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Abstract: We answer a question of K. Mulmuley. Efremenko et al. (Math. Comp., 2018)
have shown that the method of shifted partial derivatives cannot be used to separate the padded
permanent from the determinant. Mulmuley asked if this “no-go” result could be extended
to a model without padding. We prove this is indeed the case using the iterated matrix
multiplication polynomial. We also provide several examples of polynomials with maximal
space of partial derivatives, including the complete symmetric polynomials. We apply
Koszul flattenings to these polynomials to have the first explicit sequence of polynomials
with symmetric border rank lower bounds higher than the bounds attainable via partial
derivatives.
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1 Introduction

Let SYCN denote the space of homogeneous polynomials of degree d in N variables and let p € S¢CV.
Let S¢CV* denote the space of homogeneous differential operators of order e with constant coefficients,
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which acts on SYCV when e < d. The e-th partial derivative map of p (or e-th flattening of p) is

Ped—e: STV — gd—eCN (1.1)
D — D(p).

We call the image of p, 4. the e-th space of partial derivatives of p; it is straightforward to verify that
rank(p, 4—.) = rank(ps_. ) and that given ¢’ < e < d /2, if p, 4. has full rank then p, 4_ has full rank.
Let M > N. Choose a linear inclusion CV¥ C C¥, so that polynomials in N variables can be regarded
as polynomials in M variables which happen to use only N of them. A polynomial p € SYCV is a
degeneration of g € S'CY, if p € GLy;-q C SCM, where the overline denotes closure, equivalently
in the usual (Euclidean) topology or in the Zariski topology. Similarly, p is a specialization of g if
p € Endy;-g C SYCM. Notice that if p is a specialization of g then it is a degeneration of g. In complexity
theory, one is interested in finding obstructions to specialization of a polynomial p to a polynomial g.

A common strategy to determine obstructions to degeneration (hence, to specialization) of a polyno-
mial g to a polynomial p is to find closed conditions that g and every element of GLy, - g satisfy, but p
does not satisfy. Typical examples of this method are flattening techniques (see, e. g., [4]), which exploit
the semi-continuity of matrix rank, namely that {X € Mat,, : rank(X) < r} is a closed subset of Maty,
(both in the usual and in the Zariski topology).

The method of partial derivatives is one such example: since the entries of g, 4. (as a matrix
expressing the map SCV* — §?=¢CN) are continuous in the coefficients of g, whenever p is a degeneration
of g, semi-continuity of matrix rank guarantees that rank(p, 4—.) < rank(g,q_.) for all e. Therefore,
comparing the ranks of the partial derivatives maps of p and ¢ for any e, one can prove that p is not a
degeneration of ¢ (and thus nor is p a specialization of g).

The method of partial derivatives dates back to Sylvester in 1852 [32], who called the maps (1.1)
catalecticants. These maps have been used to obtain lower bounds on the Waring rank, Waring border
rank and cactus border rank of polynomials (see, e. g., [2, 16]). The symmetric or Waring rank of a
polynomial p € S?CV is the smallest r such that p = ¥;_; /¢ where ¢; € CV are linear forms. One
writes Rg(p) = r. The symmetric or Waring border rank of p is the smallest r such that p is a limit of
polynomials of Waring rank r, and one writes R¢(p) = r. The ranks of the partial derivatives maps give
lower bounds for the symmetric border rank of p: Rg(p) > max,{rank(p.4_.)}. From a complexity
theory perspective, Waring rank captures the complexity of a polynomial in the model of depth-three
powering circuits, or YAY circuits, namely depth-three arithmetic circuit whose first and third layers
consist of addition gates and whose middle layer consists of powering gates, sending z — z¢ for some d.

Green [13] and Iarrobino and Emsalem [15] showed that for a general polynomial p all the maps
De,d—e are of maximal rank. When the second author was preparing [20], he asked several experts if they
knew of an explicit sequence of polynomials (e. g., in the complexity class VNP) with partial derivatives
of maximal rank, as the standard references [16] in mathematics and [4] in computer science did not have
one. Those asked did not furnish any example, so we wrote down several, see below. One example we
found surprised us: the polynomial (x? + - - - +x2)¥, because it is in the complexity class VP, of sequences
of polynomials admitting polynomial size formulas. It turns out this example had been discovered
by Reznick in 1991 [28, Thm. 8.15], and in the same memoir he describes an explicit sequence that
essentially dates back to Bierman [1] (the proof, if not the statement appeared in 1903), see below.
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Let ppqg = xﬁl +---+x? denote the power sum polynomial of degree d in n variables and hpa =
Ylal=d x‘f“ ---x% the complete symmetric polynomial of degree d in n variables.
For the following polynomial sequences, all partial derivatives maps have full rank:

® Pgiernd = Z\a\:d(alxl 4+ 4 anxn)d where o ranges over all multi-indices (@, ..., o,) of non-
negative integers such that oy +---+ o, = d, i.e., exponents of monomials of degree d in n
variables (Bierman [1], Reznick [28]);

o fui:= (p,,,z)k € §?KC"  (Reznick [28], a proof is given in §2);
o fuki=Puifox € SH*FIC"  (Theorem 2.5);
e h,4€8IC" (Theorem 5.6).

When n,d are polynomially related, 4, 4 € VP;, the complexity class determined by the determinant,
because the complete symmetric functions can be expressed as a determinant of a matrix whose entries
are power sum functions. On the other hand, the polynomials f, » and ﬁ,,k belong to the complexity class
VP, of polynomials admitting a polynomial size formula. The fact that there are elements in VP, having
partial derivatives map of full rank suggests that the XAY. model is quite weak.

The method of shifted partial derivatives is a variant of the method of partial derivatives. Kayal
introduced it in [18] and Gupta et al. [14] exploited it to prove super-polynomial complexity lower bounds
for depth-four circuits for the permanent (and determinant). In the same paper the authors ask if the
method could be used to approach Valiant’s conjecture, that is to separate the class VP from the class
VNP.

For p € SYCN the method of shifted partials is based on the study of the following maps (for
judiciously chosen e and 7):

p(e’d—e)[r} :Se'(CN* ®ST(CN SN Sd—e-‘rT(CN
D®q— gD(p).

Notice that if T = 0, then p, 4_)[¢ is the partial derivative map defined in (1.1). Let
(07D)=1 := P(ed—e)[1] (Se(CN* ®8'CM).

