEi/Ki), and that by Lemma 1.1 (ii),
we have Hl(Ki,TEi/Ki) ~ Hl(Ki,TMi/Ki). Moreover, by Lemma 1.2, we have
HY(K;, Tar, ;) = Z/p% L.

In the following we identify H(k, TK/k) to Z/p°Z and H(k, IK,;/k(TEi/K,;)) to Z/pZ
for 1 <1i < m. Under this identification, the map

W Hl(kva/k) — Hl(k,IKf/k(TE/K/)) = ,?IHl(kJKi/k(TEi/Ki))
3

sends Z /p°Z to & Z/p“7Z by the natural projections. Therefore we can rewrite the exact
i€T

sequence (5.3) as follows:
1 A A
LI s @ TIpS T L HY(k, Sic i) — H2(k, Tre 1), (5.4)
€T

where (! is the natural projection from Z /p°Z to Z /p® Z for each i. Note that the image
of ¢! is the subgroup D, and we have the exact sequence

0—( EBIZ/pEfZ)/D 2y HY(k, Sc.rer) — H2(k, Ty i) (5.5)
1€

Let a = (a1, ...,am) € ZSBIZ/p‘?iZ and [a] be its image in (iGEBIZ/pEiZ)/D. We claim
that p!([a]) is in III* (k, Sk k) if and only if a € G.

We denote by a¥ the image of a in 5 H(ky, Iko/k, (TE;J/K;J)), and by D, the image
of D in this sum. =

By the exact sequence (5.5) over k,, we have p'([a]) € III'(k, Sk i) if and only if
a’ € D, for all places v € Q. Therefore, it suffices to prove that a € G if and only if
a’ € D, for all places v € 2.

Suppose that a € G, and let v € Q. Then there exists n € Z/p“Z such that
v € Q(Ip(a)). If I(a) = Z, then clearly a € D C G. Suppose that I,,(a) # Z. This
implies that for each i ¢ I,,(a) and for each place w of K; above v, the étale algebra

K ® K is isomorphic to a product of field extensions of K of degree at most d(n, ).
Let §; = 0(n,i) = d(n, a;). Note that
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We have

Hl(szaTE;’/Kf) ~ @Hl(Klw,TK?}@K/K;ﬂ) ~ @Z/pei,wz7

wlv wlv

where €;, < §;, and the localization map Hl(Ki,TEi/Ki) — Hl(K;},TEE)/KIP) is the

canonical projection e, from Z/p%Z to each component Z/p®-+Z. Since for all

€iw

i ¢ I,,(a) we have e; ., < 6;, and 7, s5,(a;) = 7e, 5,(n), this implies that a” = (n,...,n)".

Suppose conversely that a” € D, for all v € Q4 and a ¢ G. Then a ¢ D, and there

exists a place v € Qi such that v ¢ ZL/J ZQ(In(a)). Since a¥ € D,, there exists
nes/pel

n' € Z/p°Z such that a® = (1}(n')),. Let n = me e, (n'). As v ¢ Q(I,(a)), there exists
i ¢ I,(a) and a place w of K; above v such that K*® K is isomorphic to a product of field
extensions of degree p®w of K, with e; ,, > d;. Then by the definition of é; = d(n, a;),
we have 7, ¢, , (a;) # Te, e, ., (n). Hence the localization aj of the i-th coordinate of a is
not equal to the localization of the i-th coordinate of (n,...,n), which is a contradiction.
Our claim then follows. Therefore, we have III* (k, Sk x) ~ II(K, K').

Corollary 5.4. Suppose that K/k is a cyclic extension of degree p°, where p is a prime
number. Then 1T (k, Tk r) ~ (K, K')*.

Proof. By Lemma 3.1, we have Hll(k,TL/k) ~ II%(k, Sk k). Theorem 5.3 implies
that I_Hl(k:,S’K,K/) ~ III(K, K’). By Poitou-Tate duality, we have H_IQ(k7 Sk k') ~
I (k, SYK)K/)*, hence the corollary is proved.

5.2. The group IN(K /Ky, K')

Let Ky be the unique subfield of K such that [Ky : k] = p®~!. The proof of the
main theorem in the prime power case uses induction on e, and the comparison of the
groups II(K, K') and (K, K'). We first define a homomorphism F : (Ko, K') —
(K, K'), and then determine the cokernel of F', denoted by (K /Ky, K').

Note that if e = 1, then Ky = k, and hence II(Ky, K') is trivial; in this case,
(K /Ky, K') is the group II(K, K') itself.

The homomorphism ITI( Ky, K') — III(K, K').

Recall that we have K’ = [][ K;, that E; = K ® K;, and that F; is the product of

i€T
copies of a cyclic extension of degree p of K;. Set EY = Ky ® K;. Then E? also splits
as a product of copies of a cyclic extension of K;: let us denote by p/i the degree of this
extension.

Proposition 5.5. For alli € Z, we have f; < e;. If moreover e; # 0, then e; = f; + 1.

This is an immediate consequence of the following proposition:



E. Bayer-Fluckiger et al. / Advances in Mathematics 356 (2019) 106818 13

Proposition 5.6. Let F'/k be a field extension, and let K ® F' be a product of cyclic field
extensions of F' of degree p°F ; let Ko @y F' be a product of cyclic field extensions of F' of
degree pF . Then we have

(i) fr <er;
(i) fr>er—1;
(iii) Ifer #0, then ep = fr + 1.

Proof. If n is a positive integer, let us denote by C), the cyclic group of order n. Let us
consider the homomorphisms

Fpéfkg(?pe L)Cpe—l — 1,

where ¢ is the inclusion of I'p into I'y, the homomorphism ¢x : I'y — Cpe corresponds
to the cyclic extension K/k, and m : Cpe — Cpe-1 is the quotient of Cpe by its unique
subgroup of order p. Note that the image of ¢ o¢ is the Galois group of the cyclic factors
of K ®j F, and hence is of order p°F; similarly, the image of wo ¢k ot is the Galois group
of the cyclic factors of Ky ® F, and hence is of order p/#. Therefore we have fr < ep.
Moreover, if ep # 0, then the image of ¢ o ¢ contains the unique subgroup of order p
of Cpe, and hence er = fr + 1. This completes the proof of the proposition.

For all i € Z, let F; : Z/p’iZ — Z/p® Z be the inclusion of the subgroup of order p/i
in the group Z/p“Z, and set Fg g, = F' = @ F;.
i€l

Proposition 5.7. The map F : @ Z/p5Z — & Z/p*Z induces an injective homomor-
€T i€
phism F : (Ko, K') — TI(K, K').

Proof. Let us recall some notation from 5.1, for K and Ky: For all ¢ € Z and for all
positive integers d, we denote by X(K)¢ (respectively X (K)?) the set of all places v € Q,
such that at each place w of K; above v, the algebra K @ K" (respectively Ko ® K}*) is
isomorphic to a product copies of a cyclic extension of degree at most p? of K. Recall
that

G=GKK)={ac 0Z/p"Z | |J QUa(a) =%},
i€l neZpr L

and that D is the diagonal subgroup of G. Similarly, set

Go=G(KoyK)={bve o z/p"Z | |J QUI.0b) =N},
il neZ/phz

and let Dy, be the diagonal subgroup of Gy. Then we have III(K,K') = G/D and
(Ko, K') = Go/Dy.
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Let b € Go, and let us show that F(b) € G. Let v € Q. Then there exists r €
Z/p"Z such that v € Z(Ko)f(r’l) for all i € Z such that ¢ ¢ I,.(b). Note that for all
positive integers &, we have $(K()? € 2(K)°t!. Set n = Fy(r) € Z/p®* Z; then we have

(3

5(n, F;(b;)) = 6(r,b;) + 1. Hence we have v € E(K)f(r’bi)ﬂ, and therefore F(b) € G.
It is clear that F' is injective.

Remark 5.8. For any subextension N/k of K/k, let Fi/n : HI(N, K') — (K, K') be
the injective homomorphism obtained by successive applications of Proposition 5.7.

The group II(K /Ky, K').

