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The main problems of nonvacuum numerical relativity, compact binary mergers and stellar collapse,

involve hydromagnetic instabilities and turbulent flows, so that kinetic energy at small scales leads to mean

effects at large scale that drive the secular evolution. Notable among these effects is momentum transport.

We investigate two models of this transport effect, a relativistic Navier-Stokes system and a turbulent mean

stress model, that are similar to all of the prescriptions that have been attempted to date for treating subgrid

effects on binary neutron star mergers and their aftermath. Our investigation involves both stability analysis

and numerical experimentation on star and disk systems. We also begin the investigation of the effects

of particle and heat transport on postmerger simulations. We find that correct handling of turbulent heating

is crucial for avoiding unphysical instabilities. Given such appropriate handling, the evolution of a

differentially rotating star and the accretion rate of a disk are reassuringly insensitive to the choice of

prescription. However, disk outflows can be sensitive to the choice of method, even for the same effective

viscous strength. We also consider the effects of eddy diffusion in the evolution of an accretion disk and

show that it can interestingly affect the composition of outflows.

DOI: 10.1103/PhysRevD.102.104050

I. INTRODUCTION

It is progress, of a sort, that the realism of numerical

relativity simulations is now limited primarily by the same

physical and computational challenges as is that of their

Newtonian counterparts. Surely among the greatest of these

is the multiscale nature of turbulent fluid flow: kinetic

energy at the system size or unstable mode wavelength

cascades through an inertial range of smaller scales until

finally dissipated into internal energy at scales far below

what can be captured numerically. High Reynolds numbers,

and hence this turbulent cascade, are expected in all of the

main problems in nonvacuum numerical relativity: binary

neutron star mergers, black hole–neutron star mergers,

core-collapse supernovae, and collapsars.

One solution would be to pursue much higher resolution

simulations. The highest resolution binary neutron star

mergers have grid spacings of order 20 m [1]. Meanwhile,

several groups are designing computational infrastructure

that will allow scaling up to hundreds of thousands of

threads (e.g., [2]). Another complementary strategy is to

model subgrid-scale transport effects by adding effective

stress, heat and particle conduction, and dynamo terms to

the large-scale evolution equations. Several such attempts

have been made for relativistic hydrodynamics in the context

of binary neutron star postmerger remnants [3–7] and black

hole accretion (also often with postmerger applications) [8,9]

and, of course, in Newtonian hydrodynamics turbulence

modeling is a vast endeavor. (For book-length treatments,

see [10,11]. Of particular interest to relativistic astrophysics

is the incorporation of turbulence effects on core collapse

supernovae that might not be directly captured due to

resolution limits or dimensional reduction [12–16].) They

have the advantage that grids can remain small and simu-

lations cheap, so that parameter explorations can readily

be carried out. On the other hand, to be believable, the

added terms must be calibrated to and validated by expensive

high-resolution simulations. Probably, both strategies will

play a role in the successful exploration of turbulent-fluid

dynamical-spacetime systems.

An important distinction should be made among subgrid

models. (On this distinction, see, e.g., [17]). In what we

will call “large-eddy simulations,” it is assumed that a

significant portion of the inertial range is resolved, and

subgrid stress terms are computed as an extrapolation of

the character of resolved turbulence to subgrid scales

(e.g., [18–21]). An example of such methods is the gradient
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model that has recently been adapted to relativistic magneto-

hydrodynamics by Carrasco, Viganò, and Palenzuela [22]

(see also [23]). The subgrid dynamo term of Giacomazzo

et al. [4] might also fit into this category, because the field

growth is stopped when the magnetic energy density

approaches an estimate of the subgrid turbulent kinetic energy

density. Alternatively, one may not resolve the turbulence at

all (or fail to model the physics that inputs energy into the

turbulent cascade). In this case, subgrid stresses must be

assigned as functions of the resolved laminar flow, and one

has a mean-field model. (It is common also to introduce new

evolution variables in the large-scale evolution representing,

for example, the turbulent kinetic energy.) In this paper, we

shall mostly be concerned with mean-field models. The most

famous is the alpha-viscosity prescription of Shakura and

Sunyaev [24], and a number of the above-mentioned numeri-

cal relativity studies [3,5,6,9] follow the alpha-viscosity path

of modeling unresolved turbulence as a viscosity via the

Navier-Stokes equations. It should be remembered that

momentum transport is only one of the large-scale effects

of turbulence.By analogywith the kinetic theoryof gases, one

also expects turbulent heat conduction, turbulent eddy dif-

fusion of scalar quantities such as composition variables, and

a turbulent effective pressure.

Subgrid transport has recently been introduced into

binary neutron star merger simulations by Radice [7]. As

described in more detail below, Radice considers his added

stress terms to be the results of an averaging procedure with

an imposed closure which is similar to but not the same (nor

intended to be the same) as the relativistic Navier-Stokes

equations. Because his specification of the mixing length

does not rely on locally measured turbulence (most

recently, it is calibrated to high-resolution magnetohydro-

dynamic (MHD) merger simulations [25]), the resulting

model is a mean-field model (a calibrated one) by our

definition (although it could be extended into a large eddy

model by our definition by using local velocity gradients to

estimate the effective viscosity, as done by Smagorinsky

and subsequent large-eddy models [18]), and so it can be

compared to the Navier-Stokes simulations of the Illinois

and SACRA groups [3,5].

In this paper, we investigate both Navier-Stokes and

Radice-style momentum transport models. Our formula-

tions differ from some others in the literature mentioned

above in that we retain the same evolution variables as in

ideal hydrodynamics, so that the recovery of primitive

variables is independent of our various nonideal transport

modifications. We study the proper formulation of both

models and analyze their stability. We perform numerical

experiments on both of the main configuration types that

appear in numerical relativity: a differentially rotating

compact star and a neutrino-cooled black hole accretion

disk. Finally, we look at the effect of other types of

turbulent mixing on a representative accretion disk system.

In particular, we consider the effect of turbulent effective

heat flows on the mass of the outflow and the effect of eddy

diffusion on its composition. The importance of the outflow

mass is obvious, but the composition distribution of disk

ejecta is also an output of postmerger simulations of great

importance for kilonova predictions [26], where the rel-

evant composition variable in this case is the electron

fraction Ye. The lack of turbulent composition mixing in

prior studies that model transport by an effective viscosity

is potentially one of the major differences between these

studies and proper (but expensive) magnetohydrodynamic

simulations which incorporate all effects of turbulence.

(There are, of course, other major differences, including the

effects of a large-scale B field, which no local transport

model will be able to capture.)

We find that, in mean-field momentum transport models,

it is crucial to properly include turbulent heating to the

energy equation. Failure to do so results in unphysical

behavior, most notably a nonaxisymmetric instability in

rotating stars which often appears only after the star has

come close to uniform rotation (so that the effect of the

transport is presumed to be nearly done). While simple

mean-field closure relations are not four-dimensionally

covariant, for the types of problems (and coordinate

systems) common to numerical relativity, the difference

from a Navier-Stokes evolution is quite modest. The only

exception, although a very important one, is in the outflow

mass, for which the differences can be quite significant.

