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A many-body system of charged particles interacting via a pairwise Yukawa potential, the so-called Yukawa
one-component plasma (YOCP), is a good approximation for a variety of physical systems. Such systems are
completely characterized by two parameters: the screening parameter, «, and the nominal coupling strength,
I". It is well known that the collective spectrum of the YOCP is governed by a longitudinal acoustic mode,
both in the weakly and strongly coupled regimes. In the long-wavelength limit, the linear term in the dispersion
(i.e., w = sk) defines the sound speed s. We study the evolution of this latter quantity from the weak- through
the strong-coupling regimes by analyzing the dynamic structure function S(k, ) in the low-frequency domain.
Depending on the values of I and x and w = s/vy, (i.e., the ratio between the phase velocity of the wave and
the thermal speed of the particles), we identify five domains in the («, I') parameter space in which the physical
behavior of the YOCP exhibits different features. The competing physical processes are the collective Coulomb-
like versus binary-collision-dominated behavior and the individual particle motion versus quasilocalization. Our
principal tool of investigation is molecular dynamics (MD) computer simulation from which we obtain S(k, w).
Recent improvements in the simulation technique have allowed us to obtain a large body of high-quality data in
the range I' = {0.1-10 000} and « = {0.5-5}. The theoretical results based on various models are compared in
order to see which one provides the most cogent physical description and the best agreement with MD data in

the different domains.
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A many-body system of charged particles interacting via

a pairwise Yukawa potential, the so-called Yukawa one-

component plasma (YOCP), is considered to be a good ap-

proximation for a large variety of strongly coupled systems.

Examples include dusty plasmas [1], warm dense matter [2],

and ultracold plasmas [3]. Charges in these systems interact
via the Yukawa pair potential of the form

7
¢(r) = - exp[—r/A] ey

or in wave-number Kk space:

2)
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where ¢ is the charge of the particles, A is the screening length,
and k = |k|. The YOCP is characterized by two dimensionless
parameters: the coupling strength I and the screening param-
eter « are defined as

2
L BE
a

K =a/A, 3)
where a = (3/4mn)'/? is the Wigner-Seitz radius, # is the den-
sity, and B = 1/kpT is the inverse temperature. The dynam-
ical structure function (DSF) S(k, w) of a strongly coupled
YOCP has been extensively studied in the literature. Salin
derived an expression for S(k, w) from linearized hydrody-
namics equations and showed that it is given by the sum of
three Lorentzians centered at w = 0, w = %c,k, representing
a diffusive mode and two propagating acoustic modes with
sound speed c;, respectively [4]. Mithen ef al. have concluded
that such a description reproduces well the DSF of the YOCP
for wave numbers ka < 0.43«, while at higher wave numbers
a more sophisticated approach, based perhaps on memory
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functions, is needed [5,6]. A more precise description of the
collective mode spectrum of the YOCP is, by now, avail-
able [7-11]. Both the weakly (I' « 1) and strongly coupled
regimes (I" > 1) are governed by a longitudinal acoustic
mode that becomes the longitudinal plasmon, by means of
the Anderson-like mechanism, in the ¥ = 0 limit [12]. In the
small-k region, the acoustic mode has a linear dispersion,
i.e., w = sk, where s is the longitudinal sound speed. As to
the transverse sound, which is maintained by correlations,
no such mode is present in the weakly coupled regime. A
doubly degenerate acoustic mode, with sound speed st < s,
emerges only for I' > 50 [9,13]. Furthermore, the theoretical
prediction that the transverse mode extends all the way to
k = 0 is spurious, since the liquid is unable to support shear
waves in the uniform limit [35]. Hence the focus of this paper
is the longitudinal sound, since its occurrence across the entire
coupling regime makes it amenable to the study of how the
different phases of the YOCP affect its phase velocity.

To calculate the sound speed, a variety of different theo-
retical methods have been used in the literature: generalized
hydrodynamics [8], static and dynamic local field correction
of the response function [11], the sum-rule-based Feynman
approach [2,14], and the quasilocalized charge approximation
[7,9,15]. Recently, Khrapak and Thomas [16] have shown how
a simple fluid description complemented with a sufficiently
general phenomenological equation of state valid across cou-
pling regimes is sufficient to provide a good estimate for the
sound speed.

All of the above research, however, has focused on the
strongly coupled regime. In this work, we attempt to de-
scribe the behavior of the sound speed and damping of the
oscillations across a wide range of parameter regimes: from
a weakly coupled YOCP to its crystalline phase. We will
also indicate what the appropriate theoretical models for
these different domains seem to be. Our principal criterion in
assessing their merits is internal consistency and agreement
with molecular-dynamics (MD) simulations. We also provide
analytic calculations through different theoretical models,
with our emphasis being on the QLCA, which has proven to
be a highly reliable predictor in the strongly and moderately
coupled regimes [7,15]. Comparison with recent MD data will
help determine the coupling value down to which the QLCA
and its underlying model are applicable.

