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Third Galois cohomology group of function fields
of curves over number fields

Venapally Suresh

Let K be a number field or a p-adic field and F the function field of a curve over K. Let £ be a prime.
Suppose that K contains a primitive £-th root of unity. If £ =2 and K is a number field, then assume that
K is totally imaginary. In this article we show that every element in H>(F, uﬁu) is a symbol. This leads
to the finite generation of the Chow group of zero-cycles on a quadric fibration of a curve over a totally
imaginary number field.

1. Introduction

Let F be a field and £ a prime not equal to the characteristic of F. For n > 1, let H"(F, u?") be the
n-th Galois cohomology group with coefficients in Mf’". We have F*/F*¢ ~ H'(F, j1y). Fora € F*, let
(a) € H'(F, u,) denote the image of the class of a in F*/F*¢. Letay, ..., a, € F*. The cup product
(ay)---(ay) € H'(F, /L?” ) is called a symbol. A theorem of Voevodsky [2003] asserts that every element
in H"(F, /,LE@”) is a sum of symbols. Let @« € H"(F, ,u?”). The symbol length of « is defined as the
smallest m such that « is a sum of m symbols in H" (F, M?").

Let K be a p-adic field. Then it is well-known that every element in H>(K, u?z) is a symbol and
H"(K, M?”) =0 for all n > 3. Let F be the function of a curve over K. Suppose that K contains a
primitive £-th root of unity. If £ # p, then it was proved in [Suresh 2010] (see [Brussel and Tengan
2014]) that the symbol length of every element in H>(F, M%M) is at most 2. If p # £, then it was proved
in [Parimala and Suresh 2010] (see [Parimala and Suresh 2016]) that every element in H 3(F, uf’?’) is a
symbol. If £ = p, then it was proved in [Parimala and Suresh 2014] that for every central simple algebra
A over F, the index of A divides the square of the period of A. In particular if p = 2, then the symbol
length of every element in H?(F, u?z) is at most 2. Since u(F) = 8 [Heath-Brown 2010; Leep 2013]
(see [Parimala and Suresh 2014]), it follows that every element in H>(F, ,ugﬁ) is a symbol.

If F is the function field of a curve over a global field of positive characteristic p, £ # p and F contains
a primitive £-th root of unity, then it was proved in [Parimala and Suresh 2016] that every element in
H3(F, n$%) is a symbol.

Let K be a number field. A consequence of class field theory is that every element in H" (K, M?” )isa
symbol. A classical lemma of Tate states that given finitely many elements «1, ..., o, € H 2(K, ,uf?z), there

MSC2010: 11R58.
Keywords: Galois cohomology, functions fields, number fields, symbols.

701


http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2020.14-3
http://dx.doi.org/10.2140/ant.2020.14.701

702 Venapally Suresh

exista, b; € K* such that o; = (a)-(b;). Let F be the function field of a curve over K. Suresh [2004] proved
a higher dimensional version of this lemma over F: given finitely any elements «;, ..., o, € H 3(F, M?3)>
there exists f € F* such that o; = (f) - B; for some B; € H>(F, /LSZ’Z). In particular if there exists an
integer N such that the symbol length of every element in H>(F, u?z) is bounded by N, then the symbol
length of every element in H>(F, ,ugﬁ) is bounded by N. In [Lieblich et al. 2014], it was proved that such
an integer N exists under the hypothesis that a conjecture of Colliot-Théleéne on the Hasse principle for the
existence of O-cycles of degree 1 holds. However, unconditionally the existence of such N is still open.
In this paper we prove the following (see Corollary 7.8):

Theorem 1.1. Let K be a global field or a local field and F the function field of a curve over K. Let £
be a prime not equal to char(K). Suppose that K contains a primitive {-th root of unity and one of the
following holds:

(1) £ #£2.

(i) K is alocal field.
(iii) K is a totally imaginary number field.
Then every element in H3(F, /L%m) is a symbol.

The above theorem for K a p-adic field and £ # p is proved in [Parimala and Suresh 2010] (see
[Parimala and Suresh 2016]). Our method in this paper is uniform, it covers both global and local fields
at the same time and we do not exclude the case ¢ = p.

We have the following (see Corollary 8.3):

Corollary 1.2. Let K be a totally imaginary number field and F the function field of a curve over K. Let
q be a quadratic form over F and ) € F*. If the dimension of q is at least 5, then g ® (1, —1) is isotropic.

Let L be a field of characteristic not equal to 2 and u(L) be the u-invariant of L. By a theorem of Pfister
if u(L) < 2" for some n, then every element in H" (L, ,u?") is a symbol. Let K be a totally imaginary
number field. Then it is well-known that u(K) is 4. Let F be a function field over K of transcendence
degree n. It is a wide open question whether u(F) = 2"*2. The finiteness of u(F) is not known even for
n = 1. In the perspective of Pfister’s theorem, the conclusion from (iii) of Theorem 1.1 strengthens the
expectations that u(F) is 8 for function fields of curves over totally imaginary number fields

In a related direction Colliot-Thélene raised the question whether every element of H"+2(F, M?("H))
is a symbol if F is a function field of transcendence degree n over a totally imaginary number field. Our
main theorem gives an affirmative answer to this question for function fields of curves.

For a smooth integral variety X over a field k, let CHy(X) be the Chow group of 0-cycles modulo
rational equivalence. If £ is a number field and X a smooth projective geometrically integral curve, the
Mordell-Weil theorem implies that CHy(X) is finitely generated.

Let C be a smooth projective geometrically integral curve over a field k. Let X — C be an (admissible)
quadric fibration (see [Colliot-Thélene and Skorobogatov 1993]). Let CHy(X/C) be the kernel of the
natural homomorphism CHgy(X) — CHy(C). If char(k) # 2, Colliot-Théléne and Skorobogatov identified
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CHy(X/C) with a certain subquotient of k(C)* [Colliot-Thélene and Skorobogatov 1993]. From this
identification it follows that CHo(X/C) is a 2-torsion group. Thus CHy(X/C) is finitely generated if and
only if it is finite. Suppose that k is a number field. If dim(X) < 2, then the finiteness of CHo(X/C)
is a result of Gros [1987]. If dim(X) = 3, then it was proved in [Colliot-Théleéne and Skorobogatov
1993; Parimala and Suresh 1995] that CHy(X/C) is finite. Thus for dim(X) < 3, CHy(X) is finitely
generated. As a consequence of Corollary 1.2, we prove the following conjecture of Colliot-Thélene and
Skorobogatov (see Theorem 8.4).

Theorem 1.3. Let K be a totally imaginary number field, C a smooth projective geometrically integral
curve over K. Let X — C be an admissible quadric fibration. If dim(X) > 4, then CHy(X/C) = 0. In
particular CHy(X) is finitely generated.

Let K be a global field of positive characteristic p or a local field with the characteristic of the residue
field p. Let F be the function field of a curve over K and £ a prime not equal to p. Let us recall that the
main ingredient in the proof of the fact that every element in H>(F, u?ﬁ) is a symbol [Parimala and Suresh
2010], is a certain local-global principle for divisibility of an element of H3(F, ,uugm) by a symbol in
H?*(F, u$%) [Parimala and Suresh 2010; 2016]. In fact it was proved that for a given ¢ € H3(F, u%°) and
asymbolo € H 2(F, ,u?z) if for every discrete valuation v of F there exists f, € F* such that { —« - (f))
is unramified at v, then there exists f € F* such that ¢ =« - (f). In the proof of this local-global principle,
the existence of residue homomorphisms on H 2(F, ,u?z) and H3(F, u?3) is used. However note that if
K is a global field or a p-adic field with £ = p, then there is no “residue homomorphism” on H2(F, u$?%)
which can be used to describe the unramified Brauer group.

We now briefly explain the main ingredients of our result. Let K be a global field or a local field
and F the function field of a curve over K. Let £ be a prime not equal to characteristic of K. Suppose
that K contains a primitive £-th root of unity. Let v be a discrete valuation on F and « (v) the residue
field at v. Then Kato [1986, Section 1] defined a residue homomorphism H3(F, u$?) — (Br(x(v)). Let
¢ e H3(F, ufﬁ) and « = [a, b) € H*(F, ,u?z). First we show that if there is a regular proper model .2
of F such that the triple (¢, o, Z) satisfies certain assumptions, then there is a local global principle for
the divisibility of ¢ by « (see Theorem 6.5). One of the key assumptions is that a € F* has some “nice”
properties at closed points of 2~ which are on the support of the prime £ and in the ramification of ¢ or «
(see Assumptions 5.1 and 6.3). These assumptions on a enable us to work in spite of the absence of a
residue homomorphisms on H 2(F, u%z) for discrete valuations with residue fields of characteristic £ and
also enable us to blow up the given model so that there are no chilly loops (as defined by Saltman).

Let ¢ € H3(F, ufﬁ). First we choose a regular proper model 2" of F' where the ramification of ¢ and
the support of £ is a union of regular curves with normal crossings on 2". For each irreducible curve C
on 2" which is in the union of the ramification of ¢ and support of £, let 8¢ be the residue of ¢ at C.
Since the residue field « (C) at C is either a global field or a local field, B¢ is a cyclic algebra. Using
the class field theory and weak approximation, we write 8¢ = [ac, b¢) with some conditions on ac and
bc at finitely many closed points of the model. Then we lift these ac and b¢ to a, b € F* which satisfy
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some “nice” conditions and let « = [a, b). By the choice of a and b, « is unramified at all irreducible
curves in the support of £ and also unramified at some predetermined finitely many closed points of the
model. Suppose that £ # 2 or K is a local field or K is a global field without real places. Then we show
that there exists a sequence of blow-ups ¢ of 2" such that « = [a,b) € H 2(F, ;L?Z) and ¢ satisfies
the assumption of Section 6. Thus, by the local global principle for the divisibility, there exists f € F*
such that ¢ — o - (f) is unramified on 2". Then, using a result of Kato [1986], we arrive at the proof of
Theorem 7.7.

2. Preliminaries

Lemma 2.1 [Colliot-Thélene 1999, Proposition 4.1.2(i)]. Let K be a field with a discrete valuation v and
Kk the residue field at v. Let m be the maximal ideal of the valuation ring R at v. Suppose that char(K) =0
and char(k) = £ > 0. Suppose that K contains a primitive £-th root of unity p. Then £ = x(p — 1)*~! for

some unit x at v with x = —1 modulo m. In particular v(p — 1) = v(£)/(€ — 1).
Proof. The congruence x = —1 modulo m holds according to the proof of [Colliot-Thélene 1999,
Proposition 4.1.2(i)]. O

Lemma 2.2. Suppose R is a discrete valuation ring with field of fractions K and residue field k. Suppose
that char(K) =0, char(k) =€ > 0 and K contains a primitive £-th root of unity p. Let u € R and u € k the
image of u. If 1 —u(p — 1)* € R®, then X* — X + it has a root in k. The converse is true if R is complete.

Proof. Let m be the maximal ideal of R. Suppose that u € m. Then it = 0 and X* — X has a root in k.

Suppose that # € R is a unit. Suppose 1 —u(p — Df e RY. Letze Rwithz! =1—u(p—1)*eR.
Since p —1 € m, 1 —u(p — 1) is a unit in R and hence z is a unit in R with z* = 1 modulo m. Since
char(k) = ¢, z = 1 modulo m. Thus z = 1 +d for some d € m. Since z‘ = (1 +d)¢ =1 +€d +---+d°,
all the nontrivial binomial coefficients are divisible by £ and d € m, we have z* = 1 4 £dy + d* for some
unit y € R with y = 1 modulo m. Since z¢ =1 —u(p — 1), we have dy +d* = —u(p — 1)*.