In our test case, heat diffusion significantly increases the

mass of ejected matter, while eddy diffusion can affect the

peak and width of the Ye distribution.
The paper is organized as follows. In Sec. II, we derive

the relativistic Navier-Stokes equations, put them in a
convenient form for numerical implementation, and ana-
lyze their stability. In Sec. III, we work from a framework
of averaging the effects of subgrid stresses, looking
particularly at the treatment of the energy equation. In
Sec. IV, we test our transport methods on a differentially
rotating star problem, first looking at the early-time
evolution of the rotation profile and entropy, and then at
the long-term stability issues. In Sec. V, we present
numerical experiments on a black hole accretion system.
We summarize our findings in Sec. VI.

II. THE RELATIVISTIC NAVIER-STOKES

EQUATIONS

A. Metric and fluid variables

In the 3þ 1 formalism, spacetime is foliated into

spacelike hypersurfaces ΣðtÞ parametrized by the timelike

coordinate t. The spacetime metric is gμν, which we

decompose as

ds2 ¼ −α2 þ γijðdxi þ βiÞðdxj þ βjÞ; ð1Þ

where α is the lapse, βi the shift, and γij the 3-metric. The

unit normal nμ to a slice Σ is then
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nμ ¼ 1

α
ðtμ − βμÞ ¼ ð1=α;−βi=αÞ: ð2Þ

The extrinsic curvature of a slice Σ is defined as

Kμν ¼ −∇νnμ − nνγ
λ
μ∇λðln αÞ ¼ −

1

2
Lnγμν; ð3Þ

where Ln is the Lie derivative along the normal nμ.
For a perfect fluid, we define the stress-energy tensor of

matter as

Tμν ¼ ρ0hu
μuν þ Pgμν; ð4Þ

where ρ0 is the baryon density, h ¼ 1þ P=ρ0 þ ϵ is the

specific enthalpy, P is the pressure, and ϵ is the specific

internal energy. The 4-velocity uμ can be decomposed in

3þ 1 form

uμ ¼ Wðnμ þ vμÞ; ð5Þ

where W is the Lorentz factor and vμ is the 3-velocity.

Note that we require vμnμ ¼ 0 (i.e., vt ¼ 0). In compo-

nents, we have

uμ ¼ ðW=α;W½vi − βi=α�Þ; ð6Þ

uμ ¼ðW½−αþ βivi�;WviÞ: ð7Þ

The conservative variables used for numerical evolutions

are

ρ� ¼ ρ0W
ffiffiffi

γ
p

; ð8Þ

τ ¼ ffiffiffi

γ
p

nμnνT
μν − ρ�; ð9Þ

Si ¼ −
ffiffiffi

γ
p

nμγiνT
μν: ð10Þ

Although not an evolution variable, the purely spatial

projection of the stress tensor appears in source terms

Sij ≡ α
ffiffiffi

γ
p

γαi γ
β
jTαβ: ð11Þ

For a perfect fluid, Eq (4), the stress tensor projections are

τ ¼ ρ�ðhW − 1Þ − P
ffiffiffi

γ
p

; ð12Þ

Si ¼ ρ�hui: ð13Þ

The evolution equations are the conservation of the

baryon number and the projections of the Bianchi identity

∇μT
μν ¼ 0:

∇μðρ0uμÞ ¼ 0; ð14Þ

∇μðTμνnνÞ ¼ Tμν∇μnν; ð15Þ

∇μðTμνgνiÞ ¼ 0; ð16Þ

which can be expanded as

∂tρ� þ ∂iðρ�viTÞ ¼ 0; ð17Þ

∂tτ þ ∂iðτviT þ P
ffiffiffi

γ
p

αviÞ

¼ αPK
ffiffiffi

γ
p

− Si∂iαþ SiSjKij

α

ρ�Wh
; ð18Þ

∂tSj þ ∂iðSjviT þ αP
ffiffiffi

γ
p

δijÞ

¼ Si∂jβ
i þ ffiffiffi

γ
p

P

�

∂jαþ
α∂jγ

2γ

�

− ρ�Wh∂jαþ
αSiSk∂jγik

2ρ�Wh
;

ð19Þ

where we defined the transport velocity

viT ¼ ui

ut
¼ αvi − βi: ð20Þ

For a general stress tensor, the source term for τ is

−α
ffiffiffi

γ
p

Tμν∇νnμ ¼ −Si∂iαþ SijK
ij, and the source term

for Si is α
ffiffiffi

γ
p

Tμν∂igμν=2.

B. The shear tensor

A simple prescription for a viscous fluid is to include a

shear viscosity but no bulk viscosity. Then, the stress-

energy tensor becomes

Tμν ¼ T
μν
ideal þ τμν ¼ T

μν
ideal − 2ησμν; ð21Þ

where

σμν ¼ ∇ðμuνÞ þ uαð∇αuðμÞuνÞ −
1

3
∇αu

αhμν ð22Þ

is the shear tensor and

hμν ¼ gμν þ uμuν: ð23Þ

The coefficient η sets the strength of the viscosity. For a

physical viscosity, kinetic theory would lead one to expect

η ≈ ρ0csl, where cs is the sound speed and l is the mean

free path of the constituent particle.

We can take advantage of the identity σμνuμ ¼ 0 to write

σjt ¼ −σijv
i
T ; ð24Þ

σtt ¼ σijv
i
Tv

j
T ; ð25Þ
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σti ¼ σij
vj

α
; ð26Þ

σij ¼ σjk

�

γik −
βivk

α

�

; ð27Þ

σtt ¼ −σij
viTv

j

α
; ð28Þ

σtt ¼ σij

α2
vivj; ð29Þ

σti ¼
�

γik

α
−
βivk

α2

�

σkjv
j; ð30Þ

σij ¼ σlm

�

γilγjm þ βiβj

α2
vlvm

�

− σlm

�

βi

α
γjlvm þ βj

α
γilvm

�

; ð31Þ

and we only need to compute σij to recover the full

four-dimensional (4D) tensor. This three-dimensional

(3D) tensor can be simplified as

σij ¼
W

2α
ðuj∂tui þ ui∂tujÞ −

hij

3α
ffiffiffi

γ
p ∂tð

ffiffiffi

γ
p

WÞ

þ 1

2
ð∂iuj þ ∂juiÞ −

hij

3α
ffiffiffi

γ
p ∂kðW

ffiffiffi

γ
p

vkTÞ

−WðKij þ vkΓ
ð3Þk
ij Þ − W

2α
ðui∂jut þ uj∂iutÞ

þWvkTui

2α
ð∂kuj − ∂jukÞ þ

WvkTuj

2α
ð∂kui − ∂iukÞ;

ð32Þ

where Γ
ð3Þk
ij are the three-dimensional Christoffel symbols

associated with γij. The above expression only requires

time derivatives of ui and ð ffiffiffi

γ
p

WÞ.

C. Evolution equations

The inclusion of the viscous shear tensor induces

modification to the evolution equation for τ and Si. The
fluxes are now

Fi
τ ¼ τviT þ Pα

ffiffiffi

γ
p

vi − 2ηα2
ffiffiffi

γ
p

σti; ð33Þ

Fi
Sj
¼ Sjv

i
T þ αP

ffiffiffi

γ
p

δij − 2ηα
ffiffiffi

γ
p

σij; ð34Þ

and the source terms

Sτ ¼ Sidealτ − 2ηα
ffiffiffi

γ
p ðσijKij − σti∂iαÞ þ ∂tð2ηα2

ffiffiffi

γ
p

σttÞ;
ð35Þ

SSj ¼ SidealSj
− ηα

ffiffiffi

γ
p

σμν∂jgμν þ ∂tð2ηα
ffiffiffi

γ
p

σtjÞ; ð36Þ

where Sidealτ and SidealSj
are the source terms for ideal

hydrodynamics, given as the right-hand sides of

Eqs. (18) and (19), respectively.

