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Abstract—This paper presents a dynamic state observer de-
sign for discrete-time linear time-varying systems that robustly
achieves equalized recovery despite delayed or missing observa-
tions, where the set of all temporal patterns for the missing
or delayed data is modeled by a finite-length language. By
introducing a mapping of the language onto a reduced event-
based language, we design a state estimator that adapts based on
the history of available data at each step, and satisfies equalized
recovery for all patterns in the reduced language. In contrast
to existing equalized recovery estimators, the proposed design
considers the equalized recovery level as a decision variable,
which enables us to directly obtain the global minimum for
the intermediate recovery level, resulting in improved estimation
performance. Finally, we demonstrate the effectiveness of the
proposed observer when compared to existing approaches using
several illustrative examples.

Index Terms—Estimation; Delay systems; Observers for Linear
systems

I. INTRODUCTION

CYBER-PHYSICAL systems (CPS) typically involve mul-
tiple sensors that send data packages to controllers

through a shared communication channel, and controllers
that compute and transmit control commands to actuators
that are connected to the physical system. For the safe and
efficient operation of these systems, state estimation plays an
essential role. However, time delays and missing data are often
inevitable due to sensor failures, package drops or adversaries.
Hence, there is a need for designing state estimators that are
robust to these delays and missing data. Literature review: For
the past few decades, active research development has been
undertaken in the area of state estimation for systems that are
susceptible to packet drops and delayed communication, as
highlighted in [1], [2] as typical concerns in networked control
systems. Significant amount of research has been done to
design state estimators when only intermittent data is available
[3], [4], [5], and when observations are arriving as out-of-
sequence measurements [6], [7], [8], [9]. The authors in [6]
used complete in-sequence information approach to recompute
all the estimations from the step when data did not arrive
until the point when it finally arrived, while [7] proposed
nonlinear filters utilizing a Bayesian filtering framework to
correct the previous estimation as soon as the delayed obser-
vation arrives. On the other hand, an optimal state estimation
approach was proposed for Markovian jump linear systems
subject to delays in both the output and mode observations
in [8]. However, these works mainly modeled the missing
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and delayed observations as stochastic variables with known
probability distributions and focused on obtaining the best
average/expected estimates as opposed to achieving best worst-
case/robust estimation errors considered in this paper.

Another relevant area that does consider the worst-
case/robust estimation performance is the synthesis of set-
valued estimators, which has seen some recent development,
e.g., [10], [11], [12]. The authors in [13] introduced the
property of equalized performance, which implies that the
estimation error always remains equal/invariant. For systems
with missing observations, [14] and [15] modeled the feasi-
ble missing data patterns with a finite-length language and
proposed finite-horizon affine estimators with an extended
property called equalized recovery, which implies that within
a finite time horizon, especially for times when observations
may go missing, the estimation error can have a more relaxed
upper bound, but by the end of the horizon should return to
the initial upper bound. In more recent work, [16], [17] devel-
oped a prefix-based method to predict the possible pattern of
missing data to improve the estimation performance. However,
this approach does not directly apply for delayed data patterns,
and thus, our goal in this paper is to design equalized recovery
estimators that can handle them.

Contribution: In this paper, we design a state observer
that achieves equalized recovery when the system data is
prone to misses and delays (including out-of-sequence obser-
vations). Instead of assuming probabilistic missing or delay
events, we model them using a fixed-length language that
represents the set of all possible temporal patterns of the
missing or delayed data and further construct a reduced event-
based language with unique event sequences. In contrast to
the worst-case language method in [14], [15], our proposed
design monitors the history of available data at run time and
adapts the estimator gain matrices. Furthermore, we extend
existing equalized recovery estimators to allow time-varying
intermediate levels and consider the equalized recovery level
as a decision variable, enabling us to directly find the global
minimum of the intermediate levels. These improvements are
shown in simulations to yield better estimation performance.