We claim that v(d) = v(p — 1). Suppose that v(¢d) = v(d%). Then v(£) +v(d) = £v(d) and hence
v(d) = v()/(€ —1) = v(p — 1) (Lemma 2.1). Suppose that v(¢d) < v(d*). Then v(¢dy + d*) =
v(¢d) = v(€) + v(d). Since €dy + d* = —u(p — )¢, v(€) + v(d) = €v(p — 1) and hence v(d) =
vip—1)—v@)=v@)/€—-1)—vE) =v)/(€—1)=v(p—1). Suppose that v({dy) > v(d?). Then
v(p —1) =v(d*) = €v(d) and hence v(d) = v(p — 1).

Since v(d) = v(p — 1), we have d = w(p — 1) for some unit w € R. By Lemma 2.1, we have
¢=x(p — 1! with x = —1 modulo m. Thus

—u(p—1t= tdy +d = xyw(p — D4+ wl(o—1)*

and hence

—u=w +xyw.
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Since x = —1 modulo m and y = 1 modulo m, we have w’ — w + it = 0. In particular X* — X + i has a
root in «.

Suppose R is complete and X — X + i has a root in k. Since char(k) = £, X* — X + & has ¢ distinct
roots in . Since R is complete, X'~ X+uhasarootwin R. Letd = w(p — 1) € R. Then, as above,
we have (1 +d)* = 1+ £dy + d* for some y € R with y = 1 modulo mg. By Lemma 2.1, we have

14

2=x(p—1)*"! for some x € R with x = —1 modulo m . Since w* = w —u and d = w(p — 1), we have

A+d)f=14+tdy+d* =14+tw(p—Dy+w'(p—1"
=1+ewp—Dy+wp—D"—u@p—1)°
=1+xyw(p— D" +wlp -1 —u(p—1*
=l+w(p—D'xy+D—u(p—1"

Since xy+1=0 modulo m, we have (14+d)* =1—u(p—1)* modulo (p—1)¢m and hence 1 —u(p—1)* € R**
(see [Epp 1973, Section 0.3]). O

Let R be a regular domain with field of fractions K and let L/K be a finite separable extension. Let §
be the integral closure of R in L. We say that L/K is unramified at a prime ideal P of R, if Sp/PSp
is a separable algebra over the field Rp/P Rp, where Sp = S Qg Rp is the same as the integral closure
of the local ring Rp in L. We say that L/K is unramified on R if it is unramified at every prime ideal
of R. If L/K is unramified at a prime ideal P of R, the separable Rp/P Rp-algebra Sp/P Sp is called
the residue field of L at P. Note that Sp/P Sp is a product of separable field extensions of Rp/PRp. If
R is a regular local ring, then L/K is unramified at R if and only if the discriminant of L/K is a unit in
R (see [Milne 1980, Exercise 3.9, page 24]). Thus in particular, L/K is unramified on R if and only is
L/K is unramified at all height one prime ideals of R. If L is a product of fields L; with K C L;, then
we say that L/K is unramified on R if each L;/K is unramified on R.

We have the following (see [Epp 1973, Proposition 1.4]):

Proposition 2.3. Suppose R is a discrete valuation ring with field of fractions K and residue field k.
Suppose that char(K) = 0, char(x) = £ > 0 and K contains a primitive £-th root of unity p. Let u € R
and L = K[X]/(X¢ = (1 —u(p — 1)%)). Let S be the integral closure of R in L. Then L/K is unramified

on R and:

o If X* — X + i is irreducible in k[X], then S has a unique maximal ideal, it is generated by the
maximal ideal mg of R, and S/mgS ~ k[ X1/(X* — X + i), where it is the image of u in k.

o If X* — X + it is reducible in k[ X], then mgS$ is the product of £ distinct maximal ideals of S and
again S/mgS ~ k[X]/(X* = X + ).

Proof. Without loss of generality we assume that R is complete. If L is not a field, which happens if
and only if X* — X — i is reducible in k[ X] by Lemma 2.2, then the result is clearly true. So we further
assume that L is a field and X* — X — i is irreducible in «[X]. Then S is a complete discrete valuation
ring. Let mp be the maximal ideal of R and mg the maximal ideal of S. Since 1 — u(p — Dt e s¢, by
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Lemma 2.2, X¢ — X — i has a root in S/mg. Since [S/ms: k] <€, S/ms~k[X]/(X*—x + i) and
hence the ramification index of S over R is 1 and mg = mgS. It follows that L /K unramified on R. [J

Corollary 2.4. Suppose that A is a regular local ring of dimension two with field of fractions F, maximal
ideal m and residue field k. Suppose that char(F) =0, char(x) = £ > 0 and F contains a primitive £-th
root of unity p. Letu € A and L = F[X]/(X* — (1 —u(p — D*)). Suppose that L is a field. Let S be the
integral closure of A in L. Then L/F is unramified on A and S/mS ~ k[X1/(X* — X + i), where u is

the image of u in .

Proof. Since char(x) = ¢ and p® =1, 1 — p is in the maximal ideal of A and hence 1 —u(p — 1)’ is a
unit in A. Let P be a prime ideal of A of height one. Suppose char(A/P) # £. Since 1 —u(p —1)%is a
unit in A, L/F is unramified at P. If char(A/P) = ¢, then by Proposition 2.3, L/ F is unramified at P.
Thus L/ F is unramified on A.

Let m = (7, 6) be the maximal ideal of A. Since L/ F is unramified on A, S/m S is a regular semilocal
ring (see [Milne 1980, Proposition 3.17, page 27]). Suppose that char(A/(;r)) # £. Since 1 —u(p — Dt is
aunitatw, L/F is unramified at w and S® 4 A () /(1) = (A(ﬂ)/(n))[X]/(Xe —(1—ua(p—1"Y), where
denotes the image modulo (7). Hence by Proposition 2.3, S/(r, 8)S = k[X]/(X* — X + i1). Suppose
that char(A/(;r)) = €. Then, by Proposition 2.3, the field of fractions of S/ S is the field of fractions of
(A/(m)[X]/(X*— X + ). Since u is a unitin A/(), A/(m)[X]/(X* — X + i) is a regular local ring
and hence S/ S~ A/(m)[X1/(X* — X +it). Hence S/(x, 8)S = k[X]/ (X — X +i1). 0O

Let K be a field and ¢ a prime. Then every nontrivial element in H'(K, Z/¢) is represented by a pair
(L, o), where L/K is a cyclic field extension of degree £ and o a generator of Gal(L/K).

Suppose £ # char(K) and K contains a primitive £-th root of unity. Fix a primitive £-th root of unity
p € K. Let L/K be a cyclic extension of degree £. Then, by Kummer theory, we have L = K (/a) for
some a € K* and o € Gal(L/K) given by o (/a) = p-/a is a generator of Gal(L/K). Thus we have an
isomorphism K*/K* — H'(K, Z/€Z) given by sending the class of a in K*/K** to the pair (L, o),
where L = K[X]/(X%—a) and 0 (Ja) = pJ/a. Let a € K*. If the image of the class of a in H'(F, Z/£Z)
is (L, o) and i is coprime to ¢, then the image of a'is (L, o"). In particular (L, o) = (L,o") forall i
coprime to £.

Suppose char(K) = £ and L/K is a cyclic extension of degree £. Then, by Artin—Schreier theory,
L =K[X]/(X*— X +a) for some a € K. The element o € Gal(L/K) given by o (x) = x + 1, where
x € L is the image of X in L, is a generator of Gal(L/K). Let g : K — K be the Artin—Schreier map
o (b) = b® — b. We have an isomorphism K /o (K) — H'(K, Z/¢Z) given by sending the class of a to
the pair (L, o), where L = K[X]/(Xe — X +a) and o (x) = x 4+ 1. We note that if the image the class of
a is (L, o), then the image of the class of ia is (L, o) forall 1 <i<e—1.

In either case (char(K) # ¢ or char(K) = £), for a € K* (or K), the pair (L, o) is denoted by [a).
Sometimes, by abuse of notation, we also denote the cyclic extension L by [a).

Let R be aregular ring of dimension at most 2 with field of fractions K and £ a prime. If £ is not equal to
char(K), then assume that K contains a primitive £-th root of unity p. Suppose L = [a) is a cyclic extension
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of K of degree £. Let P be a prime ideal of R, k(P) = Rp/P Rp and Sp the integral closure of Rp in L.
Suppose char(x(P)) # £. Then L = K[X]/(Xe —a) and hence Sp/PSp =~ K(P)[X]/(XZ —a) where a
is the image of a in k (P). Suppose char(k (P)) = ¢, char(K) # £ anda = 1 —u(p — 1)* for some u € Rp.
Then, by (Proposition 2.3 and Corollary 2.4), Sp/PSp =~ k(P)[X1/(X* =X +u). Suppose char(k (P)) =
char(K) =¢and a € Rp. Then L = K[X]/(X*— X 4+a) and hence Sp/PSp ~ «k(P)[X]/(X* - X +a).
Thus, in either case, Sp/ P Sp is either a cyclic field extension of degree £ over x (P) or the split extension
of degree ¢ over x(P) and we denote these Sp/PSp by [a(P)). If P = (;r) for some 7 € R, then we
also denote [a(P)) by [a(w)). If P induces a discrete valuation v on K, then we also denote [a(P)) by
[a(v)). For an element b € R, we also denote the image of b in R/P by b(P). If be Randc € R/P, we
write b =c € R/ P for b = c modulo P.

Lemma 2.5. Let A be a semilocal regular ring of dimension at most two with field of fractions F. Let ¢
be a prime not equal to the characteristic of F. Suppose that F contains a primitive £-th root of unity. For
each maximal ideal m of A, let [u,,) be a cyclic extension of A/m of degree £. Then there exists a € A
such that:

o [a) is unramified on A with residue field [u,,) at each maximal ideal m of A.

o If £ =2 and A/m is finite for all maximal ideals m of A, then a can be chosen to be a sum of two

squares in A.

Proof. Let p € F be a primitive ¢-th root of unity. Let m be a maximal ideal of A. If char(A/m) # ¢,
then let b,, = (1 —u,,/(p — 1)¥) € A/m. If char(A/m) = ¢, then let b,, = u,, € A/m. Choose b € A with
b=>b,, € A/m for all maximal ideals m of A anda=1—-b(p— ). Let m be a maximal ideal of A. Suppose
that char(A/m) # £. Then, by the choice of a and b, we have a =1—b,,(p — 1)¢=u,, € A/m. Thus [a) is
unramified on A,, with the residue field [u,,) at m. Suppose that char(A/m) =£. Then, by (Proposition 2.3
and Corollary 2.4), [a) is unramified on A,, with the residue field [b). Since b = b, = u,, € A /m, the
residue field of [a) at m is [u,,).

Suppose £ =2 and A/m is a finite field for all maximal ideals m of A. Let m be a maximal ideal of A.
Suppose that char(A/m) # 2. Since every element of A/m is a sum of two squares in A/m [Scharlau
1985, page 39, 3.7], there exist x,,, y,, € A/m such that x,i + y,i =1—4u,,. Suppose that char(A/m) = 2.
Since A/m is a finite field, every element in A/m is a square. Let y,, € A/m be such that y,%l = u,,. Let
X,y € A be such that for every maximal ideal m of A:

« If char(A/m) #2, then x = ;(x,, — 1) € A/m and y = Jy,, € A/m.

e If char(A/m)=2,thenx =0€ A/mand y =y,, € A/m.
Let a = (1 4+ 4x)% + (2y)2 € A. Let m be a maximal ideal of A. Suppose char(A/m) # 2. Then
a= xi + y,i =u, € A/m and hence [a) is unramified on A,, with residue field at m equal to [u,,).

Suppose that char(A/m) = 2. Then %(1 —a) = u,; € A/m and hence [a) is unramified on A,, with
residue field [u,,) (Proposition 2.3 and Corollary 2.4). O
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Lemma 2.6. Let R be a semilocal regular domain of dimension 1 and K its field of fractions. Let £ be a
prime not equal to char(K). Suppose that K contains a primitive £-th root of unity p. Let L = K ({Yu) for
someu € R. Letmy, ...,m,,myy, ..., my, be the maximal ideals of R. Suppose that char(k (m ;)) = ¢
and L/K is unramified at m for all r +1 < j < n. Then there exists v € R such that L = K (Jv), v=u
modulo m; forall 1 <i <rand (1—-v)/(p—1)*¢€ Ry, forallr +1<j <n.

