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Abstract— A simultaneous input and state interval observer is
presented for Lipschitz continuous nonlinear systems with un-
known inputs and bounded noise signals for the case when the
direct feedthrough matrix has full column rank. The observer
leverages the existence of bounding decomposition functions
for mixed monotone mappings to recursively compute the
maximal and minimal elements of the estimate intervals that are
compatible with output/measurement signals, and are proven
to contain the true state and unknown input. Furthermore, we
derive a Lipschitz-like property for decomposition functions,
which provides several sufficient conditions for stability of the
designed observer and uniform boundedness of the sequence
of estimate interval widths. Finally, the effectiveness of our
approach is demonstrated using an illustrative example.

I. INTRODUCTION

Motivation. State and unknown input estimation has re-
cently emerged as an important and indispensable component
in many engineering applications such as fault detection,
urban transportation, aircraft tracking and attack (unknown
input) detection and mitigation in cyber-physical systems
[1]–[3]. Particularly, in bounded-error settings, interval/set-
membership approaches have been proposed to provide hard
accuracy bounds, which is especially useful for safety-critical
systems [4]. Moreover, since the unknown inputs may be
strategic in adversarial settings, the ability to simultaneously
estimate states and inputs without imposing any assumption
on the unknown inputs is desirable and often crucial.

Literature review. Several approaches have been proposed
in the literature to design interval observers [5]–[16]. How-
ever, most of these approaches often hinge upon relatively
strong assumptions about the existence of certain system
properties, such as monotone dynamics, [7], [8], Metzler
and/or Hurwitz partial linearization of nonlinearities [9],
[10], cooperativeness [11], linear time-invariant (LTI) dy-
namics [12] and linear parameter-varying (LPV) dynamics
that admits a diagonal Lyapunov function [13]. Moreover,
the work in [14] addresses the design of interval observers
for a class of continuous time nonlinear systems with-
out unknown inputs using bounding functions by imposing
somewhat restrictive assumptions on the nonlinear dynamics
to conclude stability, without discussing necessary and/or
sufficient conditions for the existence of bounding functions
or how to compute them. The authors in [15] study the
problem of interval state estimation for a class of uncertain
nonlinear systems, by extracting a known nominal observ-
able subsystem from the plant equations and designing the
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observer for the transformed system. However, the derived
conditions for the existence and stability of the observer is
not constructive. Moreover, there is no guarantee that the
derived functional bounds have finite values, i.e., be bounded
sequences. More importantly, the aforementioned works [5]–
[16] do not consider unknown inputs (i.e., input, disturbance,
attack or noise signals with unknown bounds/intervals) nor
the reconstruction/estimation of the uncertain inputs.

The problem of designing an unknown input interval ob-
server that satisfies L2/L∞ optimality criteria is investigated
in [17], where the required Metzler property is formulated
as a part of a semi-definite program. However, unfortunately,
their approach is limited to continuous-time LPV systems.
Moreover, in their setting, the (potentially unbounded) un-
known inputs do not affect the output (measurement) equa-
tion. On the other hand, for systems with linear output
equations and where both the state and output equations are
affected by unknown inputs, the problem of simultaneously
designing state and unknown input set-valued observers has
been studied in our previous works for LTI [3], LPV [18]
and switched linear [19] systems with bounded-norm noise.

Contributions. We consider the design of an observer that
simultaneously returns interval-valued estimates of states and
unknown inputs for a broad range of nonlinear systems. Our
approach is novel in multiple ways.

First, to the best of our knowledge, all existing interval
observers for nonlinear systems in the literature only return
either state [5]–[16] or input [17] estimates, whereas our
observer simultaneously returns both. Second, we consider
arbitrary unknown input signals, i.e., no restrictive assump-
tions, such as a priori known bounds/intervals, or being
bounded or stochastic with zero mean (as is often assumed
for noise), are imposed on the unknown inputs. Third,
leveraging decomposition functions as nonlinear bounding
mappings of mixed monotone vector fields [20], [21], which
include almost every realistic nonlinear function [22], we
show that our interval estimates are guaranteed to contain the
true states and unknown inputs. Fourth, we provide several
sufficient conditions in the form of Linear Matrix Inequalities
(LMI) for the stability of our designed observer. Finally, we
provide upper bounds for the interval widths at each time
step, as well as their steady-state values.