Again, semi-continuity of matrix rank guarantees that if p is a degeneration of g, then dim(d=%¢)_; >
dim(d=¢p)_; for all T and the method of shifted partials can be used to prove that p is not a degeneration
of g by showing that dim(d=¢p)_. > dim(d=¢q)—. for some .

There is a geometric interpretation of the image of the shifted partial derivative map: given p € S¢C",
let V(p) C P(C")* be the hypersurface of degree d cut out by p. The image of p, 4, generates an ideal
in Sym(C") that we denote by J.(p); it cuts out a subvariety of V(p) that is called the e-th Jacobian
locus of p. The image of the shifted partials map p(, 4[] is the component of degree d + 7 of Je(p)s
in other words, the value of the Hilbert function of J.(p) in degree d 4 7. In particular, the study of the
ranks of the shifted partials maps of p is equivalent to the study of the growth of the ideals J.(p) and
more precisely of the growth of their Hilbert functions.
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The results of [6] show that the method of shifted partial cannot be used to separate VP, from VNP
in the classical formulation of Valiant’s conjecture, where one seeks for a super-polynomial lower bound
on the so-called determinantal complexity of the padded permanent polynomial, namely on the smallest
possible n(m) such that z"(’")*mpermm is a specialization of det,,,). Informally, the proof of [6] exploits
the padding 7"~ to prove that the shifted partial spaces of "~ "perm,, do not grow fast enough to give a
super-polynomial separation from the shifted partial spaces of det,,.

This motivates the question on whether the method of shifted partials can be used to achieve a
super-polynomial lower bound in a model which does not require padding.

Definition 1.1. Given n,d, let X4 = ((§a)’)i j=1
The (n,d)-iterated matrix multiplication polynomial IMMY € §9(CImY s

» be n x n matrices of indeterminates for «x = 1,...,d.

IMM? : (Xy,...,Xy) — trace(X - --Xy).

Let (éj’), j=1,..n be an n x n matrix of indeterminates. The (n,d)-matrix powering polynomial
Pow! € SIC s
Pow? : X — trace(X9).

By Nisan [24], the polynomials IMM? and Pow? can be used to define VP;-complete sequences
without the use of padding. More precisely, a sequence of homogeneous polynomials { f, } meny With
fin € §CMn (with d,,, M,, growing polynomially in ) is in VPy if and only if either of the following
two equivalent conditions holds:

e there exists a function n(m) growing polynomially in m, such that f,, is a specialization of IMMZ’("m);

e there exists a function n'(m) growing polynomially in m, such that f;, is a specialization of
Power ).
Remarkably, in this case, the model does not require padding and allows one to compare IMMY and Pow
directly with the sequence of polynomials.

In particular, Valiant’s VP, = VNP conjecture can be rephrased by stating that there is no polynomially
bounded function n(m) such that the permanent polynomial perm,, is a specialization of IMMZ? m) (or of
Pow;(,,,))- Note that Pow;" is a specialization of IMM.

We prove that the method of shifted partials cannot be used to achieve a super-polynomial separation
between perm,, and IMM":

Theorem 1.2. If n > m’>, then perm,, cannot be separated from IMM, by the method of shifted partial
derivatives. More precisely, given any linear inclusion c C cm’ considering perm,, € snCm gs a
polynomial that just involves m® of the mn* variables, then for all choices of e,T,

dim(9=¢(perm,, € S"C™))_; < dim(d=“IMM")_,.
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Additional results

We give a priori upper bounds for the utility of Koszul flattenings, another variant of the partial derivatives
map, in comparing the complexity of polynomials (Proposition 6.1). We show that these bounds are sharp
for the first Koszul flattenings in low dimensions and degree (Remark 6.6). We obtain explicit (but not
sharp) lower bounds for the Koszul flattenings of ]ﬂ‘:,ﬂk , showing that one obtains better Waring border rank
lower bounds with this method than by the method of partial derivatives (Proposition 6.4). Ironically, now
the simple polynomial f,,,k has the highest Waring border rank lower bound of all explicit polynomials of
odd degree.

Related work

Let eya = Yi<i <iy<-<ij<nXip =" Xiy € S¢C" denote the elementary symmetric polynomial of degree d in
n variables. The complexity of e, ; has been well studied: its symmetric border rank is bounded below by
([ d72 J) because this is the rank of (e, ) 1d/2].[d/2] (see, e.g., [25]); Lee [22] proved that its symmetric

rank is Z}iézj (’Z) when d is odd and there is a similar formula providing a lower bound when d is even.
Its padded version can be computed by a homogeneous depth-three (XIIX) circuit of size n* (due to
Ben-Or), and when log(n) < d < 2n/3, one has the lower bound of max{Q(n?/d),Q(nd)} by Shpilka
and Wigderson [29] for its depth-three circuit size. The lower bounds appear to translate to complete
symmetric functions; however the upper bound relies on the generating function for the elementary
symmetric functions being a product of linear forms, whereas the complete symmetric functions have
generating function [T7_,(1 —x;t)~!. The gap between the padded and unpadded depth-three circuit
complexity may have led researchers to think the results of [6] might fail in a model without padding. For
this reason, K. Mulmuley suggested that we investigate the barriers of the method of shifted partials in
the unpadded setting (although Mulmuley himself anticipated our answer). Similar concerns were shown
after the results by Ikenmeyer and Panova [17] and Biirgisser, I[kenmeyer and Panova [3] on the Geometric
Complexity Theory program, and were partially addressed in [10], exploiting the same homogenization
result of Nisan [24] that we use in this work.

The shifted partial derivative complexity of elementary symmetric polynomials is studied by Fournier
et al. [7], where strong lower bounds are proved, which in turn give complexity lower bounds for
depth-four circuits.
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2 Proofs that f, ;, fmk have maximal partial derivatives

Introduce the notation g, := p,» :x% + - —l—xﬁ, by i=pp1=x1+--+xp.
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In this section, we prove that f, ; = (pn72)k and ]7,17;( = pn,1.fnx have partial derivatives maps of
maximal rank, or equivalently that their spaces of partial derivatives have the maximal possible dimension.
Although the result for f, ; already appeared in [28, Thm. 8.15], we include our proof in this section
because it seems less involved and more accessible than the original one; moreover the proof of the result
for ﬁ,k relies on the method that we use to prove the result for f, ; (see Remark 2.3).