II. PROBLEM FORMULATION

A. System Dynamics and Delayed Data Language

System Dynamics: We consider a discrete-time linear time-
varying system subject to process noise and output noise. The
model of the system dynamics is described as follows:

xk+1 = Akxk +Bkuk +Wkwk,
zk = Ckxk + Vkvk,
Yk = {zk−τ(i)|i+ τ(i) = k, i ≤ k},

(1)



where xk ∈ Rn is the system state at time k , uk ∈ Rm is the
input to the system, wk ∈ Rn is the process noise, vk ∈ Rp is
the measurement noise, zk ∈ Rp is the model output, Yk ⊂ Rp

is the set of all measurements/outputs that are received at time
step k and τ(i)≥ 0 is the unknown time delay of the data at
the time step i that satisfies τ(i) ≤ τ̄ , where τ is a known
upper bound on the number of time steps that a packet can
be delayed by. The discrete variable τ(i) = 0 denotes that
the measurement from time step i is received/available, while
τ(i) = δ implies that the data from time step i is delayed by δ
steps. We assume that wk and vk are bounded with ∥wk∥ ≤ ηw
and ∥vk∥ ≤ ηv for each k, where ∥ · ∥ denotes the ∞-norm.
The system matrices Ak, Bk, Ck, Wk, Vk, ηw and ηv are all
known. Without loss of generality, we assume that the initial
time is k = 0.

Delayed Data Language: Given a fixed length T , we
consider a delayed data model in which all delay patterns
are restricted to a set expressed by fixed-length language
specifications, e.g., ‘the i-th observation is delayed by at
most m time steps’ or ‘at most m available measurements
in a fixed interval’. Formally, our delayed data model is a
fixed-length language L of length T that specifies the set of
allowable delay mode sequences τ(0)τ(1)τ(2) . . . τ(T − 1)
with τ(i) ≤ τ̄ , ∀i ∈ NT−1

0 , where the α-th possible sequence
is called a word Wα with α ∈ N|L|

1 . Note that i + τ(i)≥T
means that the i-th data is delayed beyond the horizon T ,
which is similar to the situation where that data is missing. In
other words, the case considered in [14], [15], [16] is a special
case of the delayed data language in this paper.
Example 1. Consider a system where the observation is
delayed by at most 2 time steps in a fixed interval of length
2. This means that τ = 2 and T = 2, and hence we
have τ(i) ∈ {0, 1, 2} for all i ∈ N1

0. Therefore, the fixed-
length language can be expressed as L = {W1, . . . ,W9} =
{00, 01, 02, 10, 11, 12, 20, 21, 22}.

B. Equalized Recovery
The focus of our paper is to design a bounded-error estima-

tor, where the estimation error is guaranteed to return/recover
to the same bound that it started with after a fixed number
of time steps, as an extension of the notion of equalized
performance in [13]. In terms of time horizon T , we enforce
that the estimation error bound at the end of the horizon is
guaranteed to be less than or equal to the bound at the start.
Formally, we consider equalized recovery, defined as follows,
which is a slight modification of the definition in [14] to allow
time-varying intermediate levels:

Definition 1 (Equalized Recovery). An estimator is said to
achieve an equalized recovery level µ1 at time 0 with recovery
time T and intermediate levels µ2,k ≥ µ1 if for any ∥x̃0∥ ≤
µ1, we must have ∥x̃k∥ ≤ µ2,k for all k ∈ [0, T ] and ∥x̃T ∥ ≤
µ1, where x̃k ≜ xk − x̂k is the estimation error and x̂k is the
state estimate at time k.

C. Problem Statement
We aim to design a bounded-error estimator that satisfies

equalized recovery, which can be stated as follows:

Problem 1 (Estimator Design with Delayed Data). Given the
system dynamics (1), a delayed data model specified by a
language L and a recovery time T as a time horizon, design
an optimal equalized recovery state estimator with estimate
x̂k and estimation error x̃k = xk − x̂k,∀k ∈ [0, T ] that
minimizes a cost J(µ1, {µ2,k}Tk=0) subject to µ2,k ≥ µ1,
∥x̃k∥ ≤ µ2,k, ∀k ∈ [0, T ] and ∥x̃T ∥ ≤ µ1 for all ∥x̃0∥ ≤ µ1.

In contrast to [14], [15], [16], [17], the above problem
formulation allows time-varying intermediate levels and more
importantly, the equalized recovery level µ1 does not need to
be specified a priori. As a result, we can directly optimize
over J(µ1, {µ2,k}Tk=0) and overcome the challenge with the
formulation in [14], [15], [16], [17] that the optimal cost is not
monotonic in µ1. Furthermore, if the recovery time T is not
given and can be chosen, we can perform a line search over T
using the above formulation. Moreover, simple modifications
will allow us to consider affine dynamics, similar to [14], [15],
[16], [17], and the case when the initial estimation error is
greater than µ1 (cf. Section III-B3).

III. DESIGN APPROACH

In this section, we propose an observer design approach to
solve Problem 1, which involves constructing an event-based
language LE from the fixed-length delayed data language L
and designing an estimator that adapts to the information from
the observed data pattern seen so far.