Proof. For a maximal ideal m of R, let K,,, denote the field of factions of the completion of R at m.

Letr +1 < j <n. Since char(k(m;)) = £ and L/K unramified at m ;, the residue field of L at m  is
Kk(mj)[X1/(X* — X +w;) for some w; € Ry, Since the residue field of K[X]/(X* —(1—w;(p—1)")
is isomorphic to /c(mj)[X]/(X‘Z — X +w;) (Proposition 2.3 and Corollary 2.4),

L® Ky, ~ Ku, [X]/(X' = (1 —w;(p— D).

Since char(K) # ¢ and L = K ({/u), there exists 0 € Ky; such that MQJE- =l-w;(p— 1)¢. Let N be an
integer larger than the sum of the valuations of u and (p — 1)¢ at all m;. By the weak approximation, there
exists 6 € K such that & = 1 modulo m; for 1 <i <r and 99]._1 = 1 modulo m?’“ forr4+1<j<n.

Letv=ub’. Let 1 <i <r. Since = 1 modulo m;, v=u modulo m;. Let r+1 <j=<n.LetmjeRbea
generator of the ideal m ;. Then 007 = 1+a;m ™' for some a; € Ry, Since udt =1—-w;(p—1)* € Ry,
is a unit and N iAs bigger than the sum of the valuations of # and (p — 1), we have Qfajnjl.VH =bj(p— N
for some b; € R, . Hence

v=ub'=ubi+ubj(p— D' =1-w;j(p— D" +ubj(p—1)'=1-c;(p—1)
for some c; € I@m/. Since ¢c; = (1 —v)/(p — Dfekn ﬁmj = Ry, v has the required properties. U
The following is a generalization of a result of Saltman [2008, Proposition 0.3].

Lemma 2.7. Let A be a UFD. For 1 <i <n, let I; = (a;) C A with gcd(a;,a;) =1 forall i # j. For
eachi < j,let I;; = I; + 1;. Suppose that the ideals I;; are comaximal. Then
A-> DA —PAa;
i i<j
is exact, where for i < j, the map from A/I; ® A/1; — A/l;; is given by (x,y) = x — y.

Proof. Proof by induction on n. The case n = 2 is in [Saltman 2008, Lemma 0.2]. Assume that n > 3.
Suppose (x;) € A/I; maps to zero in ©A/I;;. By induction, there exists b € A such that b =x; € A/I;
forl <i<n-—1. Weclaimthat 1yn---Nl_1+1L,=U+1,)N---N{,—1+ I;,). Since both
sides contain I, it is enough to prove the equality modulo /,,. Since gcd(a;, a;) =1 for all i # j, we
have Iy N---N1I,_y = Aay---a,—y and hence Iy N---N 1,y + I,/I, = (A/l,)a; ---a,—. Since I;;
are comaximal, I;,/I, = (A/I,)a; are comaximal for 1 <i <n — 1 and hence (A/l,)d; - -a,—1 =
(A/LpyarN---N(A/L)a,—1. Letby € A/(I;N---N1,_1) be the image of b. Then, by the case n =2,
there exists a € A such thata =by € A/[1N---N1I,_1 and a = x,, € A/I,,. Thus a has the required
properties. O
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3. Central simple algebras

Let K be a field, L/K a cyclic extension of degree n with o € Gal(L/K) a generator and b € K*. Let
(L, o, b) denote the cyclic algebra L@ Lx @ - - - @ Lx"~! with relations x" = b, xA = o (A)x forall A € L.
Then (L, o, b) is a central simple algebra over K and represents an element in the n-torsion subgroup
»Br(K) of the Brauer group Br(K) [Albert 1939, Theorem 18, page 98]. Suppose that n is coprime
to char(K) and K contains a primitive n-th root of unity. Then L = K ({/a) for some a € K*. Fix a
primitive n-th root of unity p in K. Let o be the generator of Gal(L/K) given by o (J/a) = p/a. Then,
the cyclic algebra (L, o, b) is denoted by [a, b). Suppose that n is prime and equal to char(K). Then,
L =K[X]/(X" — X +a) for some a € K. If ¢ is the generator of Gal(L/K) given by o(x) = x + 1,
then the cyclic algebra (L, o, b) is also denoted by [a, b).

For any Galois module M over K, let H" (K, M) denote the Galois cohomology of K with coefficients
in M. Let £ be a prime. Let Z/€(i) be the Galois modules over K as in [Kato 1986, Section 0]. We
have canonical isomorphisms H'(K, Z/£) ~ Homeon (Gal(K*®/K), Z/£) and (Br(K) ~ H*(K, Z/£(1)),
where K2 is the maximal abelian extension of K [Kato 1986, Section 0].

Suppose A is a regular domain with field of fractions F. We say that an element o € H*(F, Z/£(1)) is
unramified on A if « is represented by a central simple algebra over F which comes from an Azumaya
algebra over A. If it is not unramified, then we say that « is ramified on A. Suppose P is a prime ideal
of A and o € H*>(F,Z/£(1)). We say that « is unramified at P if « is unramified on Ap. If « is not
unramified at P, then we say that « is ramified at P. Suppose that « is unramified at P. Let </ be an
Azumaya algebra over A p with the class of & ®4, F equal to «. The algebraa = o7 ®4, (Ap/PAp) is
called the specialization of o at P. Since Ap is a regular local ring, the class of @ is independent of the
choice of 7. Leta, b € F and « = [a, b) € H*(F, Z/£(1)). If the cyclic extension [a) is unramified at
P and b is a unit at P, then « is unramified at P and the specialization of « at P is [a(P), b(P)), where
[a(P)) is the residue field of [a) at P and b(P) is the image of bin Ap/PAp.

Suppose that R is a discrete valuation ring with field of fractions K and residue field «. Let £ be
a prime not equal to char(K). Suppose that char(x) # £ or char(x) = £ with k¥ = «t. Then there is
a residue homomorphism 0 : H*(K, Z/e(1)) — H'(k, Z/¢) [Kato 1986, Section 1]. Further a class
o€ H*(K, Z/£(1)) is unramified at R if and only if d(«) =0. Let a, b € K*. If [a) is unramified at R,
then 8([a, b)) = [a(v))"®, where v is the discrete valuation on K. In particular if [a) is unramified on R
and ¢ divides v(b), then [a, b) is unramified on R.

Lemma 3.1 ([Auslander and Goldman 1960, Proposition 7.4], see [Lieblich et al. 2014, Lemma 3.1]).
Let A be a regular ring of dimension 2 and F its field of fractions. Let £ be a prime not equal to char(F)
and o € H*(F,Z/¢(1)). If a is unramified at all height one prime ideals of A, then o is unramified on A.

Lemma 3.2. Let R be a complete discrete valuation ring with field of fractions K and residue field k. Let
£ be a prime not equal to char(x). Let D be a central simple algebra of index £ over K. Suppose that D is
ramified at R. If L/ K is the unramified extension of K with residue field equal to the residue of D at R,
then D ® L is a split algebra.
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Proof. We have D = Dy ® (L, o, w) for some generator of Gal(L/K), m a parameter in R and D
unramified at R (see [Parimala et al. 2018, Lemma 4.1]). Further £ = ind(D) = ind(Do ® L)[L : K]
(see [loc. cit., Lemma 4.2]). Since D is ramified at R, [L : K] = £ and hence Dy ® L = 0. Hence
Dy=(L,o,u) forsome u € K and D = (L, o, umr). Thus D ® L is a split algebra. U

Lemma 3.3. Let A be a complete regular local ring of dimension 2 with field of fractions F and residue
field k. Suppose that k is a finite field. Let m = (1w, §) be the maximal ideal of A. Let £ be a prime not
equal to char(F) and o = [a, b) € H>(F, Z/£(1)) for some a, b € F*. Suppose that:

o [fchar(k) = ¢, then the cyclic extension [a) is unramified on A.
o « is unramified on A except possibly at §.

o The specialization of « at 7 is unramified on A /().
Then o = 0.

Proof. Suppose that char(x) # £. Then, it follows from [Reddy and Suresh 2013, Proposition 3.4] that
o =0 (see [Parimala et al. 2018, Corollary 5.5]).

Suppose that char(x) = £. Since F is the field of fractions of A, without loss of generality, we assume
that b € A and not divisible by ¢ for any prime § € A. Write b = v8"0y" - - - 6" for some distinct primes
0; € A with (8) # (6;) foralli,1 <n; <€—1,0<n<{—1and v € A aunit. Since « is a finite field, A
is complete and [a) is unramified on A, we have [a, v) = 0 and hence @ = [a, b) = [a, 8"9{” -0,

Since [a) is unramified on A, for any prime 6 € A, [a, 0) is unramified on A except possibly at 6. Let
1 <j<r. Since a = [a,b) =[a,§") [la, ), [a,8") and [a, ") are unramified at §; for all i # j,
[a, 0}” ) is unramified at 6; and hence [a, 9}1" ) is unramified on A (see Lemma 3.1). Since « is a finite
field and A is complete, [a, 9}1") = 0. Thus, we have « = [a, §").

If n =0, then « = 0. Suppose 1 <n < ¢ — 1. Let & be the specialization of « at . Since o = [a, ")
and [a) is unramified at 77, we have @ = [a(r), §"), where [a(r)) is the residue field of [a) at 7= and
§ is the image of § in Ap /(). Since @ is unramified on A/(), A is complete and « is a finite field,
& = [a(w), ") =0. Since 3(&) = [a(m))" =1 and n is coprime to £, [a(m)) = 0. Since A is complete,

[a) is trivial and hence o = 0. O

We now recall the chilly, cool, hot and cold points and the chilly loops associated to a central simple
algebra, due to Saltman [2007; 2008]. Let 2" be a regular integral excellent scheme of dimension 2
and F its field of fractions. Let £ be a prime which is not equal to char(F'). Suppose that F contains a
primitive £-th root of unity. Let o € H2(F, Z/e(1)). Suppose that ram ¢ (o) = {Dy, ..., D,} for some
regular irreducible curves D; on 2" with normal crossings. Suppose P € D; N D; is a closed point. Let
Ap be the local ring at P. Let 7;, m; € Ap be primes defining D; and D; at P respectively. Suppose
that char(x (P)) # €. Suppose that o = ag + (u, 7;) + (v, ;) for some o« unramified at P, u, v units
at P. We say that P is a chilly point of o if u(P) and v(P) generate the same nontrivial subgroup of
k(P)*/k(P)*¢, a cool point of a if u(P), v(P) € k(P)*, a hot point of « if u(P) and v(P) generate
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different subgroup of x (P)*/k (P)*‘. We say that P is a cold point of o If o = et + (ur;, vnj) for some
oo unramified at P, u, v units at P and s coprime to £.

Let I' be a graph with vertices D;’s and edges as chilly points, i.e., two distinct vertices D; and D)
have an edge between them if there is a chilly point in D; N D;. A loop in this graph is called a chilly
loopon Z'. Let [%] be the open subscheme of 2" obtained by inverting £. Since, by the definition of
chilly point, char(x (P)) # £ for any chilly point P, we have the following

Proposition 3.4 [Saltman 2007, Corollary 2.9]. There exists a sequence of blow-ups 2" — 2 centered
at closed points P € 2 [%] such that a has no chilly loops on 2.

Let K be a global field and ¢ a prime. Let § € (Br(K). Let v be a discrete vacation of K, K, the
completion of K at v and « (v) the residue field at v. Since K, is a local field, the invariant map gives an
isomorphism 9, : ¢Br(K,) = H*(K,, Z/t(1)) — H'(k (v), Z/¢).