Proposition 2.1. The space of first derivatives of homogeneous degree d + 2 polynomials of the form
hq,, where h runs over the space of homogeneous degree d polynomials, equals the space of all
homogeneous polynomials of degree d + 1. In symbols, setting L = {d(hqy,) : d € (C")*,h € S¢C"}, we
have L = S4T1C".

Proof. If d = 0, the statement holds as

J
Txi% = 2x;.

Let d > 1. Consider a monomial x* of degree d — 1, where « is a multi-index, || =d — 1. For
i€{l,...,n}, define
J o 2,0 o 2 o
8= 5 (quxix®) = 26X + (04 + 1)gnx® = [20 + (05 + 1)ga] x*.

1

Forevery i, g; € L. Letg = (g1,...,81)" and p = (x4,...,x2)T be column vectors. We have
g=[(2Id+A)p]x“*

where A is the (n+ 1) x (n+ 1) rank 1 matrix whose entries in the i-th row are o; + 1 fori =1,...,n.
Let1=(1,...,1)7 anda= (a; +1,...,&,+ 1)7 and notice A = 1a’. In particular by the Sylvester
determinant identity (see, e. g., [27, Chap. 1, Prob. 3.1]) det(2Id + A) # 0, so 2Id + A is invertible.
Therefore, x7x* € (C")* - (¢,S?C") for every monomial x* € §?~'C". This shows that every non-
square-free monomial belongs to (C")* - (g,S?C™).
Now let xf € §9t1C” be a square-free monomial; suppose P1 = 1 and let ¥ be the multi-index with
v1 =0and y; = B, for j > 2, so that x” = xP /x;. Then

This concludes the proof. 0

Theorem 2.2 (Reznick, [28]). The space of e-th partial derivatives of f, i consists of all multiples of
g€ of degree 2k — e. In symbols, for all n,k and e <k, (fux)eok—e(S¢(C")*) = ¢~=¢S°C". In particular,
for all n,k,e, the flattening (f, x)e2k—e has full rank.

Proof. We proceed by induction on e. For e = 0 there is nothing to prove. Let ¢ > 1. By the induction
hypothesis, the (e — 1)-st flattening surjects onto gt ¢*15¢~1C". It suffices to show that

(Cn)* . (qiclfe+lsefl(cn) — qiclfeSeCn.
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Notice that, for a monomial x* € S¢~1C”,
o
k—et19X

d ., . _
aixl(cﬁ e+1xa) :Z(k—€+1)xiq£ exa_'_CIn axl_

ox%
k—e a

= 2(k—e+ 1)xx" 4+ g, .
n < ( ¢ )x X 4 8xi )

Up to rescaling g, and the differential operators, the term in parenthesis is a%i (x*gy). These terms span

S¢C" by Proposition 2.1. O

Remark 2.3. The results of Proposition 2.1 and Theorem 2.2 hold for every non-degenerate quadratic
form g € S?C". Indeed every quadric can be diagonalized by the action of GL, and the proof only uses
the fact that g, is diagonal. In particular, for every g € S2C", and every e < k, we have

(Se’(cn)* . (gk) — gk—eSe(Cn‘

In order to prove the analog of Proposition 2.1 for ﬁ,k , we will exploit the decomposition of S/C”
into Specht modules under the action of symmetric group &,, which permutes the variables. In particular,
if C" = [n] @ [n— 1, 1] where [n] = (,) is an invariant subspace and [n —1,1] = (x; —x; : i, j = 1,...,n)
is isomorphic to the standard representation of &,,. In particular, a homogeneous polynomial f € S¢C"
can be written as

d
F=Y g @.1)
e=0

where gg_, € S97¢[n— 1,1]; this is the decomposition of f as sum of bi-homogeneous terms according to
the decomposition C" = [n] & [n— 1, 1].

We redefine our basis of C" and of C™ in accordance to the splitting [n] & [n — 1,1]: consider
[n] = (¢y)and [n—1,1] = (x; —x; : i = 2,...,n) and in the dual space

1/ 9 p) 1/9 9
en—n(ax]—f—"‘axn) and Al_2<ax,_ax1>

In particular, (A;:i=2,...,n) ~ [n—1,1] and (¢;) ~ [n]. Since A;(¢,) =0and £} -[n—1,1] =0, this
gives the splitting C"™* = (£,,)* @ [n — 1, 1]*, where we identify (¢,)* and [n — 1, 1]* as subspace of C".

Remark 2.4. It will be useful to write g, = x% + .- +xfl and its powers as in Eqn. (2.1). Notice that
S2C" contains a two-dimensional space of &,-invariants. To see this, consider the decomposition
(see, e.g., [19, Eqn. (6.7.1)]) S>’C" = S2((£,) @ [n—1,1]) = S2{4,) D () @ [n— 1,1] ® S%[n— 1, 1]: the
subspace S2(¢,) is one-dimensional and &,, acts trivially on it, so this is a space of a invariants generated
by ¢2; the space (£,) ® [n— 1,1] is isomorphic to [z — 1,1], which is irreducible, so it contains no
invariants; the subspace S*[n — 1, 1] contains a one-dimensional subspace of invariants, generated by
gn = (1/2)¥; j(x; — x;)*. The uniqueness of the invariant g, in $*[n — 1, 1] follows by Schur’s Lemma:
indeed $’[n—1,1] C n—1,1]®@[n—1,1] ~ [n—1,1]*® [n— 1,1] = End([n — 1, 1]) because Specht
modules are self dual (see, e. g., [8, Ch. 4]); by Schur’s Lemma, the only &,-equivariant endomorphism
of the irreducible representation [z — 1, 1] is the identity (up to scale); we deduce that S>[n — 1, 1] contains
at most a one-dimensional space of invariants.
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Since ¢, is an G,-invariant, we deduce that g, is a linear combination of g, and 6,21: indeed, g, =
(1/n)(5+gn)-
We can now prove the following result.
Theorem 2.5. For every n,k, e, the flattening (ﬁ’k)egkﬂ,e has full rank.
Proof. As before, write C" = (£,,) ® [n— 1, 1]. Up to rescaling g, , write g, = ¢ + g, as in Remark 2.4.
We have ” ”
~ P P
Fuke = lugl = 0a(C - g0)* = X5 ()2 gk = g I g
Let e < k. In order to calculate rk(ﬁz“l_e) , we study the image of ﬁ72k+1_e as an G,-module. We
have SC™ = S°((€;) ® [n — 1,1]*) = @_o((£;))) ® 8/ [n—1,1]*, s0

e

S (G @ n—1,1]") - (lugy) = <€B<(€Z)"> ®©8 -1, 1]*) - (£agry)