II. PRELIMINARIES

Notation. Rn denotes the n-dimensional Euclidean space
and R++ positive real numbers. For vectors v, w ∈ Rn and
a matrix M ∈ Rp×q , ‖v‖ ,

√
v>v and ‖M‖ denote their

(induced) L2-norm, and v ≤ w is an element-wise inequal-
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ity. Moreover, the transpose, Moore-Penrose pseudoinverse,
(i, j)-th element and rank of M are given by M>, M†, Mi,j

and rk(M). M is called a non-negative matrix, i.e., M ≥ 0,
if Mi,j ≥ 0,∀i ∈ {1 . . . p},∀j ∈ {1 . . . q}. We also define
M+,M++ ∈ Rp×q as M+

i,j = Mi,j if Mi,j ≥ 0, M+
i,j = 0

if Mi,j < 0, M++ = M+−M and |M | ,M+ +M++. For
a symmetric matrix S, S � 0 and S ≺ 0 (S � 0 and S � 0)
are positive and negative (semi-)definite, respectively.

Next, we introduce some definitions and related results
that will be useful throughout the paper.

Definition 1 (Interval, Maximal and Minimal Elements,
Interval Width). A (multi-dimensional) interval I ⊂ Rn is
the set of all real vectors x ∈ Rn that satisfies s ≤ x ≤ s,
where s, s and ‖s− s‖ are called minimal vector, maximal
vector and width of I, respectively.

Proposition 1. [14, Lemma 1] Let A ∈ Rm×n and b ≤ b ≤
b ∈ Rn. Then, A+b − A++b ≤ Ab ≤ A+b − A++b. As a
corollary, if A is non-negative, then Ab ≤ Ab ≤ Ab.

Definition 2 (Lipschitz Continuity). Vector field f(·) : Rn →
Rm is globally Lf -Lipschitz continuous, if ∀x1, x2 ∈ Rn,
∃Lf ∈ R++, such that ‖f(x1)− f(x2)‖ ≤ Lf‖x1 − x2‖.

Definition 3 (Mixed-Monotone Mappings and Decomposi-
tion Functions). [20, Definition 4] A mapping f : X ⊆
Rn → T ⊆ Rm is mixed monotone if there exists a
decomposition function fd : X × X → T such that:

1) f is embedded on the diagonal of fd, i.e., fd(x, x) =
f(x),

2) fd is monotone increasing in its first argument, i.e.,
x1 ≥ x2 ⇒ fd(x1, y) ≥ fd(x2, y), and

3) fd is monotone decreasing in its second argument, i.e.,
y1 ≥ y2 ⇒ fd(x, y1) ≤ fd(x, y2).

Proposition 2. [21, Theorem 1] Let f : X ⊆ Rn →
T ⊆ Rm be a mixed monotone mapping with decomposition
function fd : X×X → T and x ≤ x ≤ x, where x, x, x ∈ X .
Then fd(x, x) ≤ f(x) ≤ fd(x, x).

III. PROBLEM FORMULATION

System Assumptions. Consider the nonlinear discrete-time
system with unknown inputs and bounded noise

xk+1 = f(xk) +Buk +Gdk + wk,
yk = g(xk) +Duk +Hdk + vk,

(1)

where xk ∈ Rn is the state vector at time k ∈ N, uk ∈ Rm is
a known input vector, dk ∈ Rp is an unknown input vector,
and yk ∈ Rl is the measurement vector. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rl are assumed
to be bounded, with w ≤ wk ≤ w and v ≤ vk ≤ v, where
w, w and v, v are the known lower and upper bounds of
the process and measurement noise signals, respectively. We
also assume that lower and upper bounds, x0 and x0, for the
initial state x0 are available, i.e., x0 ≤ x0 ≤ x0. The vector
fields f(·) : Rn → Rn, g(·) : Rn → Rl and matrices B, D,
G and H are known and of appropriate dimensions, where
G and H encode the locations through which the unknown

input (or attack) signal can affect the system dynamics and
measurements. Moreover, we assume the following:

Assumption 1. The matrix H has full column rank.

Assumption 2. Vector fields f(·) and g(·) are mixed-
monotone with decomposition functions fd(·, ·) : Rn×n →
Rn and gd(·, ·) : Rn×n → Rl, respectively.

Assumption 3. Vector fields f(·) and g(·) are globally Lf -
Lipschitz and Lg-Lipschitz continuous, respectively.