As we will see, the cokernel of F' is isomorphic to the group II(K /Ky, K'), defined
as follows:
For all i € Z, set r; = min{1,e;}. For all c € @® Z/p"Z and n € Z/pZ, set I}(c) =
=

{ieZ |n=c}. IIe) #T,set QIL(c)) = 'gp( )EZ—; if Il(c) = T, set Q(I1(c)) = .
Set ’

GE/Ko,K')={ce o Z/p"Z | |J Q(c) =%},
el neZ/pZ

let D(K /Ky, K') be the diagonal subgroup of G(K/Ky, K'), and set
IH(K/K()vK/) = G(K/KO7 K/)/D(K/K(h K,)
Lemma 5.9. The projection 7 : ® Z/p“Z — ® Z/p"Z induces a homomorphism w :
i€T i€l
(K, K') - II(K/ Ky, K').

Proof. Let a € G, and set @ = 7(a). Let us show that @ € G(K/Ky, K'). Let v € Q;
then there exists s € Z/p®'Z such that v € Q(I5(a)). Set n = 7, 1(s), and let us prove
that v € Q(I}(a)). This is clear if I'(@) = Z. Suppose that I}(a) # Z. If i € T is such
that i ¢ I!(a), then we have i ¢ I (a), and therefore v € Zf(s’ai). Since n = m,, 1(s) and
i ¢ Il(a), we have 6(s,a;) = 0, and hence v € ¥;. Therefore we have @ € G(K/Ky, K'),
as claimed, and this completes the proof of the lemma.

Proposition 5.10. The sequence
0 — (Ko, K') -5 MI(K, K') - TI(K/ Ko, K') — 0
s exact.

Proof. It is clear that F' is injective, and that m o F' = 0; it remains to check that =

is surjective, and that Ker(n) C Im(F). Let us check the second assertion first. Let

a € HI(K,K') be such that 7(a) = 0. Then there exists b € @ Z/p/iZ such that
i€z
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F(b) = a; let us check that b € III(Ky, K'). Let v € Q. Then there exists n € Z/p“Z
such that v € Q(I,(a)). If i € I,(a), then we have m, .,(n) = a;. Since a; = F;(b;),
this implies that there exists » € Z/p/*Z such that n = Fy(r) and I,(a) = I,.(b). Let
us show that v € Q(I.(b)). For all i € T such that i ¢ I,,(a), we have v € Z(K)f(""“).
Note that §(n,a;) = 6(r,b;) + 1 and [K : Ko] = p. Hence v € E(K)g("’ai’) implies that
v E E(Ko)f(r’bi). Therefore we have v € Q(I,(b)), as claimed, and this implies that
b € HI(Ky, K'). Let us now prove that 7 is surjective. Let @ € III(K /Ky, K'). For each
n € Z/pZ, let us fix a lifting r(n) € Z/pZ. If i € I}(a), set a; = m,, ¢;(r(n)). Let
us check that a; € Z/p*Z is well-defined. Suppose that ni,ne € Z/pZ are such that
i € I (a) N1, (a); then we have 7y, (n1) = 1, (n2). If ny # ng, then this implies
that 7, = 0, hence e; = 0. We have 7, ¢, (7(n1)) = e, ¢, (r(n2)) in this case, hence
a; is well-defined. Let us check that a € II(K, K'). Since @ € II(K /Ky, K'), we have

U QUL(a)) = Qk. Let v € Qx; then there exists n € Z/pZ such that v € Q(I}(a)).
ne€Z/p"1Z

Let r = r(n); we claim that v € Q(I.(a)). If I}(@) = Z, then we have I.(a) = Z, and
the claim is clear. Suppose that I!(a) # Z. If i ¢ I.(a), then we have i ¢ I}(@) by
construction, hence v € %;. Since ¥; C X;(K)%™%) | the claim follows. This completes
the proof of the proposition.

The group II(K /Ky, K') and partitions.

In this section we give some properties of G(K/Kp, K') in terms of partitions of Z.
This will be useful in the proof of the main theorem (Theorem 7.1).

Lemma 5.11. The set G(K/Ky, K') is in bijective correspondence with the partitions
(Jo,...s Jp—1) of the set {i € T | r; =1} such that U Q(J,) = Q.

n€Z/pZ
Proof. Recall that we have r; =0or 1. Set Z' = {i € T | r; = 1}. Let a € G(K/Ky, K'),
and set I'(a) NT' = (Ij(a) NT',..., I} 1(a) NT"); note that I'(a) NZ’ is a partition of
7'. Hence the set G(K /Ky, K') is then in bijective correspondence with the partitions

(Jo, ..., Jp—1) of I such that U Q(J,) = Q, as claimed.
n€eZ/pZ

In the sequel, we identify G(K /Ky, K') with the set of these partitions. We also note
a consequence for the case where K is of degree p, in other words, if e = 1. If K/k is of
prime degree, then either F; is a field extension of K;, or F; is a product of copies of

K;. Let J be the subset of I such that E; is a field extension of K; if i € J, and that E;
is a product of copies of K; if i ¢ J.

Lemma 5.12. Assume that K/k is a degree p extension. Then G(K, K') is in bijective
correspondence with the partitions (Jy, ..., Jp—1) of J such that ZLZJ/ ZQ(Jn) = Q.

ne p.
Proof. Since e = 1, we have Ky = k and G(K /Ky, K') = G(K, K'). Hence the lemma
follows from Lemma 5.11.
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Let Kprim be the unique subfield of K of degree p over k.
Proposition 5.13. The group III(K /Ky, K') is a subgroup of II(Kprim, K').

Proof. J be the subset of i € T such that Kpum ®; K; is a field extension. Then
G(Kprim, K') is in bijection with the set of partitions (Io,...,I,—1) of J such that

U Qkin (In) = Q, where Qg (1) = Nigr, Xi(Kprim) (see Lemma 5.12).
n€eZ/pZ ’

Note that J = {¢ € Z | r; = 1}. Hence by Lemma 5.11, the set G(K /Ky, K') is in
bijection with the set of partitions (Io,...,I,—1) of J such that 2)/ ZQK(In) = Q,
ne P

where Qg (I,) = Nigr, Xi(K).

prim

Note that X;(Kprim) C 3;(K) for all i € Z. Hence G(K /Ky, K') C G(Kprim, K'), and
this implies that IIT(K /Ky, K') is a subgroup of I (K prim, K').

Proposition 5.14. If I (K pyim, K') = 0, then (K, K') = 0.

Proof. By Proposition 5.13, we have III(K/Ky, K') = 0; hence Proposition 5.10 im-
plies that III(K, K') = (K, K'). Repeating this argument, we see that II(K, K') =
(K prim, K'). But (K pyim, K’) = 0 by hypothesis, hence III(K, K') = 0, as claimed.

The following lemma will be useful in the sequel.

Lemma 5.15. Let (Iy,...,I,—1) € G(K/Ky,K'), and let r,v’" be two distinct ele-
ments of Z/pZ. Set J. = I., J. = L;ZI”’ and J, = 0 if n # r,7’. Then

(Jo,-..,Jp—1) € G(K/Ky,K'). If moreover (Io,...,I,—1) ¢ D(K/Ko,K') and I, # 0,
then (J(), .. .,prl) ¢ D(K/Ko,K/)

Proof. Let us show that Q(J,.) UQ(Jv) = Q. Let v € Qp be such that v ¢ Q(J,.).

Since we have %J/ ZQ(In) = i, there exists n(v) € Z/pZ with n(v) # r such that
nesL/p

v € QI(v)). Since n(v) # 7, we have Q(I,,()) C eﬂl Y = Q(Jy ). Therefore we have
Q(J,) UQ(J) = Q, and hence (Jo, ..., Jp—1) € G(K/Kq, K').

Let us prove the second statement. If (Jo, ..., Jp—1) € D(K/Kj), then either J, =7’
or J» =7'; we have I, = 7 in the first case, hence (Io,...,I,—1) € D(K/Ky, K'), and
I, = 0 in the second case. This completes the proof of the lemma.

5.3. The general case

Recall that K/ is a cyclic extension of degree d, and let P be the set of prime numbers
dividing d. For all p € P, let K(p) be the largest subfield of K such that [K(p) : k] is a
power of p and set d(p) = [K(p) : k|. Set
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W(K.K) = & W(K().K).