D. Stability

We will consider stability on a flat background, for

perturbation around a homogeneous fluid configuration.

The perturbations will be planar waves proportional to

exp ðΓtþ ikxÞ. First order theories of the Navier-Stokes

equation, including the equations derived in the previous

section, are acausal and have unstable modes with an

extremely rapid growth rate [27]. One can, however,

recover a stable and covariant viscous formalism by going

to second-order methods (Israel-Stewart viscosity [27–29]),

which treat the viscous stress tensor as an evolved variable.

Suppose that at a particular instant in time, the viscous

coefficient η is a function of the local density ρ0 and

temperature T, while the shear tensor is a function of uμ and
its derivatives. Then the instantaneous values of −2ησij at

event xμ are

τinstij ðxμÞ ¼ −2ηðρ0ðxμÞ; TðxμÞÞσijðuαðxμÞ; ∂βu
αðxμÞÞ:

Instead of setting the viscous stress tensor τij at each

event xμ equal to τinstij ðxμÞ, we evolve τij according to

∂tτij ¼ −
1

td
ðτij − τinstij Þ ð37Þ

or

L⃗tþv⃗T
τij ¼ −

1

td
ðτij − τinstij Þ: ð38Þ

The advection term in the second version is probably

preferable for systems with high velocities (at least, high

velocities not along a symmetry of the fluid configuration).

Alternatively, if td is small compared to physical time-

scales, the driver can handle the advection itself. In the

applications in this paper, systems are mostly axisymmetric

and velocities mostly azimuthal, so we find better perfor-

mance with Eq. (37).

Consider the case of a perturbation propagating along

the direction of the fluid motion (uy ¼ uz ¼ 0, ux ≠ 0).

We perturb the energy and momentum equations and close

the system by specifying an equation of state ϵðρ0; TÞ,
Pðρ0; TÞ. Consider transverse modes (involving δuA, δτxA),
where capital roman letters will stand for indices y, z.
We have the constraint
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δτtμ ¼ ux

W
δτxμ: ð39Þ

The perturbed momentum equation along y, z becomes

ρ0hðΓW þ ikuxÞδuA þ
�

Γ
ux

W
þ ik

�

δτxA ¼ 0;

and the evolution equations for δτxA without an advection

term is

ðΓtd þ 1ÞδτxA ¼ −ηWðikW þ uxΓÞδuA: ð40Þ

With the advection term, it would be

ðΓtdþ1ÞδτxA¼−ηWðikWþuxΓÞδuA−
ux

W
tdikδτxA: ð41Þ

Concentrating for the moment on the system without

advection of τxA [Eq. (40)], we thus have the system

�

ρ0hðΓW þ ikuxÞ 1

W
ðΓux þ ikWÞ

ηWðikW þ uxΓÞ 1þ Γtd

��

δuA

δτxA

�

¼
�

0

0

�

:

ð42Þ

Taking the determinant of the matrix and setting it equal

to zero, we solve for Γ and find

Γ ¼ −ρ0hW þ ið� � �Þ � Δ
1=2

� � � ; ð43Þ

where we have neglected to expand factors not relevant

to the question of stability, which requires only ℜðΓÞ < 0.

In the above

Δ ¼ ðρ0hWÞ2 − 2ikuxρ0hðρ0hWtd þ 2ηÞ
− k2ððρ0huxtdÞ2 þ 4ηWρ0htdÞ: ð44Þ

For stability, we need ℜðΔ1=2Þ ≤ ρ0hW. Note that the

marginal stability case ℜΔ
1=2 ¼ ℜΔ

1=2
ms ¼ ρ0hW is of the

form Δms¼ðρ0hW�ikBÞ2¼ðρ0hWÞ2�2ikρ0hWB−k2B2

for some B ∈ R. On the other hand, Eq. (44) has the

form Δ ¼ ðρ0hWÞ2 − 2ikρ0hWC − k2D for C,D ∈ R.

Thus, D ¼ C2 is the condition for marginal stability, while

D > C2 is the condition for stability, which can be written

ðρ0huxtdÞ2 þ 4ηWρ0htd >
u2x

W2
ðρ0hWtd þ 2ηÞ2 ð45Þ

or

td >
W

ρ0h

�

η
W2 − 1

W2

�

; ð46Þ

which shows that td > 0 is required whenever η ≠ 0.

One can repeat the above analysis with the advection

term and arrive at exactly the same condition.

E. Implementation

The Israel-Stewart formulation of the Navier-Stokes

equations can be implemented in a numerical relativity

code in either of two ways. First, one can retain the general

definition of τ and Si in terms of the total stress tensor,

Eqs. (9) and (10), which would then include viscous terms.

In this case, the algorithm for recovering primitive variables

must be altered. This is the method chosen by Fujibayashi

et al. [6]. Second, one could retain the definition of τ and Si
in terms of fluid variables, Eqs. (12) and (13), in which

case all terms from the divergence of the viscous stress

tensor are regarded as source or flux terms. In this case,

primitive variable recovery is not affected by viscosity,

but the viscous source terms require knowing the time

derivatives ∂tð
ffiffiffi

γ
p

WÞ and ∂tui. We choose this second

method. The needed time derivatives are estimated by

storing
ffiffiffi

γ
p

W and ui at the previous time step and then

computing at each step k the backward-centered time

derivative ∂tXðtkÞ ¼ ½XðtkÞ − Xðtk−1Þ�=ðtk − tk−1Þ.
Second-order theories of viscosity also require the

evolution of the stress tensor. We promote Aij ≡

−2ησijW
ffiffiffi

γ
p

to be a new evolved variable with evolution

equation

∂tAij þAij ¼ −
Aij − Ainst

ij

tdu
0

; ð47Þ

where Aij is an optional advective term LvT
Aij.

We evolve Eq. (37) using implicit time steps. This can be

written clearly if we momentarily suppress indices and

use subscripts for time steps, so that Ak is a component of

Aij at step k. Given Ak−1 and Ainst
k , we take a step of size

Δt ¼ tk − tk−1 by

Ak ¼
Ak−1 þ Ainst

k Δt=ðu0tdÞ −AðAk−1ÞΔt
1þ Δt=ðu0tdÞ

: ð48Þ

We have experimented with the choice of td, setting it to

some fraction of the dynamical timescale—a constant for

star runs, a fraction of the local Keplerian period for disk

runs. We find our results to be insensitive to its value so

long as td is small compared to the dynamical timescale and

the instability is not triggered [cf. Eq. (46)].

We add an option to suppress viscosity at low densities

or very close to the black hole, anticipating the possibility

of excess artificial viscous heating in these regions. From

Eq. (46), the minimum td scales with η, so if we suppress η
by some function of density or distance from the black hole,

we reduce td by the same factor.
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F. Other covariant implementations

The procedure of promoting viscous stress to an inde-

pendent evolved variable can be extended to other

dissipative fluxes (heat flux, etc.), a process done system-

atically in the field of extended irreversible thermodynam-

ics [30]. However, even the Israel-Stewart theory is known

to incorrectly handle strong shocks [31,32], which could be

a serious problem in some numerical relativity applications.

A different way of improving the behavior of the relativistic

Navier-Stokes equations, explored by Lichnerowicz [33]

and Disconzi [34], is to replace ui by hui in the formula for

the shear tensor.

