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ABSTRACT

Three dimensional (3D) genome spatial organization is critical for numerous cellular processes,
including transcription, while certain conformation-driven structural alterations are frequently onco-
genic. Genome architecture had been notoriously difficult to elucidate, but the advent of the suite of
chromatin conformation capture assays, notably Hi-C, has transformed understanding of chromatin
structure and provided downstream biological insights. Although many findings have flowed from
direct analysis of the pairwise proximity data produced by these assays, there is added value in
generating corresponding 3D reconstructions deriving from superposing genomic features on the re-
construction. Accordingly, many methods for inferring 3D architecture from proximity d hyperrefata
have been advanced. However, none of these approaches exploit the fact that single chromosome
solutions constitute a one dimensional (1D) curve in 3D. Rather, this aspect has either been addressed
by imposition of constraints, which is both computationally burdensome and cell type specific, or
ignored with contiguity imposed after the fact. Here we target finding a 1D curve by extending
principal curve methodology to the metric scaling problem. We illustrate how this approach yields
a sequence of candidate solutions, indexed by an underlying smoothness or degrees-of-freedom
parameter, and propose methods for selection from this sequence. We apply the methodology to
Hi-C data obtained on IMR90 cells and so are positioned to evaluate reconstruction accuracy by
referencing orthogonal imaging data. The results indicate the utility and reproducibility of our
principal curve approach in the face of underlying structural variation.

Keywords 3D structure · Genome reconstruction · Hi-C assay ·Metric scaling ·Multiplex FISH.
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1 Introduction

The three-dimensional (3D) configuration of chromosomes within the eukaryote nucleus is important for several
cellular functions, including gene expression regulation, and has also been linked to translocation events and cancer
driving gene fusions (Mitelman et al., 2007). While direct visualization of 3D architecture has improved (see Section
2.10), imaging challenges pertaining to chromatin compaction and dynamics persist. However, the ability to infer
chromatin architectures at increasing resolution has been enabled by chromosome conformation capture (3C) assays
(Dekker et al., 2002). In particular, when coupled with next generation sequencing, such Hi-C methods (Lieberman-
Aiden et al., 2009, Duan et al., 2010) yield an inventory of pairwise, genome-wide chromatin interactions, or contacts.
In turn, the contact data form the basis for reconstructing 3D configurations (Zhang et al., 2013, Varoquaux et al., 2014,
Ay et al., 2014, Zou et al., 2016, Rieber and Mahony, 2017). While many novel conformational-related findings have
flowed from direct analysis of contact level data, added value of performing downstream analysis based on attendant
3D reconstructions has been demonstrated. These benefits derive from the ability to superpose genomic features
on the reconstruction. Examples include co-localization of genomic landmarks such as early replication origins in
yeast (Witten and Noble, 2012, Capurso and Segal, 2014), gene expression gradients in relation to telomeric distance
and co-localization of virulence genes in the malaria parasite (Ay et al., 2014), the impact of spatial organization
on double strand break repair (Lee et al., 2016), and elucidation of ‘3D hotspots’ corresponding to (say) overlaid
ChIP-Seq transcription factor extremes which can reveal novel regulatory interactions (Capurso et al., 2016).

The contact or interaction matrices resulting from Hi-C assays, which are typically performed on bulk cell populations,
are depicted as heatmaps, which record the frequency with which pairs of binned genomic loci are cross-linked,
reflecting spatial proximity of the respective loci bins within the nucleus. A common first step toward 3D reconstruction
is the conversion of contact frequencies into distances, typically assuming inverse power-law relationships (Varoquaux
et al., 2014, Ay et al., 2014, Shavit et al., 2014, Rieber and Mahony, 2017), from which 3D chromatin architecture
can be obtained via versions of the multi-dimensional scaling (MDS) paradigm. In response to (i) the bulk cell
population underpinnings of contact data, (ii) computational challenges posed by the dimensionality of the MDS
reconstruction problem as governed by bin extent, and (iii) accommodating biological considerations, several
competing reconstruction algorithms have been advanced. However, none of these take advantage of the fact that the
3D solution for individual chromosomes corresponds to a one-dimensional (1D) curve in 3-space. Rather, this aspect
has been addressed by imposition of constraints (Duan et al., 2010, Ay et al., 2014, Stevens et al., 2017), which are
cell type specific and require prescription of constraint parameters. These parameters can be difficult to specify and
their inclusion substantially increases the computational burden. Other approaches (Zhang et al., 2013, Park and Lin,
2017, Rieber and Mahony, 2017) do not formally incorporate contiguity but impose it post hoc, creating chromatin
reconstructions by “connecting the dots” of the 3D solution according to the ordering of corresponding genomic bins.

Here we directly target chromosome reconstruction by finding a 1D curve approximation to the contact matrix via
extending principal curve methodology (Hastie and Stuetzle, 1989) to the metric scaling problem. After reviewing
problem formulation and current reconstruction techniques in Section 2.1 we develop three approaches (i) Principal
Curve Metric Scaling (PCMS; Section 2.2–2.3), (ii) a weighted generalization of PCMS (WPCMS; Section 2.4–2.5),
and (iii) Poisson Metric Scaling (PoisMS; Section 2.7–2.8). Strategies for selecting a specific reconstruction from a
degrees-of-freedom indexed series of solutions are described in Section 2.9. Methods for appraising the accuracy
of candidate reconstructions by referencing to orthogonal imaging data are outlined in Section 2.10. Results from
applying the methodology to Hi-C data from IMR90 cells are presented in Section 3, while the Discussion indicates
directions for future work.
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2 Methods

2.1 Existing approaches to 3D chromatin reconstruction from Hi-C assays

Our focus is on reconstruction of individual chromosomes; whole genome architecture can follow by appropriately
positioning these solutions (Segal and Bengtsson, 2015, Rieber and Mahony, 2017). As is standard, we disregard
complexities deriving from chromosome pairing arising in diploid cells (which can be disentangled at high resolutions
(Rao et al., 2014)) and defer issues surrounding inter-cell variation to the Discussion.

