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Abstract—This paper offers a new feature-oriented compres-
sion algorithm for flexible reduction of data redundancy com-
monly found in images and videos streams. Using a combination
of image segmentation and face detection techniques as a prepro-
cessing step, we derive a compression framework to adaptively
treat ’feature’ and ’ground’ while balancing the total compression
and quality of ’feature’ regions. We demonstrate the utility of
a feature compliant compression algorithm (FC-SVD), a revised
peak signal-to-noise ratio PSNR assessment, and a relative quality
ratio to control artificial distortion. The goal of this investigation
is to provide new contributions to image and video processing
research via multi-scale resolution and the block-based adaptive
singular value decomposition.

Index Terms—adaptive singular value decomposition, feature
oriented image compression, modified PSNR.

I. INTRODUCTION

Recent studies have suggested that image compression im-
proves image classification accuracy, for convolution networks
such as Inception-3, trained on ImageNet database [1]. In addi-
tion, the growing number of mobile computing platforms and
applications which rely on image processing systems has made
the transmission and storage of digital image data increasingly
challenging. Digital image compression is a technique which
is used to create more compact representations of available
data without compromising essential associations and details.
In this paper, we propose a feature-oriented compression
approach and associated assessments which extends Region of
Interest Based Coding techniques to more efficiently compress
data for storage and/or transmission.

In the domains of computer vision and image processing,
a ”feature” is often referred to as a piece of relevant in-
formation that is required for solving a computational task
associated with an application. Although there is a variety of
general image and video compression algorithms available,
such as JPEG or MPEG standards, these types of compression
processes often neglect the presence of particular features
found in emerging image processing applications, such as
face recognition. Hence, they are not implicitly designed for
objective/feature oriented compression. For this reason the
utility of these compression standards is often limited to
general purpose compression applications. Similarly, the stan-
dard peak-singal-to-noise-ratio (PSNR) assessment which
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provides an objective measure of the reconstruction quality
of compressed images, does not provide sufficient evaluations
to best analyze the performance of a feature oriented image
compression scheme (see e.g., [2]–[5]). Thus, there is a need
for reliable objective assessments which provide approximate
measures for feature quality and convey relative distortion.

The use of singular-value-decomposition (SVD) to create
more compact representations of image data by truncating the
singular components has been widely studied [6]. For SVD
compression an emphasis is placed on the determination of the
amount of truncation which balances the level of compression
and the degradation of the image. To quantify the amount
of degrading, an appropriate objective metric is needed to
measure the quality of the resulting image and efficiency of
compression.

Although, it is often purpose specific and domain related,
for image compression selecting an objective metric which
agrees with Human Visual Perception or region of interests is
often advantageous. In this study, we employ adaptive block-
based implementations and develop new assessment metrics to
enhance the overall compression quality. Using a combination
of image segmentation and feature detection techniques as a
pre-processing step, we draw upon developed visual system
methodologies to derive a feature-oriented compression crite-
rion for controlling the local components of SVD truncation.

Outline of the paper. Section II includes an overview of
SVD image compression, PSNR quality assessment, and
details an image partitioning scheme for enhancing adaptive
block-based implementations. In section III we discuss a
formulation of a revised PSNR assessment for image quality
and define an additional distortion measure Q to quantify
and control the artificial distortion. Section IV includes the
methodology and algorithmic details related to our construc-
tion of a feature oriented compression framework. Section
IV also includes the underlying reasoning of the proposed
metrics. Examples are provided to demonstrate the utility of
these proposed assessments in the evaluation of compression
schemes. Furthermore, Section V evaluates the performance of
the proposed FC-SVD algorithm in comparison to other com-
pression methods in still image and dynamic video processing
applications. Section VI summarizes the paper.
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II. SINGULAR VALUE DECOMPOSITION

A. Review of SVD
Singular value decomposition and truncation of the singular

components are commonly used techniques to achieve image
compression and processing. Given an image with m× n
pixels, representing this image as matrix Im×n, requires
m× n memory locations. Leveraging the global SVD de-
composition to approximate the matrix I by using only k
singular value components, yields an alternative representation
requiring only k(m + n + 1) memory locations to store the
image. The following condition describes the constraint on the
rank approximation-k required to achieve compression.