Note that Assumption 1 is a common assumption in the
unknown input observer design literature, e.g., [23], while
Assumption 2 is satisfied for a broad range of nonlinear
functions [22]. Moreover, the decomposition function of a
vector field is not unique. For instance, [16, Lemma 6] and
[22] propose decomposition functions based on nonlinear
optimization programs. However, due to difficulties that may
arise from solving nonlinear optimization problems at run-
time, we consider a tractable closed-form procedure for con-
struction of decomposition functions, given in [20, Theorem
2]: If a vector field h =

[
h>1 . . . h>n

]>
: X ⊆ Rn → Rm

is differentiable and its partial derivatives are bounded with
known bounds, i.e., ∂hi

∂xj
∈ (ahi,j , b

h
i,j),∀x ∈ X ∈ Rn, where

ahi,j , b
h
i,j are finite values, then h(·) is mixed monotone with

a decomposition function hd =
[
h>d1 . . . h>di . . . h

>
dn

]>
,

where hdi(x, y) = hi(z) + (αhi − βhi )>(x − y),∀i ∈
{1, . . . , n}, and z, αhi , β

h
i ∈ Rn can be computed in terms

of x, y, ahi,j , b
h
i,j as given in [20, (10)–(13)]. Consequently,

for x = [x1 . . . xj . . . xn]>, y = [y1 . . . yj . . . yn]>, we have

hd(x, y) = h(z) + Ch(x− y), (2)

with Ch ,
[
[αh1 − βh1 ] . . . [αhi − βhi ] . . . [αhm − βhm]

]> ∈
Rm×n, αhi , β

h
i as given in [20, (10)–(13)], z =

[z1 . . . zj . . . zm]> and zj = xj or yj (dependent on
the case, cf. [20, Theorem 1 and (10)–(13)] for details).
On the other hand, when the precise lower and upper
bounds, ahi,j , b

h
i,j , of the partial derivatives are not known

or are hard to compute, we can obtain upper and lower
approximations of the bounds by using affine abstraction
algorithms, e.g., [24, Theorem 1], with the slopes set to
zero, or by leveraging natural inclusions [5]. Moreover, the
choice of a tighter yet tractable decomposition function
(than [20]) can potentially improve the observer design.

Unknown Input (or Attack) Signal Assumptions. The
unknown inputs dk are not constrained to be a signal of
any type (random or strategic) nor to follow any model,
thus no prior ‘useful’ knowledge of the dynamics of dk is
available (independent of {d`} ∀k 6= `, {w`} and {v`} ∀`).
We also do not assume that dk is bounded or has known
bounds/intervals and thus, dk is suitable for representing
adversarial attack signals.

The observer design problem can be stated as follows:

Problem 1. Given a nonlinear discrete-time system with
unknown inputs and bounded noise (1), design a stable
observer that simultaneously finds bounded intervals of com-
patible states and unknown inputs.
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IV. SIMULTANEOUS INPUT AND STATE INTERVAL
OBSERVERS (SISIO)

A. Interval Observer Design

We consider a recursive two-step interval-valued observer
design, composed of a state estimation step and an unknown
input estimation step with the following form:

State Estimation: Ixk = Fx(Ixk−1, Idk−1, uk−1),

Unknown Input Estimation: Idk = Fd(Ixk , yk, uk),

where Fx and Fd are the to-be-designed interval mappings,
while Ixk and Idk are the intervals of compatible states and
unknown inputs at time k of the form:

Idk = {d ∈ Rp : dk ≤ d ≤ dk},
Ixk = {x ∈ Rn : xk ≤ x ≤ xk},

i.e., we restrict the estimation errors to closed intervals
in the Euclidean space. In this case, the observer design
problem boils down to finding the minimal and maximal
elements dk, dk, xk and xk of the intervals Idk and Ixk . Our
interval observer can be defined at each time step k ≥ 1 as
follows (with known x0 and x0 such that x0 ≤ x0 ≤ x0):

State Estimation:
xk=fd(xk−1, xk−1)+Buk−1+G

+dk−1−G++dk−1+w, (3)

xk=fd(xk−1, xk−1)+Buk−1+G
+dk−1−G++dk−1+w. (4)