J=0 (2.2)

e
Z Y(SE J [n—1,1]"- (énqﬁ))
To conclude, we show that the last summation is in fact a direct sum. In the j-th summand, we have
() (=111 (Gagh)) = T In—= 1,11 |67 (T () 2 g | =
k
— S~ jl’l—ll [ Z eZH—l] :|

=[5

2.3)

If A€ S /[n—1,1]*, we have

k k
A Z 521+1 j k i Z €2l+1 jA k— z)

i=[ i=[
2

Ji

2
In particular the summands with i > k — e + j are 0; moreover, the i-th term of the summation, varying
A, ranges on the entire A= gﬁ_i_(e_j Jge [n—1,1] by Theorem 2.2 and Remark 2.3. We deduce
that the leading term (in £,) of the last line of (2.3) ranges on the whole Plkmet =i ge— n—1,1]=
eyl gen [n—1,1]. This shows that the summands in (2.2) are linearly independent because their
leading terms have different degrees, the j-th one having degree in ¢, equal to 2k —2e + j — 1.

From (2.2), we deduce that rank of f, 5541 is

dim(§°C™ 'fe,Zk-ﬁ-l—e) = Z dimSe_j[n —1, 1] =
=0

B Ze: <e—j+n—2) B
N e

-y (n_z.ﬂ) = <e+”_1> — dims°C™.
j=0 ¢

J
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hence, ﬂz;ﬂ_l_e is injective and this conclude the proof when e < k. Since f, 241, is the transpose of
f2k+1—ec,c » the proof is complete. ]

3 Two auxiliary results

Proposition 3.1. Let n(m),k(m) be polynomially bounded functions of m. Then the sequences { f, k }m
and { fu i }m are in the algebraic complexity class VP, of sequences admitting polynomial size formulas.

Proof. The standard expression

ok =dqn-qn (ktimes), with

gn=X1-X1+ -+ Xy Xp

gives a formula of size k(3n — 1) for f,, x. The additional £, = x| + - -- +x, and ﬁ,k =y, - fni provides a
formula of size k(3n— 1) +n for f, 4. O

Proposition 3.2. If n = 2m then the polynomial f, y is a specialization of the matrix powering polynomial
Pow,%fﬂ and the polynomial fn’k is a specialization of the iterated matrix multiplication polynomial
IMM,anj_”z1 . Ifn=2m+1 then the polynomial f, is a specialization of the matrix powering polynomial
Pow,%{ﬂrz and the polynomial fn’k is a specialization of the iterated matrix multiplication polynomial

MM

Proof. Let n =2m+ 1 and set y]i =x2j_1 £+ —1lxj for j =1,...,m. Consider the specialization of
Pow?¥ ", to the matrix

Y1
On = 0 )

Ym
Xn

Xn

of size m+ 2.
We show that Pow,znk "»(Om) = fux» up to scale. The characteristic polynomial of Q,, is

det(Qm _tIderZ) — (_1)111+2tm <l2 _ ijj-yj— —Xﬁ) — (_1)m+2tm (1‘2 _ qn) )

Thus, the nonzero eigenvalues of Q,, (as functions of xy,...,x,), are +,/g,. In particular, Powg1 +2(Qm) =
(\/qT,)d + (—\/qT,)d is 0 if d is odd and it is 2¢X = 2, if d = 2k is even.

If n = 2m is even, apply the same argument to the matrix obtained from Q,, by removing the last row
and the last column.

Similarly, fmk is a specialization of IMM;"L1 or IMM?HI‘L1 (depending on the parity of n) by making
the first matrix £,1d and specializing the remaining matrices to the matrix above. 0
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4 Proof of Theorem 1.2

Since n > m>, we may choose a linear inclusion cm C C™” and regard perm,, € smCm | Our goal is to
show that for every s, T
dim(0~° IMM}") —; > dim(d~*perm,,)—:.

We split the proof into three cases. In the first and in the second case, we degenerate IMM! to f, x if
m = 2k is even and to ﬁ,k if m =2k~ 11s odd. This is possible by Proposition 3.2. Write F,, , for either f,, x
or ]f‘:hk in what follows. Since IMM] degenerates to F, , , we have dim(d =" IMM")_; > dim(d~=F, ) —z.

In the third case, we specialize IMM”" to the power sum polynomial of degree m in m? variables
Yi'+- -+, by specializing every argument of IMM to the diagonal matrix of size n x n with y1, ...,y
in the first m? diagonal entries and 0 elsewhere.

Case 1: s > [m/2]. We show that dim(d=°F,, ;)= > dim(d~*perm,,) —r when s > [m/2]. Up to the
action of GL,,,» , assume C™ C C" C €™ where C™" is the space spanned by the variables of perm,,
and C" is the space spanned by the variables of F, ,. It will suffice to prove

dim(0~*(perm,, € S"C"))—r <dim(d™F},, € S"C")_¢

because the remaining mn? — n variables will contribute the same growth to the ideals J;(perm,,) and
Js(Fnp). Since s > [m/2], (Fyn)sm—s surjects onto S *C" by Theorem 2.2 and Theorem 2.5, and
thus, for every shift 7, the shifted partial derivative map surjects onto S 5**C" for all 7. This shows
(0=5Fypp € S"C")—r = §"ST*C" and proves this case.

Case 2: s < [m/2] and T < 2m>. Again, it suffices to prove

dim(d~° perm,, € §"C")_; <dim(d~°F,, , € S"C") ;.

