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Abstract

Motivation: Advanced publicly available sequencing data from large populations have enabled informative
genome-wide association studies (GWAS) that associate SNPs with phenotypic traits of interest. Many publicly
available tools able to perform GWAS have been developed in response to increased demand. However, these tools
lack a comprehensive pipeline that includes both pre-GWAS analysis, such as outlier removal, data transformation
and calculation of Best Linear Unbiased Predictions or Best Linear Unbiased Estimates. In addition, post-GWAS ana-
lysis, such as haploblock analysis and candidate gene identification, is lacking.

Results: Here, we present Holistic Analysis with Pre- and Post-Integration (HAPPI) GWAS, an open-source GWAS
tool able to perform pre-GWAS, GWAS and post-GWAS analysis in an automated pipeline using the command-line
interface.

Availability and implementation: HAPPI GWAS is written in R for any Unix-like operating systems and is available
on GitHub (https://github.com/Angelovici-Lab/HAPPI.GWAS.git).

Contact: angelovicir@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances and publicly available sequencing data of large
populations have enabled informative genome-wide association
studies (GWAS). As a result, traits of interest have been linked to
specific genomic loci unraveling the genetic architecture of complex
traits. Demand to run GWAS on large datasets and user-friendly,
flexible platforms is an increasingly important demand to fulfill.
However, tools have not emphasized the incorporation of pre-
GWAS and post-GWAS analysis in combination with GWAS in a
holistic tool with comprehensive summary tables and figures.

A past effort has focused heavily on ease of usability. GWAS pro-
grams, such as GAPIT (Lipka et al., 2012), incorporate a variety of
statistical models into a single R package, while others, such as
FarmCPU (Liu et al., 2016), implement novel statistical models.
Other programs use graphical user interfaces (GUIs) such as
TASSEL (Bradbury et al., 2007) or web-based platforms, such as
GWAPP (Seren et al., 2012) and easyGWAS (Grimm et al., 2017).

However, these tools do not provide all crucial steps: pre-GWAS
[outlier removal, transformation and Best Linear Unbiased
Prediction (BLUP)/Best Linear Unbiased Estimate (BLUE) calcula-
tions] and post-GWAS (haploblock analysis and gene extraction
and identification), in addition to a user-friendly platform.

In response to these needs, we have developed Holistic Analysis
with Pre- and Post-Integration (HAPPI) GWAS, which provides a
complete GWAS pipeline including pre-GWAS, GWAS and post-
GWAS analysis in a single tool. HAPPI GWAS incorporates pre-
GWAS steps most beneficial for the data structure of plant-related
traits but also runs generic analyses such as GWAS and post-GWAS
analyses. With properly formatted input and the ability to opt in
and out of certain analyses in the pipeline, HAPPI GWAS will run
data from any species. A summary of the main contributions of
HAPPI GWAS include: (i) eliminating the need for multiple tools by
providing a comprehensive GWAS pipeline for all phases of a
GWAS analysis, (ii) allowing high-throughput analysis of multiple
traits with easy comparison of GWAS results across all traits and
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concise, publication-ready figures and tables and (iii) allowing user-
defined models and threshold parameters specified at the start of the
workflow and automatically implemented throughout the pipeline
without additional configuration.

2 Implementation

HAPPI GWAS is implemented in four main steps: pre-GWAS,
GWAS, post-GWAS and Outputs, Summaries and Visualizations
(for HAPPI GWAS workflow refer to Fig. 1). Each step is customiz-
able by the user through a YAML file. The YAML file instructs
HAPPI GWAS of the name and location of data input and output
and allows for user-defined parameters at each step of the pipeline.
Additional information regarding each step, parameter flexibility
and tutorial datasets can be found in the HAPPI GWAS manual
(Supplementary Document S1) and on the wiki page linked in the
GitHub repository.

Pre-GWAS: Ensuring raw data meets all assumptions prior to
GWAS is vital to reproducible and accurate results but can be diffi-
cult to navigate. HAPPI GWAS automatically inputs raw data into
pre-GWAS analysis by removing outliers using Studentized deleted
residuals (Cook, 1977) and transforming data using the Box–Cox
procedure (Box et al., 1964). The variance between replicates is
evaluated via mixed models to calculate BLUPs and BLUEs, which is
particularly important in plant GWAS where several biological rep-
licates are common. Model flexibility allows users to define specific
random and fixed effects in these mixed models. If preprocessing is
completed externally, the option to skip the pre-GWAS step is
available.