CF (k) =
m× n

k (1 +m+ n)
≥ 1. (1)

B. Block-Based Implementations
Common SVD compression schemes often entail local

and block-based implementations, which often yields better
compression performance and reduces processing time. For
SVD performance factors such as image reconstruction quality
and compression rates depend on the estimated rank used to
represent a given image matrix, hence in a block-based im-
plementation the compression performance is contingent upon
the series of rank estimates used to describe the approximation
of the image matrix as a whole. For cases in which a series
of sub-matrix decompositions are used to represent the image
matrix. Given image matrix I with dimensions M × N , and
an area which is divisible by a collection of smaller matrices
of equal dimension mbi × nbi , for each sub-block of the
image matrix, one can truncate its singular components to ki
differently by incorporating various regions of interests.

C. Adaptive Partitions
Because features within an image can vary in shape and size,

given an asymmetrical case described by Figure 1, where an
image is partitioned into multiple sections.

Fig. 1: Visual representation of matrix segmentation for feature and
non-feature partitions

We introduce Equation (2) in order to quantify the com-
pression factor of multiple sub-matrices.

C̃F
b

=
MN

Sn∑
s=1

[∑
i

ki (1 +mbi +mbi)×
(

Ms

mbi

Ns

nbi

)] , (2)

where M,N are the dimensions of the entire image matrix,
and S is a partition of multiple sections with dimensions Ms×
Ns; each section is divided by a few smaller matrices with
dimensions mbi×nbi . These extensions of described partition
cases are demonstrated as the one given in Figure 1.

D. Review of Objective Measures for Image Quality

Conventional practice for image processing such as rate-
distortion studies on both the compression of still images and
video sequences use PSNR as the base visual quality metric
[7]. The objective assessment is an approximate estimation to
human perception of the reconstruction quality of compressed
image [8]. Given the original image I , the PSNR for the
compressed one Ik is defined as

PSNR(I)

= 10 · log10

(
MAX2

I

1
mn

∑m−1
i=0

∑n−1
j=0 [I (i, j)−Ik (i, j)]

2

)
(3)

where m and n are the number of rows and columns of the
image matrix and MAXI is the maximum possible pixel value,
calculated as 2b − 1, where b represents the number of bits
used to represent the image. PSNR is often expressed on
the logarithmic decibel scale, denoted as dB. Typical PSNR
values for lossy image compression range between 30 and
50dB for 8 bit images, 60 to 80dB for 16 bit images [9],
[10], with wireless transmission quality often accepting a range
between 20 and 25db [11]–[13]. Note that PSNR shares a
positive correlation with image quality, so a higher PSNR
indicates a higher quality image.

III. FEATURE-ORIENTED ASSESSMENTS

Although widely used, PSNR does not account for pixel
changes in feature locations and their perceptual importance
in the quality evaluation of the observable scene [7]. In the
proposed implementation, we would like to divide the entire
image I into ’feature’ part F and ‘ground’ part G such that
the given image of size M × N is divided into F non-
overlapping blocks of ‘features’ and one remaining portion
of ‘ground’. Each ‘feature’ block is indexed by si with size
M(si)×N(si), so the total number of pixels of the ‘features’
is PF :=

∑F
si=1M(si)×N(si), whereas the number of pixels

within the ‘ground’ equals PG := M × N − PF . We define
the weighted mean PSNR(F ) to account for the contribution
of each ‘feature’ object below

PSNR(F ) =
F∑

Si=1

wsi · PSNR(si), wsi =
M(si)N(si)

PF

(4)
with PSNR(si) denoting the PSNR value restricted on the
i-th ‘feature’ object F (si):

PSNR(si)

=10 · log10

 MAX2
I

1
M(si)N(si)

∑
(i,j)∈F (si)

(
I(i, j)− Ik(i, j)

)2
 .
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We also define PSNR(G) for the ‘ground’ portion as

PSNR(G) (5)

=10 · log10

 MAX2
I

1
PG

∑
(i,j)∈G

(
I(i, j)− Ik(i, j)

)2
 .

Recall the definition (3) of PSNR(I) for a global image and
notice that − log(·) is a convex function, so by the Jensen’s
inequality, we have

PF

MN
PSNR(F ) +

PG

MN
PSNR(G) ≥ PSNR(I).

Because the discrepancy is always positive, guaranteed by
the Jensen’s equality, we show that the weighted sum of the
PSNR(G) and PSNR(F ) assessments yield a compatible
measure for calculating PSNR(I), that is Equation (6)

P̃SNR(I) :=
PF

MN
PSNR(F ) +

PG

MN
PSNR(G). (6)

For a compressed image with controllable distortion, we can
assume that

P̃SNR(I) ≈ PSNR(I). (7)

A. Measuring Relative Distortion

The proposed PSNR(F ) , PSNR(G) evaluations have
the added benefit of obtaining error quantities representing
the respective PSNR for ‘feature’ and ’ground’ regions
separately. This also allows for the derivation of a relative
distortion measure, denoted as QF,G, in Equation (8), which
serves as a scaling percent measure of the distortion between
the ‘feature’ and ‘ground’ spaces of a compressed image.

