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Abstract—Recent growth in user demand for mobile data has
strained mobile network infrastructure. One possible solution
is to use mobile (i.e., moving) devices to supplement existing
infrastructure according to users’ needs at different times and
locations. For instance, vehicles can be used as communication
relays or computation points. However, it is unclear how much
value these devices add relative to their deployment costs: they
may, for instance, interfere with existing network infrastructure,
limiting the potential benefits. We take the first step towards
quantifying the value of this supplemental infrastructure by
examining the use case of mobile caches. We consider a network
operator using both mobile (e.g., vehicular) and stationary (small
cell) caches, and find the optimal amount of both types of caches
under time- and location-varying user demands, as a function of
the cache prices. In doing so, we account for interference between
users’ connections to the different caches, which requires solving
a non-convex optimization problem. We show that there exists a
threshold price above which no vehicular caches are purchased.
Moreover, as the network operator’s budget increases, vehicular
caching yields little additional value beyond that provided by
small cell caches. These results may help network operators and
cache providers find conditions under which vehicles add value
to existing networks.

Index Terms—caching, economics, vehicle mobility

I. INTRODUCTION

Due to the widespread use of smart devices, recent years
have witnessed rapid growth in the volume of mobile data
traffic. Cisco [1] predicts that global mobile data traffic will
increase sevenfold between 2017 and 2022. At the same time,
applications such as augmented reality or 360-degree video
streaming increasingly require low network response time. In
response, operators have made efforts to move 5G network
functionalities to the network edge [2], e.g., caching popular
contents on small cells or user devices. These contents can then
be retrieved directly from the network edge, without passing
through the network core. Such practices have yielded concrete
benefits for network operators, e.g., caching in small cells can
reduce backhaul traffic by over 45% [3]. Despite these benefits,
relying on edge infrastructure also has drawbacks. Small cells
have limited range, requiring dense deployments, and cannot
adapt to changes in user demand over time [4]. For instance,
user demands in a business region of a city are generally much
larger during the day than at night, making small cells stay
idle for almost half a day. Network infrastructure with more
temporal flexibility could then yield further benefits to network
operators by adapting to changes in user demands.
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Some recent work [5]-[10] has proposed to deploy mobile
devices such as drones and vehicles as relay nodes and
cache carriers in wireless networks. The physical mobility
of these devices allows them to respond to temporal vari-
ations in user demands and network conditions at different
locations. However, it is not clear whether the benefits of
this flexibility outweigh the costs. Using vehicles or other
mobile devices, for instance, may be more expensive than
simply over-provisioning stationary devices to handle peak
user demands at each location, particularly if user demands
do not vary enough over time. Users’ communication with
such devices may also interfere with connectivity to existing
network infrastructure. Yet it is hard to say exactly what
constitutes “too expensive” or “not varied enough.” In this
work, we quantify the value of mobile caching as a first
step towards assessing the value of using vehicles or other
mobile devices in network infrastructure. Our results can guide
network operators in determining whether and to what extent
they should incorporate such devices into their networks.

Mobile devices like vehicles and drones can perform a
number of network functions, ranging from caching con-
tent [10] to serving as relays [9] to collecting data in urban
crowdsensing [11]. We focus on vehicular caching due to
caching’s known benefits in mobile networks, and vehicles’
naturally high density compared to small cells or other in-
frastructure in an urban environment. One might, for instance,
pay public buses, private car owners, or other mobility-as-a-
service providers to carry cache servers; some bus systems
already carry WiFi access points [12]. Our economic model,
however, is general enough to cover any type of cache provider
that charges the network operator that uses the caches.

Most prior works on wireless caching focus on finding the
optimal caching policies, with little attempt at analyzing the
competition between, and relative value of, mobile vehicular
caches and other types of caching. We thus encounter several
new research challenges in doing so. These involve both
finding the right model to quantify the value of vehicular
caching and solving the resulting optimization problems, which
we show are in general non-convex. We solve these challenges
to make three key research contributions:

Our first contribution lies in modeling interactions be-
tween caching tiers: Vehicular caching must compete eco-
nomically with existing caching products, such as small cells.
The relative costs of these different types of caching will
then influence the additional value that vehicular caching
brings. We quantify this effect by jointly optimizing the
caching purchased from each tier. Vehicular points may also



experience physical interference from small cells and other
network traffic, which affects their ability to serve users and
thus their value. Quantifying the effect of such interference
between caching tiers is itself a challenging problem, and we
use stochastic geometry theories to do so.