Proposition 3.5. Let K be a global field and ¢ a prime. If € is not equal to char(K), then assume that K
contains a primitive {-th root of unity p. Let B € (Br(K). Let S be a finite set of discrete valuations of K
containing all the discrete valuations v of K with 9, (B) # 0. Let S’ be a finite set of discrete valuations of
K with SNS'=@. Let a € K* and for each v € §', let n,, > 2 be an integer. Suppose that for every v € S,
[a) is unramified at v with 3,,(8) = [a(v)). Further assume that if £ = 2, then B ® K, (y/a) = 0 for all
real places v of K. Then there exists b € K* such that:

» B=la,Db).
e Ifves, thenv(b) =1.
e Ifve S, thenv(b—1)>n,.

Proof. Let L =[a). Letv e S. If 9,(8) =0, then 8 ® K, = 0 [Cassels and Frohlich 1967, page 131].
Suppose that d,(8) # 0. Then [a(v)) is a field extension of « (v) of degree £ and hence L Qg K, is a
degree ¢ field extension of K. Thus S ®x (L ® K,) =0 [loc. cit., page 131]. Suppose v is a real place
of K. Then, by the assumption on a, 8 Qg (L ®x K,) =0. Thus § ® L = 0 [loc. cit., page 187] and
hence there exists ¢ € K* such that 8 = [a, ¢) [Albert 1939, page 94].

Let R be the semilocal ring at the discrete valuations in SUS’. Replacing ¢ by c8* for some 6 € K*, we
assume that c € R. Forv € SU S, let 7, € R be a parameter at v. Let v € S. Since [a) is unramified at v,
3,(B) = d,([a, ¢)) = [a(v))"©). Suppose [a(v)) is nontrivial. Since, by the hypothesis, 3, (8) = [a(v)),
v(c) — 1 is divisible by £. Since [L: K]= £, 7.“ ™" is a norm from L ® K, /K,. Suppose that [a(v)) is
trivial. Then L ® ¢ K, is the split extension and hence every element of K, is a norm from L ® g K, /K.
Thus for each v € S, there exists x, € L ®x K, with norm 7, “~". Let v € §’. Then 8,(8) = 0 and
we have 8 ® K, = [a, c) ® K, = 0 [Cassels and Frohlich 1967, page 131]. Hence c is a norm from
L®k K,. Foreachv € §', x, € L ®k K, with norm c. Let z € L be sufficiently close to x, such that
V(Nrggk, @) — 707" > v(c) forall v € S and V(N g, (2) —¢) > v(c) +n, forall v € §'.
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Let d be the norm of z and b=cd~'. Then 8 =[a, cd~')=[a, b). Letv € S. Since v(d—mf(c)_l)zv(c),
we have v(d) = v(c) — 1 and hence v(b) = v(cd~!) = 1. Let v € §'. Since v(d —¢) > v(c) +n, > 2,
v(d)=v(c)and v(b—1) =v(cd~' — 1) > n,. O

4. A complex of Kato

Let K be a complete discrete valued field with residue field «. Let £ be a prime not equal to characteristic
of K. If £ = char(k), then assume that [« : ‘] < €. Then, there is a residue homomorphism 9 :
H3(K,Z/t(2)) = H*(k, Z/¢(1)) [Kato 1986, Section 1]. We say that an element ¢ € H3(K, Z/£(2)) is
unramified at the discrete valuation of F if 9(¢) =0.

Let 2 be a two-dimensional regular integral excellent Noetherian scheme quasiprojective over some
affine scheme and F' the function field of 2". For x € 27, let F, be the field of fractions of the completion
Ax of the local ring A, at x on 2" and « (x) the residue field at x. Let x € 2" and C be the closure of {x}
in £ . Then, we also denote F, by F¢. If the dimension of C is one, then C defines a discrete valuation
vc (or vy) on F. Let Z;) be the set of points of 2" with the dimension of the closure of {x} equal to i.
Let £ be a prime not equal to char(F). Suppose that F' contains a primitive £-th root of unity. If P € Z(g)
is a closed point of 2" with char(x (P)) = £, then we assume x(P) = k(P). Letx € Zy. We have a

residue homomorphism

s H3(F,Z/0(2)) — H?(k(x), Z/e(1))

[Kato 1986, Section 1]. We say that an element ¢ € H3(F, Z/4(2)) is unramified at x (or C) if ¢ is
unramified at v,. Further if P € Z{¢) is in the closure of {x}, then we have a residue homomorphism

ap s H2(k(x), Z/¢(1)) — H'(x(P), Z/0)

[Kato 1986, Section 1]. For x € 2(j), if C is the closure of {x}, we also denote 9, by dc. An element
o € H (k (x), Z]E(1)) ~ ¢Br(x(x)) is unramified at P if and only if dp(x) = 0. We use the additive
notation for the group operations on H?(F, Z/¢(1)) and H*(F, Z/£(2)) and multiplicative notation for
the group operation on H'(F, Z/¢).

Proposition 4.1 [Kato 1986, Proposition 1.7]. Then
d ?
H(F, Z/€(2)) = @xeay H(1(x), Z/L(1)) = @peyo H' ((P), Z/0).
is a complex, where the maps are given by the residue homomorphism.

Lemma 4.2 [Kato 1980, Section 3.2, Lemma 3; 1986, Lemma 1.4(3). Let x € Z(1) and vy be the discrete
valuation on F at x. Then 9, : H>(Fy, 7/¢(2)) — H?(k (x), Z/¢Q1)) is an isomorphism. Further if
o € H*(F,7/£Q1)) is unramified at x and f € F*, then d¢(a - (f)) = a"*/),

The following is a consequence of Proposition 4.1.
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Corollary 4.3. Let C| and C, be two irreducible regular curves in X intersecting at a closed point P.
Let ¢ € H*(F, Z/£(2)). Suppose that ¢ is unramified at all codimension one points of 2 passing through
P except possibly at C and C,. Then

3p(dc,(£)) = 3p(dc, ().

Corollary 4.4. Let C be an irreducible curve on 2 and P € C with C regular at P. Let ¢ € H>(F, 7 /£(2)).
Suppose that ¢ is unramified at all codimension one points of 2 passing through P except possibly at C.
If k (P) is finite, then { @ Fp = 0. In particular if k (P) is finite, then ¢ is unramified at every discrete
valuation of F centered at P.

Proof. Since C is regular at P, there exists an irreducible curve C’ passing through P and intersecting C
transversely at P. Then, by Corollary 4.3, we have 0p (3¢ (¢)) = 0p (3¢ (¢ )¢, Since, by assumption,
dc'(¢) =0, we have dp(dc(¢)) = 1.

Let m € Ap be a prime defining C at P. Since C is regular at P, Ap /() is a discrete valued ring
with residue field « (P) and « (C) is the field of fractions of Ap /(). Further 7 remains a regular prime
in A p and A p/(m) is the completion of Ap /(). In particular the field of fractions of A p/(m) is the
completion « (C) p of the field x (C) at the discrete valuation given by the discrete valuation ring Ap /(7).
Let v be the discrete valuation on Fp given by the height one prime ideal () of A and v the discrete
valuation of F' given by the height one prime ideal () of A. Then the restriction of ¥ to F is v and the
residue field x (v) at v is « (C) p.

Since dp(0¢c(¢)) =1, we have d¢c(¢) @ k(C)p = 0 [Kato 1986, Lemma 1.4(3)]. Hence

05 (¢ ® Fp) =dc(¢) ®«(C)p =0.

Let Fp; be the completion of Fp at v. Since 95 : H3(Fp,,~,,Z/€(2)) — H*k(C)p,Z/L(2)) is an
isomorphism [loc. cit., Lemma 1.4(3)], { ® Fp; =0.

Let v be a discrete valuation of Fp given by a height one prime ideal of A not equal to (;r). Then, by
the assumption on ¢, d,/(¢{ ® Fp) =0 and hence { ® Fp,, =0 [loc. cit., Lemma 1.4(3)], where Fp ,/ is
the completion of Fp at v'. Hence, by [Saito 1987, Theorem 5.3], ¢ ® Fp = 0. Ol

5. A local global principle

Let 2, F and £ be as in Section 4. Let ¢ € H>(F,7Z/€(2)). Let a = [a, b) € H*>(F, Z/¢(1)). In this
section we show that under some additional assumptions on 2", ¢ and «, there exists f € F* such that
0x (¢ —a - (f)) is unramified at all the discrete valuations of « (x) centered at closed points of {x} for all
x € Zq) (see Theorem 5.7).

For the rest of this section, we assume the following.

Assumptions 5.1. Suppose (2, ¢, «) satisfies the following conditions:
(A1) ramy (¢) ={Cy, ..., C,}, the C; are regular irreducible curves with normal crossings.

(A2) ramy () ={Dy, ..., D,}, the D; are regular curves with normal crossings and C; # D; for all i, j.
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By reindexing, we have ramg (o) ={D1, ..., Dy, ..., Dy}, with char(x (D;)) =€ for 1 <i <m and

char(k(D;)) #Lform+1<j <n:

(A3) DinDj=¢gforalll <i <mandm+1<j <n.

(A4) If P e D;ND; for some m+1 <i < j <n, then char(x (P)) # £.

(AS5) There are no chilly loops (see Section 3) for & on 2.

(A6) Oc, (¢) is the specialization of « at C; for all i.

(A7) C;NDj=g foralliand 1 < j <m.

(A8) If P € C; N Dy for some i and s, then P € C; N C; for some i # j.

(A9) For every i # j, through any point of C; N C; there is at most one D;.

(A10) Inthe representation o = [a, b) the element a can be chosen such that if P € Z(q, with char(k (P)) =
¢ and P € D; for some i, then (1 —a)/(p — 1)¢ € Ap.
-1

i

(All) If P € C;NC;ND; for some i < j and for some #, then D; is given by a regular prime um
at P, for some prime 7; (resp. ;) defining C; (resp. C;) at P and units u, v at P.

+urm;

Let & be a finite set of closed points of 2 containing C; NC;, D; N D; for all i # j, C; N D; for all
i, j and at least one point from each C; and D;. Let A be the regular semilocal ring at & on 2". For
every P € &, let Mp be the maximal ideal of A at P. For 1 <i <rand 1 < j <n,let m; € A be a prime
defining C; on A and §; € A a prime defining D; on A.

Lemma 5.2. For1 < j <n,letn; = Lvp, (&) + 1. Then there exists a unit u € A such that u || 7; is an
£-th power modulo 8?'i forall 1 < j <n. Inparticular u || n; € Fg}_ forall j.

Proof. Let m =[]} n; and 8 = [} 8;.” . Since, by the assumption (A7), C; N D; = & for all i and
1 < j <m, the ideals A and A§ are comaximal in A. In particular the image of 7 in A/(§) is a unit.
Let P e 22\ ((Uq C,-) U ( T Dj)). Then 7 is a unit at P and the ideals (), (§), mp are comaximal.
By the Chinese remainder theorem, there exists #; € A be suchthatu; =7 € A/(8), u; =1€ A/(m)
andu; =m € A/Mp forall P € 2\ ((Ui C,-) U (U'I" Dj)). Since the image of 7 in A/(8) is a unit, u;
isaunitin A. Let 7’ = ufln.