QF,G : =

(
1− PSNR(G)

PSNR(F )

)
× 100% (8)

Intuitively, this measure provides an effective assessment to
evaluate the emphasis a compression process places on the
preservation of the feature space in the image, with respect to
the ground space. Notice QF,G ∼ 0 % indicates homogeneous
reconstruction error of the image, and the absence of emphasis
placed on the compression of either ground or feature regions.
Under this definition it is also assumed that the image being
evaluated has compression of both ’feature’ and ’ground’
regions, such that neither PSNR(F ) or PSNR(G) is equal
to infinity.

IV. FEATURE-ORIENTED COMPRESSION

A. Overview of methodology

The perceived environment always presents far more per-
ceptual information than the human-visual-system (HVS) can
effectively process. As a result, certain regions within an image
are more relevant to the HVS. In this section, we explore
the integration of these concepts into a compression criteria
by defining a region-of-interest(s) (ROI) within image frames.
We refer to the image’s ROI’s as ’features’, referencing the
remaining portions of the image as ’ground’. This distinction
is leveraged to tailor compression rates in the spatial domain

by prioritizing computational attention to different regions of
an image or video stream.

Compressing an image by automatically allocating more
bits to region(s) of interest relative to an image’s ground
space has multiple advantages [14]. First, one can ensure vital
information is protected. Second, is the reduction of substantial
redundancy. Third, is enhanced compression efficiency for
transmission and storage without compromising accuracy [14],
[15]. In addition, our results indicate that image deterioration
may be less obvious to the human eye when present in
areas of an image which do not receive the same level of
visual attention. Thus, the proposed methods may enhance
compression for image types such as portrait, crowd, and
image processing applications such as face recognition.

B. Algorithmic Implementation

The proposed feature compliant SVD compression scheme
(FC-SVD), is given in Algorithm 1. The implementation is
intended to be agnostic to a particular image segmentation
process, but assumes a set of feature points F (xi, yi) are
available to construct boundary conditions, given by some
detection model Θ. For our results we utilize OpenCV face
detection model to provide these boundary conditions.

Algorithm 1 FC-SVD feature compliant SVD compression
Require: Matrix Xin, Detection model Θ, Low-rank scheme

Ψ, Error threshold ξ, Desired Compression factor Φ
Ensure: Compressed Matrix Xout

1: Xcomp = [0]M×N
2: F (xi, yi) = f(Θ, Xin)
3: S[mi, ni] = (M |m′, N |n′) ∈ Φ
4: for s = mi, ni in Si do
5: for i in range(0,M,mi) do
6: for j in range(0, N, ni) do
7: Xb = Xin[i : i+m, j : j + n]
8: Xb ← [U,Σ, V T ]Xb

9: Ψ =

{
Ψfeature Xb ∈ F (xi, yi)

Ψground Xb /∈ F (xi, yi)

10: Xcomp ← XΨ
b =

∑Ψ
i=1 σiuiv

T
i

11: end for i
12: end for j
13: if Xcomp ∈ (ξ,Φ) then Xout = Xcomp

14: end if
15: end for s
16: return Xout

Although we do not offer a rigorous criteria for how one
should optimize or select parameters values in Algorithm 1, we
provide some empirical suggestions below. Also notice that in
the above, we repeat the compression process using a series
of divisible block sizes mi, ni stored in Si until a desired
performance criteria is met, hence an optimal block-size for a
low-rank scheme is also determined.
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C. Performance Analysis

Figure 2 provides examples of the proposed measures (2)
(4) (5) (6) (8) on compressed images of a crowd processed
by Algorithm 1 with empirical parameters. We compare the
uniform block, the feature-oriented, and an example of ground-
oriented compression, respectively. For each example, a block-
size of 20x20 was used to compress the 8bit 1200x1920 image
and the truncation of singular components for each example
is treated differently.