A. Event-Based Language

Given a language set L of a system, containing all possible
words for different allowable delay mode sequences, an event-
based language LE is constructed to capture the set of indis-
tinguishable event sequences that correspond to the different
delay mode sequences in L. To build the event-based language,
the following definitions are introduced first:

Definition 2 (Event). An event ei,j = d0d1d2 . . . di at time
step i ∈ NT−1

0 is a finite sequence of binary variables dl ∈
{0, 1} for all l ∈ Ni

0, where j ∈ N2i+1−1
0 is an index denoting

the j-th potential event at time step i. The binary variable
dl = 1 denotes that the data of time step l is available at
current time step i (i.e., all received data up until the current
step i), while dl = 0 signifies that the data of time step l is
not available at current time step i. Moreover, an event can
be defined using ei,j = binary(j, i+1) at time step i, where
the function binary returns a binary representation of the
number j ∈ N2i+1−1

0 with i+ 1 digits.

Definition 3 (Event Set). An event set ei = {ei,j}2
i+1−1

j=0 is a
set of all potential events at time step i ∈ NT−1

0 .

Intuitively, an event at time step i represents the information
that is available up until time i. Since any data from previous
or current steps only has two possibilities, i.e., measured or
not measured at the current time i ∈ NT−1

0 , there is a total of
2i+1 different cases. Thus, the index j of ei,j varies from 0
to 2i+1 − 1, as exemplified in the following.

Example 2. Consider a system with a horizon T = 2.
Based on above definitions of event and event set, we have



e0 = {e0,j}2
1−1

j=0 = {e0,0, e0,1} = {0, 1} for time step i = 0,
e1 = {e1,j}2

2−1
j=0 = {e1,0, e1,1, e1,2, e1,3} = {00, 01, 10, 11}

for time step i = 1. For instance, the event e0,0 = 0 means
that the data of time 0 is not available at the time 0, and the
event e1,1 = 01 means that at the time 1, the data of time 0
is not available but the data of time 1 is available.

Definition 4 (Event Sequence). An event sequence Eα =
e0,j0e1,j1e2,j2 . . . eT−1,jT−1

is a sequence of events corre-
sponding to a word Wα = {τ(i)}T−1

i=0 from the fixed-length
language L, where the subscripts ji for all i ∈ NT−1

0 are
determined by the word Wα.

In other words, an event sequence represents the available
information at each step. For each delay mode sequence
in a language L, we can find its corresponding event se-
quence, and thus, the language L = {Wj}|L|

j=1 contain-
ing all allowable delay mode sequences can be mapped
onto an event-based language LE = {Eα}|L|

α=1 contain-
ing all potential event sequences. Specifically, for a word
Wα = τ(0)τ(1)τ(2) . . . τ(T − 1), the subscript jk, k ∈
NT−1

0 , in the corresponding event sequence Eα = e0,j0e1,j1
e2,j2 . . . eT−1,jT−1

(cf. Definition 4) can be constructed as

jk =
∑k

ℓ=0 2
ℓ1τ(k−ℓ)≤ℓ, ∀k ∈ NT−1

0 , (2)

where 1τ(k−ℓ) denotes an indicator defined as

1τ(k−ℓ)≤ℓ =

{
1, τ(k − ℓ) ≤ ℓ,

0, τ(k − ℓ) > ℓ.
(3)

Note that the resulting event-based language LE =

{Eα}|L|
α=1 could have repeated event sequences (i.e., the map-

ping is surjective). Thus, we will eliminate repeated event
sequences in LE to obtain a reduced event-based language

LE′
= {E ′

α}
|LE′

|
α=1 ⊆ LE with unique event sequences E ′

α

for α ∈ N|LE′
|

1 . The next example demonstrates how to
map/transform the fixed-length language L in the Example
1 to a reduced event-based language LE′

.