Since s < [m/2], (Fnn)sm—s is injective, and its partials have image of dimension ("*jfl). Corollary 2.4

n+s—1

of [6] states that any subspace of S”~*C" of dimension ( ) generates an ideal that in degree m —s+ 7

N
has dimension at least (”J’ii;_l); this is a consequence of a general result on the growth of ideals known

as Macaulay’s Theorem (see, e. g., [30]). Thus

&m@_Wﬂn€§%VLTZ(n+S+T_I>

sS+7T
(and equality holds in the case m is even).
We compare this with the crude estimate for perm,, that ignores syzygies of its s-th Jacobian ideal.
s . . 2 . o
The space (d=*perm,, C §"C")_o has dimension (’f) , because s-th partial derivatives of perm,, are
subpermanents of size m — s, so there is one for every choice of s rows and s columns of the matrix.
Ignoring syzygies of J;(perm,,) ,

N T

nts+r—1\ _ (m 2m+t—1
S+T Ky T
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in the range we consider. This is equivalent to

(n+s+t—1D)(n+s+1—2)---(n+1) i\ 2
(t4+s)(t+s—1)---(t+1) (s> ' 4.1

The left hand side is bounded from below by (n+ 7)*/(7 +s)* and the right hand side is bounded from
above by m?, so that a sufficient condition for (4.1) is

n+7t 2
>m".
T+s

which holds when n > m> and 7 < 2m? as s < m.

Case 3: s < m/2 and T > m?>. Here set all matrices (X1, ...,X,,) equal to a matrix that is zero except
for the first m? entries on the diagonal, call them yi,...,y,. The resulting degeneration of IMM" is
Yi'+ - +yr,. Asin Case 1, it will suffice to prove the result for the shifted partials of both polynomials

2 2 2

in m” variables because the remaining mn“ — m* variables will contribute the same growth to both ideals.
The space of partial derivatives of order s is (yj",...,y","). The image of the 7-th shifted partial map
consists of all polynomials in m? variables of degree m —s+ T as soonas m —s+17 > m*(m—s—1) 41,
so that every monomial of degree m — s+ 7 is divisible by at least one power of order m — s. In particular,
the shifted partials derivative map is surjective whenever when 7 > m?>.

S Complete symmetric functions

Recall that 4, 4 is the complete symmetric function of degree d in n variables:

hn,d: Z Xav

|ot|=d
where the summation is over all multi-indices @ = («y, ..., 0,) with o +---+ @, = d.

Proposition 5.1. For every monomial xP with |B| = e < d, we have

ae
ﬁhn’d = ﬁ’ 'hn+e,dfe(x17~ .. ,Xn’X(ﬁ))7
where
xB) = (X1, s XDy e e ey Xy e e ey Xp)
———
ﬁl ﬁn

and B! = Bi!---Bu!. In particular the image of the flattening (hy4)e.q—. is the space

<hn+e,d_e(x1,...,xn,x<ﬁ>) 18| = e> C si—ecn,

THEORY OF COMPUTING, Volume 15 (3), 2019, pp. 1-24 11
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Proof. We proceed by induction on e. If e = 1, suppose x# = x,, and write

d

hn,d - Z x{;hnfl,dfjocl P 7xn—1>
Jj=0

so that

0 d
P hna =Y j-x) By j(xr,. . X)) =
n J—O

Z (C+ 1) Xohy_1 a1 (X1, Xpo1) =

d—
Zx Pn—td—e-1(%15 -y Xn—1) | +%n

d—2
¢
Z (C+1) 21 a—0-2(X1,- - Xn—1)
(=0

where the first summation in the last line contains one term from each summand in the previous line, and
the second summation contains the remaining terms (with shifted indices). The first summation adds up
to hty q—1(x1,...,X,); by repeating this on the second summation we obtain

d—3
a1 (X1, -y 20) Xl g2 (X1, . Xn) + X2 Z(g‘i‘l)’xﬁhnl,déS(xla--'axn—l)]

(=0
and iterating this process we obtain Z Oxnhn d—1—j(X1,. .. ,%0) = hpy1,4-1(X1,..., X, %,) proving the
base case.
Let e > 1 and suppose B; > 1. Let y= (B1 — 1, B2, .., Bx). We have
¢ 0 97!
Fr o
= 'y' . Tmhn+e_1’d_e+l (X], e ,xn,X(Y)).
By chain rule and by symmetry
d
Txlhnﬂ—l,d—eﬂ(xl, e 7xn7X(Y)) =
d
=(n+ 1)87),1‘(x1,...7xn,x(7)7x1)h”+e_lvd_e+1 155 Vnte1) =
= ﬁlthre,dfe((xl; cee ,Xn,X(Y),Xl)),
where we used the case e = 1 again. Since y!- 3 = B!, we conclude. 0

Proposition 5.2. For any choice of multi-indices B,y with |B| = p and |y| = e, the coefficient of X" in

hn+p,e(x1,...,xn,x(ﬁ)) is
ﬁ (ﬁi+7’i)
=1\ Y

THEORY OF COMPUTING, Volume 15 (3), 2019, pp. 1-24 12
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Proof. Write [f], for the coefficient of x” in the polynomial f.

We use induction on p. If p = 0, then A, p o (x1, . .., %,,xB)) = h,, , and for every y we have
n (Y
[nely =1 =TI <?’i)

Let p > 1 and suppose B; > 1. Write hyyp.(y) = ijoy{hn+p_17€_j(y2,...,yn+,,). Let m; =
(1,0,...,0) € Z%,. We have

N
[hn-l-p,e(xl e axmx(ﬁ))]y = Z [hn+p—1,e—j(x1 yoee 7xn’X(ﬁ7m))]Y—jn1 :
=0

Apply the inductive hypothesis to the summands of the right hand side to get

Ut pee (51, 2, X))y = i [(”‘ —J+Bi- 1) H (Bﬂr%)

=0 h—J o\ Y
L))

_ (Bi‘f"yi)' B
=t \ ¥

Proposition 5.2 shows that the entries of the matrix representing the partial derivatives map of £, 4 in
the monomial basis are products of binomial coefficients with a special combinatorial structure. Matrices
with this structure are the object of study of the Lindstrom-Gessel-Viennot theory on totally nonnegative
matrices (see, e. g., [11]). We will provide some results on matrices with this structure which will be used
to prove that the matrices described in Proposition 5.2 have full rank.