GWAS: The GWAS step accepts user-defined phenotype data
and genotype data. Provided genotype files can be used in combin-
ation with user-supplied phenotype data. Multiple traits can be
stored in each phenotype dataset and run consecutively.
Configuration files are edited by the user to supply values for man-
datory defined variables that are called when the program is
invoked. All GWAS analysis is performed by calling the GAPIT v3
R package (Wang and Zhang, 2018).

Post-GWAS: Most GWAS packages output a list of significant
SNP-trait associations. However, a list of obscure SNP IDs is often
uninformative until associated with genes. In the post-GWAS step, a
list of significant SNPs is fed directly into a haploblock analysis in
Haploview (Barrett et al., 2005). The Haploblock analysis filters
SNPs at a 5% minor allele frequency (MAF) and quantifies the de-
gree of linkage disequilibrium (LD) using D prime in the surround-
ing genomic region to estimate a haploblock (defined as regions of
high LD) described with a start and stop location. Genes contained
or partially contained within haploblocks are identified and output
with respective gene descriptions in the final summary datasheet
(Supplementary Tables S1–S3). If no genes overlap the haploblock
or the significant SNP does not fall within a haploblock, the gene

directly upstream and downstream of the significant SNP is given.
HAPPI GWAS allows users to define the window size for LD calcu-
lations to increase gene identification in a larger interval or to skip
the post-GWAS step entirely in species where limited genomic infor-
mation is available.

Outputs, Summaries and Visualizations: GWAS results from all
traits found in the phenotype file are summarized concisely in tables
and figures as part of the automatic summary output. Collective
analysis of related traits can be powerful in the detection of plei-
otropy. HAPPI GWAS compiles GWAS results creating a combined
GWAS results summary that includes significant SNP IDs, gene
names, gene descriptions and haploblock information
(Supplementary Table S1). Two additional summary tables are cre-
ated: a table summarizing the top five SNP-trait associations with
the lowest P-value across all analyzed traits (Supplementary Table
S2) and a table summarizing the most recurring SNP-trait associa-
tions across all analyzed traits (Supplementary Table S3). Finally, a
unique HAPPI GWAS visualization representation of the chromo-
somal distribution of all significant SNP-trait associations
(Supplementary Fig. S1) for all traits is provided. This figure is
unique to HAPPI GWAS and differs from other multitrait GWAS
visualizations such as Zbrowse (Ziegler et al., 2015) because only
significant SNPs are visualized. This novel format allows for easier
comparison of genome-wide SNP distributions across the traits as
compared to overlapping Manhattan plots. Automatic GAPIT out-
put, as found in the GAPIT3 manual (Wang and Zhang, 2018), is
also included in the output.

3 Performance test

HAPPI GWAS excels at multitrait analysis. Automatic paralleliza-
tion is implemented to support the excess computational burden
that arises from the multitrait analysis feature but requires a Unix
platform. Due to restraints in packages used in parallelization, users
wishing to run HAPPI GWAS on a Windows machine must use a
virtual machine and install CentOS/Ubuntu (see Supplementary
Document S1 for more information).

To further show the computational performance of HAPPI GWAS
and dissect the effects of sample size and SNP number on runtime, we
tested HAPPI GWAS on a CentOS machine with 500 GB of RAM and 30
TB of disk space. We analyze one trait using filtered genotypic data from
the Arabidopsis 1001 dataset (Alonso-Blanco et al., 2016) with varying
sample size and SNP number with one processing core (Supplementary
Table S4). The filtered data have a total of 1 057 383 SNPs and the pheno-
typic data are from 901 individuals in replicates of two. To run the entire
dataset through HAPPI GWAS takes 6h and 39min. As the number of
individuals in the population decreases, run time remains relatively con-
stant. Using the full genotypic data with 1 057 383 SNPs but decreasing
the number of individuals by half (450 individuals) results in a runtime of
around 6h and 6min. Conversely, decreasing the number of SNPs to half
(i.e. to 528 692 SNPs) while maintaining a population size of 901 results
in a shorter runtime of 2h and 7min.

4 Conclusion

HAPPI GWAS is a holistic tool that integrates pre-GWAS, GWAS,
post-GWAS and outputs, summaries and visualizations.
Incorporation of all four steps leads to a comprehensive pipeline
that aims to be computationally approachable, regardless of user
background. It improves upon past GWAS tools by increasing the
scope of analysis and plasticity of defined parameters.
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Fig. 1. HAPPI GWAS workflow outlining pre-GWAS, GWAS, post-GWAS and out-

puts, summaries and visualizations steps
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