Our second research contribution is to develop a unified
framework for different network operator objectives given
the above system model. These include the rate of cache hits
and the delivery rate, which quantifies the spectral efficiency
of users’ connections to different caching tiers. We formulate
tractable optimization problems for both objectives in a general
framework (Theorems 1-3).

Our third major research contribution lies in solving these
optimization problems to concretely quantify the value of
vehicular caching. This value depends on the distribution
of user needs over time and space, which is itself hard to
quantify given the many variables involved. We show that it
also depends on solving for the optimal cache provisioning and
provide solutions for this (non-convex) optimization problem
in our work (Theorems 4-5). In particular, we will evaluate
the value of vehicular caching by answering three questions:

« Demand functions: We solve for network operators’ op-
timal caching demands (Theorems 4 and 5), and quantify
the dependence of vehicle demands at each time on the
prices and user needs at other times (Corollary 1);

o Economic viability of vehicular caching: We quantify
the maximum price under which operators would wish to
purchase vehicular caching capacities, i.e., under which
the value added by vehicular caching exceeds its cost
relative to other caching methods (Corollary 2);

o Gain from competition: We show that as the network
operator’s budget increases, vehicular caching yields little
marginal value above small cell caching (Corollary 3), but
that the optimal amounts of both vehicular and small cell
caching increase linearly with the budget (Corollary 4).

We summarize related work in Section II and introduce

our system model in Section III. We formulate the problem
of optimal cache provisioning, and examine its solution’s
implications, in Sections IV to VI. Section VII validates and
expands on our analytical findings with trace-driven numerical
results, and we conclude in Section VIII.

II. RELATED WORK

Many existing works on network caching consider a fixed
caching capacity that the network operator can sell to different
content providers (CPs) in order to reduce the latency of
delivering content to these CPs’ users. Economic techniques
such as contract theory [13], auction theory [14], and game
theory [15] can be used to find the optimal or equilibrium
outcomes. Unlike these works, in this paper, we focus on
network operators purchasing cache devices, whose capacity
may later be sold to CPs.

Many works on wireless caching attempt to design optimal
content placement schemes. Popular methods include small
cell caching [16], [17], device-to-device (D2D) cache sharing
[18], [19], mobility-aware caching [19], and content sharing

in vehicular ad hoc networks [20]. Comparing these methods
reveals that caching in different locations of the wireless
network can result in different levels of economic gains [21],
but these benefits are not rigorously analyzed. To do so here,
we make use of the content placement, device mobility, and
wireless connectivity models introduced in these works.
Early works on vehicular caching view vehicles as moving
relay nodes that connect user devices to base stations [22],
[23]. Later works have considered optimizing user connectivity
to vehicles that host caches themselves [10], [24], [25]. In [5],
[7], the optimal content placement policy is studied for a 2-tier
network with cache-enabled vehicular points and macro cells.
Similar models are studied for specific applications, such as
the delivery of delay-tolerant contents [6], and video streaming
[7]. These works focus only on vehicles and do not consider
the existence of other caching methods, e.g., small cells. In
contrast, we will explore how vehicular, and more generally
mobile, caching adds value to the existing caching methods.

III. SYSTEM MODEL

We first show the overall system (Figure 1) and our user and
vehicle mobility model in Section III-A, and then describe our
models for the content allocation policy (Section III-B) and
users’ connectivity to the caching devices (Section III-C).
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Fig. 1. A heterogeneous network composed of vehicular caching, small cells
and macro cells. User requests for contents are served by either the vehicle
or small cell caches, or by macro cells that fetch data through the backhaul.

A. Content Caching Market

We consider a network operator, e.g., an Internet service
providers (ISP) or content delivery network (CDN) provider,
that wishes to utilize caching capacity from a variety of
cache providers. We consider two tiers of caching products:
small cell caching (which has fixed locations) and vehicular
caching. These products can come from different providers.
For example, equipment manufacturers may sell cache capac-
ity at small cells, while ride-sharing networks can sell caching
capacity in their vehicles. The network operator subscribes to
a combination of these two products to maximize its profit,
i.e., the benefit from caching, less the payment to the cache
providers. To focus on the value that vehicular caching adds
to mobile networks and not on the price competition between
the small cell and vehicular providers, we assume the prices
that the network operator pays for each type of caching are



given. For simplicity, we do not consider D2D caching as it
is not yet widely deployed. However, our framework can be
easily extended to include more caching tiers.