Example 3. Consider the delayed data language in Example
1. The word W2 = 01 denoting that the data of time 0 has
no delay while the data of time 1 is delayed by 1 time step,
can be represented by the event trajectory E2 = e0,1e1,2
using (2), where e0,1 = 1 means that the data of time 0
is available at the time 0, e1,2 = 10 means that the data
of time 0 is also available at the time 1 (since the data of
time 0 is previously received at the time 0) and the data of
time 1 is not available at the time 1 (since the data of time
1 is delayed by 1 time step). Using this procedure, we can
transform all words in the language L = {W1, . . . ,W9} =
{00, 01, 02, 10, 11, 12, 20, 21, 22} to an event-based
language LE = {E1, . . . , E9} = {e0,1e1,3, e0,1e1,2, e0,1e1,2,
e0,0e1,3, e0,0e1,2, e0,0e1,2, e0,0e1,1, e0,0e1,0, e0,0e1,0}. Then,
we can eliminate repeated event sequences in LE and obtain
a reduced event-based language LE′

= {E ′
1, . . . , E ′

6} =
{e0,1e1,3, e0,1e1,2, e0,0e1,3, e0,0e1,2, e0,0e1,1, e0,0e1,0}.

B. Equalized Recovery State Estimator Design
For the estimator design, we will make use of the following

definitions and notation, inspired by [16]:

Definition 5 (Principal Block Minor). The i-th leading prin-
cipal block minor of a matrix M ∈ Ran×bp is the n× p block
matrix, BMi(M) = M1:in,1:ip, for all i ∈ [1,min(a, b)].
Definition 6 (Prefix of an Event Sequence). For an event
sequence E ′

α ∈ LE′
and i ≤ |E ′

α|, the length i prefix of E ′
α

is defined as E ′,[1:i]
α = e0,j0e1,j1e2,j2 . . . ei−1,ji−1

, where |E ′
α|

denotes the number of events in E ′
α. The set of all non-empty

prefixes of E ′
α is denoted as Pref(E ′

α).
Example 4. Consider event E ′

1 of the reduced event-based
language LE′

in Example 3. As E ′
1 = e0,1e1,3, we have |E ′

1| =
2 and i = {1, 2}. The length 1 prefix of E ′

1 is e0,1, while its
length 2 prefix is e0,1e1,3. Thus, the set of non-empty prefixes
of E ′

1 is Pref(E ′
1) = {e0,1, e0,1e1,3}.

Next, to solve Problem 1, we consider a finite horizon
dynamic state estimator, inspired by [15], with augmented
states x̄k ≜

[
x̂⊤
k s⊤k

]⊤
, where x̂k ∈ Rn is the estimate of the

system state and sk ∈ Rn an auxiliary state which estimates
x̃k= xk − x̂k. The estimator design is as follows:

x̂k+1 = Akx̂k +Bkuk − ue,k,

sk+1 = Aksk + ue,k + L
E′
α

k z̃k,
(4)

with
z̃k=

{
ỹk−Cksk=zk−Ck(x̂k+sk), if zk∈

⋃k
j=0 Yj ,

0, otherwise,

where ỹk ≜ zk−Ckx̂k, LE′
α

k ∈ Rn×p is the Luenberger gain at
step k as a function of the observed prefix E ′

α and ue,k ∈ Rn

is the causal output error injection term given by:

ue,k = ν
E′
α

k +
∑k

i=0 M
E′
α

(k,i)z̃i, (5)

where M
E′
α

(k,i) ∈ Rn×p and ν
E′
α

k ∈ Rn are gain matrices at
time k as a function of the observed prefix E ′

α, which will be
designed to satisfy the objectives of Problem 1.

In [15], the estimator design was formulated with essentially
one worst-case word in the worst-case language L∗, which was
obtained by combining all the words in the given language,
resulting in a triplet of stacked (M,L, ν) matrices for the
whole time horizon T which would satisfy the conditions
in Problem 1 for both the worst-case word in L∗ as well
as individual words in L. Since the worst-case language L∗

is used for achieving the equalized recovery, the achievable
performance level is conservative. On the other hand, solving
Problem 1 for multiple triplets of (Mα, Lα, να) for each
word Wα in L may result in implementation conflicts due
to causality. This limitation was discussed in detail in [16].

To remedy this, we need to design the individual
(Mα, Lα, να) for each word Wα of L such that if two
different words are not distinguishable until time k̄, then
(Mα

(k), L
α
(k), ν

α
(k)) for both words should be constrained to be

the same for all k ∈ Nk̄−1
0 , where Mα

(k) denotes the k-th
row of Mα. Instead of associating a triplet (Mα, Lα, να) to
each word Wα in the language L, we only consider triplets
(Mα, Lα, να) for each event sequence E ′

α of the reduced
event-based language LE′

. Since all event sequences in LE′

are not repeated and LE′ ⊆ LE , we can reduce the number of
triplets needed and thus the size of the optimization problem.