Recently, a new formulation of relativistic viscous

hydrodynamics has been introduced by Bemfica,

Disconzi, Noronha, and Kovtun (BDNK) [35–37]. They

begin from a general expansion of the stress tensor in

covariant terms with first derivatives of fluid variables.

Each term will be multiplied by a coefficient, and BDNK

find conditions on the coefficients that guarantee stability

and causality. Kinetic theory determines some coeffi-

cients, but freedom remains in the choice of others,

different values representing different choices in the

definition of fluid variables out of equilibrium.

Presumably, a similar procedure could be followed to

model turbulent effective stresses, with similar freedoms

reflecting different ways to average over small-scale

eddies. However, the BDNK formulation has not yet

been used in numerical relativity.

In this paper, we restrict attention to momentum trans-

port methods already in use in numerical relativity, which is

already enough to get some indication of how sensitive

simulations are likely to be to the choice of method.

III. EFFECTIVE REYNOLDS STRESS FROM

SUBGRID-SCALE TURBULENCE

A. Filtered variables and evolution equations

As was pointed out by Boussinesq and Prandtl over a

century ago, the mixing of momentum by turbulent eddies

is analogous to molecular transport in a gas, suggesting

that on scales much larger than the eddies, the mean stress

from turbulence might be like a viscosity. Once again, we

would expect ηT ≈ ρ0csl, but now l is the mixing length

associated with the turbulence.

To pursue the kinetic theory analogy, divide the velocity

flow into large and small scales: vi ¼ v̄i þ δvi. The two

components are defined by an averaging / low-pass filtering

operator h� � �i, such that hvii ¼ v̄i, hδvii ¼ 0. Then one

applies the filter to the ideal energy and momentum

equations to obtain evolution equations for τ̄ and S̄i.
The subleties that arise can be illustrated in the case

of Minkowski spacetime and incompressible small-scale

turbulence. Then the filtered equations can be written

∂tS̄i þ ∂jðSivj þ δ
j
iPÞ ¼ 0;

∂tτ̄ þ ∂j½ρ0hWvj − ρv̄j� ¼ 0;

where S̄i ¼ ρhWvi. Note that Siv
j ≠ S̄iv̄

j andWvi ≠ W̄v̄i.

Assuming δvi is not highly relativistic, we can Taylor

expand the Lorentz factor in δvi and get W̄ ¼ Wðv̄iÞ,
δW ¼ W̄3v̄jδvj. Then

hviWi ¼ W̄v̄i þ W̄3v̄jhδvjδvii:

Similarly, we define

hSivji≡ S̄iv̄
j þ τi

j; ð49Þ

where we now redefine S̄i to be Siðv̄iÞ ≠ hSii. This

redefinition is desirable because it preserves the relation-

ship between primitive and conservative variables at the

filtered level. One finds τi
j to be

τi
j ¼ ρ0hW̄hδviδvji þOðjv̄j2 × hδvδviÞ

with the omitted terms coming from correlation between

δW and δv. To second order in v̄i, τij, we have

∂tS̄i þ ∂jðS̄iv̄j þ τi
jÞ ¼ 0; ð50Þ

∂tτ̄ þ ∂jðS̄j þ v̄kτk
jÞ ¼ 0: ð51Þ

Note that the extra term in the energy equation, from the

difference between the redefined S̄i and hSii, is necessary to
correctly recover the Newtonian limit, and, in particular,

to secure energy conservation in this limit. One could

handle this instead by adding the τ · v term to the definition

of the conservative variable S̄i, i.e., by keeping the

definition S̄i ¼ hSii, but we find it more straightforward

to retain the standard relations between primitive and

conservative variables.

Returning to the case of general metric and relativistic

mean velocities, the cleanest way to obtain the transport

terms proportional to the mean velocity is to impose that τij
be the spatial components of a 4D tensor that obey the usual

orthogonality conditions for a shear tensor: τμνu
ν ¼ 0.

Then the added terms to the energy and momentum flux

are the same as in Eqs. (34) and (33), with ταβ ¼ −2ησαβ

and with σij and σti related to σij as in Eqs. (27) and (30).

To test the effect of the velocity-dependent terms, we

write these terms as

∂tτ ¼ � � � − ∂j½ðk1αγjk − k2β
jvkÞvlτkl�

þ α
ffiffiffi

γ
p

γkiγljKklτij; ð52Þ
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∂tSi ¼ � � � − ∂j½
ffiffiffi

γ
p

τimðαγmj − k2β
jvmÞ�

þ 1

2

ffiffiffi

γ
p

τjkð−2k2vjvk∂iαþ 2k2v
k∂iβ

j − α∂iγ
jkÞ;

ð53Þ

where “� � �” indicates the perfect fluid terms and k1, k2 are
constants. To enforce τμνu

ν ¼ 0, these constants should be

k1 ¼ k2 ¼ 1. k1 ¼ 1, k2 ¼ 0 has only the term needed to

recover the Newtonian limit. k1 ¼ k2 ¼ 0 would be to take

Eqs. (8) and (9) from [7] while not accounting for the

difference between SiðhviiÞ and hSii (which is the formal-

ism used in [7,38]).

One can carry out a stability analysis as in Sec. II D

for the above mean-field turbulence theory. Because τ no

longer appears under the time derivative in the left-hand

side of the momentum equation, the Γux=W term in the

upper right-hand entry of the matrix in Eq. (42) is no longer

present. Anticipating that td > 0 will no longer be required,

we can set td ¼ 0 and solve a linear equation for Γ, finding

the real part to be unconditionally negative.

B. The closure condition

Guided by the Smagorinsky closure [18] of Newtonian

turbulence modeling, Radice [7] proposes the following

relativistic closure:

τij ¼ −2νρ0hW
2

�

1

2
ð∇iv̄j þ∇jv̄iÞ −

1

3
∇kv̄

kγij

�

; ð54Þ

where∇i is the 3D covariant derivative compatible with γij.

In a large-eddy simulation (as defined above), ν would

be set by the local state of the turbulence as determined by

difference operators on the smallest resolved scales. This

requires the simulation to resolve some of the inertial range

of the turbulence. A mean-field model is needed if the

turbulence is totally unresolved or if the physics driving

the turbulence is missing in the simulation. For example, if

turbulence is driven by the magnetorotational instability

(MRI) and one’s simulation does not include magnetic

fields, one would need a mean-field closure condition even

if the hypothetical MRI wavelength is resolved. The natural

choice is

ν ¼ lcs ð55Þ

with l the mixing length.

The evolution equations with the above closure are

not—and are not meant to be—exactly equivalent to the

Navier-Stokes equations. Nevertheless, Eq. (54) clearly

does closely resemble a viscous stress and behaves in a

similar way.

The model is completed by choosing the mixing

length l. This will depend on the system; the focus of

Radice’s work was binary neutron stars. In his original

paper, he used constant values of l set to be similar to

the wavelength of the fastest growing MRI mode for

B ∼ 1014 − 1015 G. More recently [38], he has used a

density-dependent lðρ0Þ, where the function lðρ0Þ was

fit to the results of high-resolution MHD simulations of

binary neutron star mergers by Kiuchi et al. [25].

C. The issue of covariance

Equation (54) is covariant with respect to spatial coor-

dinate transformations, but not with regard to general

spacetime coordinate transformations, a point made by

Radice himself. The filtering operator is itself frame/slicing

dependent, so we should not expect general covariance

in the final equations.
1
However, “not covariant” does not

necessarily mean “not valid.” Similar points are made by

Carrasco et al. [22] with regard to their relativistic subgrid

code. Since theirs is a large-eddy code, they also point out

that discretization for finite differencing itself violates

covariance in the same way and to a similar degree.