Unknown Input Estimation:

dk = min(d
1

k, d
2

k), dk = max(d1
k, d

2
k), (5)

where

d
1

k = J+rk − J++rk , d1
k = J+rk − J++rk, (6)

d
2

k =
[
d

2>
1,k . . . d

2>
p,k

]>
, d2

k =
[
d2>

1,k . . . d2>
p,k

]>
, (7)

d
2

i,k = max
dk∈Dk

eidk, d2
i,k = min

dk∈Dk

eidk,∀i ∈ {1, . . . p}, (8)

rk = yk − gd(xk, xk)−Duk − v, (9)
rk = yk − gd(xk, xk)−Duk − v, (10)

with J = H†, H̃ ,
[
H> −H>

]>
, r̃k ,

[
r>k −r>k

]>
,

Dk , {dk|H̃dk ≤ r̃k}, and ei ∈ R1×p, ei(1, i) =
1, ei(1, j) = 0,∀j 6= i. In what follows, we will show that
by choosing J = H† and fd, gd as decomposition functions
of f, g, our designed observer satisfies several desirable
properties. Algorithm 1 summarizes the SISIO observer.

B. Correctness (Framer Property) of Interval Estimates

In the following, we show that the SISIO observer returns
correct interval estimates in the sense that at each time step,
the true states and unknown inputs are guaranteed to be
within the estimated intervals given by (3)–(5). This is also
known as the framer property, e.g., in [10]. To increase
readability, all proofs will be provided in the appendix.

Theorem 1 (Correctness of the Interval Estimates). Let x0 ≤
x0 ≤ x0, where x0 and x0 are known. For the system (1), if
Assumptions 1 and 2 hold, then the SISIO estimate intervals
(3)–(5) with J = H† and fd(·, ·), gd(·, ·) as decomposition
functions of f(·), g(·) at each step k are correct, i.e., the

Algorithm 1 Simultaneous Input and State Interval Observer

1: Initialize: J = H†; maximal(Ix0 ) = x0; minimal(Ix0 ) = x0;
Compute J+, J++, |J |, G+, G++, |G|; Compute Lfd , Lgd

via Lemma 1; Compute gd(x0, x0), gd(x0, x0) via (2);
K , |G||J |; ∆w = w − w; ∆v = v − v;
r0 = y0 − gd(x0, x0)−Du0 − v;
r0 = y0 − gd(x0, x0)−Du0 −v;
d
1
0 = J+r0 − J++r0; d10 = J+r0 − J

++r0;
∆z = ∆w +K∆v; H̃ ,

[
H> −H>

]>;
r̃0 ,

[
r>0 −r>0

]>; D0 , {d0|H̃d0 ≤ r̃0};
ei ∈ R1×p, ei(1, i)=1, ei(1, j) = 0, ∀i, j∈{1, . . . , p}, j 6= i;
∀i ∈ {1, . . . p}, d2i,0 = max

d0∈D0

eid0; d2i,0 = min
d0∈D0

eid0;

δx0 = ‖x0 − x0‖; d0 = min(d
1
0, d

2
0); d0 = max(d10, d

2
0);

maximal(Id0 ) = d0; minimal(Id0 ) = d0; δd0 = ‖d0 − d0‖;
2: for k = 1 to K do
. Estimation of xk

Compute fd(xk−1, xk−1), fd(xk−1, xk−1) via (2);
Compute xk, xk via (3) and (4);

3: δxk = Lkδx0+‖∆z‖
(

1−Lk

1−L

)
; Ixk = {x ∈ Rn : xk≤x≤xk};

. Estimation of dk
Compute gd(xk, xk), gd(xk, xk) via (2);
Compute rk, rk via (9) and (10); r̃k,

[
r>k −r>k

]>;
Compute d

1
k, d

1
k via (6); Dk,{dk|H̃dk≤r̃k};

Compute d
2
i,k, d

2
i,k and dk, dk via (8) and (5);

4: δdk = ‖|J |‖Lgdδ
x
k+‖|J |∆v‖; Idk ={d ∈ Rp : dk≤d≤dk};

5: end for

true states and unknown inputs are guaranteed to satisfy
dk ≤ dk ≤ dk and xk ≤ xk ≤ xk.

C. Uniform Boundedness of Estimates (Observer Stability)

In this section we study the stability of SISIO, assuming
that the decomposition functions can be obtained using (2).
We first derive a Lipschitz-like property for decomposition
functions in Lemma 1. Then, we derive several sufficient
conditions for the stability of SISIO in Theorem 2.

Lemma 1. Let h(·) : Rn → Rm be a globally Lh-Lipschitz
continuous and mixed monotone vector field and hd(·, ·) :
Rn × Rn → Rm be the decomposition function for h(·),
constructed using (2). Consider x ≤ x, both in Rn. Then
‖hd(x, x) − hd(x, x)‖ ≤ Lhd

‖x − x‖, where Lhd
, Lh +

2‖Ch‖, with Ch given in (2).