The result of a Hi-C experiment, following important preprocessing and normalization steps (Imakaev et al., 2012),
is the contact map, a symmetric matrix C = [Cij ] ∈ Zn×n+ of contact counts between n (binned) genomic loci i, j
on a genome-wide basis (see Figure 7 for an example of a contact matrix). This matrix can be exceedingly sparse
even after binning. The 3D chromatin reconstruction problem is to use the contact matrix C to obtain a 3D point
configuration x1, . . . , xn ∈ R3 corresponding to the spatial coordinates of loci 1, . . . , n respectively.

Many approaches have been proposed to tackle this problem with broad distinction between optimization and model-
based methods (Varoquaux et al., 2014, Rieber and Mahony, 2017). A common first step is conversion of the contact
matrix into a distance matrix D = [Dij ] (Duan et al., 2010, Varoquaux et al., 2014, Ay et al., 2014, Shavit et al., 2014),
followed by solving the multi-dimensional scaling (MDS; Hastie et al., 2009) problem: position points (corresponding
to genomic loci) in 3D so that the resultant interpoint distances best conform to the distance matrix.

A variety of methods have also been used for transforming frequencies into distances. At one extreme, in terms of
imposing biological assumptions, are methods that relate observed intra-chromosomal contacts to genomic distances
and then ascribe physical distances based on organism specific findings on chromatin packing (Duan et al., 2010) or
relationships between genomic and physical distances for crumpled polymers (Ay et al., 2014). Such distances inform
the subsequent optimization step as they permit incorporation of known biological constraints that can be expressed
in terms of physical separation. Importantly, these constraints include prescriptions on the 3D separation between
contiguous genomic bins. It is by this means that obtaining a 1D curve is indirectly facilitated. However, obtaining
physical distances requires both strong assumptions and organism specific data (Fudenberg and Mirny, 2012). More
broadly, a number of approaches (Zhang et al., 2013, Varoquaux et al., 2014, Zou et al., 2016, Rieber and Mahony,

2017) utilize power law transfer functions to map contacts to (non-physical) distancesDij =

{
(Cij)

−α if Cij > 0,

∞ if Cij = 0.

Adoption of the power law derives from empirical and theoretical work but again constitutes a strong assumption
(Fudenberg and Mirny, 2012).

Once we have a distance matrix, D, optimization approaches seek a 3D configuration x1, . . . , xn that best fits D
according to an MDS criterion. If ‖ · ‖ designates the Euclidean norm, then an example of MDS loss incorporating
weights and penalty (Zhang et al., 2013) is

`(x1, . . . , xn) =
∑

{i,j|Dij<∞}

Wij(‖xi − xj‖ −Dij)
2 − λ

∑
{i,j|Dij=∞}

‖xi − xj‖2 (1)

with the corresponding optimization problem

minimize `(x1, . . . , xn) w.r.t. x1, . . . , xn ∈ R3. (2)

Here common choices for the weights Wij include D−1
ij (Zhang et al., 2013) and D−2

ij (Varoquaux et al., 2014), these
being analogous to precision weighting since large Cij (small Dij) are more accurately measured. Similarly, the
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penalty (second) term maximizes the pairwise distances for loci bins with Cij = 0 under the presumption that such
loci should not be too close.

It is worth noting that (1), and related criteria, correspond to a nonconvex, nonlinear optimization problem that is NP
hard and while various devices have been employed to mitigate the computational burden (e.g., Zhang et al., 2013),
computational concerns, particularly for high resolution (many loci bins) problems, remain forefront.

Probabilistic methods postulate models for the coontact counts Cij . The optimization goal is to maximize the
corresponding log-likelihood

`(x1, . . . , xn) =
n−1∑
i=1

n∑
j=i

logP(Cij |x1, . . . , xn). (3)

Poisson models Cij ∼ Pois(λij) are widely adopted (Varoquaux et al., 2014, Zou et al., 2016, Park and Lin, 2017),
where λij = λij(x1, . . . , xn) is some function depending on genomic loci spatial coordinates x1, . . . , xn. For
example, Rosenthal et al. [2019] prescribe exponential dependence between the Poisson rate parameter and interpoint
distances: λij = β‖xi − xj‖α. Although probabilistic methods are natural for modeling biological phenomena, here
they incur computational costs and impose additional assumptions.

All existing approaches implicitly represent chromatin as a polygonal chain. Constraints on the geometrical structure
of the polygonal chain can be imposed via penalties on edge lengths and angles between successive edges, with
even quaternion-based formulations employed (Caudai et al., 2015). Rosenthal et al. [2019] utilize penalties to
control smoothness of the resulting conformations. However, despite imparting targeted properties to the resulting
reconstruction, such penalty-based approaches increase the complexity of the objective, its gradient and Hessian, both
slowing and limiting, especially with respect to resolution, associated algorithms.