Proposition 5.16. We have I (k, Sk x/) ~ II(K, K').

Proof. By 5.3 we have I_Hl(k,S‘K(p),K/) ~ (K (p), K'), hence it suffices to show that

' (k, Sxe.rer) =~ 1 Hll(k,S’K(p)’K/). For every p € P, set E(p) = K(p) ®; K’ and
pEP
L(p) = K(p) x K'. The inclusion K(p) — K induces maps €, : Ty /e—Tk/k: €p :

Tewyk — Tp/k and €, © Skp),xk» — Sk k- We have the commutative diagram,
coming from cohomology exact sequences associated to the dual sequences of (2.1):

N W1 N pt N
Hl(k,TK/k) —_— Hl(k‘,IK//k(TE/K/)) —_— Hl(k,SK’K/) —_— ...

@é} l ®é; l ey J

1

N 1 N P N
[S3) Hl(kj,TK(p)/k) L*} D Hl(k,IK//k(TE(p)/K/)) — &P Hl(k‘,SK(p)’K/) —_— ...
peP peEP pEP

(5.6)

where the vertical maps are induced by the maps €,. Set é! = EBé;.

For all i € Z, let M; be a cyclic extension of K; such that F; is isomorphic to a
product of copies of M;, and let d; = [M; : K;]. If p is a prime divisor of [K : k],
set E;(p) = K(p) ® K, and let M;(p) be a cyclic extension of K; such that F;(p) is
isomorphic to a product of copies of M;(p); set d;(p) = [M;(p) : K;]. Note that d;(p) is

the highest power of p dividing d;, and that d; = [] d;(p).
pEP

Note that H'(k,Ix,/x(Tr /k,)) ~ H'(Ki, Tk, /k,), and that by Lemma 1.1 (i),
we have Hl(KhTEi/Ki) ~ Hl(KZ',TMi/Ki). Moreover, by Lemma 1.2, we have
HY(K;, Tar, ;) ~ Z/d;Z. Similarly, we have H'(k, I,y /x(T,py/x,)) = Z/di(p)Z.
Note that the morphism €, restricted to each H'(k, IKi/k(TEi/K,;))

& HY (kX 1(Tr, x,)) = Z)diZ — H' (kT k(T x,)) = 2/ di(p)Z

is the canonical projection Z/d;Z — 7 /d;(p)Z. Hence by the Chinese reminder theorem,
the morphism é! restricted to each H(k, IKi/k(TEi/Ki))

peEP peP

is an isomorphism. Similarly,

® el H (k,Ty/;) ~2/dZ — & H'(k,T ~ @ Z/d(p)Z
& (k, Treyr) ~ 2/ A (%, Trc(p) /1) A /d(p)

is also an isomorphism.
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By Corollary 3.3, we have H_Iz(k,TK/k) = 0 and IH2(k7TK(p)/k) = 0, hence
I (k, Sk i) and IIT* (k, §K(p)7K/) are in the image of the maps p'. Now we show that
el ]_Hl(k,S'KJ(/) — D U_Il(k‘, SK(p),K’) is injective. Let 8 € H_Il(ki,SK,K/). Suppose

peEP

that () = 0. As Hll(k:,S'K’K/) is in the image of p!, there is v € Hl(k,IK//k(TE/K,))

such that p'(y) = B. By the commutativity of the diagram, we have p!(él(y)) =

' (p' (7)) = 0. Hence there is ( € @ H'(k, T (p) &) such that ('(¢) = é'(7). Then
peEP

eloulo (1)71(C) = (). As

& HY (b I (T i) — p?PHl(kaIK’/k(TE(p)/K’))

is an isomorphism, we have ¢! o (¢1)71(¢) = v and hence 8 = p'(y) = 0. This proves the
injectivity.

As TII? (k, TK(p)/k) = 0 by Corollary 3.3, the group III* (, S’K(p)’K/) is in the image of
the maps p! for all p € P. Since H'(k,1x, /1(Tr, /x;)) — pg;PHl(k,IKi (T, k) 18

an isomorphism, we see that
eI (b, Skxr) — © T (k, Sk p).x)
pEP
is surjective. This completes the proof of the proposition.

Note that the proposition, together with Lemma 3.1, implies that IIT(K, K') does
not depend on the decomposition of L as L = K x K’. We will also use the notation
(L) = (K, K'), where L = K x K’ is any decomposition of L with K/k a cyclic
extension.

In summary, we proved

Corollary 5.17. We have III(L)* ~ HIl(k,TL/k).

Example 5.18. Let p and ¢ be two distinct odd prime numbers, with p > ¢. For all
positive integers n, let (,, be a primitive nth root of unity. Let £k = Q, and

L= Q(CPQ) X Q(Cpq) X Q(<q2)

Since Q((p2) and Q(¢,2) are both cyclic, we can determine ITI(L) in two ways; this shows
that the order of III(L) divides p — 1, and that

H—I(L) = H—[(Q(Cp) X Q(Cpq) x Q(CqQ))~

But since Q((,) is a subfield of Q((pq), we have IIT(Q((p) X Q((pg) X Q((y2)) = II(Q((p) X
Q(¢y2))- Note that by Proposition 4.1 we have III(Q((p) X Q((42)) = 0, hence we have

[II(L) = 0.
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6. The Brauer-Manin map

We keep the notation of the previous section: in particular, L = K x K’', where K is
a cyclic extension of k of degree d, K’ is an étale k-algebra, and E = K @ K'. We write
K' =[],z Ki, where the K; /k are field extensions, and £ = [[,.; E;, with E; = KQ K.
The group III(L) = II(K, K') is defined in the previous section.

Let ¢ € k™ and recall that X, is the affine k-variety defined by the equation

Npyi(t) =c.

Assume that X.(k,) # 0 for all v € Q. In the following, we define a homomorphism
a.: (L) — Q/Z such that X (k) # 0 if and only if o, = 0; the map «a, will be called
the Brauer-Manin map associated to c¢. We choose this terminology, because this map is
an analog of the map given by the Brauer-Manin pairing on X..

6.1. Local points

We start with some preliminary results. We are assuming that [[X.(k,) # 0; as we
will see, this set contains elements satisfying certain finiteness conditions. More precisely,
we introduce the notion of local points - these can be thought of as adelic points of X..

We first recall the notion of cyclic algebra. Let us choose a generator g of the cyclic
group Gal(K/k), and let ¢ : T'y, — Z/dZ be given by the composition of the isomorphism
Gal(K/k) — Z/dZ sending g to 1 with the surjection I'y, — Gal(K/k). Let us consider
the exact sequence 0 — 7247 — Z/dZ — 0, and let § : H'(k,Z/dZ) — H?(k,Z) be
the connecting homomorphism of the associated cohomology exact sequence. If ¢ € kX,
let us denote by (c) the corresponding element of H°(k,G,,). The cup product &(¢).(c)
is an element of H2(k,G,,), and via the identification H?(k,G,,) ~ Br(k) it is mapped
to the class of the cyclic algebra defined by K and ¢ (see for instance [6], Proposition
4.7.3). We denote this cyclic algebra by (K, c).

The first observation is the following:

Lemma 6.1. Suppose that E; is isomorphic to a product of copies of a field M;, and set
[M; : K;] = d;. Then for any x € K, the order of the cyclic algebra (K, Nk, ,(z))
divides d;. In particular, if d; = 1, then for any x € K], the algebra (K, Nk, k()
splits.

Proof. Given z € K/, consider the class of the cyclic algebra (M;,z) = §(¢|x,)-(z),
where @|k, : I'x, — Z/dZ is the restriction of ¢ to I'k,. Let r be the order of (M;,x)
in Br(Kj;). Since M; is of degree d; over K;, we have r|d;. By the projection formula
([6] Prop. 3.4.10), the corestriction of (M;,x) is (K, Nk, i(x)). Therefore the order of
(K, Ng,i(z)) divides d;.
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Let © = (z) € ][] Xc(kv), and let us write z¥ = (z§,2Y,...,2%,), with z§ € K"
VEQ
and z¥ € K? for i € Z. Let us consider the invariant map inv : Br(k,) — Q/Z and set

by (x) = by (x}) = inv(K", Ngv i, (27)) € d%_Z/Z C Q/Z. Note that if d; is odd, then
bY(z) = 0 for all infinite places v € Q.