Also, covariance is regained in their case, but not in the

mean-field case, in the limit of infinite resolution, albeit

trivially so because the subgrid terms then disappear.

However, a noncovariant choice of closure may leave

coordinate-independent artifacts. For example, one physi-

cally expects that, when the radius of curvature is larger

than the mixing length, momentum transport should

operate only when there is a nonzero shear as measured

in a local Lorentz frame, and heating should occur if and

only if σαβσαβ ≠ 0. This is guaranteed for the relativistic

Navier-Stokes equations but not for Eq. (54).

Hereafter, we will refer to evolutions with the full

Navier-Stokes equations, stabilized by evolving the spatial

stress tensor with the driver equation (47), as “Navier-

Stokes” or “NS” evolutions. Mean-field turbulence evolu-

tions using the closure equation (54) will be called

“turbulent mean stress” or “TMS” evolutions.

D. Diffusion of scalar quantities

In addition to transporting momentum, turbulence leads

to other effects that can be understood qualitatively as

transport by “mixing.” These include eddy diffusion of

particle species and turbulent heat transport.
2

We consider only the first of these effects. We consider a

scalar quantity Y, say a species fraction that (up to reaction

source terms) advects with the fluid, so that ρ�Y obeys a

continuity equation (possibly with reaction source terms).

Turbulent mixing will produce a flux of ρ�Y which we take

1
Unless, of course, one were to explicitly add information

about the filtering frame to the equations. Any equations can be
put in generally covariant form given enough auxiliary variables.

2
In some compressible turbulence models, there is even a

diffusion of density added to the continuity equation, although
this is sometimes avoided by using the Favre rather than the
Reynolds average definition of the mean velocity field [39].
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to be FρY ≈ ρ0cslD∇Y, where we have given ourselves the

freedom of using a different mean free path for momentum

transport and diffusion: lD ≡ λDl for some constant λD.

Taking the divergence of this flux (and ignoring the time

derivative term), we get

∂tðρ�YÞ þ ∂iðρ�YviTÞ ¼ ∂jðρ�cslD∂jYÞ þ � � � ; ð56Þ

where the ellipsis � � � indicates the other source terms.

As with the TMS stress, this flux is not four-

dimensionally covariant. A covariant treatment would be,

for example,

∇μY
μ ¼ 0; ð57Þ

Yμ ¼ ρ0Yu
μ − ρ0cslDðgμν þ uμuνÞ∇νY; ð58Þ

as can easily be seen by going into a comoving local

Lorentz frame.

Heat transport might be modeled in a similar way. Since

eddies (except near the dissipation scale) evolve adiabati-

cally, specific entropy s rather than temperature would

seem to be the more appropriate scalar quantity to diffuse.

This would be in keeping with the normal practice in

mixing length theory treatments of convective stars (e.g.,

[40]), although here there is no presumption that eddies are

buoyancy driven. This could be captured by a turbulent

mean heat flux qi ¼ ρ0TcslS∇is for some lS ≡ λSl. The

corresponding covariant 4-vector obeying q · u ¼ 0 is

qμ ¼ ρ0TcslSð∇μsþ uνuμ∇νsÞ. In the spirit of TMS, we

eliminate time derivatives by assuming entropy roughly

advects uν∇νs ≈ 0 (as would be exactly true if it were a

perfect fluid in the absence of shocks and radiation). Then

qα ¼ ρ0TcslSð−viT∇is;∇isÞ; ð59Þ

T
μν
heat ¼ qμuν þ qνuμ; ð60Þ

Fi
τ ¼ � � � þ αW

ffiffiffi

γ
p ðqi þ viTq

tÞ; ð61Þ

Fi
Sj
¼ � � � þ α

ffiffiffi

γ
p ðqiuj þ qju

iÞ; ð62Þ

Sτ ¼ � � � − Siheat∂iαþ S
ij
heatKij; ð63Þ

SSj ¼ � � � þ 1

2
α

ffiffiffi

γ
p

T
μν
heat∂igμν; ð64Þ

where Siheat and S
ij
heat are projections of T

μν
heat as in Eqs. (10)

and (11), and indices of the heat flux and 4-velocity are

raised and lowered using the 4-metric.

Simulations of magnetorotational turbulence find that

the momentum transport is dominated by average Maxwell

rather than average Reynolds stress, with the former around

a few times larger than the latter (e.g., [41–43]). This

suggests that λD ¼ λS ¼ 1 probably overestimates mixing

effects. The choice of setting all mixing lengths equal,

used at times below, is a useful way of checking what

sort of influence turbulent particle diffusion and heat flux

might have.

IV. TEST ON A DIFFERENTIALLY

ROTATING STAR

A. Axisymmetric heating

From an astrophysicist’s point of view, turbulence is

important primarily for two reasons. First, it transports

angular momentum. Second, it transfers kinetic energy to

small enough scales for it to be dissipated away as heat.

Under the influence of a shear viscosity, a differentially

rotating star will approach uniform rotation on the viscous

timescale ∼R2=ν, where R is the characteristic length of the

shear flow, in this case the radius of the star. The fluid will

acquire entropy at a rate

nT
ds

dtprop
¼ 2ησαβσ

αβ; ð65Þ

where n, T, s, and tprop are the number density, temperature,

specific entropy, and proper time along the fluid element,

respectively. For a Gamma-law equation of state P ¼
ðΓ − 1Þρ0ϵ, PðT ¼ 0Þ ¼ κρΓ

0
≡ Pcold this can be written

nT
ds

dtprop
¼ Pcold

Γ − 1

d

dτ

�

P

Pcold

�

; ð66Þ

∂tðE�Þ ¼ −∂jðE�v
j
TÞ þ

α
ffiffiffi

γ
p

Γ

�

E�
W

ffiffiffi

γ
p

�ð1−ΓÞ
ð2ησαβσαβÞ;

ð67Þ

where E� ≡W
ffiffiffi

γ
p ðρ0ϵÞ1=Γ ¼ W

ffiffiffi

γ
p ð P

Γ−1
Þ1=Γ [44].

As a first test of our momentum transport methods, we

evolve a differentially rotating relativistic star. The initial

equilibrium state is supplied by the code of Cook, Shapiro,

and Teukolsky [45]. We use a polytropic equation of state

P ¼ κρΓ
0
with κ ¼ 1, Γ ¼ 2. The differential rotation law is

utuϕ ¼ R2
eqA

2ðΩc −ΩÞ; ð68Þ

where Req is the equatorial coordinate radius, Ω is the

angular velocity, Ωc is the angular velocity on the axis,

and the differential rotation parameter A is set to 1.

The star has baryonic mass 0.1756κ1=2c2G−3=2, gravita-

tional mass 0.1627κ1=2c2G−3=2, and angular momentum

0.01402c3κG−2. The polar to equatorial radius ratio is 0.75.

The equatorial coordinate radius is 0.885κ1=2G−1=2.

We first evolve the star on a two-dimensional (2D) grid

assuming axisymmetry using the techniques described in

our recent paper [46]. We use a 2D Cartesian grid, with

vertical and radial cylindrical polar coordinates z and ϖ.
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We use G ¼ c ¼ κ ¼ 1 units. The grid has 360 points

covering −2≤ z≤2 and 260 points covering 0 < ϖ ≤ 2.6.