Here we develop a suite of novel approaches that directly model chromatin configuration as a 1D curve in 3D.
As a baseline method we introduce Principal Curve Metric Scaling (PCMS). The PCMS optimization problem,
inspired by MDS, has a simple solution that can be found via the singular value decomposition. Subsequently, we
develop Weighted Principal Curve Metric Scaling (WPCMS), a weighted generalization of PCMS that permits control
over the influence of particular elements of the contact matrix on the resulting reconstruction. Finally, we develop
Poisson Metric Scaling (PoisMS) that uses WPCMS as a building block for fitting a Poisson model for contact counts.
PoisMS provides an efficient way to find a 1D chromatin reconstruction that combines advantages of both MDS and
probabilistic models.

2.2 Principal curve metric scaling formulation

PCMS is based on (classical) MDS with the contact matrix C treated as a similarity matrix and approximated by an

inner product matrix (Buja et al., 2008). Let X =


−xT1−
−xT2−
. . .

−xTn−

 ∈ Rn×3 be the matrix of genomic loci coordinates and

‖ · ‖F the Frobenius norm. The goal is to minimize the Strain objective:

`(x1, . . . , xn) =
n∑
i=1

n∑
j=1

(Cij − 〈xi, xj〉)2 ⇐⇒ `(X) = ‖C −XXT ‖2F . (4)
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Note that inner product based PCMS bypasses the need to convert contacts to distances, as is required for metric
MDS.

Instead of adding a smoothness penalty to the objective, we impose an additional constraint:

x1, . . . , xn ∈ γ, where γ is a smooth one-dimensional curve in R3. (5)

As emphasized, this constraint captures the inherent contiguity of chromatin. We model the curve γ by a cubic spline
with k degrees-of-freedom as follows (Hastie et al., 2009). Suppose h1(t), . . . , hk(t) are cubic spline basis functions
in R1 then

γ(t) = (γ1(t), γ2(t), γ3(t))T , where γj(t) =
∑k

`=1 Θ`j h`(t) for j = 1, 2, 3.

Suppose ti index genomic loci xi in the parametrization space of t, i.e. xi = γ(ti), and let H ∈ Rn×k be the matrix
of spline basis evaluations at ti, i.e. Hi` = h`(ti). Since binning typically results in evenly spaced genomic loci, it is
convenient to set t1 = 1, t2 = 2, . . . , tn = n, although irregular spacing is readily handled. So, the constraint (5)
can be written as Xij =

∑k
`=1 Θ`j h`(ti), or equivalently, in matrix form as X = HΘ leading to the optimization

problem
minimize `PCMS(Θ) = ‖C −HΘΘTHT ‖2F w.r.t. Θ ∈ Rk×3. (6)

Hereafter we denote the corresponding solution Θ̂ = PCMS(C,H), the contact matrix approximation Ĉ =

HΘ̂Θ̂THT , and the resulting chromatin reconstruction X̂ = HΘ̂.

2.3 PCMS solution

Note that the parameter Θ in the PCMS problem (6) is unconstrained. Since Θ is defined up to a multiplication by a
full-rank matrix, one can always assume H to be a matrix with orthogonal columns. To find the PCMS solution the
following lemma is useful.

LEMMA 2.1 If H ∈ Rn×k is a matrix with orthogonal columns, i.e. HTH = I , then problem (6) is equivalent to

minimize ˜̀
PCMS(Θ) = ‖HTCH −ΘΘT ‖2F w.r.t. Θ ∈ Rk×3. (7)

Proof. Suppose H̃ =
(
H H⊥

)
is a column-wise combination of H and its orthogonal complement H⊥. Therefore,

H̃ is a square orthogonal matrix and for any B ∈ Rn×n the following relation holds

‖B‖2F = ‖H̃TB‖2F = ‖H̃TBH̃‖2F = ‖HTBH‖2F + ‖HT
⊥BH⊥‖2F .

Substituting B = C −HΘΘTHT we conclude that

‖C −HΘΘTHT ‖2F = ‖HTCH −ΘΘT ‖2F + ‖HT
⊥CH⊥‖2F = ˜̀

PCMS(Θ) + const.

In the last equation the constant term does not depend on the parameter Θ implying the equivalence of the optimization
problems (6) and (7). �

Further, note that minimizing the objective ˜̀
PCMS(Θ) can be interpreted as a low-rank approximation of the matrix

HTCH by a positive semi-definite rank 3 matrix ΘΘT . Assuming that the symmetric matrix HTCH has at least
three positive eigenvalues the solution can be found via eigen-decomposition of HTCH: let HTCH = QΛQT for
orthogonal Q and diagonal Λ = diag(λ1, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥ λn, then

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.15.151688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.15.151688
http://creativecommons.org/licenses/by/4.0/


A PREPRINT - JUNE 15, 2020

Θ = Q
√

Λ3, where
√

Λ3 = diag(
√
λ1,
√
λ2,
√
λ3, 0, . . . , 0).

The computational efficiency of PCMS derives from the fact that it relies on eigen-decomposition of a small k × k
matrix, requiring only O(k3) additional operations.

2.4 WPCMS problem statement

Our weighted generalization of PCMS was motivated by reducing the influence of elements of the contact matrix on
the resulting reconstruction, in particular to counteract diagonal dominance (Yang et al., 2017). We introduce a matrix
of weights W ∈ [0, 1]n×n and consider the weighted Strain objective

`(x1, . . . , xn) =
n∑
i=1

n∑
j=1

Wij(Cij − 〈xi, xj〉)2 ⇐⇒ `(X) = ‖
√
W ∗ (C −XXT )‖2F (8)

where ∗ refers to the Hadamard product. The Weighted Principal Curve Metric Scaling (WPCMS) problem can be
stated as follows:

minimize `WPCMS(X) = ‖
√
W ∗ (C −HΘΘTHT )‖2F w.r.t. Θ ∈ Rk×3. (9)

The corresponding solution is denoted Θ̂ = PCMSW (C,H).