Using the above, we impose the following constraint due to
indistinguishability of unique event trajectories in LE′

:



C(LE′
)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(Mα, Lα,

να)}|L
E′

|
α=1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

(e ∈ Pref(E ′
α) ∧ e ∈ Pref(E ′

β))

=⇒ ∀E ′
α, E ′

β ∈ LE′
:

(BM|e|(M
α) = BM|e|(M

β))∧
(BM|e|(L

α) = BM|e|(L
β))∧

((να)(1:|e|n) = (νβ)(1:|e|n))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (6)

Intuitively, if any pair of event sequences share the same
prefix of a particular length, then they are indistinguishable at
the corresponding time step based on the received information.
Since they are indistinguishable (and future information is
inaccessible in a causal system), their associated submatrices
and subvectors need to be constrained to be the same to avoid
conflicts during implementation. Note that while the prefix
notation is similar to [16], our estimator uses a different state
estimator structure that enables us to consider more general
data patterns, including delayed data patterns.

Moreover, for each event sequence E ′
α ∈ LE′

, due to
delayed data and causality, all the entries in Mα and Lα

corresponding to no available data should also be set to zero.
To construct this constraint on Mα and Lα, we first define an
event matrix associated with the event sequence E ′

α ∈ LE′
:

Eα =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
(0)
0,j0

0 0 . . . 0

e
(0)
1,j1

e
(1)
1,j1

0 . . .
...

e
(0)
2,j2

e
(1)
2,j2

e
(2)
2,j2

. . .
...

...
...

. . . 0

e
(0)
T−1,jT−1

e
(1)
T−1,jT−1

e
(2)
T−1,jT−1

. . . e
(T−1)
1,jT−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where e
(l)
i,ji

specifies the (l+1)-th digit of event ei,ji , i.e., dl (cf.
Definition 2). Using this definition, we impose the following
constraint due to delayed data:

D(LE′
)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(Mα,

Lα)}|L
E′

|
α=1

⏐⏐⏐⏐⏐⏐⏐⏐⏐
∀i, j ∈ NT

1 :
Mα

((i−1)n:(i−Eα(i,j))n−1,
(j−1)p:(j−Eα(i,j))p−1)

=0,

Lα
((i−1)n:(i−Eα(i,j))n−1,
(j−1)p:(j−Eα(i,j))p−1)

=0

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (7)

Next, we provide examples of C(LE′
) and D(LE′

).

Example 5. Consider two event sequences E ′
1 = {e0,1e1,3}

and E ′
2 = {e0,1e1,2} of LE′

in Example 3. The sets of all non-
empty prefixes of E ′

1 and E ′
2 are Pref(E ′

1) = {e0,1, e0,1e1,3}
and Pref(E ′

2) = {e0,1, e0,1e1,2}, respectively. It is clear that
E ′
1 and E ′

2 have the same length 1 prefix, so we need to
impose the following constraints in C(LE′

): BM1(M
1) =

BM1(M
2), BM1(L

1) = BM1(L
2) and ν11:n = ν21:n. More-

over, to formulate the constraints D(LE′
), we first construct

event matrices associated with E ′
1 and E ′

2:

E1 =

[
e
(1)
0,1 0

e
(1)
1,3 e

(2)
1,3

]
=

[
1 0
1 1

]
, E2 =

[
e
(1)
0,1 0

e
(1)
1,2 e

(2)
1,2

]
=

[
1 0
1 0

]
,

where a zero element located at the i-th row and j-th column
of matrices E1 (or E2) indicates that the data of time step j is
not available at the time i due to the delay in E ′

1 (or E ′
2) and

causality. This is captured in D(LE′
) by M1

(0:n−1,p:2p−1) = 0

for i = 1 and j = 2 in E1, M2
(0:n−1,p:2p−1) = 0 for i = 1

and j = 2 in E2, and M2
(n:2n−1,p:2p−1) = 0 for i = 2 and

j = 2 in E2, which results in M1 and M2 with the following

block structures: M1 =

[
∗ 0
∗ ∗

]
, M2 =

[
∗ 0
∗ 0

]
, where ∗

denotes non-zero submatrices. Similar constraints also need
to be imposed on L1 and L2 in D(LE′

).