Demonstrated by Figure 2 and the measured quantities,
we recommend to keep the constraint 0 ≤ QF,G ≤ 20%
for feature- oriented compression as this avoids a noticeable
compression contrast between ‘feature’ and ‘ground’ regions,
though we don’t have a rigorous reason behind this. Notice
the PSNR(F ) of 33.24db is higher than the PSNR(I),
highlighting the advantage of measuring the quality of region
of interest, rather than the entirety of the observable scene in
an image.
PSNR(F ) yields a good objective assessment relative to

PSNR(I), based on a subjective visual measure of the de-
tected crowd faces with respect to the ground area. In addition,
the proposed metrics P̃SNR(I) yield a reliable approximation
for a global PSNR(I) assessment. Our proposed extensions
allow for an independent and relative evaluation of the recon-
struction quality in both the ‘feature’ and ’ground’ regions.
The results shown in Figure 2 indicate that our algorithm
provides enhanced reconstruction quality, while maintaining
comparable space savings to global and uniform block SVD.
Notice the proposed algorithm FC-SVD achieves a CF of
7.76 with a PSNR(F ) of 36.44, whereas the uniform block
compression achieves a CF of only 3.24, with the same
PSNR(F ) quality.

The proposed PSNR(F ), P̃SNR(I) and QF,G metrics
aim to amend a limitation of the common PSNR quality
assessment by expanding its definition to regions of interest.
Through these modifications we show that our constructions
account for pixel changes in feature locations and convey
quantities which yield a more comprehensive assessment of the
degraded image and describe relative degradation in the quality
of the observable scene. Hence these modification can be
leveraged to maintain/enhance the quality of ’feature’ without
sacrificing the overall compression. Also, the distortion ratio
QF,G can serve as a parameter to control the relative distortion
of the feature space, whereas a standard PSNR(I) assessment
lacks this ability.

All of the algorithms were developed in Python and
are publicly available for download ( GIT repository:
https://github.com/Jesse-Redford/Adpative-SVD.git). All com-
putations were performed on the same machine with the
following specifications. Intel Core i7 CPU (2.5Ghz), and
16GB DDR3 memory.

(a) Ground Truth

(b) Uniform block CF : 3.25, PSNR(F ) : 36.44, PSNR(G) :

36.51, P̃SNR(I) : 36.51, PSNR(I) : 36.51, QF,G : −0.2%

(c) Feature Oriented CF : 7.76, PSNR(F ) : 36.44, PSNR(G) :

26.91, P̃SNR(I) : 28.14, PSNR(I) : 27.44, QF,G : 26.14%

(d) Ground Oriented CF : 5.12, PSNR(F ) : 25.39, PSNR(G) :

32.33, P̃SNR(I) : 31.44, PSNR(I) : 30.55, QF,G : −27.32%

Fig. 2: Assessment of proposed metrics and reconstruction quality of
gray scale photo of crowd processed by Algorithm 1. Source image
adopted from Bettmann collection via getty images.
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V. PERFORMANCE COMPARISON

A. Still Image Compression

Figure 3 compares the reconstruction quality for global, uni-
form block, feature-oriented, and ground-oriented compression
on an 8bit 512x512 gray scale image on Lenna, a standard test
image widely used in the field of image processing since 1973
[16].

(a) Uniform block (b) Feature oriented

(c) Ground oriented (d) Global SVD

Fig. 3: Compressed images of Lenna.: (a) uniform block; (b) feature
oriented; (c) ground oriented; and, (d) global SVD compression.

Table 1 provides performance measures for various com-
pression approaches given in Figure 3.

TABLE I: Compression Performance Still Image of Lenna

Classification CF QF,G
˜PSNR(I) PSNR(F )

(a) Uniform Block 3.88 1.2 % 30.3 30.97
(b) Feature-Oriented 3.7 6.21 % 30.65 34.59
(c) Ground-Oriented 2.7 -15.27 % 33.05 25.91

(d) Global 3.65 -0.86 % 32.57 32.07
aMeasured quantities for Figure 3.

From Figure 3, the global method produces a compressed
image with additional artificial grainy texture, especially on
the face region. Uniform block is seen to have lower PSNR
quality in the face region, where as for the feature-oriented
these blocking artifacts appear only in the ground region.
For ground-oriented compression, we see similar blocking
artifacts in the feature region as expected. From Table 1, the
performance of each approach ranked in terms of PSNR
follow the order global, ground-oriented, feature-oriented, and
uniform block compression. Clearly, the feature-oriented ap-
proach provides the optimal feature quality while maintaining
the second highest compression factor. The feature-oriented

approach has QF,G value of 6.21%, so the relative distortion
is within the suggested tolerance. One could argue that the
ranked assessment of each scheme in terms of QF,G has better
compliance to the rank given by a human visual assessment
of the images in Figure 3. We can conclude that, the FC-SVD
algorithm achieves a CF of 3.7 with a PSNR(F ) of 34.59,
whereas the uniform block compression achieves a slightly
higher CF of 3.88, but with much lower PSNR(F ) quality.