Let m+1 <s <n and a4 be the image of 7" in A/(85). We claim that a; = wsbf for some wy, by € A/(8;)
with wy a unitin A/(8;) and wy(P) =1 forall P € D;N Dy, s #s'. Let M be a maximal ideal of A/(5).
Then M = Mp/(8;) for some P € Dy 2. Suppose P ¢ C; for all i. Then 7’ is a unit at P and hence
as is a unit at M. Suppose P € C; for some i. Then P € C; N Dy. Thus, by the assumption (A8), there
lpumg

i

exists j #i such that P € C; N C;. Suppose i < j. Then, by the assumption (All), §; = v;7
for some units v; and v; at P. Hence

a; = ull( l_[ n,)rr,-rrj = u11< l—l n,)rr,- (—%nfﬁ = u11< 1_[ JT,) (—%)nig modulo &;.
J J

t#i,j t#i,j 1#£L, ]
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f modulo §;, for some wp € A/(5) a

unit at P. Suppose i > j. Then §; = v;m; + v,-nf_l for some units v; and v; at P. Hence, as above,

Since my, t # i, j, is a unit at P (assumption (Al)), a; = wpm

ag = w pnf modulo &y, for some wp € A/(8;) a unit at P. Hence at every maximal ideal of A/(6s), a; is
a product of a unit and an ¢-th power. Since Dj is a regular curve on 27, A/(8;) is a semilocal regular
ring and hence A/(3,) is an UFD. In particular a;, = u)sbéZ for some wy, by € A/(8;) with wy a unit.

Let P € Dy, N Dy for some s’ # s. Since m + 1 < s < n, by the assumption (A3), P ¢ D; for all
1 <i < m. By the assumptions (A8) and (A9), P ¢ C; for all i. Thus, by the choice of u;, 7/(P) = 1. In
particular a,(P) = 1 and hence w,(P) = by(P)~*. Let W, € A/(8;) be a unit such that w;(P) = by(P)
forall P € DyN Dy, s #s'. Since ag = ujszbf(zf)x_llas)Z and wszbf(P) = 1, replacing wy by wszi)f and by
by w; by, we assume that a; = wyb? with wy(P) = 1forall P € D;N Dy, s #s'. Sincem+1<s <n,
by the assumption (A3), (65, 8) = A. Hence, by Lemma 2.7, there exists w € A such that w =1 € «(P)
forall P e 2\ (U] Di), w=1€ A/(3) and w = wy € A/(8;). Since wy € A/(5) is a unit, w is a unit
in A.

Letu=w""

ul_l. Since u; and w are units in A, u € A is aunit. We have u [ [ 7; = wln = ws_las =b§Z
modulo §; form+1<s<nandu[[m = wln’ = wg‘; € A/(9). Since vp,(€) =0form+1<j<n
(assumption (A2)), u [ [ 7r; is an £-th power in A/((S?") for 1 < j<n.Sincen;=~vp,(§;)+1,u[]m e ng

for all j (see [Epp 1973, Section 0.3]). O

Let u € A be a unit as in Lemma 5.2 and 7 = u [[} 7; € A. Then divy (7) =Y C;i + Z‘f t,Ey for
some irreducible curves E; with E; N &7 = @. In particular C; # E,, D; # E forall i, j and 5. Let &’
be a finite set of points of 2" containing &, C; N Eg, D; N E for all i, j and s and at least one point
from each E;. Let A’ be the semilocal ring at ’. For 1 <i <n, let §, € A’ be a prime defining D; on A’.
Note that 5; AN A" = §/A’ for all i.

Lemma 5.3. There exists v € A’ such that:

e v is a unit and F (\Yv)/F is unramified at all the points P € &' except possible at the points P in
D; N\ Dj forall i # j with char(x (P)) # £.

o Ifchar(k (D)) # £, then the extension F (Hv)/F is unramified at D j with the residue field of F ()
at D; equal to 8Dj ().

o Ifchar(k(D;)) = ¢, then Fp,(Jv) =~ Fp,(Ja). In particular a ® Fp,(~/v) is trivial.

Proof. For 1 <i <n, we show that there exists u; € A’/(8;) C x(D;) which patch to get an element in A’
having the required properties.

Let 1 <i <m. Then char(x (D;)) = £. By the assumption (A10), (@ —1)/(p — )¢ e Ap forall P € D;.
In particular (@ — 1)/(p — 1)¢ is regular at D; and the image of (a — 1)/(p — 1) in k(D;) is in A’/(Slf).
Let u; be the image of (1 —a)/(p — 1) in A'/(8)).

Let m + 1 <i <n. Then char(x(D;)) # £. If char(x (P)) = £ for all P € D;, then let w; € x(D;) be
such that dp, (o) = [w;).
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Suppose there exists P € D; with char(kx (P)) # £. By [Saltman 2008, Proposition 7.10], there exists
w; € k(D;)* such that:

* Ip, (@) =k (D;) (Yw;).

e w; is defined at all P € &' N D; with char(x (P)) # £.

e w;isaunitatall P e (2 ND;)\ (Uj# D;) with char(x (P)) # .

e w;(P)=w;(P)forall P€ D;NDj,i# jwith P achilly point or a cold point.

Let P € D; N D; for some i # j. Then, by assumptions (A3) and (A4), char(k (P)) # £. Suppose P
is neither a chilly point nor a cold point. Since « is a symbol, there are no hot points [Saltman 2007,
Theorem 2.5]. Hence P is a cool point. Since dp, () = « (D;)(Jw;), by the definition of a cool point, it
follows that w; € K(D,-)}‘f. Write w; = w[%P for some w;, € k(D;)}. Let w, € x(D;)* be such that w; is
close to wl/ p for all cool points P € D; and wl/. is close to 1 for all other P € D; N &?'. Then, replacing w;
by w[-w;._é, we assume that w; (P) = w;(P) at all P € D; N D; with char(k(P) # £.

Let P € £’ N D;. Suppose char(x (P)) = £. Then, by the assumptions (A10), [@) is unramified at P
(see Proposition 2.3). Since a = [a, b), dp, () = [a(D;))"??. In particular dp, (@) = k (D;)(Jw;) is
unramified at P. Thus, by Lemma 2.6, we assume that (1 —w;)/(p — Dt is regular at all P € 22’ N D; \
(M D;) with char(x (P)) =¢. Since char(k (D;)) # £, by assumptions (A3) and (A4), if P € D;N D for
some j # i, then char(k (P)) # £. Thus (1—w;)/(p—1)¢ € A’/(8;). Letu; = (1—w;)/(p— 1) e A'/(8)).

Let P € D; N D; for some i # j. Suppose char(k (P)) = £. Then, by the assumption (A3) and (A4),
1 <i, j < m and hence by the choice of u;, we have u; (P) =u;(P) € «(P). Suppose char(k(P)) # £.
Then, m +1 < i, j <n and hence by the choice of w;, we have u; (P) = u;(P). Thus, by Lemma 2.7,
there exists u” € A" such that u’ = u; modulo (§;) for all i. By the Chinese remainder theorem, we get
v' € A’ such that v' =u’ € A’/([]6}) and v' =0 € k(P) for all P € &' with P ¢ D; for all i.

We now show that v = 1 — (p — 1)“v’ has all the required properties.

Let P € &7'. Suppose char(k(P)) = £. Then p —1 € Mp. Since v/ € A’, v is a unit at P and F(Jv)
is unramified at P (Corollary 2.4). Suppose char(x (P)) # €. Suppose that P ¢ D; for all i. Then,
by the choice of v/, v € Mp and hence v is a unit at P and F(/v)/F is unramified at P. Suppose
that P € D; for some i. Since char(x(P)) # ¢, char(k (D;)) # €. Thus, by the choice of v’, we have
V=u=u=0-w)/(p—Dte A’/(8)). Hence v = w; € A’/(8]). Suppose P ¢ D; for all j #i.
Then, by the choice w; is a unit at P and hence v is a unit at P. In particular F(/v)/F is unramified
at P. Thus v is a unit and F(/v)/F is unramified at all P € 2’ except possibly at P € D; N D; with
char(k (P)) # £.

Suppose char(x (D;)) # €. Then, by the choice of v, we have v=1— (p — D' =1—(p—Dtu; =
w; € A//(SI{) C «(D;). Since w; # 0, v is a unit at §; and F(/v) is unramified at D; with residue field
(D) (Y7) = p, (@).

Suppose that char(x(D;)) = £. Sincev=1—(p — D% and v/ = u; = w; € A'/(8)), F(Jv) is
unramified at D; with residue field equal to « (D;)[X]/ (Xt — X +w,) (Proposition 2.3). Since w; is
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the image of (1 —a)/(p — 1)* in A’/(8)), the residue field of F(Ja) at 8] is k (D)[X1/(X* — X + w;)
(Proposition 2.3). Hence Fp, (/v) >~ Fp,(:/a). Since « = [a, b), @ ® Fy (J/v) is trivial. d

Remark 5.4. If £ is a unit in A’, then the extension F(/v)/F given in the above lemma is the lift of the
residues of o which is in the sense of [Saltman 2008, Proposition 7.11].

Let v € A’ be as in Lemma 5.3. Let Vi, ..., V, be the irreducible curves in 2~ where F (Jvm) is
ramified. Since 7 € Ff,j Lemma 5.2 and F(/v) is unramified at D; Lemma 5.3 for all j, V; # D; for
alli and j. Let 2" = 22 U (U(D; N E,)) U (U(D; NV;). After reindexing E, we assume that there exists
di <dsuchthat ENZ" £ forl <s<dyand EENP" =@ fordi+1<s <d.

Lemma 5.5. There exists h € F* which is a norm from the extension F ({/vr) such that

d
divy(h)=—Y 4E+ Y rkEj
1

where E; NP = forall j.

Proof. Let A” be the regular semilocal ring at 22”. Let L = F(J/vx) and T be the integral closure of A”
in L.

Letl<s<dyand P e &#"NE,. Since E,NY =@, P € D;NE; for some i. Since v is a unit at all
Pe(P\ ) Lemma5.3and D; N E; C &', v is aunit at P and hence v is a unit at E;.

Let e; and f; be the ramification index and the residue degree of L/ F at E respectively. Suppose that
es; = £. Then there is a unique curve E;in T lying over E; and let #; = ;. Suppose that e; = 1. Since
divy (r) =) Ci + Z‘f tsE; and v is a unit at E, £ divides #;. Suppose thatf; = 1. Let t; = t,/¢ and
E s =1ty Eg;, where E; are the irreducible divisors in 7 which lie over E;. Suppose that f; = €. Then
there is a unique curve Ej in T lying over E; and let 1 =t.

Let £ = — ot E,. Then the pushforward of E from T to A” is — Z‘f t,E;. We claim that E is a
principal divisor on 7. Since T is normal it is enough to check this at every maximal ideal of 7. Let M
be a maximal ideal of 7. Then M N A” = Mp for some P € &”. Suppose P ¢ E, forall 1 <s <d|.
Then E is trivial at M. Suppose that P € E; for some s with 1 < s < d;. Then, as we have seen
above, P € D; N E for some i. Since D; NC; € & foralli and j and N E; =, P ¢ C; for all i.
Hence divy, () = ZPeEl_ t;E;. Since v is a unit at P Lemma 5.3, diva, (v) = diva, () and hence
E= —div(Yvm) at M. In particular E is principal at M. Hence E = divy(g) for some g € L. Let
h = Nr,r(g). Since the pushforward of E from T to A" is — Z‘f t,E,, divyr(h) = — Z‘f‘ t; E; and hence
h has the required properties. 0

Lemma 5.6. Let h € F* be as in Lemma 5.5 with div o-(h) = — Zf' GE+) r; E; Then a is unramified
at E ; Further, if rj is coprime to £ for some j, then the specialization of o at E ; is unramified at every

discrete valuation OfK(E}) which is centered on E;

Proof. Since E; NP =& and D;NP" # & for all i, E; # D; for all i. Hence, by the assumption (A2),
o is unramified at E7.
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Let P be a closed point of E; for some j with r; coprime to £. Let L = F(/vrr) and Bp be the
integral closure of Ap in L. We first show that there exists an Azumaya algebra «/p over Bp such that
o ®F L is the class of o7p ®p, L.

Suppose P & D; for all i. Then « is unramified at P (assumption (A2)). Hence there exists an Azumaya
algebra <7}, over A p such that « is the class of &7, @4, F (see Lemma 3.1). Let @p = o/}, ®4, Bg. Then
a ®F L is the class of o7/p ®p, L.