We set the viscous coefficient to η ¼ 0.1P, where P is

the pressure. For this test, we are uninterested in low

density behaviors (e.g., winds), so we add an exponential

suppression factor when ρ0 is below ρcut ¼ 0.1ρ0max, where

ρ0max is the initial maximum rest density: η → ηe−ðρcut=ρ0Þ
4

.

The driving timescale td for σij is set to 0.12, much shorter

than the initial central rotation period of 15.

In Fig. 1, we plot the angular velocity profiles. For both

the NS evolution and the TMS evolution, the rotation

profile flattens inside the star, as expected. We do see that

for the TMS evolution, the profile settles with a slight

nonzero level in the high-density region. We pointed out in

Sec. III C above that this would be a possibility, so its

occurrence is not too surprising. Because it is not derived

from the covariant stress tensor σ, the TMS stress τ can be

zero when σ is nonzero, and vice versa, for a general metric.

Because it is coordinate independent, the scalar σαβσ
αβ,

which we measure in the viscous heating tests below, is the

most reliable measure of whether local shear is really

present.

In Figs. 2 and 3, we plot the heating rate of a

representative tracer particle, plotting the left- and right-

hand sides of Eq. (67). One could also plot the integrals of

each side over the entire star, but then numerical error

would be dominated by the thin numerically heated layer at

the surface of the star. This heating is present even in the

absence of TMS or NS transport and is mainly due to

numerical viscosity, and thus is not expected to be directly

related to the chosen subgrid viscosity model.

For the TMS evolution, we calculate σαβ appearing in the

heating rate [Eq. (67)] in two ways. We compute the full

covariant σαβ that would appear in the Navier-Stokes

equations [Eq. (32)]. We also compute σαβ from the closure

τij extended to four-dimensions using uασαβ ¼ 0. For the

NS evolution, the agreement between the local viscous

heating rate and the observed entropy increase is quite

good, as it should be. The approach of the right-hand side to

zero is particularly notable, since the shear scalar is an

invariant measure of shear, and hence its disappearance of

the approach to uniform rotation.

For the TMS evolution, we see clearly that the effects of

τ turn off while the covariant σ is still nonzero, which we

also noted in discussing the angular velocity evolution.

However, the results again qualitatively match expect-

ations. Fluid elements heat as angular momentum is

transported outward. It should be emphasized that the

disagreement between left- and right-hand sides does not

in itself indicate an error in the TMS method; neither of

these right-hand sides is the exact entropy generation rate

for the TMS stress; they only explain why viscous effects

turn off while a small amount of invariant shear remains

0 0.25 0.5 0.75 1 1.25

ϖ/R
init,eq

0.1

0.2

0.3

0.4

Ω

t=0
t=30, NS
t=60, NS
t=30, TMS
t=60, TMS

FIG. 1. Equatorial angular velocity Ω at 3 times for NS and

TMS evolution. Angular velocity is shown as a function of

coordinate cylindrical radius ϖ, normalized to the initial equa-

torial radius Rinit;eq.
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t/P
c

0
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*
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RHS, r=0.3
LHS, r=0.7
RHS, r=0.7

FIG. 2. Time derivative of the specific entropy of two repre-

sentative equatorial tracer particles [left- and right-hand sides of

Eq. (67)] for NS evolution. Time t is normalized to the initial

central rotation period Pc.
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0.001

0.0015

d
E

*
/d

t

LHS, r=0.5
RHS, r=0.5, full σ
RHS, r=0.5, σ(τ)

FIG. 3. Numerical time derivative of the specific entropy of one

representative equatorial tracer particle [left-hand side of

Eq. (67)] for TMS evolution. Also, estimates of the expected

heating rate [right-hand sides of Eq. (67)] using the exact

covariant shear tensor and using the TMS closure τij [Eq. (54)].
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(because the τ stress has nearly vanished). In particular, it

does not indicate that a deficit of heating is causing energy

to disappear. Viscosity will tend to convert kinetic energy to

heat; TMS in leaving residual shear may simply transfer

slightly less energy without large violations of energy

conservation. For self-gravitating systems, this analysis

is complicated by changes in gravitational potential energy,

and in general relativity total energy is only defined

globally by the asymptotic metric. Unfortunately, our

metric evolution is not accurate enough to study small

changes in total energy that might arise from the TMS

terms not coming from a covariant divergence of a 4D

stress tensor. With our version of the energy equation,

we are at least guaranteed energy conservation in the

Newtonian limit.

To study the viscous heating further, Fig. 4 compares

the variable κ ¼ P=ρΓ
0
, a function of entropy initially

equal to one throughout the star, for NS and TMS

evolutions. The entropy at the final time is higher for

the NS case. This is partly the effect of greater viscous

heating, but when we look at heating at tracer particle

locations (see the figure’s inset), we see that the heating

of individual fluid elements is more similar for NS and

TMS than the entropy profile would suggest. The reason

is that the stellar interior expands a bit more in the TMS

case than in the NS case, so that the tracked fluid elements

end up at larger radii. To speak loosely, it is better to think

of the TMS entropy profile as “shifted to the right”

compared to the NS profile, rather than as “shifted down.”

By tracking specific entropy rather than internal energy,

we eliminate the effects of work energy expanding or

compressing the fluid.

B. Late-time three-dimensional evolution

We next evolve the star on a 3D grid to determine

nonaxisymmetric stability. In addition to the TMS and

NS evolutions, we evolve the TMS with k1 ¼ k2 ¼ 0 for

Eqs. (52) and (53). We let η ¼ 0.05P, and run the evolution
to the viscous timescale to reach an equilibrium of constant

angular momentum and heating.

Heating is measured by entropy generated, with entropy

defined as

S ¼ ρ� log

�

P

ρ2
0

�

Hðρ − 2 × 10−6κ−1c2Þ ð69Þ

with H being the Heaviside function, to cutoff unphysical

entropy growth in the low density atmosphere.

In Fig. 5, we can see similar behavior in the angular

velocity as the axisymmetric evolution, with the TMS

evolutions settling to a nonzero gradient. The k1 ¼ k2 ¼ 1

TMS does show additional expansion of low density

material, which is visible in the density comparison in

Fig. 7.

The entropy in Fig. 6 shows a very similar behavior

between the k1 ¼ k2 ¼ 1 TMS and NS evolutions, as

expected. In contrast, there is a large difference in location

and magnitude of heating between the k1 ¼ k2 ¼ 0

TMS and k1 ¼ k2 ¼ 1 TMS evolutions, with additional

localized heating closer to the core for the k1 ¼ k2 ¼ 0

TMS evolution. The entropy peak of the k1 ¼ k2 ¼ 0 does

drift slowly outward as the simulation progresses.

When we implement the k1 ¼ k2 ¼ 0 TMS method in

SpEC, we observe a L ¼ 4 mode instability that results in

unphysically strong winds and outflows of low density

material. When the matter reaches the boundary, we are

forced to terminate the simulation. With a domain size of

3.6Req, we did convergence testing with 59, 74, 115, and

144 grid points. Increasing domain resolution does result

in a delayed instability appearance time, but the growth
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1

1.05

1.1

κ

NS
TMS

0 1 2 3 4
t/P

c

1

1.01

1.02

FIG. 4. Entropy variable κ ¼ P=ρΓ
0
, where Γ ¼ 2, for NS and

TMS runs. Main plot: The equatorial profile of κ after four initial

central rotation periods. Radii beyond the initial equatorial radius

have low density and less accurate thermal evolution. Inset:

Evolution of κ for a representative equatorial tracer particle

starting at around 0.6Req;init.
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FIG. 5. Azimuthally averaged angular velocity along equatorial

radius at time t ¼ 6.6Pc.
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timescale remains relatively constant for all resolutions

and is always slightly longer than the timescale needed to

reach an equilibrium angular velocity profile in the star.