2.5 WPCMS iterative algorithm

Optimization problem (9) can be elegantly solved via an iterative algorithm that repeatedly applies PCMS to a convex
combination of the current contact matrix reconstruction Ĉ and the original contact matrix C:

1. [Initialize] Generate random Θ ∈ Rk×3.

2. Repeat until convergence:

2.1 [Reconstruct] Calculate the current guess for the contact matrix approximation

Ĉ = HΘΘTHT .

2.2 [Mix] Combine the current approximation and the original contact matrices

C∗ = W ∗ C + (1−W ) ∗ Ĉ.

2.3 [PCMS] Update Θ via computing the corresponding PCMS solution

Θ := PCMS(C∗, H).

Convergence is assessed via the stopping criterion
∣∣∣ `WPCMS(Θold)−`WPCMS(Θnew)

`WPCMS(Θold)

∣∣∣ < ε1, where ε1 is some pre-chosen
accuracy rate, Θold is the value of Θ calculated at the previous iteration and Θnew is the updated value of Θ. Further
details and extensions of the WPCMS algorithm are provided in the supplementary materials.

2.6 WPCMS algorithm connections

The core of the WPCMS approach is an alternating algorithm for solving weighted low-rank approximation problems
introduced by Srebro and Jaakkola [2003]. It can also be viewed as a generalization of the soft-impute technique,
devised to find a low-rank matrix approximation in the presence of missing values (Mazumder et al., 2010). We
present WPCMS here as a projected gradient descent (PGD) procedure (Hastie et al., 2015), broadly used to solve
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constrained optimization problems. Specifically, note that the WPCMS problem (9) can be restated as an optimization
problem on a matrix manifold

minimize `WPCMS(M) = ‖
√
W ∗ (C −HMHT )‖2F w.r.t. M ∈ Sk+(3) (10)

where Sk+(3) = {M ∈ Rk×k : M � 0, rk(M) = 3} is the manifold of positive semidefinite matrices of rank 3.
Hence, this problem can be solved via PGD iteration:

[Gradient] M := M −∇f(M) and [Projection] M := projSk+(3)(M).

These steps are equivalent to the [Mix] and [PCMS] steps of the WPCMS algorithm.

2.7 PoisMS problem statement

Our Poisson Metric Scaling model is based on Poisson distributed contact counts Cij . However, unlike previous
formulations (cf Rosenthal et al. [2019] above), our prescribed dependence of the Poisson parameters on genomic loci
coordinates confers the considerable advantage of convexity of the resulting optimization problem.

Consider the model (3) with the contact counts each having a Poisson distribution:

Cij ∼ Pois(λij), log(λij) = α〈xi, xj〉+ β, (11)

with α > 0 and β ∈ R hyperparameters. The negative log-likelihood objective is

`PoisMS(X) =
∑

1≤i,j≤n

[
eα〈xi,xj〉+β − Cij (α〈xi, xj〉+ β)

]
(12)

and the MLE optimization problem under the smooth curve constraint 5 is

minimize `PoisMS(X) w.r.t. X subject to X = HΘ. (13)

We denote the corresponding solution as Θ̂ = PoisMS(C,H).

2.8 PoisMS iterative algorithm

A virtue of the Poisson model is that the second order Taylor approximation of the negative log-likelihood (12)
is simply the weighted Frobenius norm. Moreover, it is well known that the optimal value of this second order
approximation (SOA) amounts to one step of the Newton method for optimizing the original loss function. We use
these facts to develop an iterative algorithm based on the WPCMS technique, which is equivalent to a projected
Newton Method.

First, we review the SOA of the negative Poisson log-likelihood in the univariate case. Suppose c ∼ Pois(λ). The
negative log likelihood `(λ) = λ− c log λ can be reparametrized in terms of the natural parameter η = log(λ) leading
to `(η) = eη − cη. Then the SOA of the reparametrized negative log-likelihood at some point η0 = log λ0, up to
scaling and shifting by a constant, is:

`(η) ≈ `SOA(η) = w(z − η)2 where w = eη0 = λ0 and z = η0 +
c− λ0

λ0
.

The multivariate version can be stated as follows.

7
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LEMMA 2.2 Suppose C ∈ Zn×n+ where Cij ∼ Pois(λij) and ηij = log(λij). Let the respective matrices of Poisson
and natural parameters be Λ = [λij ] ∈ Rn×n+ andH = [ηij ] ∈ Rn×n. Then the SOA of the negative log-likelihood
at some pointH0, up to scale and shift constants, is

`(H) ≈ `SOA(H) = ‖
√
W ∗ (Z −H)‖2F where W = eH0 = Λ0 and Z = H0 +

C − Λ0

Λ0
.

Here ∗ is the Hadamard (element-wise) product, with matrix exponentiation and division also being interpreted as
element-wise operations.

Recall that in the Poisson model (11) the natural parameter depends linearly on the matrix of spatial coordinate inner
products: H = log Λ = αXXT + β. So, the SOA can be rewritten as

`SOA(H) = ‖
√
W ∗ (Z − αXXT − β)‖2F = α2‖

√
W ∗ (Z̃ −XXT )‖2F for Z̃ =

Z − β
α

.

Suppose that the current guess for the chromatin reconstruction is X0 with corresponding natural parameter value
H0 = αX0X

T
0 + β. Then we have the following approximation of the Poisson loss (12) at point H0 again up to

scaling and shifting by a constant:

`PoisMS(X) ≈ `SOA(X) = ‖
√
W ∗ (Z −XXT )‖2F

where W = eαX0XT
0 +β and Z = X0X

T
0 + 1

α(C−WW ).