We say that x = (z¥) € [ Xc(kv) is a local point of X, if for each i € Z, we have
vEQ
b?(x) = 0 for almost all v € Q. The following lemma implies the existence of local points

whenever [ X.(k,) # 0.
vEQ

Lemma 6.2. Assume that []| Xc(ky,) # 0. Then there exists
vEQ

x=(x}) € H Xe(ky)

vEQ

such that b} (z) = 0 for almost all v € Q, and for all i € T.

Proof. For each v € € such that (K, c¢)¥ is split, there exists zf € K" such that
Nk, (xg) = ¢. Then x = (z§,1,...,1) is a k,-point of X., and b} (z) = 0 for all i € Z.
Since (K, ¢)? is split for almost all places v € Q, the lemma follows.

We now prove some properties of local points which will be used later. The next
lemma is an analog of the classical reciprocity formula that appears in the classical
Brauer-Manin obstruction.

Lemma 6.3. Let © = (2¥) € [] X.(kv) be a local point of X.. Then we have

K2

vEQ
> S -
vEQRIEL
Proof. Let us write 2¥ = (z§,2},...,2%,), with 2§ € KV and z} € K? for i € Z. For all
i €Z,set yi = Npvyp, (27). Set y§ = Ngv i, (73), and note that yg []y; = c¢. We have

i€l

be(m) = Zinv(K”,yf) = inv(K", Hyf) =inv(K", ¢/yy) = inv(K"?, c).

i€l i€l €L

Since ¢ € k*, the Brauer-Hasse-Noether Theorem implies that > inv(K?,¢) = 0. Hence
vEQ
we have Y. > bY(z) =0, as claimed.
vEQIET

Lemma 6.4. Let x = (z¥) be a local point of X., and set by = bY(x) = inv(K",

(2

Nk, (27)). For alli € T, let &} € K and set
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by = inv(K", Nkv /g, (&7))-

Suppose that for all i € T we have Z;f =0 for almost all v € Q, and that > bY = Zl;f

i€z i€T
for all v € Q. Then for all v € Qu, there exists Ty € KV such that T = (Z}) is a local
point of X..

Proof. Let 7 = Ngv /i, (27) and y; = Ngv g, (7). Since Y b7 = S°bY, the algebras
i€ i€T
(K", [1v?) and (K", [[9?) are isomorphic, hence there exists some z € K? such that
i€z i€
(ITw")(TT199)~ = Nk, (2). Therefore (232,27, ..., 2Y,) is a ky-point of X.
i€ i€z

Lemma 6.5. Let x = (z}) be a local point of X., and set by = bY(x) = inv(K",

Nk, (x7)). Suppose that for all i € I, we have 3 by =0. Then X. has a k-point.
VEQ

Proof. By the Brauer-Hasse-Noether Theorem, for every ¢ € Z there exists a central

simple algebra A; over k such that inv(4;) = by for all v € Q. Set y;' = Ngv g, (27).

Since (K",y?) splits over KV for all v, the algebra A; also splits over K. Hence there

exists §; € k such that A; is Brauer equivalent to (K, §;) (see [6] Cor. 4.7.6). Since

(K, [19:)v ~ (KY, [1y?) ~ (K, c¢)y, the Brauer-Hasse-Noether Theorem implies that
i€l i€z

(K, [19:) ~ (K,c), and hence []#; = cNgi(w) for some w € K*. Moreover, we claim
i€ i€

that the element 7; belongs to the group Ny /,(K*)Ng,/,(K;). To see this, we note

that

(K’gi)v = (Kvy;)) = (K7 NK}’/kv(xf))

Hence we have §; € Ng/r(Jx )Nk, x(Ji) where J; is the idele group of K, for all i € Z,
and Jg is the idele group of K. By Proposition 4.1, we have §; = Ng /i (wi) Nk, /i.(2:)

for some w; € K* and z; € K;*. Therefore [[ 7 = [] Ni/k(wi)Ni, /i(2i) = ¢Ng i (w)
i€T i€T
and (w™! [Jwi, 21, ..., 2m) is a k-point of X.. This completes the proof of the lemma.
i€z

6.2. Brauer-Manin map - the prime power degree case

Now suppose that K is a cyclic extension of degree d = p®, where p is a prime. Let

x = (z¥) € J] Xc(ky) be a local point of X,. Let M; be a cyclic extension of K; such
vEQ
that the algebra F; is isomorphic to a product of copies of M;; then the degree of M;

is p® for some 0 < e; < e. Without loss of generality, we assume that (eq,...,e,) is a
decreasing sequence. Let us define

a.: (K, K') = Q/Z
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by ac(a1,....;am) = > > abY(x), where (ai,...,am) € G C & Z/p*Z. Note that

vEQIET i€T
by Lemma 6.1, we have bY(z) € piiZ/Z. Hence a;bY(x) is well-defined. Moreover,
by Lemma 6.3, the map «, vanishes on the subgroup D of G; hence, the map «, :
(K, K') —» Q/Z is well-defined.

Note that the map «. is an analogue of the map given by the Brauer-Manin pairing.

In the following we show that «, has a classical property of the Brauer-Manin pairing.

Proposition 6.6. The map «, : (K, K') — Q/Z is independent of the choice of the
local point x = (x7).
Proof. We use the notation of section 5.1. Let a € G and I(a) = (Io,...., Lper—1). If
a € D, then by Lemma 6.3, we have a.(a) = 0. In the following, we assume that a ¢ D.
By the definition of G, we have Q(Iy)U...UQ(Iper 1) = Q. Given a place v € y, there
exists n(v) € Z/p“Z such that v € Q(I,,)). Set d; = d(n(v),a;) and let K} = [] K},
w|v
where K’ are field extensions of k,. Then for all i ¢ I,,(,), the algebra £} is isomorp‘hic to
a products of field extensions of K of degree at most p%. Set bY = b?(x); by Lemma 6.1,
we have b} € ﬁZ/Z. By the definition of ¢;, we have m, s,(a;) = 7¢, 5, (n(v)). Hence
for i ¢ I,(,), we have

a‘lb;} = Te;,6; (ai)b;) = Tey,6; (n(v))b;} = n(v)b;}
Hence for all v € i, we have

S b =n(0)3 b = n(v)inv(K, o).,

i€ i€l

which is again independent of the x}’s. Therefore, the map . is independent of the
choice of the local point, and the proposition is proved.

The map a, : III(K, K') — Q/Z will be called the Brauer-Manin map for X..

Let Ky be the unique subfield of K such that [Kp : k] = p°~!, and set Lo = Ko x K.
If ¢ € kX, let X2 be the affine k-variety determined by Np,/k(t) = c. There is a natural
map p: X, — X2 defined as p(zq, ..., Trm) = (N /Ko (20), T15 oy T

If X2(k,) # 0 for all v € Qy, we denote by a2 : III(Ky, K') — Q/Z the corresponding
Brauer-Manin map.

If t; € K7, set

by (K, t;) = inv(K", Nk i, (ti)), and b} (Ko, t;) = inv(Kg, Ngo i, (i)

Recall that a local point of X, is z = (z¥) € [] X.(k,) such that for each i € Z, we
VEQ
have by (K, z?) = 0 for almost all v € Q.

The following lemma is an analogue of the functoriality of the Brauer-Manin pairing.
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Lemma 6.7. Assume that X.(k,) # 0 for all v € Q. Then we have

(i) XO(k,) # 0 for all v € Q.

(i) .o F =al.