I. COMPUTER SIMULATIONS

Our MD simulations have been carried out for a system
of N = 27648 pointlike charged particles with charge ¢ and
mass m interacting via the Yukawa potential (1) in a cubic box
of side H, to which periodic boundary conditions are applied.
The finite length of the cube restricts the lowest possible value
of the wave number to

k 2 27 (3H?
Qmin = —a=—| —=
e 47N

H H
Recent improvements in the simulation technique have al-
lowed us to obtain a large body of high-quality data in
the range I' = {0.1-10000} and « = {0.5-5}. Upon ini-
tialization, the particles are placed randomly inside the
simulation box, and their velocities are sampled from a

1/3
) = 0.1289. @)

Maxwell-Boltzmann distribution having a temperature that
corresponds to the pre-defined I'. The equations of motion
of the particles are integrated with the velocity-Verlet scheme
with a time step <1/(20wy), where wy is the plasma frequency
defined in Eq. (9). For simulations with I' < 1, a time step
<a/(50vy,) was chosen in order to correctly resolve ballistic
motion. Following the initialization of the simulations, the
thermalization of the system is achieved by rescaling the
velocities of the particles at each time step until equilibration.
During this thermalization phase, no measurements are taken
on the system. Once the system has reached equilibrium, from
the positions and the velocities of the particles, we obtain the
microscopic density [17]

m(t) =) e s)
j
and the DSF S(k, w),
Sk, w) = : 1| (o) (6)
W)= 27N At @I

where ng (w) is the Fourier transform of ny(¢), and At is the
length of the data recording period typically wyoAt ~ 500—
1000. The peak of S(Kk, w) identifies the collective mode, from
whose position we calculate the sound speed by fitting an
appropriate function to S(k, ) and subsequently fitting the
peak positions at the lowest three ka values to a function
of the form f(x) = byx + bsx>. The coefficient of the linear
term is then identified as the sound speed. In addition to the
dynamical structure function, we calculate the static structure
function S(k) and the pair distribution function g(r) as these
serve as the basis of the theoretical calculations of the sound
speed.

II. DOMAINS

A major result of this work is the identification of five
different domains in the I'-x parameter space. In each of
these domains, the physical behavior of the YOCP exhibits
different features. Figure 1 shows two plots of the parameter
space divided into the five domains. The left-hand-side plot
represents a parameter space spanned by « and I', while the
right-hand-side one represents the parameter space spanned
by « and Iy, an effective coupling strength defined by
[16,18,19]

Fei(k, T) = T'(1 + ak + o*c2/2)e™, a = (4 /3)'3. (7)

We note that Ott et al. [19] proposed a different definition
of Iesr. Their results are, however, valid only in the range
1 < T <150 and « < 2, which is more restricted than the
one considered here. At weak coupling, we introduce the
additional parameter:

w:c—°=,/3—l;. ®)
Vth K

It represents the ratio of the nominal phase velocity ¢y ob-
tained from the random phase approximation (RPA),

co = woalk, wy= , )
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FIG. 1. Left: I'-k parameter space. Right: I'.i-x parameter space. The boundaries are defined in the text. The black dots indicate all the

simulations performed.

and the thermal speed vy, = (Bm)~!'/? [20]. This parameter
divides the weak-coupling regime into two domains, which
are bounded from above by the Kirkwood line, given as

k() = 1.21¢37, (10)

separating regions where the correlation function h(r) =
g(r) — 1 decays monotonically as r — oo from those with
an oscillating A(r) [2,21]. In Domain 1, where I' < 'k and
w < 1, the large thermal motion of the particles inhibits
the formation of a collective mode, and no acoustic peak
is discernible in S(k, w). This behavior is reported in plots
of S(k, w) for different pairs of («, ") in the left panel of
Fig. 2. Moving to Domain 2, characterized by I' < I'x and
w > 1, the system behaves as a weakly coupled Coulomb gas.
In Domain 3, I'x < I' < T',,/20, the system is a moderately
coupled liquid, with the melting line I',,(x) defined as

Fr(nOCP)eaK

Fm = —7
() 1+ ak + a?k?/2

(1)

where I'(OP) = 172 is the melting value of the Coulomb
OCP [22]. In this Domain, the correlational contribution to

the compressibility of the system becomes negative, lead-
ing to the creation of a minimum (or valley) in S(k, @) at
low frequencies; see the right panel of Fig. 2. The upper
boundary of Domain 3 has been heuristically identified as
I',,/20. Continuing to Domain 4, I" > I',,/20, the system
enters the strongly coupled liquid phase. Finally, Domain
5 is defined by values of I' > I'j,, and it represents the
crystalline phase. This latter can be further divided into two
subdomains, in which the system crystallizes either in a bcc
or in a fcc structure, depending on the value of the screening
parameter [23].

We note that for the case of “complex” (dusty) plasmas,
an alternative diagrammatic classification has been presented
in Ref. [24]. In this work, the authors use a criterion dif-
ferent from ours to distinguish various phases, namely the
scattering cross section for binary collisions. This allows them
to divide the entire phase diagram in two main regions: a
weak-coupling “ideal” regime, where the dust grains interact
primarily via binary collisions, and a nonideal regime, where
many-body interactions are dominant. The work presented
here differs from that of Ref. [24] inasmuch as our crite-
rion for distinguishing the various phases is the evolution of
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FIG. 2. Plots of S(k, w) obtained from MD simulation at the lowest ka value. Left: I'-«k values pertaining to Domain 1. Right: Evolution

of the minimum in S(k, w) as the system enters Domain 3.
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correlations, whose effect on the longitudinal sound speed is
of prime importance.