Theorem 2 (Observer Stability). Consider the system (1)
and the SISIO observer (3)–(5). Suppose that Assumption
3 and all the assumptions in Theorem 1 hold and the
decomposition functions fd, gd are constructed using (2).
Then, the observer is stable, in the sense that interval width
sequences {‖∆d

k‖ , ‖dk − dk‖, ‖∆x
k‖ , ‖xk − xk‖}∞k=0

are uniformly bounded, and consequently, interval input and
state estimation errors {‖d̃k‖ , max(‖dk − dk‖, ‖dk −
dk‖), ‖x̃k‖ , max(‖xk − xk‖, ‖xk − xk‖)}∞k=0 are also
uniformly bounded, if either one of the following holds

(i) L , (Lfd + Lgd‖K‖)≤ 1;

(ii) Θ ,


F 0 0 0 0
∗ K>K K> K> K>K
∗ ∗ I I K
∗ ∗ ∗ 0 K
∗ ∗ ∗ ∗ 0

 � 0;
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(iii) There exist a positive definite matrix P � 0 and a
positive semidefinite matrix Γ � 0 in Rn×n such that
the following LMI condition is satisfied:

Π ,

P + Γ− I 0 P
0 LI − P 0
P 0 P

 � 0, (11)

with Lfd and Lgd given in Lemma 1, K , |G||J |, F ,
(L2

fd
+ L2

gd
λmax(K>K)− 1)I and λmax(K>K) is the max-

imum eigenvalue of K>K.
It is notable that examples of dynamic systems with only

slight differences in their G and H matrices can be found,
which only satisfy a subset of the three aforementioned
conditions and do not satisfy the others. For instance, for
the example system in Section V, we found that it satisfies
Conditions (i) and (ii) but does not satisfy Condition (iii).
However, when we change the G and H matrices to G =[

0 0.1
0.2 −0.2

]
and H =

[
0.1 0.3
0.5 −0.7

]>
, we observe that L =

1.284 > 1, so Condition (i) does not hold. In addition,
Condition (ii) also does not hold, but Condition (iii) holds

with P =

[
4.6714 0

0 4.6714

]
and Γ =

[
0.3802 0

0 0.3802

]
. A

search for a more general condition that encompasses all of
these conditions is a subject of future work.

Finally, we will provide upper bounds for the interval
widths and compute their steady-state values, if they exist.

Lemma 2 (Upper Bounds of the Interval Widths and
their Convergence). Consider the system (1) and the
SISIO observer (3)–(5), and suppose that Assumptions
1–3 hold. Then, there exist uniformly bounded upper
bound sequences {δxk , δdk}∞k=0, for interval width sequences
{‖∆x

k‖, ‖∆d
k‖}∞k=0, which can be computed as follows:

‖∆x
k‖ ≤ δxk = Lkδx0 + ‖∆z‖

(
1− Lk

1− L

)
,

‖∆d
k‖ ≤ δdk = G(δxk),

with Lgd and L given in Lemma 1 and Theorem 2, respec-
tively, ∆z , ∆w + K∆v, ∆w , w − w, ∆v , v − v,
K , |G||J | and G(x) , ‖|J |‖Lgdx+‖|J |∆v‖. Furthermore,
if Condition (i) in Theorem 2 holds with strict inequality, then
the upper bound sequences of the interval widths converge
to steady-state values as:

δ
x
, lim
k→∞

δxk = ‖∆z‖ L
1− L

, δ
d
, lim
k→∞

δdk = G(δ
x
).

On the other hand, if Conditions (ii) or (iii) in Theorem 2
hold, then the interval widths ‖∆x

k‖ and ‖∆d
k‖ are uniformly

bounded by min{‖∆x
0‖,∆P

0 } and min{G(‖∆x
0‖),G((∆P

0 )},
respectively, with ∆P

0 ,
√

(∆x
0 )>P∆x

0

λmin(P ) and P being the
solution for the LMI condition in Condition (iii).
Remark 1. Note that our interval observer and its cor-
rectness in Theorem 1 are based on interval analysis (cor-
responding to the L∞-norm), while the stability and con-
vergence results in Theorem 2 and Lemma 2 are based
on the L2-norm, in order to leverage Lyapunov stability
analysis techniques, similar to the interval observers in [10],

Fig. 1: Actual states and inputs, x1,k, x2,k, d1,k, d2,k, as well
as their estimated maximal and minimal values, x1,k, x1,k,
x2,k, x1,k, d1,k, d1,k, d2,k, d2,k.