Proof. If 2 € X.(k,), then Ny, s (2”) € X2(k,). This proves (i). Let us check (ii). Let
x = (z7) be a local point of X.. Note that bY (Ko, z}) = pby (K, xY). Let a € (Ko, K').
Then we have

)= D by (K zf)) = D Y aib} (Ko, at) = af(a).

vEQRIEL VEQRIET

This completes the proof of the lemma.
6.3. Brauer-Manin map - the general case

Recall that K/k is a cyclic extension of degree d, and that L = K x K', where K’
is an étale k-algebra. We keep the notation of 5.3, in particular, P is the set of prime
divisors of d. For all p € P, we denote by K(p) the largest subfield of K of degree a
power of p, and we set L(p) = K(p) x K’. For all ¢ € k* and p € P, we let X.(p) be the
T, (p)/k-torsor defined by

Niry k(@) =c

Let © = (z¥) € [] Xc(ky) be a local point of X., and let us write x = (z§,2'”) with
VEQ
zy € KV and 2’ € K'". Then (Ngv /g (pye (24), 2’ ) is a local point of X.(p).
Let a(p) be the Brauer-Manin map of X.(p), as defined above. By Proposition 6.6
the map «(p) is independent of the choice of the local point. Recall that (K, K') =

@ (K (p), K'), and let us define o, : II(K, K') - Q/Z by a. = & a.(p). Hence a,
peEP pEP

is also independent of the choice of the local point. We call «, the Brauer-Manin map
for X,.

7. Necessary and sufficient condition

We keep the notation of the previous sections. The main theorem is the following:

Theorem 7.1. The affine k-variety X. has a k-point if and only if X. has a k,-point at
each place v € Q and a. is the zero map.

7.1. The prime power degree case

We suppose that K is cyclic of degree p©, where p is a prime number and e > 1. The
proof of Theorem 7.1 uses induction on e.
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The proof can be divided into three parts. Recall that p : X, — X2 is the map given by
(o, 21, s Tm) = (Nk/K (20), T1, -+, Tm). (See §6.2.) Suppose that X, has a k,-point
for all v € Q) and that X? has a k-point 2 = (g, ..., 2m). In the first part we use the

point z to get a system of local solutions (Z¥) of X, such that »_ bY(K,zY) € %Z/Z.
VEQ
(See Lemma 7.3-Lemma 7.5.)

In Lemma 7.6-Lemma 7.9, we show that one can further modify (Z¥) so that

> bY(K,ZY) = 0. In the end we conclude our main theorem by induction on e and
VEQ,
Lemma 6.5.

We would like to mention that an alternative way to prove the theorem is to find the
generators of the unramified Brauer group of X, and show that the Brauer-Manin map
defined here is the evaluation on the unramified Brauer group. However, here we choose
to prove the theorem in a more elementary way and keep the unramified Brauer group
for our future work.

We start with some preliminary results.

Recall that F; = K ® K;.

Lemma 7.2. Suppose that K is a cyclic extension of degree p¢, where p is a prime and e >
1. Letv € Qp, and i € T be such that E is not isomorphic to a product of copies of K .
Then for all b € %Z/Z C Q/Z, there exists x € K} such that inv(K", Ngv i, (z)) = b.

Proof. Suppose that KV is isomorphic to a product of copies of a field extension M of

k,, and set [M : k,] = pf. Since by hypothesis EY is not isomorphic to a product of

copies of K, we have f > 1. Assume that K ~ [] M; ;, where M, ; is a field extension
jcJ

of k, for all j € J. a

It suffices to prove that %Z/Z C inv(M, Ny, ;/k, (M) for some j € J; hence we
may assume that K" is a field extension of k, of degree p® with e > 1, and that K is a
field.

Let Br(K"/k,) be the subgroup of the Brauer group of k, split by K?; this group is
isomorphic to Z/p°Z ~ kS /N((K")*). (See [6] Cor. 4.4.10 and [2] Chap. VI §1.1 Thm. 3
Cor. 2.)

For all ¢ € Z, let M; be a field such that EY = K ®; K is a product of
copies of M;, and set [M; : KP] = p®; the hypothesis implies that e¢? > 1. The
corestriction map Br(K?) — Br(k,) is an injection and restricts to an injection of
Br(M;/K}) into Br(K"/k,), the image being the unique subgroup of order p® of the
cyclic group of order p°. By the projection formula ([6] Prop. 3.4.10), the image con-
sists of cyclic algebras of the type (K", Ngv /i, (2)) with z an element of K. Hence
LZJT C ﬁZ/Z = inv(K", Ny, (K7)*). This completes the proof of the lemma.

Let Ko be the unique subfield of K such that [Ky : k] = p¢~!.
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Recall that we have K’ = [[ K;, that E; = K ® K;, and that E; is the product of
i€T
copies of a cyclic extension of degree p¢ of K;. Set EY = Ky ® K;. Then E? also splits
as a product of copies of a cyclic extension of K;; let us denote by pf the degree of this
extension. Recall that for all ¢ € Z, we have f; < e;. If moreover e; # 0, then e; = f; + 1
(cf. Lemma 5.5). For all i € Z, the map F; : Z/piZ — Z/p*Z is the inclusion of the
unique subgroup of order pfi in the group Z/p®Z, and we set F' = @ F;.
=
The map F : & Z/p'Z — @& Z/p*Z induces a homomorphism F : II1(Ky, K') —
i€l €L

III(K, K'). Recall that the cokernel of F is isomorphic to the group HII(K /Ky, K'),
defined in section 5

For all i € Z, set r; = min{1,e;}. For all c € @ Z/p"Z and n € Z/pZ, set I}(c) =

=

{ieZ |n=c} IfIc)#Z, set QIL(c)) = 'gzIQ( )Ei; if I"(c) = Z, set Q(IL(c)) = Q.
Set !

G(K/Ko, K') = {ce ,@IZ/P”Z U (o) =,
€ neZ/pZ

let D(K /Ky, K') be the diagonal subgroup of G(K/Ky, K'), and recall that
II(K/Ko, K') = G(K/Ko, K')/ D(K/ Ko, K').

Recall that the projection 7 : 69 Z/p%7 — @ Z/p"iZ induces a homomorphism
F:1(K,K') - II(K/Ky, K') (cf Lemma 9).
If ti S K;U, set b;}(K, tz) = inV(Kv,NK;U/kU( i))7 and b;}(Ko,tl) = inV(Kg7NK1v/kU (tl))

Recall that a local point of X, is z = (z¥) € [] X.(ky) such that for each i € Z, we
VEQ
have bY (K, x?) = 0 for almost all v € Q.

Lemma 7.3. Let x = (zV) be a local point of X, and let z = (2;) be a global point of X?.
Then for all v € Qy, we have

p Y B(K.a})=p Y b(K, z)
i€T i€z
Proof. Since x is a local point of X, we have Zb;’(IQ x¥) = inv(K", c) for all v € Q.
Similarly, we have be(Ko,zi) = inv(K{,c) fo)i all v € Q. Note that inv(K{,c) =
p inv(K"Y, ¢), and inife(IKg, z;) = p inv(K", z;) for all i € Z. Hence we have

P be(K, x7) =p inv(K", ¢) = inv(Kg,c) Zb (Ko, 2z) =p be(K Z;)

1€l i€l i€l

as claimed.
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Lemma 7.4. Let x = (x?) be a local point of X., and assume that X2(k) # (). Then there
exist T € K such that

(i) For each i € I, we have by (K,z}) =0 for almost all v € Q.