III. THEORETICAL MODELS

The dynamics of Yukawa systems is governed by the
competition of two physical effects: the long-range collective
behavior as inherited from the progenitor of the YOCP [i.e.,
the simple Coulomb OCP (COCP)], and short-range binary
interactions, more akin to those taking place in a neutral gas
of atoms. Based on this simple picture, the sound speed s can
be basically calculated in two ways. First, it can be calculated
from the analysis of the collective excitations, as the phase
speed at k — 0 of the acoustic mode w(k), whose dispersion
relation, in turn, is derivable from a kinetic equation or from
some other nonlocal formalism via the response function
technique. Second, alternatively, the sound speed may be
obtained from the fundamental thermodynamic relationship
Stherm = (0P/0n)s, where P is the pressure, and the subscript
indicates constant entropy. It is not a priori required that
the two approaches have to lead to the same exact result.
In fact, the thermodynamic approach is predicated upon the
assumption of a local thermodynamic equilibrium (LTE),
with a locally definable temperature and isotropic pressure
with a concomitant equation of state; no such assumption
is inherent in the collective mode description. Furthermore,
in the thermodynamic approach one also has to observe the
difference between the adiabatic and isothermal sound speeds;
no such distinction exists in the kinetic formulation. This
dichotomy was at the root of the debate in the early days of
plasma physics concerning the coefficient of the k* term in
the plasmon dispersion relation [25,26]. Here, in the weakly
and strongly coupled regimes, we will rely mostly on the less
restrictive collective mode approach. However, in the absence
of an approach justifiable for all domains, in the medium-
coupling range the thermodynamic formula will be invoked.
An additional technique, which avoids explicit reference ei-
ther to detailed dynamics or to the LTE and exploits exact
sum-rule relationships, will also be presented.

A. Collisionless kinetic approach

Starting with the weakly coupled I' <« 1 regime, one is
inclined to adopt the conventional RPA (Vlasov) formalism,
changing only the interaction potential from Coulomb to
Yukawa. In the “cold plasma” (T — 0) limit, this gives the
simple expression for the dielectric function,

ek w)y=1—2——, k=ka, (12)
leading to the RPA sound speed cy. Similarly, one expects

that finite-temperature effects will be correctly rendered by
replacing Eq. (12) by the finite-temperature RPA expression

2.2
wia /d% 1 k.a];(vv)’ 13

k2 + k2 k-v—ow

ek, w)=1—

which leads to the dispersion equation

R 1
T = (14)

Here x(x) = x'(x) +ix”(x) is the complex (“screened”)
Vlasov density response function,

2
e t

—iymxe™, (15)

1 X *°

—xx)=—1+—=P | ar

g = "1t /m Py
with x € R and

o 1
xX=—-——-".
kﬁvth

Separating the real and imaginary parts of Eq. (15), one
may follow the standard perturbative approach, seeking first a
solution for the real part of the frequency from the real part of
Eq. (14). In contrast to the Coulomb case, where the ensuing
derivation is formally independent of I', here the condition

r>1.17«2 7

(16)

has to be satisfied for such a solution to exist in the long-
wavelength limit [27]. This bound can be made more restric-
tive by imposing the requirement of small Landau damping.
Then the allowed I', k combinations are restricted to the
domain [27]

I > 2.03«>2. (18)

Within this domain, the sound speed can be expressed as

2 12
s%’ngo Ly 1+ =), (19)

showing that sgpa > co always. According to Egs. (18) and
(8), w > 2.47, and these results should be valid in Domain 2
of Fig. 1. In addition, we note that in the 7 — 0 (w — 00)
limit, Eq. (19) reduces to

SZRPA(U) — o0) = c% + 3vt2h, (20)

where the factor 3 in front of vy, is the same as that found in
a Coulomb OCP dispersion relation [25], a result that will be
commented on below.

To see the behavior of the system in the RPA in more detail,
and to directly compare with results of MD simulations, we
have calculated S(k, w) from the Vlasov response function
xo(k, w), Eq. (15), by means of the fluctuation-dissipation
theorem

1 %k )
mnBo le(k, w)|?

In Fig. 3 we show color maps and line plots of the RPA
S(k, w) for k = 0.5 at three values of I belonging to Domain
1 [panels (a) and (d)], Domain 2 [panels (c) and (f)], and on the
boundary between the two Domains [panels (b) and (e)]. The
dashed lines in the color maps represent the linear dispersion
o = srpak with sgpa given by Eq. (19). These plots illustrate
well the strong thermal effects of Domain 1 where no acoustic
peak is observed in S(k, w), but only a wide “shoulder.” This
is identified by the large shaded regions for ka < 0.2 in panel
(a). The ka values shown in panels (d)—(f) are those accessible
in our MD simulations. At the boundary between Domains 1
and 2, an acoustic peak starts to form, but it is immediately
broadened at higher ka values. Finally, in Domain 2, instead,
the thermal broadening is reduced and an acoustic peak is
visible for small and finite ka values, ka < 0.4. In the color

Sk, w) = —

21
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FIG. 3. (a)—(c) Color maps of S(k, w), calculated using Egs. (15) and (21), showing the dispersion (or lack thereof) of the longitudinal
acoustic mode; the dashed lines indicate the acoustic mode w(k) = sgpak, Where sgpa is given by Eq. (19). (d)—(f) Line plots of S(k, ) at three
ka values showing the presence (or lack thereof) of the acoustic peak. The I', k¥ values are indicated in the insets. Panels (a) and (d) belong to
Domain 1, (b) and (e) are on the boundary between Domain 1 and Domain 2, and (c) and (f) belong to Domain 2.

maps, this is represented by the thin ellipses beneath the
dashed line.