Recently, Nedora et al. [47] have carried out binary

neutron star merger simulations using Radice’s TMS

transport. They find that spiral density waves in the

postmerger remnant generate a wind that could cause a

blue kilonova such as that observed as the AT2017gfo

counterpart to the binary neutron star merger event

GW170817. Although the instability reported here may

have been present in their simulations, and a comparison

run with k1 ¼ k2 ¼ 1 is recommended, it is very unlikely

that this would significantly alter the conclusions of that

paper. The existence of spiral waves in postmerger rem-

nants is confirmed by prior purely hydrodynamical simu-

lations [48–56]. Also, Nedora et al. find that TMS transport

enhances the outflow mass by only ∼25%.

V. TESTS ON A BLACK HOLE ACCRETION

TORUS SYSTEM

The astrophysical system most commonly modeled

using a phenomenological viscosity is, of course, disk

accretion onto a star or compact object. For accretion to

occur, angular momentum must be transported outward.

It is, thus, important to study the behavior of different

momentum transport treatments in an accretion disk system

and note any major differences.

We evolve a Fishbone-Moncrief torus [57], for which

utuϕ (roughly, the specific angular momentum) is constant,

in our case set to 4.1M, where M is the mass of the black

hole. At the center is a black hole with dimensionless spin

0.9. The disk mass is assumed to be much smaller than that

of the black hole, so the spacetime is set to the Kerr solution

in Kerr-Schild coordinates and not evolved. The disk inner

and outer initial radii are 4.5M and 36M, respectively.

The initial density maximum is at a ring of radius 10M. The

gas of the disk is modeled with Γ ¼ 4=3 equation of state.

The disk is initially isentropic and obeys a Γ ¼ 4=3
polytropic law. (Once evolution begins, the gas will heat.)

All disk mass output below is scaled to the disk’s initial

baryonic mass, which can therefore be taken to be one. This

particular system is not designed to closely model any

particular astrophysical scenario, although a high compac-

tion of the disk (as measured by the radius of maximum

density divided by black hole mass) is chosen to be similar

to tori encountered in binary postmerger simulations.

We evolve this system using both TMS (with

k1 ¼ k2 ¼ 1) and NS momentum transport using an alpha

viscosity with αvisc ¼ 0.03. For TMS simulations, this

corresponds to a mixing length

l ¼ αvisccs=ΩK; ð70Þ
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FIG. 6. Azimuthally averaged entropy along equatorial radius

at time t ¼ 6.6Pc.

FIG. 7. Snapshots of equatorial density at time t ¼ 10.4Pc for TMS simulations with k1 ¼ k2 ¼ 1 and k1 ¼ k2 ¼ 0 in Eqs. (52) and

(53). The growth of the L ¼ 4 mode for k1 ¼ k2 ¼ 0 is visible.
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with ΩK the Keplerian angular velocity. Viscosity is sup-

pressed by an exponential factor for density less than 10−4

of the initial maximum, and for gas at radii less than 3M.

We evolve on a 2D polar grid with 300 radial points and

256 angular points, uniformly spaced in the standard

accretion grid variables

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

¼ ex1 ; ð71Þ

θ ¼ πx2 þ
1

2
ð1 − hÞ sinð2πx2Þ; ð72Þ

where for these simulations we use h ¼ 0.5. The grid

covers the range 1.32M ≤ r ≤ 2000M, 0 < θ < π. A lower

resolution of 200 × 168 gives similar results.

We evolve for 100; 000M. This is long enough for the

baryonic mass on the grid to drop to 20% of its initial value

for the NS run, 10% for the TMS run. We terminate at this

time because by this time the outer boundary is no longer

sufficiently far. (This can be seen from the outflow. At

earlier times, flow through the outer boundary is entirely

unbound. Late in the evolution, the outgoing mass flux has

unbound and weakly bound components, and by t ≈ 105M,

the latter has become comparable to the former.)

The baryonic mass flow rate into the black hole and out

of the outer boundaries are plotted in Figs. 8 and 9. The

flow rate into the black hole is seen to be fairly insensitive

to the momentum transport method used. Over the evolved

time, 50% of the baryonic mass accretes into the black hole

in the TMS simulation, 60% in the NS simulation. While

the difference is not negligible, few would expect any

simple phenomenological model of subgrid turbulent

momentum transport to be more accurate than a few tens

of percent. At late times, the accretion rate falls off roughly

as a power law _M ∝ t−n where 1.7 ≤ n ≤ 2.

The outflow rates show rather larger differences, mostly

because of a single large burst of unbound ejecta in the

TMS simulation that is much smaller in the NS evolution.

Over the evolved time, 17.6% of the original baryonic mass

is ejected from the outer boundary in the NS evolution:

15.8% unbound and 1.8% bound. For the TMS evolution,

41.1% of the original baryonic mass leaves the outer

boundary: 39.4% unbound and 1.7% bound. In fact, the

slightly higher accretion rate into the black hole in the NS

case might be mostly due to the larger mass remaining in

the disk that did not suffer this one-time ejection.

As a check on whether these differences exceed numeri-

cal errors, we evolved the NS case at two other resolutions,

with 0.7 times and 1.3 times the number of grid points

in both radial and angular directions, and we use the

differences between resolutions to estimate truncation error.

Matter inflow into the black hole shows weak dependence

on resolution, with errors of a few percent. The outflow

mass is more difficult to resolve and may have an error of

almost 30%. We also reran TMS at the lower resolution and

found a nearly 20% difference in outflow mass. Thus, the

uncertainty in outflow measurements is tens of percent,

which, while not ideal, is still significantly smaller than the

difference between NS and TMS. We have also checked

to see if our results are sensitive to the abruptness with

which we begin to apply momentum transport. We perform

an additional NS run in which the viscous parameter αvisc is

smoothly turned as αviscðtÞ ¼ 0.03ð1 − e−t=300Þ. This leads
to a 2% increase in accreted mass and roughly 10%

decrease in outflow mass, so this effect also is dwarfed

by the TMS-NS difference.

Of the two methods TMS involves fewer operations to

take a time step, but the NS runs are found to be about a

factor of 2 faster because of the adaptive time stepping used

by the SpEC code, which uses larger time steps for NS runs

to achieve the same time differencing accuracy.
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FIG. 8. The accretion rate, defined as the fraction of the total

baryonic mass of the disk accreted into the black hole per interval

M of time, for TMS, NS, and NS with turbulent heat flux.
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baryonic mass of the disk leaving the outer boundary per interval

M of time, for TMS and NS runs. We plot separately the total

outflow of mass and the outflow of unbound mass. Unbound

matter is here defined as ut < −1; defining it as hut < −1 has an

insignificant effect on the unbound outgoing flux.
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Figures 8 and 10 show the effect of heat fluxes from

entropy diffusion, using λS ¼ 1. The disk is initially

isentropic, but viscous heating leads to higher entropy in

the interior of the disk. Heat fluxes therefore supplement

vertical convection and transport energy toward the top and

bottom of the disk. The main effect of this is to increase

the outflow through the outer boundary to 30.3% of the

initial baryonic mass (28.7% of the initial disk mass in

unbound outflow).