It is not difficult to check that under the smooth curve constraint X = HΘ the loss function `SOA(X) coincides with
the WPCMS loss (9). Therefore, we obtain a nice application of the WPCMS algorithm, with the solution to the
second order approximation of problem (13):

minimize `SOA(Θ) = ‖
√
W ∗ (Z −HΘΘTHT )‖2F w.r.t. Θ (14)

being exactly Θ = PCMSW (Z,H). This observation can be applied to simplify computations for the Poisson model
and underlies our PoisMS algorithm. The algorithm repeatedly approximates the Poisson objective at current guess Θ

by a quadratic function and shifts Θ towards the global minimum of this quadratic approximation:

1. [Initialize] Generate random Θ ∈ Rk×3, calculate the current guess for the contact matrix approximation
Ĉ = HΘΘTHT .

2. Repeat until convergence:

2.1 [SOA] Calculate the SOA for the Poisson loss at the current guess

W = eα·Ĉ+β and Z = Ĉ + 1
α(C−WW ).

2.2 [WPCMS] Update current guesses for Θ and Ĉ via the WPCMS approach

Θ := PCMSW (Z,H) and Ĉ := HΘΘTHT .

The stopping rule for the PoisMS algorithm is similar to WPCMS: for some fixed accuracy rate ε2 we check if
the updated Θnew meets the criteria

∣∣∣ `PoisMS(Θold)−`PoisMS(Θnew)
`PoisMS(Θold)

∣∣∣ < ε2 after each iteration of steps 2.1–2.2. The
Supplement contains further details, including computational complexities of WPCMS and PoisMS, as well as
algorithmic extensions.
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2.9 Determination of principal curve degrees-of-freedom

The main hyperparameter for the PCMS and PoisMS approaches described above is the spline degrees-of-freedom
df (spline basis size), which controls the smoothness of the resulting reconstruction. To determine the optimal
value, for each df we create the spline basis matrix Hdf , find the corresponding solution Θ̂df and the contact matrix
approximation Ĉdf = Hdf Θ̂df Θ̂T

dfH
T
df . We measure the error rate by the normalized loss function, i.e

PCMS: err(Ĉdf ) =
1

n2
‖C − Ĉdf‖2F (15)

PoisMS: err(Ĉdf ) =
1

n2

∑
1≤i,j≤n

λij − Cij log λij , where log Λ = αĈdf + β. (16)

Initially, we tried cross-validation to find the optimal value of df , as is common for smoothing (penalty) parameter
determination. However, the complex and structural dependencies that characterize contact matrices made this
approach problematic. As an alternative we adopted an approach based on identifying the “elbow" that is prototypic in
graphs of resubstitution error, here err(Ĉdf ), versus model complexity, here df . The logic as to why this change point
constitutes a basis for model complexity determination is described in Breiman et al. [1984] in terms of bias-8variance
tradeoff. Elbow identification is also used for determining appropriate numbers of principal components (Jolliffe,
2002) and clusters (Hastie et al., 2009), as well as dimension in MDS (Kruskal and Wish, 1978) and non-negative
matrix factorization (NMF; see Hutchins et al., 2008) problems.

2.10 Accuracy assessment via multiplex FISH

While the prescription in Section 2.9 provides a means for selecting a particular PCMS or PoisMS model it does not
address the accuracy of the chosen model. The absence of gold standards makes such assessment challenging. In
comparing competing 3D genome reconstructions several authors have appealed to simulation (Zhang et al., 2013,
Varoquaux et al., 2014, Zou et al., 2016, Park and Lin, 2017), however, real data referents are preferable. To that
end, many of the same reconstruction algorithm developers have made recourse to fluorescence in situ hybridization
(FISH) imaging as a basis for gauging accuracy. This proceeds by comparing distances between imaged probes with
corresponding reconstruction-based distances. But such methods are necessarily limited by the sparse number of
probes (∼ 2− 6; see Lieberman-Aiden et al., 2009, Shavit et al., 2014, Park and Lin, 2017) and the modest resolution
thereof, many straddling over 1 megabase (Mb). The recent advent of multiplex FISH (Wang et al., 2016) transforms
3D genome reconstruction accuracy evaluation by providing an order of magnitude more probes and hence two orders
of magnitude more inter-probe distances than conventional FISH. Moreover, the probes are at higher resolution (more
precisely localized) and centered at previously defined topologically associated domains (TADs; see Dixon et al.,
2012). We use this imaging data, along with companion accuracy assessment approaches (Segal and Bengtsson, 2018)
to evaluate our PCMS and PoisMS reconstructions, as outlined next.

The image-based 3D genomic coordinates furnished from multiplex FISH serve to define the gold standard by which
we assess reconstructions. The existence of numerous multiplex FISH replicates is crucial for this task and three steps
are necessary to effect such evaluation.

Obtaining the gold standard. Given N multiplex FISH replicates denote the matrix of the spatial coordinates for
replicate i ∈ {1, . . . , N} by X0

i ∈ Rn0×3 where n0 denotes the number of distinct multiplex FISH loci (probes) over
all replicates. We start by defining the medoid replicate. For a pair of 3D conformations X1, X2 ∈ Rn0×3 denote
the number of observed loci by n(X1, X2) and suppose dproc(X1, X2) is the Procrustes distance from X2 to X1
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following alignment allowing translation, rotation and scaling (Hastie et al., 2009). Then the dissimilarity between
X1 and X2 is defined by

d(X1, X2) =
1

n(X1, X2)
dproc(X1, X2). (17)

Using this dissimilaity one can calculate the medoid replicate as the replicate whose average dissimilarity to the other
replicates is minimal:

i∗ = argmini=1,...,N

N∑
j=1

d(X0
i , X

0
j ). (18)

Next, let X∗j be the Procrustes alignment of X0
j to the medoid X0

i∗ . The average Procrustes conformation X̄ , defined
as the locus-wise average of the X∗j , then serves as a gold standard. Our application of Procrustes alignment prior to
this (noise reducing) averaging accommodates translation, rotation, and scaling and differences between replicate
conformations.