B. Collisional thermodynamic approach

At this point, one might ask whether there is, in fact, any
good justification for using the RPA for the weakly coupled
Yukawa OCP. In contrast to the Coulomb case, where several
proofs demonstrate that the RPA is the lowest-order term in a
formal expansion in terms of the coupling parameter [28], no
such relationship has been established for Yukawa systems.
Moreover, while the RPA neglects binary interactions between
particles and assumes that the dynamics of the system is
governed by the interaction via the average field only, in
Yukawa systems the short-range character of the interaction
makes collisions more significant. This suggests that the
more phenomenological hydrodynamic description, which is
predicated on the existence of a LTE maintained by frequent
collisions, may represent an appropriate alternative. Adopting
this approach, one is led to using the Euler equation combined
with the continuity equation and the Helmholtz equation for

the Yukawa potential. We then obtain a sound speed of the
form [16]

Sfuia = €g + yLvg, = c§<1 + Z_ﬁ) (22)
where the pressure term has been expressed in terms of
the ratio of the specific heats, y =c,/c,, and the inverse
isothermal compressibility, L = B(dP/dn)g. To make any
further progress, an EOS is needed for the calculation of y
and L. In general, L consists of the ideal gas and correla-
tional contributions, L = 1 + L., where L, is negative [7,29].
Here, in the weakly coupled regime we expect the perfect
gas approximation to be valid, with L = 1. The value of y
depends on whether an isothermal or adiabatic process is
contemplated, corresponding to y = 1 or 5/3, respectively.
Direct comparison between Egs. (19) and (22) indicates
that the RPA sound speed exceeds the hydrodynamic sound
speed for I' > 0.694«>. However, Eq. (19) assumes (17) and
(18), therefore the RPA sound speed will always be larger
than the hydrodynamic sound in its Domain of validity. The
concept of an adiabatic process can also be generalized on
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FIG. 4. Comparison between RPA sound (19) and fluid sound speeds (22) for an adiabatic y = 1, isothermal y = 5/3, process. y =3
corresponds to the sound speed from Eq. (20). The KT line is the sound speed calculated in Ref. [16]. The dashed vertical lines represent the
boundaries between the Domains. « values are indicated in the top left corner of each plot.

phenomenological grounds in order to describe the system
when LTE between longitudinal and transverse degrees of
freedom on the timescale of wave propagation does not pre-
vail. In this case, it is the effective dimensionality associated
with the wave propagation that determines the value of y:
y =142/d (d = dimensionality). Comparison with (20)
shows that in Domain 2, a similar approach would yield
y =3, 1i.e., effective d = 1 dimensionality. Such a situation is
well known in Coulomb plasmas and may be considered the
hallmark of LTE [25]. Alternatively, Eq. (22) is derivable from
the fundamental thermodynamic relation Sgerm = (0P/0n)s,
provided the pressure includes the effect of the Yukawa field
(to lowest order in the coupling). In this case, instead of using
the field equation, one has to add the Hartree (average field)
contribution [7,29]

1 4 n*q*a?
Py = 3T

to the equation of state, yielding the additional Hartree contri-
bution to L, providing L = 1 + Ly and

= (23)

LH _(,()g
pm

which then leads back to Eq. (22).

In the higher coupling regime, Domain 3, where the system
is in the liquid state, the RPA, which neglects correlations,
is expected to overestimate the sound speed. As to the hy-
drodynamic approach, which also neglects correlations when
L =1, there is no indication on theoretical grounds what
value of y to use in this Domain. One would expect that a

(24)

9
K2

value between the kinetic one-dimensional and the thermo-
dynamic three-dimensional values, i.e., 5/3 < y < 3, would
be a reasonable choice. The underlying philosophy of LTE
that may justify the use of a hydrodynamic description in the
weak-coupling regime, where the thermal velocity dominates,
may be invoked in the case of medium or strong coupling
as well, although the onset of quasilocalization (see below)
makes that assumption doubtful. Setting this point aside, the
extension of the thermodynamic approach to the stronger
coupling domain requires an EOS, valid for arbitrary « and
[". While a derivation from first principles is not available,
various semiphenomenological efforts [30,31] have proved to
be quite successful. Rosenfeld and Tarazona showed that the
internal energy of systems with soft repulsive potential, in-
cluding the Yukawa potential, exhibits a quasiuniversal behav-
ior [30]. The latter authors obtained a power-law formula for
the internal energy from fits to computer simulations. Khrapak
and Thomas used this formula for the calculation of y and L
for a large range of I". Figure 1 in Ref. [16] shows exactly that
5/3 < y < 3in the weakly to moderately coupled regime and
y = 1 in the strongly coupled regime. This observation seems
to corroborate the assertion that the quasilocalized charge
environment reduces the effective collision frequency and is
not conducive to the formation of LTE.

A comparison between the RPA sound, Eq. (19), valid for
w > 2.47, and the hydrodynamic sound, Eq. (22), with L =
1 and different values of y, is shown in Fig. 4. The sound
speed calculated by Khrapak and Thomas [16] is also plotted
in Fig. 4 as a dense dashed line (KT line). From these plots,
we note that the KT line overlaps with the adiabatic sound
(y = 5/3) in the weakly coupled regime while falling below

063206-6
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the isothermal sound and the RPA value ¢y as I increases.
Furthermore, we note that the RPA sound approaches the y =
3 line as k — 0, as given by Eq. (20).

C. Sum-rule-based approach

An alternative approach, which still relies on the thermo-
dynamic relationship, yields the sound speed in terms of Ly,
the (total) inverse isothermal compressibility [4,6,32]

yLr

pm’
with y = 1. Explicit reference to any EOS here can be avoided
by invoking the static structure factor, S(k), obtainable di-

rectly from MD simulations, and making use of the compress-
ibility sum rule

s% = (25)

pnLr = lim S(K) (26)
to find
—1 2 2 1
52 = lim Bm) " _ iy @09 1 27)
0 S(k) k2o 3T S(K)

Remarkably, this very same relationship can be derived
through the classical version [33] of the Feynman ansatz [34]
as well, even though the main physical assumption in that
model is quite different from the one implied by the hydro-
dynamic model. In the Feynman ansatz (FA), no reference is
made to LTE, rather it is assumed that the only significant
contribution to the DSF comes from the collective excitation,
in this case the sound wave wg(k) = srk. In this case, the DSF
reads

Sea(k, w) = AK)[§(w — w(k)) + §(w + w(k))]. (28)
Evoking, then, the compressibility sum rule
oo
(") = / dow Sra(k, 0) = S(k)
—0o0
= A(k) = S(k), (29)
and the f-sum rule
0 272
W = [ dowsiatew) = -
272
2(k) = —0% 30
= (k) 3rSK) (30)

one indeed recovers (27) [2,14].