(ii) For alli € I, we have Y bY(K,Z}) € %Z/Z,
vEQ
(iif) For allv € Q, we have

D BV(K, ap) =) by, &),

i€T i€l

Proof. Let z = (2;) be a global point of X?. Set b? = b¥(K,z?) and h? = b¥(K, 2;).
By Lemma 7.3, we have p> bY = p> hY. Since by = 0 and hY = 0 for almost all

= i€Z

v € Qy, for almost places v € Qj we have > hY = > bY. Suppose that there is v €
i€T i€z
such that Y hY # > bY. If v € NX,, then by = hY = 0 for all ¢ € Z, which is a
i€ i€z €1
contradiction. Hence there exists ¢ € Z such that v ¢ 3;. Since p%b}’ = p%h}? inQ/Z,
j J
we know that ZIb;’ - Zzh}’ € %Z/Z. By Lemma 7.2, there exists ¢ € K such that
JjE JE
V(K Nio i (3)) = BY — 32 (0 — bY).
JE€T

Set hY = inv(K", Ngox, (2))); for all j # 4, let 3% = 25, hY = hY = bY(K, z;). Then
we have ) hY = > b?; this proves (iii).
J€T J€T
Since hY = h? for almost all v € €y, (i) holds. As z = (2;) is a global point of X9, we
have ZQ bY (Ko, 2;) = 0, hence ZQ hY € %Z/Z; moreover, h? — hY € %Z/Z forallieZ
velly velly

and all v € Q. Therefore we have Y. hY € %Z/Z, and this proves (ii).
VEQ

Lemma 7.5. Assume that X.(k,) # 0 for all v € Q, and that XO(k) # (. Then there
exists a local point & = (Z¥) of X, such that for all i € T, we have

1
> (K, &) € ~Z/L.
vEQ p

Proof. Let z = (z¥) be a local point of X.. By Lemma 7.4, there exist ¥ € K? such
that b (K, zY) = 0 for almost all v € Qy, that > bY(K,z¥) = > bY(K,ZY), and that for
€T i€z
all i € Z, we have > bY(K,ZY) € %Z/Z. By Lemma 6.4, for all v € Q, there exists
vEQ
Zy € (K")* such that (Z§,&Y,...,2%,) € X.(ky). This completes the proof of the lemma.

Recall that if X.(k,) # 0 for all v € Qf, and that for all ¢ € kX, we have a ho-
momorphism «, : III(K, K') — Q/Z. We now show that «. induces a homomorphism
@, : I(K/Ky, K') — Q/Z such that @, o7 = a.
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Lemma 7.6. Assume that X.(k,) # 0 for all v € Qx and that X2(k) # 0. Then there
exists a homomorphism @, : UI(K/Ky, K') = Q/Z such that a.om = .

Proof. Let x = (x}) be a local point of X,, and set by = inv(K", Ngv, (2})) for all

it€Zandallv € Q. Let a = (ay, ...,an) € G. Then by Lemma 5.9 w(a) = (@1, ...,am) €

G(K/Ko,K') C @ Z/pZ. Note that r; = min{l,e;} by definition. If ¢; = 0, then
i€

e; =r; =0 and a; = a; = 0. If not, then r; = 1 and @; = a (mod p). By Lemma 7.5, we

may assume that > bY € %Z/Z for all i € Z; hence a;( > bY) = a;( > bY). We then
vEQ vEQ, vEQ
have

A1,y am) = Y ai( Y b)) = a@( »_ bY).

i€L vEQ €T vEQ

Hence a, induces a homomorphism @, : III(K/Ky, K') — Q/Z, as claimed.

Lemma 7.7. Let © = (z7) be a local point of X, and set by = by (K, z?). Assume that a, =

0, and that X2(k) # 0. Let (o, ..., I,—1) € G(K/Ky, K'). Then we have >, > bY =0
i€l, vEQ
for alln € Z/pZ.

Proof. Let n € Z/pZ. The statement is trivial if I,, is empty, and it follows from
Lemma 6.3 if I, = Z’. Assume that I,, is not empty, and I, # Z'. Let n’ € Z/pZ
such that n’ # n, and set J, = I, Jo = ;J I., and J, = 0 if » # n,n’. Then by

Lemma 5.15, we have (Jo,...,J,—1) € G(K/Ky, K'). Since X2(k) # 0, by Lemma 7.6
there exists a homomorphism @, : II(K/Ky, K') — Q/Z such that a@.o7m = .. By
hypothesis «. is the zero map, hence we have @, = 0. Therefore we have

DD =0 Y mbi+ Y Y w'by =0

r€Z/pZ i€J, vEQ i€Jn, vEQy i€, vEQy

By Lemma 6.3 we have >, > b7 =0, hence (n—n') >, > b7 = 0. Recall that n’ #n
€T veQy i€, vEQ,
by hypothesis, therefore we have > > d¥ = 0; since J,, = I,,, we have > > b¥ =0,
1€JpveEQ i€l, vEQy
as claimed.

Lemma 7.8. Let x = (V) be a local point of X.. Assume that a. = 0, and that X0(k) # 0.
Let (Iy,...,Ip—1) € G(K/Ky, K'), and let n € Z/pZ. Then there exists a local point

T =(ZY) of X, such that ¥ = x¥ if i ¢ I,, and that >, bY(K,Z) =0 for alli € I,,.
vEQ

Proof. We prove this by induction on the cardinality of I,,. If |I,,|] = 0 then the claim

is trivial; if |I,| = 1, then it follows from Lemma 7.7, since we have ) b¥(x) = 0
vEQN

for all ¢ € I,. Suppose that the claim is true for |I,,| < h. For |I,,| = h, suppose
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that there are nonempty disjoint subsets I9 and I} of I, satisfying I° U I} = I, and
(‘ﬁIOZi) U (‘ﬁpZi) = . Then consider the element (Jy,...Jp—1) where J, = I, if
(ST =4 el

r#n,n+1, J, =1I% and J,41 = I} U L,41. Note that Q(I,.) = Q(J,) if r # n,n + 1
and that Q(I,4+1) C Q(Jp41). Let us prove that (Jy,...Jp—1) represents an element of
II(K, K'); for this, we have to check that Q(Jo)U- - -UQ(Jp_1) = Q. Since Q(I,) C Q(J,)
if r #nand Qo) U---UQ,—1) = Q, it suffices to check that if v € (I,), then
veEQJ)U---UQ(Jpq). Ifv € ieﬂllEi, then we have v € Q(J,). Otherwise, we have

n

v € N 3;because ( N T)U( N %;) = Q. Hencewehavev e ( N Z)N( N %;) =
eI €9 I i S Y

9 &1, Ul )
Q(Jp+1). Therefore (Jy,...Jp—1) represents an element of M(K,i(’). S+ince |Jn] < h, we
can apply the induction hypothesis, and hence there exists a local point & = (Z}) such
that 3¢ = a¥ if i ¢ J, = I}, and that > b%(K,%) = 0 for all i € J,, = I}. The same

vEQ
argument with 10 instead of I} gives the desired result.
Assume now that I, does not have any non-trivial subpartitions, in other words,
that there are no nonempty disjoint subsets IO and I! of I, satisfying I U I} = I,

and ( F}OEi) u( F} %) = Q. Let us consider the graph with vertex set I,,, and edge
€Il iel}

set £ = {(4,7)|X; UX; # Qp}; since I, has no non-trivial subpartitions, this graph is
connected. Set bY = b(K,xY)?, and for all ¢ € I,, set d; = > bY. Let us fix an ordering
vEQ
of I, say I, = {io,...,%:}. Since the graph is connected, tGhekre exists a loop-free path
between g and i;. Along this path, for any two adjacent vertices 4, j, there exists v € Q
such that v ¢ ¥; UX;. By Lemma 7.5 we may assume that b} € %Z/Z for all ¢ € I,.
Applying Lemma 7.2, by modifying x7 and z§ we can modify by to b — d;, and b to
bi + d;,. Note that this modification does not change E:Ibf Therefore by Lemma 6.4,
after changing also zf if necessary, the modified (z}) ilsestill a local point of X.. After
these modifications, we have > b = 0, > bf = d;, + d;,, and all the other d;’s
vEQ vEQ

remain unchanged. We repeat this process along a loop-free path from i; to iz, and we

modify each adjacent pair along the path from ¢; to is by d;, + d;, and so on. At the
t—1

end, we modify each adjacent pair along the path from i;—1 to i; by >.d; . After this
=0

T

t—1
process, we have » b =0 for r =0,...,t —1and ) b} =d; + »_d; . However,
VEQ VEQ, r=0

¢

by Lemma 7.7, we know that ) d; = 0; hence, we have } by = 0. Moreover, only
r=0 vEQL

finitely many b}’s are modified, so b] = 0 for almost all v; the lemma then follows.

Proposition 7.9. Let x = (2¥) be a local point of X.. Assume that o = 0, and that
X0(k) # 0. Then there exists a local point ¥ = (&?) of X. such that for all i € I, we
have

> bi(K, i) =0.

vEQ,
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Proof. This follows from Lemma 7.8.