[13]–[17]. Nonetheless, the sufficient conditions derived in
Theorem 2 are also sufficient for uniform boundedness under
any norm by the equivalence of norms, including the L1-
or L∞-norms that may in general be more consistent with
interval analysis, and similarly, the convergence property in
Lemma 2 also holds for any norm with minor modifications.

V. ILLUSTRATIVE EXAMPLE

We consider a nonlinear dynamical system in [25] with
slight modifications to remove the uncertain parts of the
matrices and to include unknown inputs, with the follow-
ing parameters (cf. (1)): n = l = p = 2, m = 1,
f(xk) =

[
f1(xk) f2(xk)

]>
, g(xk) =

[
g1(xk) g2(xk)

]>
,

B = D = 02×1, G =

[
0 −0.1

0.2 −0.2

]
, H =

[
−0.1 0.3
0.5 −0.7

]
,

v = −v = w = −w =
[
0.2 0.2

]>
, x0 =

[
2 1.1

]>
,

x0 =
[
−1.1 −2

]>
, where

f1(xk) = 0.6x1,k − 0.12x2,k + 1.1 sin(0.3x2,k − 0.2x1,k),
f2(xk) = −0.2x1,k − 0.14x2,k,
g1(xk) = 0.2x1,k + 0.65x2,k + 0.8 sin(0.3x1,k + 0.2x2,k),
g2(xk) = sin(x1,k),

while the unknown input signals are depicted in Figure 1.
Note that rk(H) = 2, thus Assumption 1 holds. More-
over, applying [24, Theorem 1], we can compute finite-
valued upper and lower bounds for the partial derivatives

of f(·) and g(·) as:
[
af11 af12

af21 af22

]
=

[
0.38 −0.52
−0.2− ε −0.14− ε

]
,[

bf11 bf12

bf21 bf22

]
=

[
0.82 0.21
−0.2 + ε −0.14 + ε

]
,
[
ag11 ag12

ag21 ag22

]
=[

−0.04 0.49
−1 −ε

]
,
[
bg11 bg12

bg21 bg22

]
=

[
0.44 0.81

1 ε

]
, where ε is a very

small positive value, ensuring that the partial derivatives are
in open intervals (cf. [20, Theorem 1]). Hence, Assumption
2 is also satisfied by [20, Theorem 1]). Therefore, we expect
that the interval estimates are correct by Theorem 1 (i.e.,
the true states and unknown inputs are within the estimate
intervals), which can be verified from Figure 1 that depicts
interval estimates and the true states and unknown inputs.

Furthermore, f(·) and g(·) satisfy Assumption 3 with
Lf = 0.87 and Lg = 1.32. In addition, from [20, (10)–(13)]),
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Fig. 2: Estimation errors, estimate interval widths and their
upper bounds for the interval-valued estimates of states,
‖x̃k|k‖, ‖∆x

k‖, δxk , and unknown inputs, ‖d̃k‖, ‖∆d
k‖, δdk .

we obtain Cf =

[
0.374 .02
0.0135 0.407

]
, Cg =

[
−0.02 0.138
0.063 −0.035

]
using (2), which implies that Lfd = 0.885 and Lgd = 1.32 by
Lemma 1. Consequently, L = 0.873. Since all the required
assumptions hold, including Condition (i) in Theorem 2 with
strict inequality, we expect to obtain uniformly bounded
and convergent interval estimate errors when applying our
observer design procedure. This can be seen in Figure 2,
where at each time step, the actual error sequence is upper
bounded by the interval width, which in turn is bounded by
the predicted upper bound sequence for the interval width.
Moreover, as expected, the upper bounds converge to some
steady-state values. Note that, despite our best efforts, we
were unable to find interval-valued observers for nonlinear
systems in the literature that simultaneously return both state
and unknown input estimates for comparison with our results.