1) Estimator Gains Design: Next, we present an approach
to obtain the estimator gains (Mα, Lα, να) associated with
each unique event sequence E ′

α in LE′
for the estimator in

(4). Moreover, we also allow the time-varying intermediate
levels to be prefix-dependent, i.e., with µα

2,k, which can lead
to improved estimation error bound when the prefix, i.e., the
history of available data, is observed at run time.
Theorem 1 (Equalized Recovery Estimator Design with De-
lays). For a system with measurement delays and missing data
patterns defined by a fixed-length language L given in (1),
the finite-horizon affine estimator given in (4) can fulfill the
objectives in Problem 1 if the following is feasible:

min
Mα,να,µα

2 ,s0,Lα,µ1

J(µ1, {µα
2 }

|LE′
|

α=1 )

subject to ∀(∥w∥≤ηw, ∥v∥≤ηv, ∥x̃0∥≤µ1, α∈N|LE′
|

1 :
∥x̃α∥ ≤ µα

2 , ∥RT x̃
α∥ ≤ µ1, µ

α
2 ≥ µ1, µ1 ≥ 0,

x̃α = Θαw +Ψαv + Ξαx̃0 +Υαs0 +Hνα,

(Mα, Lα, να) ∈ C(LE′
) ∧ D(LE′

),

(8)

where
RT =

[
0n×nT In

]
, µα

2=
[
µα
2,0, µ

α
2,1, . . . , µ

α
2,T

]⊤
,

Θα = (I +H(Mα + Lα)C)ΓαW,
Ψα = (H(Mα + Lα)(I − CΓαLα)− ΓαLα)V,
Ξα = (I +H(Mα + Lα)C)Φα, Υα = A− Ξα.

(9)

The matrices H , Mα, Lα, C, Γα, W , V , Φα and A, all of
which are stacked matrices for the whole time horizon T , are
derived after stacking the system in (1), estimator in (4) and
the output error injection term in (5). The definitions of these
matrices can be found in the Appendix.

Proof. The estimator design follows similar steps to the design
in [15]. It is straightforward to observe that the estimator
solves Problem 1 by construction with the additional con-
straints on the estimator gains in Section III-B. ■

When compared to our prior work [15], we consider a
prefix-based design that enables adaptation of the gain matri-
ces and improved estimation error bounds based on observed
prefix, i.e., the history of available data, at run time. It is also
noteworthy that in contrast to existing equalized recovery esti-
mators [14], [15], [16], [17], the proposed estimator considers
µ1 as a decision variable, instead of a given parameter. This
seemingly small change has an important implication that the
difficulty in finding the global minimum for µ2 with previous
designs (due to their non-monotonicity in µ1) can now be
overcome with the new design.

2) Robustification: Next, since the problem in Theorem 1
involves semi-infinite constraints (i.e., for all constraints), as
in [15], we leverage robust optimization tools, e.g., [18], to
obtain a problem with a finite number of constraints:

Proposition 1 (Robustified Equalized Recovery Estimator
Design with Delays). The equalized estimator design that
solves Problem 1 via Theorem 1 is equivalent to:

a



min
Mα,να,µα

2 ,µ1,s0,L
α,Πα

1 ,Πα
2

J(µ1, {µα
2 }

|LE′
|

α=1 )

subject to Πα
1 ≥ 0,Πα

2 ≥ 0,Πα
3 ≥ 0, µα

2 ≥ µ1, µ1 ≥ 0,

[
Πα

1 Πα
2 Πα

3

]⎡⎣ηw1ηv1
1

⎤⎦≤
⎡⎣ µα

2

µα
2

µ11

⎤⎦−
⎡⎢⎣ I 0
−I 0
0 I
0 −I

⎤⎥⎦[
Hνα+Υαs0

RT (Hνα+Υαs0)

]
,

[
Πα

1 Πα
2 Πα

3

]
⎡⎢⎢⎢⎢⎢⎣

I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎣ I 0
−I 0
0 I
0 −I

⎤⎥⎦[ Gα

RTG
α

]⎡⎣I 0 0
0 I 0
0 0 µ11

⎤⎦,
(Mα, Lα, να) ∈ C(LE′

) ∧ D(LE′
), (10)

where Gα ≜
[
Θα Ψα Ξα

]
with Θα, Ψα, Ξα, ∀α ∈ N|LE′

|
1

defined in (9), while Πα
1 , Πα

2 , Πα
3 are dual matrix variables.