Suppose P € D; for some i. Since E; NP =@ Lemma 5.5, P ¢ 2", Since U(V;y N D;) C 2",
P ¢ UV, for all i’ and hence L is unramified at P. Hence Bp is a regular semilocal domain. Let Q C Bp
be a height one prime ideal and Qg = QN Ap. Then Q is a height one prime ideal of A p. If & is unramified
at Qo, then o @ L is unramified at Q. Suppose that « is ramified at Qq. Since P ¢ D; for j #1i, Qo
is the prime ideal corresponding to D;. Since w € F IZJ,- (Lemma 5.2), Fp, (/vr) = Fp,(/v). Suppose
that char(k (D;)) # £. Since L/F is unramified at D; with residue field equal to dp, (o) (Lemma 5.3),
o ®f L is unramified at Q (see [Parimala et al. 2018, Lemma 4.1]). Suppose that char(x (D;)) = £. Since
a® Fp, () is trivial (Lemma 5.3), @ @ L is unramified at Q. Since Bp is a regular semilocal ring
of dimension two, a ® F({/vr) is unramified at Bp (see Lemma 3.1). Hence there exists an Azumaya
algebra o7p over Bp such that o @F L is the class of </p ®p, L.

Let B € Hz(/c(E}), Z/£(1)) be the specialization of « at E; Suppose that r; is coprime to £. Let v
be a discrete valuation of x (E }) centered on a closed point P of E ; Let Q¢ C Ap be the prime ideal
defining E; at P. Let Q C Bp be a height one prime ideal of Bp lying over Qq. Since E’/ is in the
support of &, r; is coprime to £ and & is a norm from L, the valuation on F given by Q is either ramified
or splits in L. Hence Ap/Qo C Bp/Q C K(E;-). Thus B is the class of @p ®3,/0 K(E}). Since Bp/Q
is integral over Ap/Qy, the ring of integers at v contains Bp/Q. In particular 8 is unramified at v. [J

Theorem 5.7. Suppose (X', ¢, a) satisfies Assumptions 5.1. Then there exists f € K* such that for every
x € Zay, 0x(& — o - (f)) is unramified at every discrete valuation of k (x) centered on the closure of {x}.

Proof. We use the same notation as above and let 4 € F* be as in Lemma 5.5. We claim that f = hx has
the required properties, i.e., 9, ({ —a - (f)) is unramified at every discrete valuation of « (x) for all x € 2(y).

Let x € Z(1) and D be the closure of {x}. Suppose D = C; for some i. Then /A is a unit at C;
(Lemma 5.5), « is unramified at C; (assumption (A2)) and 7 is a parameter at C;, we have d¢, (o - (f))
is the specialization of « at C; (Lemma 4.2). Hence, by the assumption (A6), d¢c, (¢ —a - (f)) =0.

Suppose that D = D; for some j. By the assumption (A2), dp,(¢) = 0 and « is ramified at D;. If
char(k (Dj)) = £, then by the choice « ® Fp, (/v) = 0 (Lemma 5.3). Suppose that char(xk (D)) # ¢.
Since Fp, (Yv) is unramified with residue field equal to dp; (o) (Lemma 5.3), we have o ® Fp, (Yv)=0
(Lemma 3.2). In particular, in either case, a-(g) =0¢€ H3(FDJ. (Vv),Z/€(2)). Since € Ff)i (Lemma 5.2),
L® Fp, = FD_,.({/E) and o - (1) =0 € H3(FDj,Z/€(2)). Thus « - (h) = corp r(a - (g)) =0 €
H3(FDj, Z/£(2)) and dp, (a - (h)) = 0. Hence dp,; (¢ —a - (f)) =0.

Suppose D # C; and D; for all i and j. Then dp(¢) = 0 and « is unramified at D. If vp(f)
is a multiple of £, then dp(« - (f)) = 0. Suppose that vp(f) is coprime to £. Since divy (1) =
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> Ci+ Z’f 4 E; (Lemma 5.2), divy (h) = — Zfl tyEs+ Y riE! (Lemma 5.5) and f = hm, we have
divey () =>.Ci + ZZIH tyEs+ ) riE!. Since vp(f) is coprime to £ and D # C; for all i, D = E;
forsomed; +1<s 5d0rD=Elf for some i.

If D = E, then by Lemma 5.6, the specialization & of « at D is unramified at every discrete valuation
of k(D) centered on D. Suppose D = E for some d; + 1 < s <d. Then by the choice of dj, EENP" =&
and hence E;N D; = @ for all j. Let P € E. Then « is unramified at P (assumption (A2)) and hence
o is unramified at P. In particular & is unramified at every discrete valuation of « (E;) centered at P.
Since o is unramified at Eg, g, (o - (f)) = aV5 () (Lemma 4.2). Since @ is unramified at every discrete
valuation of « (Ej) centered on Eg, dg, (o - (f)) is unramified at every discrete valuation of « (E;) centered
on E;. Hence f has the required property. U

6. Divisibility of elements in H> by symbols in H?

Let K be a global field or a local field and F the function field of a curve over K. If K is a number field
or a local field, let R be the ring of integers in K. If K is a global field of positive characteristic, let R be
the field of constants of K. Let 2" be a regular proper model of F' over Spec(R). Let £ be a prime not
equal to char(K'). Suppose that K contains a primitive £-th root of unity p. Then for any P € %), k (P)
is a finite field. Hence if char(x (P)) = ¢, then k (P) = k (P)*.

Thus we have a complex (see Proposition 4.1)

0— HYF,Z/€(2)) 2> @y HX(k(x), Z/€(1)) > @ pesiy H' (c(P), Z/0).

Let ¢ € H3(F, 7/€(2)) and o = [a, b) € H2(F, Z/£(1)). In this section we prove (see Theorem 6.5)
a certain local global principle for divisibility of ¢ by « if (27, ¢, a) satisfies certain assumptions (see
Assumptions 6.3).

For a sequence of blow-ups  : # — 2" and for an irreducible curve C in 2", we denote the strict
transform of C in # by C itself.

We begin with the following:

Lemma 6.1. Suppose (X, ¢, a) satisfies the assumption (Al) of Assumptions 5.1. Let % — X be a
sequence of blow-ups centered on closed points of 2" which are notin C;N\Cj foralli # j. Let1 <1 <11
with I #3,5,7. If (Z, ¢, a) satisfies the assumption (Al) of Assumptions 5.1, then (%, ¢, o) also satisfies
the assumption (Al).

Proof. Let Q be a closed point of 2~ which is notin C; NC; fori # j and n: % — 2" a simple blow-up
at Q. It is enough to prove the lemma for (%, ¢, a).

Let E be the exceptional curve in #. Since Q ¢ C; N C; fori # j and (27, ¢, o) satisfies (Al) of
Assumptions 5.1, by Corollary 4.4, ¢ is unramified at E.

Let1 <1 <11withI #3,5,7. Suppose further I # 4, 10. Since the exceptional curve E is not in
ramgy (), if (27, ¢, @) satisfies the assumption (Al) of Assumptions 5.1, then (%, ¢, «) also satisfies the
same assumption.
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Suppose (£, ¢, o) satisfies the assumption (A4) of Assumptions 5.1. Suppose char(k (Q)) = £. Then
char(k (E)) = £ and hence (¥, ¢, o) also satisfies the assumption (A4) of Assumptions 5.1. Suppose
char(k (Q)) # €. Then char(kx (P)) # £ for all P € E and hence (%, ¢, «) also satisfies the assumption
(A4) of Assumptions 5.1.

Suppose (2, ¢, a) satisfies the assumption (A10) of Assumptions 5.1. If char(x(Q)) # ¢, then
char(k (P)) # £ for all P € E and hence (%, ¢, o) also satisfies the assumption (A10) of Assumptions 5.1.
Suppose that char(k (Q)) = £. If Q ¢ D; for any i, then « is unramified at Q and hence « is unramified at
E. In particular E ¢ ramgy (o) and hence (#/, ¢, o) also satisfies the assumption (A10) of Assumptions 5.1.
Suppose Q € D; for some i. Since (2, ¢, ) satisfies (A10) of Assumptions 5.1, (1 —a)/(p — Dt e Ag.
Let P e E. Since Ag CAp, (1 —a)/(p— 1) € Ap. Hence (%, ¢, «) also satisfies the assumption (A10)
of Assumptions 5.1. U

Lemma 6.2. Let % — 2 be a sequence of blow-ups centered on closed points Q of 2" with char(k (Q)) #
L. Suppose (£, ¢, o) satisfy the assumptions (Al) and (A2). If (X, ¢, @) satisfies the assumption (A3)
or (A7) of Assumptions 5.1, then (%, ¢, o) also satisfies the same assumption.

Proof. Let Q be a closed point of 2" with char(x(Q)) # £ and E the exceptional curve in . Since
char(k (E)) # £ and for any closed point P of E char(x (P)) # £, the lemma follows. O

Assumptions 6.3. Suppose (%, ¢, @) satisfies the following:

(B1) ramg (¢) ={Cy, ..., C;}, the C; are irreducible regular curves with normal crossings.

(B2) ramy () ={Dy, ..., D,} with the D; irreducible curves such that C; # D; for all i and ;.
(B3) If DyNC; NC; # & for some s, i # j, then char(k (Dy)) # £.

(B4) If P € Dj for some 1 < j <n with char(k(P)) = ¢, then (1 —a)/(p — Dt e Ap.

(BS) dc, (¢) is the specialization of « at C; for all i.

(B6) If £ =2, then ¢ ® F ® K, is trivial for all real places v of K.

(B7) If £ =2, then a is a sum of two squares in F.

(B8) For 1 <i < j <r, through any point of C; NC; there passes at most one D, and if P € D;NC;NC},
then Dy is defined by unf_l +vm; at P for some units « and v at P and 7;, 7r; primes defining C;
and C; at P.

Lemma 6.4. Suppose (2, ¢, o) satisfies Assumptions 6.3. Let % — Z be a sequence of blow-ups
centered on closed points of 2~ which are not in C; N C; for i # j. Then (#,,a) also satisfies
Assumptions 6.3.

Proof. Let Q be a closed point of 2~ which is notin C; NC; fori # j and n: % — 2" a simple blow-up
at Q. It is enough to show that (%, ¢, @) satisfies Assumptions 6.3.

Since (B1), (B4), (B5) and (B8) are restatements of (A1), (A10), (A6) and (A9), (A11), by Lemma 6.1,
(#, ¢, a) satisfies (B1), (B4), (BS5) and (B8). Let E be the exceptional curve in %. Since Q ¢ C; N C;
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for i # j, by Corollary 4.4, ¢ is unramified at £. Hence ramy (¢) = {Cy, ..., C,}. Since ramy (o) C
{D1,..., Dy, E}, (%, ¢, a) satisfies (B2). Since ENC; NC; =S forall i # j, (¥, ¢, a) satisfies (B3).
Since (B6) and (B7) do not depend on the model, (%, ¢, @) satisfies all Assumptions 6.3. Il

Theorem 6.5. Let K, F and 2" be as above. Let ¢ € H*(F,7Z/€(2)) and a = [a, b) € H*(F, Z/t(1)).
Suppose that F contains a primitive £-th root of unity. If (2, ¢, o) satisfies Assumptions 6.3, then there
exists f € F* suchthat t = o - (f).

Proof. Suppose (2, ¢, a) satisfies Assumptions 6.3. First we show that there exists a sequence of
blow-ups 1 : % — £ such that (%, ¢, a) satisfies Assumptions 5.1.