VI. CONCLUSION

In this paper, we proposed a simultaneous input and state
interval observer for mixed monotone Lipschitz nonlinear
systems with unknown inputs and bounded noise. We proved
that the proposed observer recursively outputs the state and
unknown input interval-valued estimates that are guaranteed
to include the true states and unknown inputs. Moreover, sev-
eral sufficient conditions for the stability of the observer and
the uniform boundedness of the interval widths were derived.
Finally, we demonstrated the effectiveness of the proposed
approach with an example. For future work, we seek to relax
the full-rank assumption for the direct feedthrough matrix
and to find necessary conditions for observer stability.
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APPENDIX: PROOFS

A. Proof of Theorem 1

First, note that for rk , Hdk = yk−g(xk)−Duk−vk, we
can obtain rk ≤ rk = Hdk ≤ rk by Assumption 2 and the
fact that decomposition functions are monotone increasing
in their first argument and decreasing in their second (cf.
Definition 3). By left multiplying the above inequalities by
J = H† and from Assumption 1 and Proposition 1, we can
conclude that d1

k ≤ dk ≤ d
1

k. Moreover, since rk ≤ rk =
Hdk ≤ rk can be rearranged as dk ∈ Dk , {d ∈ Rp | H̃d ≤
r̃k}, the linear programs (8) yield the tightest maximal and
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minimal elements of Idk that enclose Dk, i.e., d2
k ≤ dk ≤ d

2

k.
Combining this and d1

k ≤ dk ≤ d
1

k, we obtain dk ≤ dk ≤ dk.
Similarly, using Assumption 2, the fact that decomposition

functions are monotone increasing in the first argument and
decreasing in the second, and applying Proposition 1 to (1),
we obtain xk≤ xk ≤ xk with xk and xk given in (3)–(4). �

B. Proof of Lemma 1
We begin with (2) for the function f ;

fd(x, x) = f(x1) + Cf (x− x), (12)
fd(x, x) = f(x2) + Cf (x− x), (13)

where the i-th elements of x1 and x2 (i.e., x1,i and x2,i,
∀i ∈ {1 . . . n}) are either xi, or xi, depending on the case
(cf. [20, Theorem 1; (10)–(13)]). Moreover, x ≤ x and x ≤
x1, x2 ≤ x. This implies that

−(x− x)≤x1−x2 ≤ x− x =⇒‖x1 − x2‖≤‖x− x‖. (14)

On the other hand, from (12) and (13),

fd(x, x)− fd(x, x) = f(x1)− f(x2) + 2Cf (x− x).

Then, applying triangle inequality and by the Lipschitz
continuity of f , we obtain

‖fd(x, x)−fd(x, x)‖≤Lf‖x1−x2‖+2‖Cf‖‖(x−x)‖. (15)

Combining (14) and (15) yields the result. �

C. Proof of Theorem 2
From (3) and (4), we obtain

∆x
k+1 = ∆fxk + |G|∆d

k + ∆w, (16)

where ∆x
k , xk − xk, ∆d

k , dk − dk, ∆fxk , fd(xk, xk)−
fd(xk, xk) and ∆w , w − w. Moreover, from (5) and (6),

∆d
k ≤ ∆d,1

k = |J |∆r
k, (17)

where ∆d,1
k , d

1

k − d
1
k and ∆r

k , rk − rk, while from the
definitions of rk and rk in (9)–(10), we have

∆r
k = ∆gxk + ∆v, (18)

where ∆gxk , gd(xk, xk) − gd(xk, xk) and ∆v , v − v.
Combining (16)–(18) and using the fact that |G|, |J | ≥ 0
and Proposition 1, we obtain

∆x
k+1 ≤ ∆hxk+∆z, (19)

where K , |G||J |, ∆hxk , ∆fxk +K∆gxk and ∆z , ∆w +
K∆v. Now, consider the following dynamical system

∆s
k+1 = ∆hsk+∆z, (20)

where ∆s
k ∈ Rn and ∆s

0 = ∆x
0 . By non-negativity of ∆x

k and
Comparison Lemma [26, Lemma 3.4], 0 ≤ ∆x

k ≤ ∆s
k,∀k ≥

0. So, uniform boundedness of {∆s
k}∞k=0 (shown below)

implies uniform boundedness of {∆x
k}∞k=0.

Condition (i): Since Assumption 3 holds, the application of
triangle inequality to (19) yields

‖∆x
k+1‖ ≤ L‖∆x

k‖+ ‖∆z‖, (21)

where L = Lfd + Lgd‖K‖, with Lfd and Lgd given in
Lemma 1. Since L≤ 1 (by Condition (i)), by Comparison
Lemma [26, Lemma 3.4], {‖∆x

k‖}∞k=0 is uniformly bounded.

Therefore, the interval width dynamics is stable.