Proof. By replacing the semi-infinite constraints in (8) with
their robust counterparts based on [18], we obtain a similar
problem as in [15, Eq. (11)]. However, since µ1 is a decision
variable in our problem (instead of a parameter as in [15]), we
have a bilinear term in the first equality that is a product of
dual variables Π̃α

3 with µ1. To overcome this issue, we post-

multiply the second equation on both sides with

⎡⎣I 0 0
0 I 0
0 0 µ11

⎤⎦,

which results in the appearance of the same bilinear term.
Then, since the original Π̃α

3 no longer appears independently, a
common trick is to replace µ1Π̃

α
3 with a new decision variable

Πα
3 that is positive since µ1 ≥ 0. ■

The above optimization problem has bilinear terms but is
relatively sparse, so off-the-shelf solvers, e.g., [19], can find
optimal solutions quickly. Further, if desired, we can fix Lα

and s0 to perform a line search over µ1 using a linear program
without loss of optimality, as discussed in [15, Section IV-C].

3) Implementation Strategy: The proposed equalized recov-
ery estimator in this paper could be implemented in multiple
different ways. First, in the case that the delayed/missing data
pattern is periodic with a period of T time steps, we can
use the same gains for each period because the estimation
error bound at the end of the period is enforced to be the
same at the beginning of the period by the proposed estimator.
Moreover, if there is no missing/delayed data, we could use an
equalized performance estimator, i.e., an equalized recovery
estimator with a period of 1 time step (cf. [13]) until a
missing/delayed data is encountered, at which point we can
switch to an equalized recovery estimator with a T -length
language in which the first data is missing/delayed. Then, after
the recovery time T , we revert to the equalized performance
estimator again until the next time a delayed data is detected.
Further, if the initial estimation error does not satisfy the
equalized recovery/performance level, the proposed estimator
can also be combined with any asymptotic estimator, where
the latter is used until the desired equalized level is achieved.
Alternatively, we can modify our estimator by replacing µ1 in
the second constraint in (10) with the initial estimation error
and repeating the process, as needed, to achieve this.

IV. EXAMPLES AND COMPARISONS

In this section, the performance of the proposed estimator
is validated and compared with the approaches in [9] and

(a) Proposed Estimator. (b) Estimator from [9].

Fig. 1: Estimator comparison for Wsim = 21210.

[16]. The examples using our proposed estimator are all run
using MATLAB 2017a. As the robustified problem in (10)
involves many sparse matrices, the IPOPT solver [19] is used.
Moreover, in [15], it was established that the value of s0 in
(10) does not affect the performance of the estimator. So,
to simplify the problem of the estimator design, all of the
parameters of s0 are set to zero in all the presented examples.

A. Batch Reactor Process (Comparison with [9])
To demonstrate the capability of the proposed estimator

proposed in this paper in comparison with [9] when output
delays are involved, we utilize an example of a continuous-
time batch reactor process from [20]. This system is first
discretized with a sampling time of Ts = 0.05 seconds using
MATLAB c2d command (with zero-order hold) to obtain a
discrete-time state-space system with the following matrices:

A=

⎡⎢⎣ 1.0795 −0.0045 0.2896 −0.2367
−0.0272 0.8101 −0.0032 0.0323
0.0447 0.1886 0.7317 0.2354
0.0010 0.1888 0.0545 0.9115

⎤⎥⎦, B=

⎡⎢⎣0.0006−0.0239
0.2567 0.0002
0.0837−0.1346
0.0837−0.0046

⎤⎥⎦,
C=

[
1 0 1 −1
0 1 0 0

]
, V = Ip,W = ∅.

The time horizon is taken to be T = 5 with maximum possi-
ble delay of 2 steps. This results in the delayed data model that
can be expressed as the fixed-length language containing 35

words, i.e. L = {W1, . . . ,W243}. For the proposed estimator,
according to Definitions 2–4, we can find the corresponding
event-based language LE as well as the reduced language
LE′

. The measurement noise bound ηv = 0.05 is chosen
to cover 5 standard deviations of v ∼ N (0, 0.012), and by
solving the robustified problem (10) with the cost function
J(·) = µ1 +

∑T
k=0

∑|LE′
|

α=1 µα
2,k, we obtain recovery levels of

µ1 = 0.33 and maxk,α(µ
α
2,k) = 0.6912.

To compare the performance of our proposed design with
the Kalman filter based estimator design for systems with
delayed data in [9], we let x(0) = [1, 1, 1, 1]⊤ and the true
delay pattern be Wsim = 21210. For the simulation, we ran-
domly generated the initial state error and noise signals from
truncated normal distributions with zero means and covariance
matrices P0 = (µ1/5)

2I4, Q = ∅ and R = (ηv/5)
2I2, where

the initial error and noise bounds, µ1, ηv , represent 5 times
their standard deviations. Figure 1 shows the results of 50 runs,
where the estimation errors using the proposed estimator stay
within the guaranteed bounds, as desired, and are much less
than the estimation errors from [9], which are not within the
bounds, as one may expect.