Let ay,...,an € Z>o be nonnegative integers and let G(ay,...,ay) be the N x N symmetric matrix
whose (i, j)-th entry is (a,-;;aj). The Lindstrom-Gessel-Viennot Lemma (see [11, §2]) guarantees that
G(ay,...,ay) is a totally nonnegative matrix (in the sense that every minor is nonnegative), and its rank
is equal to the number of distinct ¢;’s. In particular, G(ay,...,ay) is always positive semidefinite and it is
positive definite if and only if the a;’s are distinct. Moreover if a;, = a;, for some iy, i, , then the i;-th and
i>-th rows are equal.

Given two matrices A, B of the same size, define A ® B to be the Hadamard product of A and B. For

77777

m

G(a1 yeen ,aN) = @G(CIU’, e ,aNV,-).
i=1

Our goal is to prove that G(aj,...,ay) is positive definite if the a; are distinct.

We will need the following two technical results. Given a matrix A we denote by Af the i-th row and
by A7 the i-th column of A, respectively, and by A§ the submatrix consisting of rows in the set / of indices
and columns in the set J of indices.

The following observation was contributed by Noah Stein [31].
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FULVIO GESMUNDO AND JOSEPH M. LANDSBERG

Lemma 5.3 (Stein). Let A be symmetric, positive semidefinite. Let I = {iy,...,i,} be a set of indices such
that the r vectors {A? }ic; are linearly independent. Then the principal submatrix A} of A has full rank.

Proof. Without loss of generality, suppose I = {1,...,r} and let R = A}. We want to prove that R is full
rank, namely that Ru = O for some u € R” implies u = 0. Let v € R” such that v; = »; if i < rand v; =0
if i > r. Since A is positive semidefinite, write A = BT B. We have

0=u"Ru=v"Av=v'B"Bv=|Bv|.

In particular Bv = 0, therefore Av = 0; since the first » columns of A are linearly independent, we deduce
v =0, so that u = 0 and R is nonsingular. O

Lemma 5.4. Let A,B be symmetric N x N matrices such that A is positive definite and B is positive
semidefinite with strictly positive diagonal entries. Then A © B is positive definite.

Proof. Given a symmetric matrix C, denote by C(;) the k-th leading principal submatrix of C, namely the
k x k submatrix consisting of the first k rows and k columns of C. Then C is positive definite if and only
if det(C(x)) is positive for every k. Therefore it suffices to show that the leading principal minors of A© B
are positive.

Let ko be the smallest k£ such that det(B(k)) = 0. From Schur’s Product Theorem (see, e. g., [27,
Ex. 36.2.1]), the Hadamard product of positive definite matrices is positive definite. For every k < ko , we
have that By, is positive definite, so (A © B) ) = A © By is positive definite as well and in particular
it has positive determinant.

If k > ko, from [23, Eqn. 1.11], we have

det(A ) @ B(yy) + det(A ) Bry) > det(A ) )TTe bii + det(B )T g

Now, for k > kg, B(k) is a positive semidefinite matrix and B(ko) is a principal submatrix with det(B(kO)) =0,
so det(B)) = 0 as well. Therefore

det((A @B)(k)) > det(A(k))Hi';lbii >0

proving that (A ® B) ) has positive determinant. O
Proposition 5.5. Let ay,...,ay € Z2. Then the rank of G(ay,...,ay) equals the number of distinct
m-tuples aj,...,ay.

Proof. We proceed by induction on m. For m = 1, the statement follows from the Lindstrém-Gessel-
Viennot Lemma.

Ifm>2, foreveryi=1,...,N, write a; = (a},a;n). Let A= G(a],...,ay) and B=G(an,1,...,amn).
By the induction hypothesis A is positive semidefinite and its rank is equal to the number of distinct a’s.
Similarly for B.

Let C = G(ay,...,ay) = A®B. If two pairs a; = a;, then A} = A% and B} = B so that the corre-
sponding two columns of C are equal. Conversely, if two columns C7,C? are equal, we show that the
corresponding m-tuples a; and a; are equal. Consider the principal 2 x 2 submatrix obtained from these
two columns: - o

Cij =Aj; OBy,
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If A7 # A%, then they are linearly independent by the induction hypothesis, and by Lemma 5.3 the
submatrix AZ is positive definite. The submatrix BZ is positive semidefinite and has strictly positive

diagonal entries, therefore by Lemma 5.4 Cl’; is positive definite, in contradiction with the assumption.
This shows that if C? = C7, then A? = A% and therefore By = Bj. In particular a; = a;.

Therefore, we may assume that C has distinct columns and our goal is to show that C has full rank.
Suppose by contradiction that C does not have full rank and let

0=0yC}+---+ayCy .1)

be a vanishing linear combination of the columns of C.

Up to conjugation by a permutation matrix, suppose there exist 0 = kg < k1 < --- < k, = N such
that a} = a’; if k; < i,/ < ks41 and a; # a; otherwise. Notice that if the a;’s are distinct, then A has full
rank and so does C from Lemma 5.4 because B is positive semidefinite with strictly positive entries.
Therefore, suppose k; > 2 and up to reducing to a principal submatrix suppose that oy, # 0. Since the
first k; columns (and rows) of A are equal, the first k; columns (and rows) of B are linearly independent,
otherwise two of them would be equal, providing that two m-tuples a; and a; for 7, j < k; would be equal.
By Lemma 5.3, the principal submatrix B i is positive definite.

The linear combination (5.1) can be wrltten as

0=A7O (B} +- -+ 0 By, ) + Lisi, 04(A7 © Bf).

_ Define A to be the matrix obtained from A by removing the first k; — 1 rows and columns, that is
A=G(ay,...,ay). A has the same rank as A. Let B' = PTBP, for

1 (041

1

notice that B’ is obtained from B by performing row and column operations. In particular B’ has the same
signature as B; moreover, from the block structure of P, we deduce that the submatrix B/ }f::ﬁ has the

same signature as Bl""’k' , namely it is positive definite. This shows that the k;-th diagonal entry of B’ is
strictly positive. Deﬁne B to be the submatrix obtained from B’ by removing the first k; — 1 rows and

columns. Define C = A @B The linear combination of (5.1) induces a vanishing linear combination
among the columns of C.

By repeating this procedure at most r times, we find a singular » X r matrix C=A®Bwith A positive

semidefinite and of full rank (so positive definite) and B positive semidefinite with strictly positive
diagonal entries. By Lemma 5.4, we obtain a contradiction. This concludes the proof. O
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Using these results, we can finally prove:

Theorem 5.6. For every n,d, e, the flattening (hy.a)ed—e : S¢(C")* — S?=¢C" of the complete symmetric
function h, 4 has full rank.