B. Applications for Dynamic Video Processing
We evaluate the proposed scheme in a live stream applica-

tion, where each method of compression is used between an
8bit 480×640 video stream and a H.265 encoder, also known
as high-efficiency-video-coding (HEVC) [17]. OpenCVs face-
recognition model is used to evaluate each frame of the
video stream, defining the ROI’s for FC-SVD compression
algorithm. For other cases, frames are compressed without
leveraging the known locations of ROI’s. A block size of
32× 32 is used for both uniform and feature-oriented imple-
mentations. Figure 4 compares each method of compression
for a single image frame of the video.

(a) Ground Truth (b) Feature oriented

(c) Uniform (d) Global

Fig. 4: Comparison of compressed video frame: (a) ground truth,
h.265 encoding without SVD compression; (b) h.265 with feature-
oriented; (c) h.265 with uniform block rank; and, (d) h.265 with
global

Table 2 provides file sizes of the 2 second video, and average
quantities, CF , P̃SNR(I), PSNR(F ), QF,G for the series
of image frames.

TABLE II: Compression Performance on Live Video Stream

Classification Video size in kB CF ˜PSNR(I) PSNR(F ) QF,G

(a) Ground Truth 416 - - - -
(b) Feature-Oriented 93 4.57 32.02 35.85 11.20 %
(c) Uniform Block 99 3.94 33.17 30.45 -9.55 %

(d) Global 101 4.22 34.17 31.44 -9.26 %
a Averaged quantities of all 10 frames for Figure 4.

From Table 2, we see that preprocessing each video frame
with SVD, regardless of the approach is able to reduce the
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total video size by approximately 76%. Although, feature-
oriented compression results in the smallest file size, in com-
parison to other methods. In terms of the global image quality
P̃SNR(I), we see that global SVD outperforms both uniform
and feature-oriented SVD. However, we see that the proposed
PSNR(F ) assessment yields a better objective measure of re-
construction quality in the regions of interest. Figure 5 reports
the assessments of each processed frame of the video stream.
The subject’s face is at a varying distance of approximately
6 to 3 feet from the camera, respectively. Feature-oriented
maintains a face space quality ranging between 34 and 38
dB, in addition to having the lowest frame file size for all
distances.

(a) File size (b) Distortion Ratio Q

(c) Global P̃ SNR metric (d) Feature PSNR metric

Fig. 5: Performance Comparison on live video with h.265 encoding:
(a) file size in kB of each video frame saved as png; (b) compression
factor QF,G for each video frame; (c) measured PSNR(I) for each
video frame , (d) measured feature quality PSNR(F ).

The results clearly indicate that feature-oriented compres-
sion based on locally adaptive SVD, can keep the same level
of compression of global and uniform while maintaining the
image quality, especially in the regions of interest. It is also
seen that PSNR(F ) together with QF,G can both measure,
and quantitatively control the degradation of feature space as
well as the amount of artificial distortion.

VI. COMPARISON TO STATE-OF-THE-ART

We find that for state-of-the-art results, for example, ”End-
to-End Optimized ROI Image Compression” [14], which is
implemented using neural networks. This method and frame-
work achieve much better compression results, however, this
framework requires one to train the network with abundant
parameters for a particular feature and does not explicitly pro-
vide the quality measures for the feature and ground regions,
nor the quantity assessments for reducing the distortions. The
aim of our method is to contribute a very simple compression

framework only based on block SVD and rank-1 truncation
that can be adapted easily to support different regions of
interests. Moreover, we provide base line examples of image
quality defined by the proposed modified P̃SNR and relative
distortion Q measures. These newly proposed measurements
are easy to compute and could provide quantitative assess-
ments for enhancing the compression and evaluating different
feature oriented compression algorithms.

VII. CONCLUSION

A feature compliant compression algorithm FC-SVD is
introduced in this paper and a set of objective measures for
image compression quality analysis have been presented as
well. The suggested FC-SVD algorithm is based on ’feature’-
’ground’ segmentation and adaptive block SVD compression.
Based on a series of experiments, this paper also provided a
practical suggestion to adjust the parameters of implementa-
tion to improve various quality measures. The proposed al-
gorithm and compression framework is intended to be simple,
yet flexible and robust enough to be used in a variety of image
processing applications. Our experimental results have shown
that this algorithm has the potential to enhance still image as
well as video compression over conventional block-based, and
global SVD transformations. We will mathematically study
these quantities and identify the optimal settings of parameters
in the future. We will also extend this framework to machine
learning by enhancing the access to processed training data.
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