B. Adaptive Cruise Control (Comparison with [16])
In the previous example, we showcased the capability of

the proposed observer in the case of delay scenarios. Since



(a) Proposed estimator. (b) Estimator in [16].

Fig. 2: Estimator comparison for missing data at k = 1.

missing data is basically a special case of delays beyond the
finite time horizon, we also compare the proposed observer
for the missing data scenario with another missing data (only)
estimator in [16]. We use the same example presented in [16]
of an adaptive cruise control, with the time horizon of T = 6
and for the sake of comparison, the equalized recovery level
µ1 = 1 is specified instead of letting it be a decision variable1.
The equivalent language to the one in [16] is used, i.e.,
L = {060000, 006000, 000600, 000060}. After running the
optimization problem, the maximum value of the intermediate
upper bound obtained is µ2 ≜ maxk,α µα

2,k = 1.1498, which
is the same value obtained in [16]. Contrary to [16], the value
of µ2, being time-varying in our approach, is not always at
its maximum, hence guaranteeing less error even during the
intermediate phase. In our simulation, the true missing data
pattern is Wsim = {060000} that corresponds to missing data
at k = 1, and we compared the result with those in [16]. A
comparison of both the estimators is depicted in Figure 2 that
shows that the proposed estimator performs better than the
estimator in [16] for the missing data scenario.

V. CONCLUSIONS

In this paper, we focused on the problem of synthesizing
a dynamic state observer that has the ability to achieve
equalized recovery when a discrete-time linear time-varying
system is subjected to delayed or missing data in a finite time
horizon. To achieve this, we constructed a reduced event-based
language capable of capturing the set of indistinguishable
event sequences that different delay mode sequences in the de-
layed data language correspond to, and augmented associated
constraints to a novel equalized recovery estimator constructed
with time-varying intermediate levels and the recovery level as
a decision variable. When compared to existing designs, our
proposed estimator can adapt the estimator gains at run time
based on observed prefix of the language and can directly
optimize the recovery and intermediate levels, leading to
improved estimation performance.
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APPENDIX
Matrices and vectors in Theorem 1 are defined as follows:

W=

⎡⎣W0 · · · 0...
. . .

...
0 · · ·WT−1

⎤⎦ , V =

⎡⎣V0 · · · 0...
. . .

...
0 · · · VT−1

⎤⎦ ,

A=

⎡⎢⎢⎣
In
A1

0...
AT

0

⎤⎥⎥⎦, C=

⎡⎢⎢⎣
C0 0 · · · 0 0

0 C1

. . .
...

......
. . .

. . . 0 0
0 · · · 0 CT−1 0

⎤⎥⎥⎦, H=

⎡⎢⎢⎢⎢⎣
0 0 0 · · · 0
A1

1 0 0 · · · 0

A2
1 A2

2 0 · · ·
......

...
. . .

. . . 0
AT

1 AT
2 AT

3 · · · AT
T

⎤⎥⎥⎥⎥⎦,

Mα=

⎡⎢⎢⎣
Mα

(0,0) 0 · · · 0

Mα
(1,0) Mα

(1,1)

. . .
...

...
...

. . . 0
Mα

(T−1,0) M
α
(T−1,1) · · ·Mα

(T−1,T−1)

⎤⎥⎥⎦ ,Φα=

⎡⎢⎢⎣
In
Φα,1

0...
Φα,T

0

⎤⎥⎥⎦ ,

Lα=

⎡⎢⎢⎣
Lα

0 0 · · · 0

0 Lα
1

. . .
......

. . .
. . . 0

0 · · · 0 Lα
T−1

⎤⎥⎥⎦ ,Γα=
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0 0 0 · · · 0

Φα,1
1 0 0 · · · 0

Φα,2
1 Φα,2

2 0 · · ·
......

...
. . .

. . . 0

Φα,T
1 Φα,T

2 Φα,T
3 · · · Φα,T

T

⎤⎥⎥⎥⎥⎦,
for all α ∈ N|LE′

|
1 , where Ak

i = Ak−1Ak−2...Ai, Φα,k
i =

Φα
k−1Φ

α
k−2...Φ

α
i and Φα

k = Ak − Lα
kCk.
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