The expression for the sound velocity given by (27), which
will be referred to as the Feynman sound speed, is formally
valid for all T", k¥ values: all the information is embodied in
S(k). To obtain S(k), three different methods have been im-
plemented: (i) direct calculation of (n_gny) (see Refs. [17,35]
for details), (ii) integration over the entire frequency range of
Sk, w), i.e.,

o0
Sk) = 2/ do Sk, w), 31
0
(iii) Fourier transformation of the pair correlation function
h(r),i.e.,

, sin(kr)

S(k):l+n/oodrr (32)

; o h(r).
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FIG. 5. Comparison between quartic fit (solid lines) and MD
simulations (diamonds) for two « values. The values of «
are indicated in the top left corner of each plot. For clar-
ity, only the first few I' values are indicated as the lines be-
come densely packed at higher I'. The missing labels are I' =
{10, 20, 40, 60, 80, 100, 120, 150, 200}

Each method has its drawbacks due to the finite integration
ranges. No substantial differences, however, have been ob-
served between the results of the first two methods, while
those from the last have been found to be very poor at low
ka. The results presented in Sec. IV are obtained using method
(i1). The limit k — 0 of S(k), instead, is extrapolated by fitting
a function f>(x) = ag + axx? + asx* to the lowest few ka
values of the simulations. In Fig. 5 we show plots comparing
MD data of S(k) (diamonds) and fits to these data (solid lines)
for two « values and the entire I" range. It is interesting to note
the larger gap between the I' = 2 and 3 lines in both plots,
coinciding with the boundary between Domains 2 and 3. This
is more evident in the ¥ = 1.0 (third and fourth lines) plot than
in k = 0.5 (fifth and sixth lines).

Before continuing, it is important to clarify a point raised
in a recent discussion on the compressibility [36]. It is es-
sential to realize the difference between the quantities L.,
L=1+4L., and Ly =1+ L, + Ly, especially in view of a
recent controversy regarding the sign of the compressibility
[36], prompted perhaps by a somewhat loose usage of the
term “compressibility” in the literature. Note that Ly is a
positive quantity and must be so, both in order to guarantee
the thermodynamic stability of the system and because of the
compressibility sum rule that relates it to the positive-definite
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S(k). On the other hand, L. is always negative while L changes
sign in the vicinity of the Kirkwood line as I" enters Domain
3. It is this latter effect that is usually referred to as the
“softening” of the EOS and is claimed to be responsible for
the “lowering” of the sound speed with increasing I". In fact,
the EOS never softens with higher density; rather, it gets stiffer
because of the dominance of the Hartree term. Similarly, the
sound speed never decreases, only in relationship to ¢y, which
itself is a fast increasing function of the density. Furthermore,
we note that the total pressure of the YOCP is always a
positive quantity as well, due to the presence of the Hartree
term, Eq. (23). This is at variance with the case of the
Coulomb OCP, where only the contribution of the neutralizing
background prevents the pressure from becoming negative at
strong coupling. See also the discussion in Ref. [4] and Eq. (6)
in Ref. [29].

D. Strong-coupling theory: QLCA

Turning now to the strongly coupled regime, Domain 4,
here correlations dominate and thermal motion plays a neg-
ligible role. An appropriate approach in this Domain is the
quasilocalized charge approximation (QLCA) [37]. This tech-
nique has been quite successful in describing the collective
excitations of charged-particle systems [7,9,15]. The basis
of the formal development of the QLCA is the realization
that the dominating feature of the strongly coupled state of
a plasma is the quasilocalization of the charges. This physical
picture suggests a microscopic equation-of-motion model in
which the particles are trapped in local potential fluctuations.
The particles occupy randomly located (but certainly not
uncorrelated) sites and undergo oscillations around them. At
the same time, however, the site positions also change and a
continuous rearrangement of the underlying quasiequilibrium
configuration takes place. Inherent in the QLC model is the
assumption that the two timescales are well-separated and
that for the description of the fast oscillating motion, the time
average (converted into an ensemble average) of the drifting
quasiequilibrium configuration is sufficient. The application
of the QLCA to the case of a YOCP yields a dynamical matrix
C(k) whose longitudinal component reads

| R dr (k-V\’
Ck) = 122+K2+/ 4]”]2( - >¢(r)h(r) ., (33)

where h(r) is the equilibrium pair correlation function [38].
The collective mode is the solution to the equation w? —
C(k) = 0 from which we obtain, after taking the limit k — 0,

the sound speed

22 '
SQLCA = Co{l + F f dr /C(Kl_”)h(f)eKr} i (34)
KkF) = [1 + KT+ %(mz], (35)

where 7 = r/a. We emphasize that the correlational depen-
dence comes only from the (negative) integral while the first
term is the cold RPA sound. We observe that the QLCA result
shows a monotonic decrease of the relative sound speed, as
interparticle correlations increase—a clear indication of the
correlation-induced “softening” of the equation of state (cf.

the discussion above). In the literature, one finds different
versions of the above equation. For example, the sound speed
calculated from Eq. (29) of Ref. [7] is obtained from the above
Eq. (34) by rewriting the integral in terms of the correlational
energy E. = (n/2)fdr ¢(r)g(r), which, in turn, leads again
to the need for an EOS when g(r) is not available. In Ref. [7],
the EOS used is the one calculated by Hamaguchi et al. in
Ref. [23]. In this work, we computed g(r) directly from MD,
and therefore we will use Eq. (34) for the calculation of the
sound speed in the following.