Computing the reference distribution. Treating the average Procrustes conformation X̄ as our gold standard we
can obtain a reference distribution by measuring the dissimilarity between it and the multiplex FISH replicates, i.e.
d(X̄,X0

i ). The resulting empirical distribution captures experimental variation around the gold standard. A fine point
is that, by construction, this distribution will exhibit reduced dispersion compared to its target population quantity
owing to data re-use since X0

i contributes to X̄ . While this concern could be mitigated by employing leave-one-out
techniques the large number of available replicates (> 110) renders this approach unnecessary (Segal and Bengtsson,
2018).

Evaluating chromatin reconstructions. To evaluate reconstructions resulting from the PCMS and PoisMS approaches
we first need to align the reconstruction with the gold standard. This may involve preliminary coarsening of one or
other coordinate sets to yield comparable resolution. Here, the genomic coordinate ranges for each multiplex FISH
probe are coarser than the Hi-C bins used in our reconstructions. So we calculate the average of the reconstruction
coordinates falling in the corresponding multiplex FISH bins to obtain a lower resolution reconstruction X̂ of the same
dimension as X̄ . To quantify how close this reconstruction is to the gold standard X̄ we again measure dissimilarity
following alignment d(X̄, X̂) Interpretations of this quantity in the context of the reference distribution are presented
in the Results section.

2.11 A contrasting reconstruction algorithm: HSA

To compare our PCMS and PoisMS solutions with an alternate reconstruction algorithm we make recourse to HSA
(Zou et al., 2016). This technique provides an interesting contrast in that it employs a similar Poisson formulation
to (12) but instead of contiguity being captured via principal curves per (5), it is indirectly imparted by constraints
that induce dependencies on a hidden Gaussian Markov chain over the solution coordinates. Obtaining these spatial
coordinates is achieved via simulated annealing with further smoothness effected via distance-based penalization.
This procedure is embedded in an alternating algorithm with parameters analogous to α, β in (11) estimated by
Poisson regression.

HSA has performed well in some benchmarking studies and features several compelling attributes: (i) it can
simultaneously handle multiple data tracks allowing for integration of replicate contact maps; (ii) it can adaptively
estimate the power-law index whereby contacts are transformed to distances, the importance of which has been
previously emphasized (Zhang et al., 2013); and (iii) by using Hamiltonian dynamics based simulated annealing it
can purportedly efficiently optimize over the space of genomic loci 3D coordinates. Nonetheless, in contrast to PCMS
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and PoisMS, HSA incurs a substantial compute and memory burden, and questions surrounding robustness have been
raised (Rieber and Mahony, 2017).

To compare PCMS and PoisMS performance with HSA we use the approach described in Section 2.10: we measure
the dissimilarity between the HSA reconstructions and the gold standard and interpret the obtained quantities in the
context of the attendant reference distribution and the corresponding PCMS and PoisMS values (see Section 3.3).

3 Results

3.1 Chromosome reconstructions

We present PCMS and PoisMS reconstructions for IMR90 cell chromosome 20 at 100kb resolution for which
multiplex FISH and Hi-C data acquisition and processing has been previously described (Segal and Bengtsson, 2018).
Results for chromosome 21 are presented in the Supplement.

For the Poisson model (11) the inner product matrix XXT depends on the Poisson parameters Λ: XXT = log Λ−β
α .

So, to make PCMS and PoisMS results comparable, we apply the algorithms toC log = log(C+ε)−β
α andC, respectively.

Here ε is a small constant introduced to avoid taking the logarithm of zero and β can be interpreted as a centering

constant. In our experiments we take α = 1, β = log
(∑n

i,j=1 Cij
n

)
and ε = 10−3 (the recommended range for this

parameter is 10−1, . . . , 10−4). The corresponding transformed contact matrix is shown in Figure 7; the resulting
contact matrix approximations Ĉdf and the chromatin reconstructions X̂df computed via the PCMS and PoisMS
techniques are presented in Figures 8 and 9, respectively.

Figure 1: Log-transformed contact matrix C log = log(C+ε)−β
α for ε = 0.001,

α = 1 and β = log
(∑n

i,j=1 Cij
n

)
.
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(a) df = 10 (b) df = 25 (c) df = 50

(d) df = 100 (e) df = 150 (f) df = 200

Figure 2: X̂df , the projections of the resulting reconstruction, and αĈdf +β, the approximation of log(C),
obtained via PCMS for different degrees-of-freedom values df .
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(a) df = 10 (b) df = 25 (c) df = 50

(d) df = 100 (e) df = 150 (f) df = 200

Figure 3: X̂df , the projections of the resulting reconstruction, and αĈdf +β, the approximation of log(C),
obtained via PoisMS for different degrees-of-freedom values df .
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3.2 Determining degrees-of-freedom

To estimate degrees-of-freedom for both PCMS and PoisMS we plot error rate err(Ĉdf ) vs df . For PCMS, error rate
decreases rapidly up to df = 25 with subsequent decline being gradual. A similar pattern pertains for PoisMS with
the gradual error decline evident after df = 20 (Figure 10). Estimated df according to the elbow (slope change point)
heuristic are obtained using the R package segmented (Muggeo, 2008) and depicted in the respective Figures.