The production of unbound matter begins differently in

simulations with versus without heat fluxes. In both cases,

there is very little unbound material for the first ∼2000M.

Without heat conduction, viscous heating produces a fairly

distinct high-entropy region in the equator that advects

inward. When it approaches the inner edge of the disk, it

expands vertically, and the first large mass of unbound

matter is ejected from the inner disk region in the polar

direction. With heat conduction, the entropy gradient

remains smoother and shallower (κ≡ P=ρΓ
0
is about a

factor of 2 smaller at the equator than in runs without

conduction). Heat transport is thus primarily by subgrid-

scale convection rather than large-scale convection.
3
While

a high-entropy region does advect inward at the same time

as in the conduction-free simulations, the perturbation of

the inner disk is far less violent, and only a small mass

becomes unbound at this time. Instead, the massive outflow

begins later and starts at the outer disk, leading to an

equatorially concentrated initial burst. Longer simulations

would be needed to determine if the angular distribution

of the cumulative ejecta is very different depending on

whether heat flux terms are included, but our test suggests

that this could be a possibility in some cases.

Finally, we perform a demonstration of the possible

effect of particle diffusion on the outflow composition. We

introduce a composition variable Y which is advected by

the flow. Because it does not enter into the equation of state,

it does not affect the evolution (except at the level of

truncation error in the time discretization, if the evolution of

ρY is allowed to occasionally control the adaptive time

step). Ejecta composition is of great interest in postmerger

simulations because of its connection to kilonovae and

r-process nucleosynthesis. Since our simulation lacks

neutrino interactions, it should be considered only a

demonstration of another possibly significant influence.

We initialize Y as

Y¼
�

0.5−6ρ0;init=ρ0;init;max; if ρ0;init=ρ0;init;max<
1

15
;

0.1; otherwise:
ð73Þ

The idea of using a simple analytic form with higher Y
at low densities and Y ¼ 0.1 at high densities was taken

from [9], which in term is a rough fit to the electron fraction

in binary neutron star postmerger accretion disks. We

evolve without particle diffusion (λD ¼ 0) and with it

(λD ¼ 1). Both simulations use NS transport and compute

the mean free path from αvisc as in Eq. (70). We integrate

the mass flux passing through the surface r ¼ 800 M in Y
bins to get the total mass outflow as a function of Y, which
is plotted in Fig. 11. In this example, the effect of particle

diffusion is to shift the distribution peak to higher Y and

to make it narrower. One noticeable difference is that the

high-Y tail of the outflow distribution disappears when

particle diffusion is added. Recall that in this simple test,

the composition variable does not affect the equation of

state and indeed plays no role in the hydrodynamics at all,

so the same fluid elements are ejected in both simulations.

However, there is a fairly strong Y gradient in the initial

disk near the low-density layers at the top and bottom

edges of the disk, and this is where the high-Y material is.
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FIG. 10. Outflow (total and unbound-only) for NS runs with

and without turbulent heat conduction.
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3
In addition to correcting for the loss of small-scale convection

due to resolution limits, the conduction terms might additionally
serve the purpose of correcting artifacts of imposing axisymmetry
in the evolution, since turbulent energy does not cascade to
smaller scales in 2D as it does in 3D.
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The diffusion term causes the Y composition variable to

“bleed into” the disk, significantly lowering Y near the

surface of the disk. This flow of particles will also raise Y
in the disk interior, but the composition flux will lower Y
near the surface more than it will raise Y in the interior,

because the density is higher in the latter region.

Overall, the effect of smoothing the Y distribution is

that Y does not vary as much in the density layers that

provide the ejecta. Of course, the effect may be different for

different composition distributions or in the presence of

composition source terms (e.g., neutrino interactions).

Interestingly, a detailed comparison of disks evolved with

α-viscosity vs magnetohydrodynamics found an opposite

effect, that the MHD run had wider composition distribu-

tion at a lower peak [58]. The diffusive effects of magneto-

rotational turbulence is certainly one effect present in

MHD simulations but not viscous simulations without

particle diffusion, although in this case outflows driven

by large-scale magnetic fields may have been the more

important difference.

VI. CONCLUSION

Even for a given choice of the effective viscosity η there is

some freedom in how one adds momentum transport

to the relativistic Euler equations. In this manuscript, we

perform detailed comparison of two models currently in use

in numerical relativity simulations: the NS model of Shibata

et al. and the TMS model of Radice. We also propose an

improvement to the TMS model: the addition of physically

motivated terms that guarantees that the stress-energy tensor

remains a spatial tensor in the fluid rest frame, and prevents

slowly growing instability from appearing in some test

problems. The main objective of these models in merger

simulations has been to provide angular momentum trans-

port in the postmerger remnant. We find that the NS, original

TMS, and modified TMS models fortunately behave very

similarly in that respect, at least within the expected

uncertainties of a mean-field turbulence model. However,

we find significant differences in viscous heating between

the original TMS and the other two models, while all models

provide different results for the momentum transport-driven

ejecta mass in disk simulations. It is already known that disk

outflowmasses depend on αvisc. To this, we add that even if a

“correct” αvisc were known, outflows would still depend on

the transport formalism.

As the TMS formalism is not four-dimensionally covar-

iant, its results might not apply for arbitrary foliations of

the spacetime. We doubt, however, that the slicing choices

usually used by numerical relativists would lead to dra-

matically different foliations, or that the gauge dependence

of TMS would impact numerical results more than the

approximations inherent to any mean-field model.

Additionally, as the TMS model is simpler to implement

and computationally less expensive than the NS model

(at least on a per time step basis), it certainly remains very

useful to numerical simulations. The improvements to the

TMS model proposed in this manuscript add new terms to

the evolution equations, but without increasing the com-

plexity of the evolution algorithm itself, or meaningfully

impacting the cost of simulations. They should thus be

reasonably simple to implement in any TMS-based code.

Mean-field models of subgrid transport effects provide

an economical way to explore deep into the postmerger

regime, although, of course, they cannot replace a more

limited number of expensive high-resolution simulations.

These models could easily be improved beyond what we

have attempted here. An adequate model of subgrid effects

would have to include heat transport, and it should also

account for the effective pressure from turbulent stresses,

which has proved to be potentially quite important in the

supernova core collapse problem [13]. It would also be

interesting to add the evolution of the large-scale magnetic

field—even if the magnetorotational instability is subgrid

scale—in order to incorporate large-scale magnetohydro-

dynamic effects such as magnetic braking and jet collima-

tion. In the presence of subgrid turbulence, the induction

equation for the mean magnetic field would itself need to be

suitably augmented to include subgrid electromotive force

terms, as is done in dynamo modeling [59] and even in a

few relativistic simulations [4,8]. If the mean field grows

large enough to resolve the magnetorotational instability,

then one would more correctly be in a regime for large eddy

rather than mean-field modeling.

One might question the point of improving models which

at best captures their effects to no better than order of

magnitude anyway. It is useful for a couple of reasons.

First, one is able to establish the sensitivity of particular

outputs to various transport effects, as we have done with

disk outflow composition, so that it is known what effects are

most important for high-resolution simulations to capture.

Second, these simplified models play an important role in

interpreting high resolution results, guiding the inevitable

tradeoff between exactness and human intelligibility.
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