E. Lattice

Finally, arriving at Domain 5, the crystalline solid phase,
the theoretical description of the phonon excitations through
the harmonic phonon approximation and lattice summation
technique is well known. It is believed that the lattice structure
of a Yukawa solid is either bec or fcc, depending on the value
of the screening parameter k. The appropriate phase diagram
is due to Hamaguchi et al. [23]. According to this prediction, a
YOCP with k = 1 crystallizes in a bcc lattice, while a YOCP
with x = 3 crystallizes in an fcc lattice. The calculation of the
corresponding phonon spectrum is straightforward. The sound
speed is given by

Ssolid = wp(k — 0)/k, (36)

where w; (k — 0) is the longitudinal mode of the dispersion
relation

8, — Dy (K)[| = 0 37)
with the dynamical matrix
9? ¢(r) ik
)= —— T _1]. 38
D Z 8rM8rV I (38)
IV. RESULTS

In this section, we compare the previously described the-
oretical models with results from MD simulations. We start
with a direct comparison between RPA calculations and MD
simulations of S(k, w), followed by a comparison of the sound
speed across coupling regimes and a similar investigation of
the damping behavior.

A. Dynamical structure function

In the weakly coupled regime, the analytic formula (21)
allows for a direct comparison between the RPA calculations
and MD simulations. This is shown in Fig. 6, where we
present plots of S(k, w) at six I, ¥ points in parameter space.
Dashed lines represent RPA calculations, while solid lines
represent MD simulations. The three left panels (a)—(c) in
the figure represent I', ¥ points belonging to Domain 2, while
the three right panels indicate points in Domain 1 [panel (d)],
Domain 2 [panel (e)], and on the boundary between the two
Domains [panel (f)]. In all six plots, the RPA faithfully repro-
duces the profile of S(k, w) over a large range of frequencies
with the only differences being in the bottom panels where
the RPA shows a faster decay than the MD. Furthermore, the
plots indicate the absence of a well-defined acoustic peak in
Domain 1 and on the boundary with Domain 2 (top panels
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FIG. 6. Plots comparing S(k, w) obtained from MD simulations (solid lines) and from RPA calculations Eq. (21) (dashed lines), at the
three lowest ka values: ka = {0.1289, 0.2578, 0.3867}. The arrow indicates the direction of increasing ka. I" and « values are indicated in the

top left corner of each plot.

and center right panel). Only when the system is well into
Domain 2 is a well-defined acoustic peak observed. MD
simulations at I' values higher than those in the figure, while
still belonging to Domain 2, start to show a deviation from the
RPA formula indicating the onset of correlational effects as
shown in Fig. 11.

B. Sound speed

Plots of the relative sound speed across three domains are
presented in Fig. 7, where the vertical error bars indicate a
5% error for the MD sound speed. Five different theoretical
models are presented: (i) The line marked “RPA” is calcu-
lated from Eq. (19); (ii) the line “Hydro” corresponds to the
fluid model, Eq. (22), taken at weak coupling and strict 3D
thermodynamic equilibrium; (iii) the line “KT” corresponds
to the sound speed calculated from the EOS proposed by
Khrapak and Thomas in Ref. [31] for all I" values, with
y determined from the EOS under the assumption of strict
3D thermodynamic equilibrium; (iv) the “QLCA” line is
calculated from Eq. (34); and (v) the “FA” line represents

the Feynman formula with the understanding of a prevailing
isothermal condition.

As shown above, no acoustic peak is found in simulations
pertaining to Domain 1, and only when the system enters
Domain 2 does a well-defined acoustic peak become visible.
Figure 7 further validates the plots in Fig. 6. The RPA sound
speed is found to be in very good agreement with the MD
data for I'" values close to the lower boundary of Domain
2, while it overestimates, despite remaining within the error
bars, for higher I values. Given the good agreement with
the RPA sound, the slight underestimate of the hydrodynamic
sound is expected, since we recall that for I' = 0.694«2, the
sound speed given by Eq. (19) is always higher than the
one calculated from Eq. (22). The Feynman sound, which
is obtained directly from MD data without any reference to
any particular EOS and thus should reproduce the MD results
well, is, in fact, an underestimate, probably because of the
assumed isothermal behavior. For I" values beyond Domain 2,
both the RPA and the hydrodynamic formula deviate from MD
results and overestimate the sound speed, as expected, since
both of them ignore correlations. In contrast, in this Domain
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FIG. 7. Comparison between theoretical models and MD simulations (black squares) with 5% error bars. The blue solid line (RPA)
corresponds to Eq. (19), the green dashed line (Hydro) to (22), the red dotted line (KT) to Ref. [16], cyan circles (QLCA) to Eq. (34),
and magenta diamonds (Feynman ansatz) to Eq. (27). « values are indicated in the insets.

the Feynman sound falls within the 5% error. The phenomeno-
logical formula of Khrapak and Thomas [16] is in very good
agreement with MD over the moderately and strongly coupled
regimes. The underestimate in the weakly coupled regime is
again expected given that their EOS approaches the ideal EOS
at low I'. Note that the intersection with the = 1 line corre-
sponds to the onset of negative compressibility: for the lowest
« value, KT seems to overestimate the I" value, where this
happens, but it is in good agreement with MD data for higher
k values. As for the QLCA speed, Eq. (34), we find very
good agreement only in Domain 4 since the quasilocalization
model is not appropriate in Domains 2 and 3. Reaching the
boundary of Domain 5, the KT and Feynman join smoothly
the lattice value of the sound speed, but the QLCA seems
to end up at a higher speed. Since the transition through the
phase boundary should be smooth, at least in the case of
the bcc, this requires some explanation. Observing that the
discrepancy is most pronounced for small «, where the linear
portion of the dispersion curve is the shortest, we suggest that
the reason for the mismatch may be that the smallest ka value
reached by simulations, kani, = 0.1289, is not small enough
to fall within the linear dispersion portion of the mode and
therefore it provides an average slope, which is lower than the
acoustic one.