Figure 4: Error rate, here err(Ĉdf ) = 1
n2
obs
‖C log − Ĉdf‖2F for PCMS and

err(Ĉdf ) = 1
n2
obs

∑
1≤i,j≤n λij − Cij log λij with log Λ = αĈdf + β for PoisMS, vs. degrees-of-freedom,

here df . The segmented regression is given by the piecewise linear fit (black) with the degrees-of-freedom
selected via kink estimation indicated by the red vertical line. Segmentation change point indicated for PCMS
is df = 26.32 and for PoisMS is df = 12.27. Note that the optimal df value obtained via this method tends to
be conservative.

3.3 Evaluating reconstructions via the multiplex FISH referent

Procrustes alignment of 3D conformations, and calculation of the corresponding Procrustes distances dproc(·, ·), was
performed using the R package vegan (Oksanen et al., 2016). We obtain the multiplex FISH medoid conformation
based on the smallest row sum (18) of the dissimilarity matrix of normalized Procrustes distances (17) as described
(Section 2.10). The 111 multiplex FISH replicate conformations are then aligned to the medoid as a prelude to calcu-
lating the average Procrustes conformation — our gold standard — presented in Figure 11. Next, we plot the multiplex
FISH dissimilarity reference distribution of dissimilarities between replicates and the gold standard. We position
the PCMS and PoisMS reconstruction dissimilarities with the gold standard in the resulting histograms. Figures 12
presents results for a series of reconstructions based on select degrees-of-freedom: df = 5, 10, 25, 50, 100, 150, 200.
Finally, HSA reconstruction dissimilarity values are included in the plot.

The following conclusions can be drawn from Figure 12. For chromosome 20 (see Supplement for chromosome 21),
all fits for both PCMS and PoisMS lie within the range of the multiplex FISH dissimilarity distribution that reflects
experimental variation. The fact that the PCMS and PoisMS dissimilarity values are in the left tail of this distribution
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indicates the accuracy of the proposed reconstructions, highlighting the utility of the proposed methodologies. Further,
the larger HSA highlights the potential of our methods.

Figure 5: The average Procrustes conformation computed for 111 multiplex
FISH replicate conformations for chromosome 20.

Figure 6: Reference distribution measuring the dissimilarity between the gold standard X̄ and 111
multiplex FISH replicate conformations X0

i for chromosome 20. The vertical red lines correspond to the
dissimilarity between X̄ and the low-resolution reconstruction X̂df calculated for different df values; the
green lines represent three types of the HSA reconstruction(see Sections 2.10 and 2.11).
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4 Discussion

Central to our principal curve based approaches to 3D chromatin reconstruction is that the configuration of an
individual chromosome within the nucleus can be treated as a contiguous 1D curve since the diameter of the chromatin
fiber is negligible compared to the nuclear volume. The extent to which the curve is “smooth” is determined by an
adaptively selected degrees-of-freedom parameter. As mentioned in the introduction, previous reconstruction methods
either impart contiguity indirectly by prescribing constraints, which are difficult to specify, or impose it post hoc. In
comparison, our methods based on principal curves are computationally efficient, readily scale to high resolution
contact data and are parsimonious with regard tuning parameters.

Our implementation of PCMS and PoisMS utilizes cubic spline basis functions, which contribute to this computational
efficiency. However, the nature of chromatin folding and attendant Hi-C data is such that these bases will be less
effective in capturing fine 3D structure, as opposed to global backbone architecture. This derives from the hierarchical,
domain-based organization of chromatin, aspects that have been tackled by some reconstruction algorithms using
strategies that synthesize solutions obtained at differing scales (Rieber and Mahony, 2017, Trieu et al., 2019). We will
investigate whether principal curve solutions can similarly serve as building blocks in addition to exploring the use of
alternate basis functions, notably wavelets.

Our analyses of Hi-C data from IMR90 cells was motivated by the availability of corresponding multiplex FISH data
enabling accuracy assessment. However, the extent and resolution of multiplex FISH imaging is limited, narrowing
the applicability of this means of evaluation. An even more fundamental issue pertains to attempting chromatin
reconstruction using bulk Hi-C data from large cell populations. As has been emphasized (Lando et al., 2018), the
presence of numerous conflicting contacts suggests that the notion of a consensus underlying 3D conformation is
questionable and that there is substantial cell-to-cell structural variation. This places a premium on pursuing single
cell reconstructions as enabled by the recent emergence of single cell Hi-C protocols (Ramani et al., 2017). That
one of these advances (Stevens et al., 2017) also provides parallel imaging data, putatively enabling reconstruction
accuracy determination, underscores the importance of applying reconstruction methods in single cell settings, despite
contact map sparsity, and is the subject of future work.

5 Software

Proposed methods are implemented in the R package PoisMS; the software is available from Github
(https://github.com/ElenaTuzhilina/PoisMS).
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Supplementary Material

6 Algorithms details and extensions

6.1 WPCMS algorithm details

1. Since the WPCMS algorithm is equivalent to Projected Gradient Descent (PGD), many extensions can be
naturally derived. For example, a learning rate δ can be introduced by replacing W by δW at the [Mix] step;
furthermore, it is not difficult to add line search to the algorithm:

[Mix] C∗ = W ∗ C + (1−W ) ∗ Ĉ =⇒=⇒
[Search] C∗δ = δW ∗ C + (1− δW ) ∗ Ĉ

δ1 = argminδ `WPCMS(PCMS(C∗δ , H))

[Mix] C∗ = δ1W ∗ C + (1− δ1W ) ∗ Ĉ
2. One more improvement of the WPCMS algorithm could be done for the [Initialize] step.