Proof of Theorem 7.1 for K of prime power degree. It is clear that if X, has a k-point,
then X. has a k,-point for all v € Qf and a. = 0. Conversely, suppose that X, has a
k,-point for all v € Q and that a. = 0. Let us show that the variety X, has a k-point.
We show our claim by induction on the exponent e. Suppose that e = 1. Then Ky = k,
and X?(k) # (0. By Proposition 7.9, there exists a local point 2 = (z¢) of X, such that

7

for all i € Z, we have > b;(z¥) = 0. Lemma 6.5 implies that X.(k) # 0. Assume now
veEQ

that e > 1. Since X, has a k,-point for all v € Q, the variety Xg also has a k,-point for
all v € Q. As a. is the zero map, by Lemma 6.7 the Brauer-Manin map of for X? is also
the zero map. Therefore X? has a k-point by induction hypothesis. By Proposition 7.9,

there exists a local point © = (z¥) of X, such that for all i € Z, we have > b;(z?) = 0.
vEQ,
Lemma 6.5 implies that X.(k) # 0.

7.2. The general case

Recall that K /k is a cyclic extension of degree d, and that L = K x K’, where K’ is
an arbitrary étale k-algebra. We keep the notation of 5.3, in particular, P is the set of
prime divisors of d. For all p € P, we denote by K (p) the largest subfield of K of order a
power of p, and L(p) = K(p) x K'. For all ¢ € k* and p € P, the affine k-variety defined
by

Niw)/rp) (@) =c,

is denoted by X.(p). Recall that there is a natural map from X. to X.(p) (§6.3).
We denote by a.(p) be the Brauer-Manin map of X.(p). Recall that II(K, K') =
® (K (p), K'), and that o, : HI(K,K') — Q/Z is given by a. = @& a.(p).

PEP peP

Lemma 7.10. Let ¢ € k*. Then X, has a k-point if and only if X.(p) has a k-point for
allpeP.

Proof. Let z € X (k) be a k-point of X, and let us write z = (z,y) with € K and
y € K'. Then (N k@) (x),y) is a k-point of X.(p) for all p € P. Conversely, suppose
that for all p € P, the k-variety X.(p) has a k-point (xp,y,) € K(p) x K’. For all p € P,
set

p = H [K(q) : K],

qEP ,q#p

and let s, € Z such that > r,s, =1.Set x = [[ 2", and y = [ """ Then (z,y) is
pEP pEP pEP
a k-point of X..
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Remark 7.11. The above lemma is compatible with base change to any field extension [
of k.

Proof of Theorem 7.1. Suppose that X, has a k-point. Then by Lemma 7.10, X.(p) has
a k-point for all p € P. This implies that a.(p) = 0 for all p € P, and hence a, = 0.
Conversely, suppose that X, has a k,-point for all v € j, and that o = 0. Then X.(p)
has a k,-point for all v € Q. Since a. = 0, we have a.(p) = 0 for all p € P. But K(p)
is a cyclic extension of prime power degree, hence this implies that X.(p) has a k-point
for all p € P. Therefore X, has a k-point by Lemma 7.10.

Corollary 7.12. Let I, be the idéle group of L. Then sending ¢ € k* to a. gives rise to
an isomorphism

(k* N Npje(I1))/Now(L*) — TI(L)".

Proof. It is clear from the definition of a, that sending ¢ € k* to a. is a homomorphism;
Theorem 7.1 implies that this homomorphism is injective. That it is an isomorphism
follows from the fact that IIT(L)* ~ LHl(k,TL/k) (see Corollary 5.17).

Metacyclic extensions

In the following we apply the main theorem to the case where K is a metacyclic
extension of k (recall that a metacyclic extension is a Galois extension such that all the
Sylow subgroups of its Galois group are cyclic). As before, let X, be the k-variety defined
by the equation (0.1). Assume that K/k is a metacyclic extension of degree ¢ = [] pjj,

j=1
where p;’s are distinct primes. Let q; = p?j and r; = ¢/q;. For 1 < j < s, let G; be a
p;-Sylow subgroup of Gal(K/k) and let F; be the subfield of K fixed by G;. Note that
[Fj : k] = rj. Let X7 be X.®y, F;. Then the injection k — F; induces a natural injection
of X.(k) to X.(F;) = XI(F}).

Suppose that X, has a k,-point for all v € Q. Then XJ has a F} ,-point for all
w € ;. Since F} is a cyclic extension of k, we can define the Brauer-Manin map «; for
X7. The necessary and sufficient condition for the Hasse principle for X, to hold is the
following;:

Proposition 7.13. Assume that K is a metacyclic extension. Then X, has a k-point if
and only if X. has a ky-point for allv € Qj and aj =0 for 1 < j < s.

Proof. Assume that X, has a k,-point for all v € , and that o; =0 for 1 < j < s.

Then the variety X7 has a Fj,-point for all w € QF,. Since a; = 0 for all 1 < j <5,

by Theorem 7.1 the variety X7 has a Fj-point. Let (z;;) be a Fj-point of XJ, where
S S

c)
x5 € (Fj @, K;)*. Let by € Z such that Y bjr; =1, and set z; = [[ Np, ok, /k, (25,6)%;
j=1 j=1
then (z;) is a point of X.. The other direction is trivial.
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8. Products of cyclic extensions

In this section, we suppose that L is a product of cyclic extensions, and we denote by
II1(L) the obstruction group. In the following, we give a simple criterion for the vanishing
of III(L); in other words, an easy way to decide whether the Hasse principle holds for L.

Assume that L = [] K;, where K;/k is a cyclic extension of degree d;. Let P be the

icJ
set of prime numbers dividing [] d;. For all p € P and all i € J, let K;(p) be the largest
icJ
subfield of K; such that [K;(p) : k] is a power of p, and set L(p) = [] K;(p).
icJ

For any cyclic field extension K/k of prime power degree, we denote by Kpyy, the
unique subfield of K of degree p over k. Set L(p)prim = [[ Ki(P)prim-
ieJ

The aim of this section is to prove the following two results:
Theorem 8.1.

]-H(L) =0 < ) HI(L(p)prim) =0,
pEP(L)

where P(L) is a set of prime numbers, subset of P.
The set P(L) is determined in Theorem 8.3, see below.
Theorem 8.2.
(L (p)prim) = (Z/pZ)" ™),
where my, (L) is a positive integer.

The value of m,(L) is given in Theorem 8.3.
We start with the proof of Theorem 8.2, which amounts to treating the case where L
is a product of cyclic extensions of prime degree.

Theorem 8.3. Let p be a prime number, and assume that L is a product of n non-
isomorphic cyclic extensions of degree p. Then we have

(a) If n <2, then III(L) = 0.
(b) If 3<n <p+1, then either (L) = 0, or UI(L) ~ (Z/pZ)"2.
(¢) If n > p—+ 2, then III(L) = 0.

Note that Theorem 8.3 implies immediately Theorem 8.2, and gives the value of the
integer m,(L). Note also that the case n = 1 is a special case Hasse’s cyclic norm theorem,
the case n = 2 follows from Hiirlimann’s result [9] Prop. 3.3, (see also Proposition 4.1),
and that the case n =3, p = 3 is a result of Colliot-Théleéne, cf. [3], Théoréme 4.1.
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In order to prove Theorem 8.3, we need to come back to the definition of III(L) =
II(K, K') in the case where K is cyclic of prime degree, and give a description of this
group in terms of partitions.

We keep the notation of 5.1, with e = 1. In particular, p is a prime number, and
L = K x K', where K is a cyclic extension of k of degree p. Recall that E; = K ® K,
and note that FE; is either a cyclic field extension of K; or a product of p copies of K;.
Let J be the subset of i € Z such that E;/K; is a field extension, and let r = |J|.

Recall that ¥; is the set of v € Q) such that E} is the product of p copies of K.
For all J' C J with J" #£ J, set Q(J') = igﬂp&, and let Q(J) = Q. By Lemma 5.12,

the group G(K, K') is in bijection with the set of partitions (Jo,...,Jp—1) of J such

that %J/ ZQ(Jn) = Q). We identify G(K, K') with the set of these partitions. Note
nes/p.

that under this identification, D(K, K') corresponds to the partitions where one of the
subsets is J, and all the others are empty; these will be called the trivial partitions of J.