Comparison at larger ¥ for Domains 3 and 4 is shown
in Fig. 8. Using the upper scale I'/T",, in the panels to
find corresponding points, not much «-dependence can be
discerned in Domain 3. In Domain 4, though, especially near
the freezing boundary, the sound speed decreases sharply as
a function of k. A similar effect has been reported already in
Ref. [7,23,29].

Finally in Fig. 9, we show a polar plot comparing the
lattice sound speeds for two different lattice structures and
the QLCA speed at the highest I" values, near the freezing
point. The main difference between the bcc and fec behavior
is that in the former, the sound speed is isotropic, while in
the latter it is not, although the degree of anisotropy is small
(~ 10%). At the freezing boundary, the QLCA predictions and
lattice calculation results are in good agreement (within 10%)
(except for x = 0.5, not shown here, but discussed above);
there is certainly no abrupt change in the sound speed at the

phase-transition boundary, although obviously no exact match
between the isotropic QLCA and the anisotropic fcc can exist.

C. Damping

Determining the damping of the sound wave excitation is
a delicate matter, fraught with two serious issues. First, the
notion of “damping” of a collective mode is ill-defined. On the
one hand, theoretically, the damping can be calculated from
the imaginary part of the complex frequency solution v of the
dispersion equation, ¢(k, @) = 0, with @(k) = (k) + iv(k).
On the other hand, the damping can be inferred either from
MD simulations or from an actual experiment by examining
the width of the acoustic peak in the S(k, @) spectrum. The
two definitions must yield different results, as is evident from
Eq. (21). The second problem derives from the fact that
the theoretical understanding of the damping mechanism in
the medium- or strong-coupling regimes is lacking. While
collisions seem to be the principal agent responsible for the
damping of oscillations, other processes, such as trapping
and caging, localization, self-diffusion, and nonlinear mode-
mode interactions, may play significant roles as well. Thus,
in the absence of theoretical guidance, the organization of
observational data becomes difficult.

Analytically, the shape of the “spectral line” associated
with the sound wave is determined by the FDT, as given
by Eq. (21). The shape generated by the complex pole due
to the zero of the denominator would be a Lorentzian with
the half-width at half-maximum (HWHM) set by v, but in
fact the HWHM is also affected by the w-dependence of the
numerator. The precise analytic form of this latter is known
only for the RPA, where it mirrors the velocity distribution of
the plasma particles. Evoking the analogy with spectral line
formation, we may describe the effect as “Doppler broaden-
ing” and characterize it with the parameter o . Furthermore, in
the weakly to moderately coupled regime, the acoustic peak
in S(k, ) is asymmetric with the right-hand side decaying
much faster than the left-hand side (see Fig. 6). Therefore,
we have defined with HWHM the width Aw = @par — ®peak,
where the wpyr is the frequency at which the right-hand side
of the peak becomes half the amplitude of the peak.

063206-10



SOUND SPEED IN YUKAWA ONE-COMPONENT PLASMAS ...

PHYSICAL REVIEW E 100, 063206 (2019)

/Ty /Ty
102 101 102 101
1.6 W . r 1.8 - . - .
14t & = e KT M :
o e -e QLCA 14y '?\ : !
N ¢ -9 FA 1 N 1
o\ ¢ N
s 1.2¢ AN ® B MD 1.2} e L \\\\\ ' ]
B N S 1ol % i [ SRS
1 N - \k\_ 1 ¥y . 1
1.0t ' g * 1T T —— ey 9 - N , 1
- N 2N Domain 4 0.8r ! b -\_i_;,i 1 .
. Lol TN o, : f*i )
1 Ll Iy 0.6} 1 "_ -_'t. . A
0.8¢ 1 1 e - i E 1 . 1 .
1 Domain 3 1 "1 ' Domain 3 , Domain
a1 L L Ll 1 I 0.4 Ll I L L LA L L
1 23 5 10 20 50 100 300 23 5 10 20 50 100 300
r r

FIG. 8. Same as Fig. 7, but for x = 2.0, 3.0. In this plot, error bars indicate a 10% error.

In the following, the damping is calculated in two different
ways, depending on whether one is within the RPA or outside
the RPA region. For the RPA, the analytic form of S(k, w)
being given, the calculations of both v and of the HWHM are
straightforward. Outside the RPA, the damping is determined
through fitting a Voigt distribution function, which is designed
to combine Doppler broadening with intrinsic damping,

ARe[W(z2)] X — wy + i
Vx,A wp,0,8)= , 2= , (39
A one ) == oz

where W(z) is the Faddeeva function, A is the amplitude, and
wy is the peak location [39]. The parameter o indicates the
effects of Doppler broadening due to the thermal distribution
of particle velocities, while the parameter § indicates the
intrinsic damping of the mode. In the low-coupling regime,
i.e., values close to the lower boundary of Domain 3, the Voigt

FCC k =3.0

— BCCk=10

QLCAT =200 k = 1.0
QLCAT =300, k = 3.0

e

270°

FIG. 9. Polar plot comparing the lattice sound speeds and the
QLCA speeds. 6 represents the polar and ¢ the azimuthal angles.
Inner lines refer to an fcc and outer lines to a bee crystalline structure.

profile has been multiplied by an inverse power law «x w™7,
p > 0, in order to help reproduce the asymmetry of the MD
peak (see the bottom panels in Fig. 6).