[Initialize] Generate random Θ ∈ Rk×3 =⇒=⇒ [Initialize] Θ := PCMS(C,H)

It has been experimentally shown that using PCMS(C,H) as a warm start could significantly decrease the
number of iterations required for the algorithm to converge.

6.2 PoisMS algorithm details

1. It is not necessary to wait until the complete convergence of the objective `SOA(Θ) at the [WPCMS] step.
According to our experiments, the PoisMS algorithm can be significantly accelerated if one does just a few
steps of WPCMS between each update of W and Z. This can be easily done varying the accuracy rate ε1 for
the WPCMS stopping rule

∣∣∣ `SOA(Θold)−`SOA(Θnew)
`SOA(Θold)

∣∣∣ < ε1.

2. First, note that `PoisMS(X) depends only on the scalar products 〈xi, xj〉 and, therefore, can be efficiently
reparametrized in terms of XXT . Moreover, under the smooth curve constraint X = HΘ the Poisson loss
function could be further reparametrized in terms of the similarity matrix S = HΘΘTHT , i.e `PoisMS(S) =∑

1≤i,j≤n e
αSij+β − cij(αSij + β). Finally, the optimal value of the Poisson loss quadratic approximation at

current guessH0 coincides with the result of one step of the Newton Method initialized atH0. Combining
these together, one can add a learning rate as well as line search to the Poisson Metric Scaling algorithm.

[WPCMS] Θ := PCMSW (Z,H)

Ĉ := HΘΘTHT

=⇒=⇒

[WPCMS] Θ := PCMSW (Z,H)

C∗ = HΘΘTHT

[Search] C∗δ = (1− δ)Ĉ + δC∗

δ2 = argminδ `PoisMS(C∗δ )

[Mix] Ĉ := (1− δ2)Ĉ + δ2C
∗

3. Similarly to the WPCMS algoritm, the PCMS technique can be used to find a warm start at the [Initialize]
step. According to the Poisson model under consideration, the Poisson parameters matrix Λ depend on the
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genomic loci spatial coordinates X via the following relation Λ = eαXX
T+β . Therefore, for the initialization

step it is reasonable to assume the following approximation C ≈ eαXXT+β , which is essentially the same as
if the log transformed contact matrix logC−β

α was approximated by the inner product matrix XXT . To avoid
taking logarithm of zero one can replace logC by log(C + ε) for a small ε and consider the new initialization
as follows:

[Initialize] Generate random Θ ∈ Rk×3

Ĉ := HΘΘTHT

=⇒=⇒ [Initialize] Θ := PCMS

(
log(C + ε)− β

α

)
Ĉ := HΘΘTHT

4. The hyperparameter α does not play any important role in the reconstruction as it is responsible for the
resulting conformation scaling only. On the other hand, for the fixed Θ one can optimize the negative
log-likelihood w.r.t. the hyperparameter β and hence add an additional [Update β] step to the algorithm:

4. [Update β] β := log

( ∑
1≤i,j≤n Cij∑

1≤i,j≤n e
α·Sij

)
6.3 Computational complexity

The computational complexity of PCMS is O(n2k) operations for calculating the product HTCH and extra O(k3)

for eigen-decomposition (negligible for small k). Each iteration of WPCMS has the same complexity as PCMS, plus
O(n2) operations for computing Hadamard products with matrix W . Finally, the complexity of a PoisMS iteration is
equivalent to WPCMS one and demands O(n2) extra operations for calculating the second order approximation.

7 Reconstruction results calculated for chromosome 21

Figure 7: Log-transformed contact matrix C log = log(C+ε)−β
α for ε = 0.001,

α = 1 and β = log
(∑n

i,j=1 Cij
n

)
.
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(a) df = 10 (b) df = 25 (c) df = 50

(d) df = 100 (e) df = 150 (f) df = 200

Figure 8: X̂df , the projections of the resulting reconstruction, and αĈdf +β, the approximation of log(C),
obtained via PCMS for different degrees of freedom values df .
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(a) df = 10 (b) df = 25 (c) df = 50

(d) df = 100 (e) df = 150 (f) df = 200

Figure 9: X̂df , the projections of the resulting reconstruction, and αĈdf +β, the approximation of log(C),
obtained via PoisMS for different degrees of freedom values df .
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Figure 10: Error rate, here err(Ĉdf ) = 1
n2
obs
‖C log − Ĉdf‖2F for PCMS and

err(Ĉdf ) = 1
n2
obs

∑
1≤i,j≤n λij − Cij log λij with log Λ = αĈdf + β for PoisMS, vs. degrees-of-freedom,

here df . The segmented regression is given by the piecewise linear fit (black) with the degrees-of-freedom
selected via kink estimation indicated by the red vertical line. Segmentation change point indicated for PCMS
is df = 18.1 and for PoisMS is df = 16.62. Note that the optimal df value obtained via this method tends to be
conservative.

Figure 11: The average Procrustes conformation computed for 111 multiplex
FISH replicate conformations for chromosome 21.
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Figure 12: Reference distribution measuring the dissimilarity between the gold standard X̄ and 111
multiplex FISH replicate conformations X0

i for chromosome 21. The vertical red lines correspond to the
dissimilarity between X̄ and the low-resolution reconstruction X̂df calculated for different df values; the
green lines represent three types of the HSA reconstruction.
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