Let P € Z(0). Suppose P € Dy for some s and Dy is not regular at P or P € Dy N D, for some s # t.
Then, by the assumption (B8), P ¢ C; N C; for all i # j. Thus, there exists a sequence of blow-ups
2" — 2 at closed points which are not in C; N C; for all i # j such that ram »- () is a union of regular
with normal crossings. By Lemma 6.4, 2" also satisfies Assumptions 6.3. Thus, replacing 2" by 2" we
assume that (27, ¢, o) satisfies Assumptions 6.3, D;’s are regular with normal crossings and Dy, C; have
normal crossings at all P ¢ C; for all j #i. In particular (27, ¢, o) satisfies the assumptions (A1) and
(A2) of Assumptions 5.1.

Suppose there exists i # j and P € D; N D; such that char(x(D;)) # £, char(k(D);) # ¢ and
char(k (P))={. Let 2 — 2 be the blow-up at P and E the exceptional curve in 2. Then char(k (E)) =
char(k(P)) =¢ and D;ND; NE = @ in 2. By the assumption (B8), P ¢ Cy N Cj for all i’ # j" and
hence 2" satisfies Assumptions 6.3 (see Lemma 6.4) and assumptions (A1) and (A2) of Assumptions 5.1
(see Lemma 6.1). Thus replacing 2" by a sequence of blow-ups at closed points in D; N D; for i # j, we
assume that 2" satisfies Assumptions 6.3 and assumptions (A1), (A2) and (A4) of Assumptions 5.1.

Since (2, ¢, a) satisfies the assumptions (B4), (B5) and (B8) of Assumptions 6.3, (27, ¢, «) satisfies
the assumptions (A6), (A9), (A10) and (A11) of Assumptions 5.1.

Suppose P € C; N D for some i, s and P ¢ C; for all j #i. Since ¢ is unramified at P except at
Ci, dc,(¢) is zero over k(C;)p (Corollary 4.4). By the assumption (BS5), we have d¢,(¢) = &. Since
P & C; for all j # i, C; and Dy have normal crossings at P and P ¢ Dy for all s' # s. Thus, by
Lemma 3.3, « ® Fp = 0. Let 2" — 2" be the blow-up at P and E the exceptional curve in 2”. Since
a® Fp=0and Fp C Fg, o is unramified at £ and hence ram gy (o) = {Dy, ..., D,}. Since £ ® Fp =0,
ramy(¢) = {Cq, ..., C,}. Note that C; N Dy = & in 2”. Hence (27, ¢, ) satisfies assumption (A8)
of Assumptions 5.1. Since P ¢ C; for all j # i, (27, ¢, a) satisfies Assumptions 6.3, 6.4, 5.1, except
possibly (A3), (A5) and (A7), and 6.1. Thus, replacing 2" by 2~ we assume that (2, ¢, ) satisfies
Assumptions 6.3 and 5.1 except possibly (A3), (AS) and (A7).

Letramgy (@) ={Dy, ..., Dy, D11, - .., Dy} withchar(x (Dy)) =€ for 1 <s <m and char(x (D;)) # ¢
form+1 <t <n. Suppose DsN D, # & forsome 1 <s <mandm+1<t<n.Let P € D;ND,. Then
char(k (P)) = ¢ and hence (@ — 1)/(p — )* € Ap (assumption (B4)). In particular [a) is unramified at P
(see Proposition 2.3). Since « is ramified at D;, vp,(b) is coprime to £ and hence there exists i such that
vp,(b) +ivp, (b) is divisible by £. Let 27 — % be the blow-up at P and E the exceptional curve in 27.
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We have vg, (b) =vp, (b)+vp, (b). Let O be the pointin E1ND; and &> — %7 be the blow-up at Q. Let
E; be the exceptional curve in 2>. We have vg,(b) = vg, (b) +vp,(b) = vp,(b) +2vp, (D). Continue this
process i times and get 2; — Z£;_1 and E; the exceptional curve in Z;. Then vg, (b) = vp,(b) +ivp(b)
is divisible by £. Since [a) is unramified at P, « is unramified at E;. Since char(x (E;)) = £ for all j,
E;_1ND; = in Z; and E; is in not in ram »; (). Since P ¢ C; N C; for all i # j (assumption (B4)), 2Z;
satisfies Assumptions 6.3 (see Lemma 6.4). Thus, replacing 2" by 2;, we assume that D; N\ D; = @& for
all<s<mandm+1 <t <nand 2 satisfies Assumptions 6.3. Thus 2" satisfies all the assumptions
of Assumptions 5.1 expect possibly (A5) and (A7) (see Lemma 6.1 ).

Suppose C; N D, # & for some i and ¢. Since (£, ¢, ) satisfies (A8) and (A9) of Assumptions 5.1,
there exists j # i such that C; N C; N D; # &. Since (2, ¢, a) satisfies the assumption (B3) of
Assumptions 6.3, char(x(D;)) # £. Hence C; N D, = & for all i and 1 <t < m. In particular (2, ¢, )
satisfies (A7) of Assumptions 5.1 and hence (27, ¢, «) satisfies all the assumptions of Assumptions 5.1
except possibly (AS).

Let P € Z(0). Suppose that P is a chilly point for «. Then P € D; N D, for some Dy, D; € ramy (o)
with Dy # D; with char(k (P)) # £. In particular P ¢ C; N C; for all i # j (assumption (B8)). Since
there is a sequence of blow-ups # — 2 centered on chilly points of « on £ with no chilly loops on
% (Proposition 3.4), by Lemmas 6.1 and 6.2, replacing 2" by ¢ we assume that (2, ¢, o) satisfies
Assumptions 6.3 and 5.1.

Thus, by Theorem 5.7, there exists f € F* such that for every x € 2(1), 0x(¢ —a - (f)) is unramified
at every discrete valuation of « (x) centered at a closed point of the closure {x} of {x}. Since x(x) is a
global field or a local field, every discrete valuation of « (x) is centered on a closed point of {x}. Hence
0y (¢ —a - (f)) is unramified at every discrete valuation of « (x).

For place v of K, let K,, be the completion of K at v and F), = F Qk K.

Let v be a real place of K. Since a is a sum of two squares in F, a is a norm from the extension
F,(v/=1). Let a € F,(+/—1) with norm equal to a. Since H>(F,(~/—1),Z/2(1)) = 0 [Serre 1997,
page 80] and COT . (/=T)/F, [a,b)=[a,b)®F,,a =[a,b) =0 H*(F,, Z/2(1)). Since, by assumption
{®F, =0,

¢ —a-(f)=0€ H (F,, Z/2(2)).

Let x € Z). Since £ —a-(f) =0¢€ H3(F,,7/2(2)) for all real places v of K, it follows that
0 (C—a-(f))=0¢€ H?(k(x),, Z/2(1)) for all real places v’ of k(x). Since 9, (¢ —a - (f)) is unramified
at every discrete valuation of k (x), 0x(¢ —a - (f)) = 0 [Cassels and Frohlich 1967, page 130]. Hence

¢ —oa - (f) is unramified on 2.
Let v be a finite place of K. Since { —« - (f) is unramified on 2,

¢ —a-(f)®F F,) =0 H*(F,,Z/¢(2))

[Kato 1986, Corollary page 145]. Hence ¢ = « - (f) [loc. cit., Theorem 0.8(2)]. Il
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7. Main theorem

In this section we prove our main result Theorem 7.7. Let K be a global field or a local field and F
the function field of a curve over K. Let £ be a prime not equal to char(K). Suppose that F' contains a
primitive £-th root of unity p. If K is a number field or a local field, let R be the ring of integers in K. If
K is a global field of positive characteristic, let R be the field of constants of K.

To prove our main result Theorem 7.7, we first show Proposition 7.6 that given ¢ € H3(F, Z/{(2))
with ¢ ® r (F Qk K,) =0 for all real places v of K, there exist « = [a, b) € H?(F, Z/£(1)) and a regular
proper model 2° of F over R such that the triple (2, ¢, @) satisfies Assumptions 6.3.

Let ¢ € H3(F,Z/£(2)) be such that ¢ ® (F ®x K,) = 0 for all real places v of K. Choose a regular
proper model 2” of F over R [Saltman 1997, page 38] such that:

e ramy (£)U suppa (£) C {Cy, ..., Cs, ..., C.}, where the C; are irreducible regular curves with
normal crossings.

e Fori # j, C; and C; intersect at most at one closed point.

. CiﬂCjZQifi,jfl"l ori,j>ry.

For x € Z{1), let By = 0,(¢). Let &y C UC; be a finite set of closed points of 2~ containing C; N C;
for 1 <i < j <r, and at least one closed point from each C;. Let A be the regular semilocal ring at the

points of #y. Let Q € C; be a closed point. Since C; is regular on 2", Q gives a discrete valuation v’é
on k (C;).
Lemma 7.1. There exists a € A such that:

e (a—1)/(p—1)* € A and [a) is unramified on A.

e For1 <i<ryand P € C;N Py, dp(By,) = [a(P)).

« Forri+1<i<rand P eCiNPy, dp(By,)=la(P)) .

e lIfPe Pyand P ¢ C;NCj foralli # j, then [a(P)) is the trivial extension.

o If£ =2, then a is a sum of two squares in A.

Proof. Let P € &). Suppose P € C; N C; for some i < j. Then, by the choice of 27, the pair (i, j) is
uniquely determined by P. Let up € «(P) be such that dp(0y,(¢)) =[up). If P ¢ C;NC; forall i # j,
let up € Kk (P) with [up) the trivial extension.

Then, by Lemma 2.5, there exists a € A such that for every P € &, the cyclic extension [a) over F is
unramified on A with the residue field [a(P)) of [a) at P is [up). Further if £ = 2, choose a to be a sum
of two squares in A (Lemma 2.5). From the proof of Lemma 2.5, we have (a — 1)/(p — 1)¢ € A.

Let P € #). Suppose that P € C; for some i and P ¢ C; foralli # j. Then dp(dy,(¢)) =1 (Corollary 4.3)
and by the choice of a and u p, we have [a(P)) =[up) = 1. Suppose that P € C; N C; for some i # j.
Suppose i < j. Then by the choice of a and up we have dp (9, (¢)) = [up) = [a(P)). Suppose i > j.
Then by the choice of a and up we have dp(9y,(¢)) = [up) = [a(P)). Since dp(dy,(§)) = dp(dy, )
(Corollary 4.3), we have 0p(9y,(¢)) = [a(P))~!. Thus a has the required properties. O
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Let a € A be as in Lemma 7.1. Let Ly, ..., L; be the irreducible curves in .2~ which are in the
ramification of [a) or v, ((a —1)/(p — DY <o.

Lemma 7.2. Then L; N Py = & for alli. In particular L; # C; for all i, j and char(k (L;)) # £.

Proof. By the choice of a, [a) is unramified on A and (a — 1)/(p — 1)* € A (Lemma 7.1). Hence
PyNL; = foralli. Since ¥ contains at least one point from each C;, L; # C; for all i and j. Since
suppa (£) C {Cy, ..., C,}, char(k(L;)) # £ for all i. O

Let 2, C Uj L be a finite set of closed points of 2" consisting of L; N L; fori # j, L; N C;, one
point from each L;. Since L; N &y = & for all i (Lemma 7.2), £2yN P = 3.

Let & = 2yU | and B be the semilocal ring at & on Z". For each i and j, let 7; € B be a prime
defining C; and §; € B a prime defining L ;.

Lemma 7.3. For each P € C; N &y, let nlf’ be a positive integer. Then for each i, 1 <i <r, there exists
b; € B/(m;) C k(C;) such that:
* ¢, (§) =[a(Cy), bi).
v (bj) =1 forall P € C;N Py, 1 <i <ry.
V(b)) =L—1forall P € C;N Py, ri+1<i=<r.
o Vi (b — 1) >n’ forall P € 2,NC; forall .

Proof. Let 1 <i <r. Let By, = 0y, (¢) € H*(k(C;), Z/¢(1)) and a; = a(C;).