Proof. First, we consider the case d = 2k even.
It suffices to prove the result for e = k.

1Bl
(hna)kx(S5(CM*) = <§Xﬁh”=d 1Bl = k> =

= <hn+k-,k(x] youe ,Xn,X(ﬁ)) : ’B’ = k> .
Define two column vectors

(thrk,k(x]?"‘vxn)X(ﬁ)) : ’[))| :k)T7
(xP: 1B =k)".

From Proposition 5.1 and Proposition 5.2, we have h = Ab where the (f3,7)-th entry of A is

ﬁi+%>
Ag =TT
By 1( ¥

h=
b:

namely A = G(B : |B| = k). Since the multi-indices 3 are all distinct, by applying Proposition 5.5 we
deduce that A is nonsingular and therefore the entries of b are linear combinations of the entries of h.
This shows that (%, 4 )k« is full rank.

Now consider d = 2k + 1 odd. It suffices to prove the result for e = k+ 1. Let

d

2k
g= aTclhn,d =g 1.da-1(X1,%1,%2, ..., X,) € STC™.

The image of the flattening gy x : S¥(C™)* — SKC" is contained in the image of (hn.a)k+1k- To conclude,
we will show that g 4 is full rank.

Leth =hyi1.4-1(y1,---,Ynt1). By the result in the case of even degree, we know that (%), x has full
rank, namely

<hn+1+k7k(y17- . 7)’n+17y(ﬁ)) : ‘ﬂ‘ = k> = Sk(C”JFl_

In particular, the image of this space under the specialization (y1,...,yu+1) = (X1,,...,Xs,X1) is SKC".
On the other hand, notice that,

hn+1+k,k(y17 s 7yn+17y(ﬁ))|(y1,‘..,y,,H):(xl,‘..,xn,xl) = thrkJrl,k(xh [ 7xn7X(Y))

where vy = B+ By+1+ 1 and y; = B; fori = 2,...,n (indeed |y| = k+ 1). This shows that the image of
()i is SKC", and therefore (A, 4)i11 is full rank. a

Theorem 5.6 implies
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Corollary 5.7. For every n,d,

Rs(hna) > Rg(hpa) > (n+ L4/2] - 1>.

1d/2]
For readers familiar with cactus rank and cactus border rank, by [16, Thm. 5.3D], we obtain the same
lower bounds for cactus rank and cactus border rank.

6 Koszul flattenings

We recall the definition of Koszul flattening introduced in [21]. A Koszul flattening map of p € S¢CN
depends on two parameters s, g: it is obtained by tensoring the s-th partial derivative map (1.1) with the
identity map on the space AC" (for some ¢) and then applying the exterior derivative map. In symbols:

AICY @ (CV) L pqgN g gdoseN 2y AaHIEN @ gdI e
X®D — X®D(p)

X®g — YV ((xi/\X)®§—i>

Let p/9  : AICN @ S°CV* — A9H!CN © 57-5~1CN denote the composition of the two maps. Explic-
itly, writing x; = x;; A--- Ax;, for a g-tuple I = (iy, ..., i) and

g _9 . ..9
(9)(] B 8le (9)611r
for an s-tuple J = (jy,...,js), the map is
95 as—Hp
AU,
: — =X A .
ps’d_s X 8x] M AX1 8xk8x]

Then, by [21, Prop 4.1.1], one obtains the border rank lower bound

A A
rank(pg ) rank(pgq ) 6.1)

Rslp) 2 rank((ﬁd)?,g,s) B (N;l)

When p; 4, is of maximal rank for all s, Koszul flattenings can only give a better Waring border
rank lower bound than the partial derivative maps when d = 2k + 1 is odd and s = k. For example, if
d = 2k is even, then the rank of the Koszul flattening is bounded above by dim (Aq(CN ®Sk-1cN ) N¢J
N ﬁfz) NL_Q whereas
from flattenings alone, one already gets the larger lower bound of (N +,]§_1). Similarly, if d is odd but
N # 2g+ 1, the bound from Koszul flattenings is lower than the one from standard flattenings.

Suppose d = 2k +1 and py i1 is of maximal rank. Viewed naively, one might think Koszul flattenings

could prove Waring border rank lower bounds of up to

dim(AICY @ S*CY*)  (N+k—1\ N
(Ngl) N k N—gq
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but this is not possible because the exterior derivative map is a GLy-module map that is not surjective
unless ¢ = N,N — 1. Indeed, we have the decompositions

AICN @ SKFICN = Sk+171q(cN @Sk+271q—lCN7
ATICN @ SFCN = 8§ 1401 CN B Sy 1,14CY

50, by Schur’s Lemma, S, 5 14-1C" = ker(8) and image(§) = Si11,14C".
The following result gives an a priori upper bound for the rank of the Koszul flattening, by determining
. . /\q
a lower bound for the dimension of ker(p; %)

Proposition 6.1. Let p € S*'CN. Then for every q
k .
rank( pk il ) < Z 1)/ dim(A?~ iV Sk_J(CN*). (6.2)
=0

Proof. We will prove that
o 1 .
dimimage(p, (ql d )e+1) < dlmker(pﬁfife)

and conclude that the estimate holds for every ¢ via an induction argument. Indeed,

image <p2£q1;ilze+1> C image(Idascy @ ped—e)

because the exterior derivative map takes derivatives on the factor §d=e+1CN_ Moreover, since 62 =0,
we have image( peAfl_ll_ ei1) S ker(8;q4-.). Therefore, passing to dimensions

. . 1 . .
dlm(lmage(peq1 - e+l>) < d1m(ker(5q7d,e|image(IqucN®pevdfe)) < dlmker(pgflfe).
Now,
rank(p; 4, ;) = dim(AICY @ S*CV*) — dim(ker(p, { )
< dim(AICY © S*CN*) — rank(pl | "y
and we conclude by induction. O

Remark 6.2. This is still not the end of the story: when N = 2¢ + 1 with ¢ odd, then the linear map

prd - AICN @ SKCV* — ATHICN @ SKCN ~ AYCN* @ SKCVN was observed in [21], at least in certain
ket 1

cases, to be skew-symmetric. In particular, in this case, if the bound in (6.2) is odd, it cannot be attained.