Condition (ii): To show that Condition (ii) implies stability,
consider a candidate Lyapunov function Vk = ∆s>

k ∆s
k for

(20) that can be shown to satisfy ∆Vk , Vk+1 − Vk ≤ 0
under Condition (ii) as follows:

∆Vk , Vk+1 − Vk
= ∆fs>k ∆fsk+∆gs>k K>K∆gsk+∆v>K>K∆v+∆w>∆w

−∆s>
k ∆s

k + 2(∆fs>k K∆gsk + ∆fs>K∆v + ∆fs>∆w

+ ∆gs>K>K∆v + ∆gs>K>∆w + ∆v>K>∆w)

≤ (L2
fd

+ λmax(K>K)L2
gd
− 1)∆s>

k ∆s
k + ∆v>K>K∆v

+ ∆w>∆w + 2(∆fs>k K∆gsk + ∆fs>K∆v + ∆fs>∆w

+∆gs>K>K∆v+∆gs>K>∆w+∆v>K>∆w)=∆θ>
k Θ∆θ

k,

with ∆θ
k ,

[
∆s>
k ∆v> ∆w> ∆fs>k ∆gs>k

]>
and

Θ given in (ii), where the first inequality holds since
∆fs>k ∆fsk = ‖∆fsk‖2 ≤ L2

fd
‖∆s

k‖2 by Lemma
1 and ∆gs>k K>K∆gsk ≤ λmax(K>K)∆gs>k ∆gsk =
λmax(K>K)‖∆gsk‖2 ≤ L2

gd
λmax(K>K)‖∆s

k‖2 by using the
Rayleigh Quotient and Lemma 1, and the last inequality
holds by Condition (ii). Hence, {∆s

k}∞k=0 is uniformly
bounded and so is {∆x

k}∞k=0 by the Comparison Lemma
(i.e., the dynamics of ∆x

k is stable).

Condition (iii): Similarly, we consider a candidate Lyapunov
function Vk = ∆s>

k P∆s
k, where P � 0, which can be

shown to satisfy ∆Vk , Vk+1 − Vk ≤ 0 under Condition
(iii). To show this, note that ∆hs>k Λ∆hsk ≤ ∆hs>k ∆hsk ≤
L2∆s>

k ∆s
k, where the inequalities hold by choosing Γ such

that Γ , I − Λ � 0 and Lemma 1, respectively. Con-
sequently, L2∆s>

k ∆s
k − ∆hs>k Λ∆hsk ≥ 0. Then, inspired

by a simplifying trick used in [27, Proof of Theorem 1]
to satisfy ∆Vk ≤ 0, it suffices to guarantee that Ṽk ,
∆Vk + L2∆s>

k ∆s
k − ∆hs>k Λ∆hsk = ∆Vk + L2∆s>

k ∆s
k −

∆hs>k (I − Γ)∆hsk ≤ 0, where Ṽk is also given by

Ṽk = ∆hs>k P∆hsk+∆z>P∆z+2∆z>P∆hsk−∆s>
k P∆s

k

+ L2∆s>
k ∆s

k −∆hs>k (I − Γ)∆hsk

= ∆hs>k (P + Γ− I)∆hsk + ∆s>
k (L2I − P )∆s

k

+ ∆z>P∆z + 2∆z>P∆hsk = (∆ζ
k)>Π∆ζ

k ≤ 0,

with Π defined in (11) and ∆ζ
k ,

[
∆hs>k ∆s>

k ∆z>
]>

.
This, along with Γ � 0 is equivalent to Condition (iii).
Finally, since ∆Vk ≤ 0, {∆s

k}∞k=0 is uniformly bounded
and so is the interval width sequence {∆x

k}∞k=0 by the
Comparison Lemma (i.e., the dynamics of ∆x

k is stable). �

D. Proof of Lemma 2

Applying (21) repeatedly, we have

‖∆x
k‖ ≤ Lk‖∆x

0‖+
∑k−1
i=0 Lk−i‖∆z‖=Lkδx0 + ‖∆z‖ 1−Lk

1−L .

Similarly, by applying Lemma 1 and triangle inequality to
(17) and (18), we obtain the upper bound ‖∆d

k‖. If L < 1,
then taking the limit of k to ∞, returns δ

x
and δ

d
. The

rest of the results follow from the non-increasing Lyapunov
functions defined in the proof of Theorem 2, as well as the
fact that λmin(A)‖x‖2 ≤ x>Ax,∀x ∈ Rn, A ∈ Rn×n. �
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