Earlier we found that in Domain 1 the large damping
quenches the acoustic mode. In Domain 2 the two measures
of the damping, both v and the HWHM, as calculated ana-
lytically from the RPA formulas (14) and (21), are shown in
Fig. 10. There is very little difference between the two results.
It should be remembered, though, that the strong asymmetry
of line shape is not properly accounted for in the present
calculational protocol, and therefore the HWHM result should
be regarded as an underestimate. The damping mechanism
in this Domain is most likely Landau damping, since I" is
small and w > 1. Furthermore, the faithful reproduction of
the S(k, w) profile by the RPA corroborates this assertion.

For higher I' values, the “intrinsic damping” § and the
“Doppler width” o as obtained from the Voigt profile are
shown in Figs. 11 and 12, respectively. As I' increases be-
yond the Domain 2-Domain 3 boundary, Landau damping
decreases exponentially with I' [from Eq. (16) x cx w =
V3T /] and fails to account for the observed damping; see
the top left panel in Fig. 11. In Domain 2, near the boundary,

10° : , , ‘
o0 Auw/wyw ka=0.1289  &-4 v/,
L Aw/wpmk ka=10.2578 > > V/wr
1014
102}
02 0.3 0.5 0.7 )
r

FIG. 10. Comparison between the relative (right) HWHM ob-
tained from the RPA S(k, w) and the ratio of the imaginary over the
real part of the complex solution of e(k, ) = 0. k = 0.5.
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and in Domain 3, correlations set on, with the ensuing ex-
pected increased collision frequency. Here, the hydrodynamic
description leads to a better description of the sound speed,

and thus we expect collisions to be the dominant mechanism,
not only for the creation but also for the damping of the acous-
tic mode. Furthermore, in the moderately coupled regime, one
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FIG. 12. o parameter extracted from fits to MD simulations at the lowest ka value.
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would expect the collision frequency to increase with I' [40]
with an ensuing growth of the damping. This behavior has
certainly been theoretically predicted for the COCP [41-43],
and there is little doubt that the same kind of analysis would
apply to the YOCP. However, in the current case we fail to ob-
serve a region with such a I'-dependence. Rather, a monotonic
decay begins right after the Landau-damping-dominated RPA
region. The decay of the damping with I' may be explained by
a physical picture where with increasing correlations particles
get more and more trapped in local potential minima and
thereby collisions become less frequent. This process may
go on until the system enters the strongly coupled regime
of Domain 4, at which point the completed quasilocalization
of the particles settles the damping around a constant value.
Nevertheless, the absence of an intermediate region between
Landau damping and quasilocalization where the damping
grows with increasing I' is puzzling: substantially more work
and simulations are needed to understand this behavior and its
seeming disagreement with theoretical expectations.

V. CONCLUDING REMARKS

In this work, we have investigated the sound speed of a
YOCP over a wide range of I' (coupling) and « (screening)
values. The former spans over states from the very weak,
virtually ideal-gas-like, all the way to the extremely strong
crystalline solid phases. With the aid of an advanced sim-
ulation technique and a combination of various theoretical
models, such a comprehensive description of the evolution
of a collective mode across coupling values is possible. We
have identified five Domains in the I'-x parameter space.
At weak coupling, long-wavelength density oscillations are
possible only with a phase speed ¢y greater than the ther-
mal speed of particles vy,. In marked contrast to Coulomb
systems, this requires a minimum value of I', below which
the thermal motion quenches collective excitations. Once I"
exceeds this value, the YOCP can support a mode with an
acousticlike dispersion. The phase speed of this mode, in
general, is given by the combination of three contributions:
a coupling (temperature) independent mean-field term wga/«,
a (negative) correlational, and a (positive) thermal-coupling-
dependent term. In the weak-coupling regime, the second term
is absent, while the latter is derivable from a hydrodynamic
description with an ideal-gas equation of state. This indicates

that the system behaves as a gas in local thermodynamic
equilibrium sustained by frequent collisions. At the same
time, at reasonably low values of the screening parameter,
the YOCP resembles a weakly coupled Coulomb gas with a
dispersion relation derivable from the collisionless Vlasov ki-
netic equation. As the coupling parameter is increased beyond
the Kirkwood value I'k [defined as the value at which the
r — oo behavior of the pair correlation function /(7) becomes
oscillatory], the system enters the moderately coupled liquid
regime, in which particle correlations become of the same
order as the thermal effects. Further increase of the coupling
leads to the strongly coupled liquid domain, with the onset
of quasilocalization. In this domain, the thermal contribution
to the sound speed becomes negligible. Finally, for I' > ',
the system crystallizes with a lattice structure determined
by the screening parameter. Depending on the lattice structure,
the resulting acoustic phonon shows an anisotropic (fcc) or
isotropic (bcc) spectrum, with a value in the very vicinity of
the sound speed in the strongly coupled liquid.

Preliminary investigation of the damping, measured as the
HWHM of the acoustic peak in S(k, w), corroborates the
physical picture where at low coupling in the gaseous state
Landau-type damping dominates, with a gradual enhancement
of the collisional induced damping as I' increases. Contrary
to naive expectation, however (based partly on the available
exact perturbational results pertaining to Coulomb systems,
which show an increase in damping with increasing I'), the
damping exhibits a monotonic decay all the way through the
strongly coupled domain. This behavior may be attributed to
the onset of quasilocalization, which is expected to reduce the
collision frequency between particles isolated from each in
distinct cages. The details of the coupling dependence of the
damping are, however, still not well understood.

Our work relies on the analysis of a huge body of MD data,
which complement the work found in the literature inasmuch
as our simulations extend well into the as-yet simulationally
unexplored weakly coupled I' < 1 regime.
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