Remark 6.3. Since the border rank bound is obtained by dividing rank(p,az +1) by (N q_]) , the best
potential lower bound is obtained when N = 2g + 1 and there the limit of the method is twice the bounds
obtained via flattenings minus lower order terms. This improvement is irrelevant for complexity. It is
known more generally that the improvement in best possible lower bounds beyond the best possible
bounds of partial derivatives are limited for any determinantal method. This was observed independently
by Efremenko, Garg, Oliveira and Wigderson [5], and Gatazka [9] for completely different reasons.
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We now show Koszul flattenings can indeed give border rank lower bounds beyond the best lower
bound attainable via the method of partial derivatives.

Proposition 6.4. Foralln> 2 and all g < n/2, the Koszul flattening (ﬁlk)l/{\z 1 has rank at least

() e

In particular, Bs(ﬁ,k) ("+k ]) +q — 1, which is greater than the lower bound obtainable by flattenings.

Proof. For fixed n, recall the unique &,-invariant g := g, € S?[n — 1, 1] from the proof of Theorem 2.5.
Let [n] be the span of £ := £,. For every s, write ps := (¢*)*"'- (¢¢°~"), which from Eqn. (2.3) is a
polynomial of degree s with non-zero projection onto [n|*. From Eqn. (2.2), the image of the k-th
flattening map of ﬁ,,k is

image(fo 4k i1 = @ps—HS [n—1,1] C s,

We will give a lower bound for the dimension of the image of AYC" ® image(]A‘,;’k)k’kJr 1 under the
exterior derivative map. We have AYC" = Af[n—1,1]® ([n] AAY" ' n—1,1]) as a &,-module.

Consider the image of ([n] AAY"![n—1,1]) ® (ps;1S¥*[n— 1,1]) under the exterior derivative. The
&, -equivariant projection of this space onto ([n] AAY'n—1,1]) ® ([n]*T!' @ §¥=5[n — 1,1]) commutes
with the exterior derivative, which is GL,-equivariant and therefore &,-equivariant. The image of ([n] A
A n—1,1]) @ ([n)**' @ S**[n— 1, 1]) under the exterior derivative is (when s < k — 1 and after reorder-
ing the factors) the subspace S j-1)[n—1,1]@ [n] @ [n]"*! C [n] AAYn—1,1] @ [n]" T SF " [n—1,1].

Now consider the image of A%[n — 1,1]® py1S*~*[n —1,1]. Again, consider its projection onto
An—1,1]® ([n)**! @ S**[n—1,1]). By applying the exterior derivative map, we obtain a subspace
of ([ AAYn—1,1])® ([0 @ S [n—1,1])) & (AT [n— 1,1] @ ([n]" ! @ S n —1,1])); consider
its projection to the second summand AY"![n—1,1] @ [n]*T1S*=5~1[n —1,1] when s < k — 1. For the same
reason as above, the image of this projection is S 14)[n —1,1] ® [n]**! up to reordering the factors.

Note that S 1 1o-1)[n— 1, 1] S Sy 10y [n—1,1] = S5 [n—1,1] @ AYn—1,1] as a GL([n — 1,1])-
module. Consider the summands for s ranging from 0 to k — 2 in the first case and 1 to kK — 1 in the second,
we obtain components S*~/[n — 1,1]® A9[n — 1, 1] for ¢ from 1 to k — 1. We obtain a subspace in the
image of the Koszul flattening that is isomorphic as a GL([n — 1, 1])-module to

(EBS" f )®A‘1[n—1 1].

The first factor of the space above has the same dimension as S¥~!C" minus dim($°[n—1,1]) = 1.
So far we have a contribution to the rank of

(7))
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Next consider the s = 0 contribution that one obtains by applying the exterior derivative to the
component with the factor A?[n — 1, 1]. The exterior derivative map is

Aln—1,11® (@8 n—-1,1]) = Aln—1,1]A[n] @S n—1,1]@Aln—1,1]@ ([n] @ S n—1,1]).

This projects isomorphically onto the first term in the target and (A9[n — 1,1] A [1]) ® S¥[n — 1, 1] does not
intersect the image of any other term that we considered so far, so we obtain an additional contribution to

the image of dimension ("7172'“1) (”;1). We now have a contribution of

(n;l) (<n1—k;2> 14 <n+l]§—2>> _ <n;1> <<n+2—1> _1>

Finally consider the s = k and s = k — 1 terms in the term with a factor [n] A A9~ !'[n—1,1]: the
sources are respectively [n] AAY ' [n—1,1]® (pry1) and ([n] AAZ"n—1,1]) ® pg[n — 1,1]. Consider
the projections respectively to ([n] AAY ™ [n—1,1]) ® £--1S%[n — 1, 1] (the second factor is /¥~ g) and
([ AAT [n—1,1]) @ 5283 [n — 1, 1] (the second factor is #¥~2g[n — 1,1]). Now, applying the exterior
derivative, these spaces map injectively to ([n] AA9[n—1,1]) @ [a]*"'[n—1,1] and ([R] AA9[n—1,1]) ®
¢*=25%[n — 1, 1] respectively. These targets do not appear in other terms analyzed above, so we pick up

(o)=a(y") we oGm0 ()

additional contributions to the rank.
Collecting all the contributions together, we conclude. U

Remark 6.5. A more careful analysis of the ¢ = 1 case shows it also improves the flattening lower bound.

Remark 6.6. Computer experiments performed in Macaulay? [12], using a variant of the code of [26],
indicate that the situation may be significantly better.

Forn=3,...,6,k=1,...,6,let p € S**1C" be generic. The Koszul flattening p,f}cH has rank equal
to the bound in (6.1) except if n = 3 and & is even (in accordance with Remark 6.2).

Forn=3,...,6 andk=1,...,6, let p = h, 1 Oor p= fnk The Koszul flattenings of p,f}(+l has
rank equal to the bound in (6.1) if k is odd and one less than the bound in (6.1) if & is even.

Notice that in the cases n = 4,5,6 with k even, the Koszul flattenings give a border rank lower bound
for hy, 2141 and f,  that is one less than the bound for a generic polynomial.

Question 6.7. What are the ranks of the Koszul flattenings for ﬁ,,k and Ay, 741 in general?
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