Foralln € Z/pZ and alla € (Z/pZ)", set J,(a) = {i € J | a; = n}. Then Lemma 5.12
can be reformulated as follows:

Lemma 8.4. G(K, K') is in bijection with the set

{ac(Z/pz)" | U QJu(a)) = Q).
n€eZ/pZ
Proof of Theorem 8.3. Note first that (a) follows from Proposition 4.1. From now on,
we assume that n > 3. Theorem 8.3, as well as a precise condition for when III(L) = 0
in case (b), is a consequence of Proposition 8.5 below.

For any positive integer d, a finite separable extension F' of k is said to have local
degrees < d if for all places v € Q, the étale algebra F' ®j k, is a product of field
extensions of k, with degrees < d.

Proposition 8.5. Let p be a prime number, and assume that L is a product of distinct
field extensions of degree p of k, at least one of which is cyclic.

Then TI(L) # 0 <= the factors of L are distinct subfields of a field extension F/k
of degree p?, and all the local degrees of F are < p.

Moreover, if HI(L) # 0, and if L is a product of n distinct degree p field extensions
of k, then III(L) ~ (Z /pZ)"~2.

Proof. Let K be a cyclic factor of L, and let us write L = K x K', where K’ is a product
of field extensions of degree p of k. Suppose that IIT(L) # 0. Then there exists a partition
(Io, I1) of J such that Q(Ip) UQ(I1) = Q. Indeed, let (Jy,...,Jp—1) be a non-trivial

partition of J such that (J;) = Q. Without loss of generality, we can assume
T

U Q
€Z/pZ
that Jy is not empty. Set Iy = Jy, and let I} = ';Léjoji; then we have Q(Iy) = Q(Jp), and

Q(Jr) C QL) for all r # 0. Therefore Q(I) UQ(I1) = Qy, as claimed. Let K; and K be
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two distinct factors of K’, and let K;K; be the composite of K; and K. For all v € ¥,
we have

K @ (KiKj)" ~ K @ K @y (K:K5)",

and, since v € ¥;, this is isomorphic to the product of p copies of (K, K;)".

Leti € Ip and j € I1. As we have Q(1y)UQ(I) = Qy, the tensor product K ®y (K;K;)"
is isomorphic to the product of p copies of (K;K;)? for all v € Q. This implies that K
is a subfield of K;K ;. Recall that K is cyclic, and that K;, K; are not isomorphic; hence
we have K ® K; ~ KK; C K;K;. The degree of K;K; is at most p?, hence we have
KK; = K;K; = KKj, and K; ® K; ~ K;K; is of degree p? over k.

Let i € Iy, and set F = KK;; we just saw that F is independent of the choice of 14,
and that F' = K;K; for all j € I;. This shows that K; is a subfield of F' for all i € J.
Since (Ip, I1) represents a non-trivial element of III(L), for all v € €, there exists i € J
such that F'¥ ~ K ®; K} is isomorphic to a product of p copies of K. Therefore all the
local degrees of F are < p.

Conversely, let I be a separable extension of degree p? of k such that all the factors of L
are distinct subfields of F'. It suffices to prove that all non-trivial partitions (Jo, ..., Jp—1)
(J;) = Q. Suppose that this is not the case. Let (Jp, ..., Jp—1) be

U Q(J;).
reZ/pZ
Since v ¢ Q(Jp), there exists ¢ ¢ Jy such that iv ¢ ;. Let r € Z/pZ such that i € J,;
since v ¢ Q(J,), there exists j ¢ J, such that v ¢ X;.

Since the degree p extensions K, K; and K; are distinct subfields of F', we have
F~K®K, ~ K® Kj. Note that [K" : k,] = p, because v ¢ 3;. Let us write K
as a product of separable extensions of k,. If one of the factors M, of K is such that
1 < [Ms : k)] < p, then My and K" are linearly disjoint, and this contradicts the
assumption that all the local degrees of F' are < p. Hence K is either a degree p field

of J satisfy U Q
reZ/pZ
a non-trivial partition of J with ZU/ ZQ(Ji) # Q. Let v € O with v ¢
resl/p.

extension of k,, or a product of p copies of k,. However, if K7 and K" are both fields,
then EY is a field extension of degree p? of k,. Since FU ~ E?, this contradicts the
hypothesis that all the local degrees of F' are < p. Therefore K} is a product of p copies
of k,, and hence F¥ ~ E? is a product of p copies of K".

Set d = [K;K; : k]. Since v ¢ ¥;, the same argument shows that K7} is a product
of p copies of k,, hence (K;K;)" is a product of d copies of k,. Note that (K;K;)? is a
subalgebra of F, and that FV is a product of p copies of K"; hence we have d < p. As
K; and K are distinct subfields of K;K;, we have d = rp for some integer r > 1, and
this leads to a contradiction.

Hence for all non-trivial partitions (Jo,...,Jp—1) of J we have ZU/ ZQ(Ji) = Q.
re p
This shows that (K, K') = III(L) ~ (Z/pZ)"~2.
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Proof of Theorem 8.1. Assume now that L is a product of n cyclic extensions, L =
Ky x -+ x K, where K;/k is a cyclic extension of degree d;, and let J = {1,...,n}.
Note that II(L) = I(K;, K]) for any i € J, where L = K; x KJ. This will be used
repeatedly in the sequel.

Let P be the set of prime numbers dividing d; ...d,. For all p € P and all i € J,
let K;(p) be the largest subfield of K; such that [K;(p) : k] is a power of p, and set
L(p) = Ki(p) x -+ x Kn(p).

Proposition 8.6. We have

(L) = & HI(L(p)).
pEP(L)
Proof. This follows from Proposition 5.16, and from the fact that L is a product of cyclic
extensions.

Lemma 8.7. Let p be a prime number, and let K;/k, i € J, be cyclic extensions of degree
a power of p of k. For all i € J, let N;/k be a subextension of K;/k. Then (][ N;)

icJ
injects into II([] K5).
icJ

Proof. This follows from Proposition 5.7, and Remark 5.8 following this proposition.

Proof of Theorem 8.1. Assume that I[II(L) = 0. By Lemma 8.7 and Proposition 8.6, the
group III(Lpyim) injects into III(L), hence this implies that II(Lpyiy,) = 0. Conversely,
suppose that IIT( Ly, ) = 0. By Proposition 8.6, we may assume that L is a product of
extensions of degree a power of a prime p. Let us write L = K x K’, for some cyclic field
extension K/k; then Lpim = Kprim X K{)rim. Since II(Lpyim) = 0, by Proposition 5.14 we
have III(K, K!

prim) = 0. Permuting K with one of the other cyclic factors and repeating

the same procedure, we obtain III(L) = 0.

Example 8.8. Let p be a prime number, and let F'/k be an extension with Galois group
Cp x Cp, where Cp, denotes the cyclic group of order p. Let K1,..., K,11 be the distinct
subfields of degree p of F. Set L = Ky x -+ x Kj,11. Then by Proposition 8.5, we have
HI(L) = 0 or (L) = (Z/pZ)P~*. Moreover, we have

(L) =0 <= there exists v € , such that F* is a field.

o Assume first that there exists v € Q such that F is a field. Then III(L) = 0, hence
for all ¢ € k*, we have X (k) # 0. In other words, we have

NL/k(LX> == k/’x

in this case.
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¢ Assume now that all the local degrees of F are < p. Then by Proposition 8.5 we have
(L) = (Z/pZ)P~".

Let €2; be the set of v € £, such that K is split. Note that we have QU---UQp41 =
Q. This implies that X.(k,) # 0 for all v € Qj and for all ¢ € kx.

Set K = K,11. For all ¢ € k* and for all v € Q, let us denote by [K,c], € Z/pZ the
image of inv(K, ¢), by the isomorphism %Z/Z ~ pZ/Z. Then the map

f ok INpe(LX) = (Z/pZ)"™

given by

c— (Z[K, oy -y E K, cly),

Q Qp71

is an isomorphism.
When p = 2, we recover a well-known result of Serre and Tate, see [2], Exercise 5.2,
page 360; see also [3], Proposition 5.1.
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