Suppose 1 <i <rj. By Lemma 7.1, 0p(By,) =[a;(P)) forall P e C;NZy. If P ¢ Py, then 0p(By,) =0
for all i (Corollary 4.3). By the assumption, 8, ® k(C;), = 0 for all real places v of «(C;). Thus, by
Proposition 3.5, there exists b; € « (C;)* such that By, = [a;, b;), with vﬁ, (b;) =1forall P € C; N Z, and
v}(bi —1)> nf for all P € C; N &2;. In particular b; is regular at all P € C; N &2 and hence b; € B/(7;).

Suppose r1+1 <i <r. Let P € C; N F. Since dp(By,) = [a(P))~! forall P € C; NPy (Lemma 7.1),
op (,B;il) = [a(P)). Thus, as above, by Proposition 3.5, there exists ¢; € B/(7;) such that ﬂ;l = [a;, ¢;),
with vi, (¢;) = 1 forall P € C;N Py and vi,(c; —1) > nf forall P € C;N2,. Letb; =ct~' € B/(;). Then
By, = la;, b;). Let P € C; N 2. Since ¢; € B/(m;) and vl (c; — 1) > n?, it follows tat v, (b; — 1) > n?.
Thus b; has the required properties. O

Letd=[][8; € B.For1 <i <r,let 5(i) € B/(m;) be the image of 8. Let d be an integer greater than
v (8(i))+ 1 foralli and P € C;N 2.

Lemma 7.4. Let b; € B/(x;) be as in Lemma 7.3 for an =d forall P € C; N 2. Then there exists b € B
such that:

e b =b; modulo m; foralli.
e b= 1modulo §; forall j.

e bisaunitatall P e 2.
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Proof. For 1 <i <r,letI; = (m;) C B and I, 1 = (§) C B. Clearly the ged(s;, 7;) =1 and ged(mr;, ) =1
forall1 <i <j<r.Forl<i<j<r,Ij=1I;+1;is either maximal ideal or equal to B. For 1 <i <r,
we have I;11) = (;, 8). Since Ly N Py = forall s, (§;, m;, wj) =Aforall 1 <i < j <r and for all s.
Thus the ideals I;;, 1 <i < j <r+1, are coprime. Let b, 1 =1¢€ B/(I,11).

Let 1 <i < j <r. Suppose (m;, w;) # B. Then (7;, ;) is a maximal ideal of B corresponding to
apoint P € C; N C;. Since P € &, by the choice of b; and b; (see Lemma 7.4), we have vjp (bj)=1,
v;,(bj) ={—1and hence b =b; =0¢€ B/(m;, w;) = B/I;;.

Suppose ;1) # B for some 1 <i <r. Then we claim thatb; =1 € B/I;(11). Foreach P € L;NC;, let
M p be the maximal ideal of B at P. Since 2" is regular and C; is regular on 2", we have M p = (7;, 7; p)
for some m; p € Mp and the image of 7; p in B/(7;) is a parameter at the discrete valuation vj;. Since
d > vjp(g(i)), we have (m, ]_[ni‘fp) C (mi, 8) = Li+1y- Since B/(m, ]_[Jrfp) ~[[p B/(mi, nfp) and
vj},(b,- —1)>d,wehave b; =1¢€¢ B/(m, ]_[nl.‘fp). Since B/I; + 1,4 is a quotient of B/I; + (l_[P ﬂi’p)d,
it follows that b; = b, 1 =1€ B/I; + 1,11 = B/Li¢+1)-

Thus, by Lemma 2.7, there exists b € B such that b =b; € B/(r;) foralli and b=1 € B/I,4. Since
I,y1=(@)C@j)andb=1¢€ B/(§), wehave b=1 € B/(§;) forall j. Let P € &. Then P € L; for
some j. Since b=1€ B/(§;), b is a unit at P. Thus b has all the required properties. U

Lemma 7.5. Let a be as in Lemma 7.1 and b as in Lemma 7.4 and o = [a, b). Then « is unramified at all
Ci, Ljandatall Q € 2. Further dc, () is the specialization of o at C; forall 1 <i <r.

Proof. Since [a) is unramified at C; (Lemma 7.1) and b is a unit at C; for all i (Lemma 7.4), « is
unramified at C; and the specialization of « at C; is [a(C;), b;) = d¢,(¢) (Lemmas 7.3 and 7.4). Since
char(k (L)) # ¢ (Lemma 7.2) and b = 1 modulo §; (Lemma 7.4), b is an £-th power in Fy; and hence
o ® Fp; = 0. In particular « is unramified at L.

Let Q € #2;. Then b is a unit at Q (Lemma 7.4). Let x be a dimension one point of Spec(Byp). Then
b is a unit at x. If [@) is unramified at x, then « is unramified at x. Suppose [a) is ramified at x. Then, by
the choice of the L, x is the generic point of L; for some j and hence « is unramified at x. Thus « is
unramified at Q (see Lemma 3.1). O

Proposition 7.6. The triple (2, ¢, a, b)) satisfies Assumptions 6.3.

Proof. By the choice of 27, (B1) of Assumptions 6.3 is satisfied. Let ram o (o) = {D1, ..., D,}. Since «
is unramified at all C; (Lemma 7.5), (B2) of Assumptions 6.3 is satisfied. Since suppy (£) C {Cy, ..., C}}
and D; # C; for all i and j, char(k (D;)) # £ for all i and hence (B3) of Assumptions 6.3 is satisfied.

Let P € D; some j with char(x (P)) = £. Since suppy (£) C {Cy,...,C,}, P € C; for some i. Since
« is unramified at all Q € &2 (Lemma 7.5), P € £2;. Since C; N Ly, C &7 for all s, P & L for all s and
hence (a — 1)/(p — 1)¢ € Ap. Thus (B4) of Assumptions 6.3 is satisfied.

Since ¢, (¢) is the specialization of « at C; (Lemma 7.5), (B5) of Assumptions 6.3 is satisfied.

By the assumption on ¢, (B6) of Assumptions 6.3 is satisfied. If £ = 2, then, by the choice of a
(Lemma 7.1), (B7) of Assumptions 6.3 is satisfied.
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Let P € C;NC; for some i < j. Then, by the choice of b; and b; (Lemma 7.3), we have b; = u ;7 ; for
some unit u; at P and b; = L't,-ﬁf_l for some unit u; at P. Since b = b; modulo 7; and b = b; modulo
mwj, we have b = v,‘nffl +v;m; for some units v;, v; at P. In particular b is a regular prime at P. Since
[a) is unramified at P (Lemma 7.1) and b being a prime at P, « is unramified at P except possibly at b.
Thus there is at most one D; with P € Dy and such a Dy is defined by b = vl-rrf*l +v;m; for some units
v;, v; at P. In particular (B8) of Assumptions 6.3 is satisfied. U

Theorem 7.7. Let K be a global field or a local field and F the function field of a curve over K. Let £ be
a prime not equal to the characteristic of K. Suppose that K contains a primitive £-th root of unity. Let
¢ e H¥3(F,Z/€(2)). Suppose that ¢ @ (F ®k K,) is trivial for all real places v of K. Then there exist
a,b, f € F* such that ¢ = [a, b) - (f).

Proof. By Proposition 7.6, there exist a, b € F* and regular proper model 2 of F such that the
triple (2, ¢, «) satisfy the Assumptions 6.3. Thus, by Theorem 6.5, there exists f € F* such that
{=a-(f)=la,b)-(f). O
Corollary 7.8. Let K be a global field or a local field and F the function field of a curve over K. Let ¢
be a prime not equal to the characteristic of K. Suppose that K contains a primitive £-th root of unity.
Suppose that either £ # 2 or K has no real places. Then for every element { € H>(F, Z/€(2)), there exist
a,b,ce F* suchthat { =[a, b) - (c).

8. Applications

In this section we given some applications of our main result to quadratic forms and Chow group of
zero-cycles.

Let K be a field of characteristic not equal to 2. Let W(K) denote the Witt group of quadratic
forms over K and I (K) the fundamental ideal of W (K) consisting of classes of even dimensional forms
[Scharlau 1985, Chapter 2]. For n > 1, let I"(K) denote the n-th power of I (K). Foray, ..., a, € F*,
let {ay, ..., a,)) denote the n-fold Pfister form (1, —a;) ® - - - ® (1, —a,) [loc. cit., Chapter 4].

Theorem 8.1. Let k be a totally imaginary number field and F the function field of a curve over k. Then
every element in 13 (F) is represented by a 3-fold Pfister form. In particular if the class of a quadratic
form q is in I3(F) and dimension of q is at least 9, then q is isotropic.

Proof. Since every element in H 3(F,Z/23))isa symbol (Corollary 7.8) and cd, (F) < 3, it follows from
[Arason et al. 1986, Theorem 2] that every element in / 3(F) is represented by a 3-fold Pfister form (see
the proof of [Parimala and Suresh 1998, Theorem 4.1]). O

Proposition 8.2. Let F be a field of characteristic not equal to 2 with cd>(F) < 3 Suppose that every
element in H3(F, Z/2(3)) is a symbol. If q is a quadratic form over F of dimension at least 5 and \ € F*,
then g ® (1, —\) is isotropic.

Proof. Without loss of generality we assume that dimension of g is 5. By scaling we also assume that
q = (—a, —b,ab, c,d) for some a,b,c,d € F*. Let ¢ = (—a, —b,ab,c,d, —cd) ® (1, —)). Since
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(—a, —b,ab, c,d, —cd) € I*(K) [Scharlau 1985, page 82], ¢’ € I*(F). Hence, by Theorem 8.1, ¢’ is
represented by 3-fold Pfister form. Since ¢’ ® F(v/A) =0, ¢’ = (1, =) @ (1, ) ® (1, i) for some
u, w' € F* (see [Scharlau 1985, Theorem 5.2 on page 45, Corollary 1.5 on page 143 and Theorem 1.4
on page 144]). Since H*(F, 7/2(4)) =0, I*(F) = 0 [Arason et al. 1986, Corollary 2], we have
q' = —cd(l, =2) ® (1, u) ® (1, u').
Thus we have
(—a,—b,ab,c,d)® (1, =1) = —cd(l, =A@ (1, u) ® (1, ') +cd(1, —1)
=—cd(1=1)® (u, i, ).

In particular (—a, —b, ab, ¢, d) ® (1, —A) is isotropic [Scharlau 1985, page 34]. O

Corollary 8.3. Let K be a totally imaginary number field and F the function field a curve over K. Let g
be a quadratic forms over F of dimension at least 5. Let . € F*. Then the quadratic form g ® (1, —X) is
isotropic.

Proof. Since K is a totally imaginary number field and F is a function field of a curve over k, we have
H*(F,Z/2(4)) = 0. Since every element in H3(F,7/2(3)) is a symbol (Corollary 7.8), ¢ ® (1, —X) is
isotropic (Proposition 8.2). (|

The following was conjectured by Colliot-Thélene and Skorobogatov [1993].

Theorem 8.4. Let k be a totally imaginary number field and C a smooth projective geometrically integral
curve over K. Let n: X — C be an admissible quadric fibration. If dim(X) > 4, then CHy(X) is a finitely

generated abelian group.

Proof. Let g be a quadratic form over k(C) defining the generic fiber of n : X — C. Let N, (k(C))
be the subgroup of k(C)* generated by fg with f, g € k(C)* represented by ¢g. Let A € k(C)*. Since
dim(X) > 4, the dimension of ¢ is at least 5. Thus, by Corollary 8.3, g ® (1, —X) is isotropic. Hence A is
a product of two values of ¢. In particular A € N, (k(C)) and k(C)* = N, (k(C)).

Let CHp(X/C) be the kernel of the induced homomorphism CHg(X) — CHy(C). Then, by [Colliot-
Thélene and Skorobogatov 1993], CHy(X/C) is a subquotient of the group k(C)*/N,(k(C)) and hence
CHy(X/C) = 0. In particular CHo(X) is isomorphic to a subgroup of CHy(C). Since, by a theorem of
Mordell-Weil, CHy(C) is finitely generated, CHy(X) is finitely generated. O
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