We assume that network operators purchase caching capac-
ity in terms of the expected number of devices in a unit area,
i.e., they decide the intensity of small cells Ls and vehicles
L, to be deployed in each region of their networks. We use
a stochastic model for the number of vehicles and small cells
available in each region and time interval to abstract away
from individual device mobility. Indeed, these devices may
not be fully controlled by network operators: for instance,
taxi vehicles may follow varied mobility patterns. Small cell
caches may become inaccessible due to network congestion
or other demands. We also assume an existing macro cell
tier with fixed, exogenous intensity L,,, leading to a 3-tier
heterogeneous network as in [26]. The macro cell can access
all content through the network backhaul. Devices of the same
tier share the same configuration, i.e., they have the same
transmit power py, cache capacity Ny and price Py, where
k € N = {v,s,m} represents vehicles, small cells and
macro cells respectively. This price represents the amount that
operators need to pay vehicle or small cell owners to cache
content for them and may vary with time and location.

To address temporal and spatial dynamics, we divide the
decision space into 7' time slots and D regions. Inside each
(t,d) € [T] x [D], we assume the locations of all caching
points and users follow a homogeneous Poisson point process
with constant intensity Ly (¢,d),k € N U {u(users)} [19],
[27]. Since macro cells and small cells are stationary, their
intensity matrices are fixed over time, i.e. Vi1,t2, Ly (t1,d) =
Lj(t2,d), k € {m, s}. The intensity of users L, (¢, d) at each
time ¢ and location d is exogenous, and we assume that it is
not affected by the cache intensities. The (exogenous) prices
Pi(t,d) can also vary with the time ¢ and region d. The
mobility of mobile users and vehicles is reflected in the change
of intensities across time and space.

B. Content Placement Policies

The value of vehicular caching depends on how content
is cached at both the vehcles and small cells. Contents are
assumed to be cached as chunks with the same size [7]. Each
chunk is associated with an exogenous preference (probability
of being requested) f;,i = 1,2,..., N, where N is the size
of the content catalog. Without loss of generality, we assume
fi > fo > ... > fn following a power-law distribution
as in [28]. Chunks from the same content source may have
different preferences, e.g., some segments of a video may be
more popular than others [7]. The preference, and thus the
indices 4, can also depend on (t,d), e.g., news videos might
be more popular in the morning. For clarity, we generally omit
the dependence on (t, d) in our notation.

The content placement policy is modeled in terms of the
caching probability. In tier k, the content ¢ is cached with
probability Hy, ;(¢,d). All chunks are accessible to the macro
cell tier, i.e. N,, = N and H,,,(t,d) = 1. By choosing
the values of H, we can model different placement policies,

provided that the cache does not exceed its capacity, i.e.,
ZZN:1 Hy, ; < Ni. We will consider policies of the form

A N .
uk:uk’;v, 1§Z§,ukN

0, otherwise

Hy (t,d) = { )]
where pj is an exogenous parameter satisfying % < up <
1. A larger uj;, means that less popular content (with higher
index %) is more likely to be cached. We make the reasonable
assumption that N, < Ny and p, < psg, i.e., vehicles cache
fewer chunks than small cells, since they have less space to
install storage units. When gy, takes its extreme values, we
obtain two easily interpretable policies:

o Greedy placement policy (ur, = Ni/N,up = 1).
Devices in each tier cache chunks in descending order
of preferences until they reach their capacity Ny.

« Uniform placement policy (1 = 1,ur, = Ni/N). For
each tier, all chunks are cached with the same probability.

We assume that content is replaced when its popularity
changes. Since content popularity changes infrequently com-
pared to user requests, we do not include it in our model.

C. Network Interference and Connectivity

We next characterize the network connectivity of each
caching tier in order to quantify its benefits to the network
operator in the next section. We consider the standard power
law propagation model and Rayleigh fading for all tiers [29],
i.e., a receiver with distance r from the transmitter receives
p - h-r~® of signal power, where p is the transmit power,
h ~ exp (1) represents the fading effect, and o > 2 is the path-
loss coefficient. Communication inside a region d is assumed
to only interfere with devices within that region. Different
tiers may or may not interfere with each other, depending on
the spectrum allocation scheme. We will consider spectrum
sharing, in which all tiers share the same spectrum and
may interfere with each other; and an orthogonal partition in
which different tiers use different spectrum bands, e.g., cellular
connectivity to small cells and WiFi connectivity to vehicles.

Clients can retrieve contents from a caching point only if the
requested content is cached and the signal-to-interference ratio
(SIR) is greater than some threshold 75, which we assume is
the same for all tiers (7, = 7). We assume that user requests
are always directed to the point with the highest SIR among
all points that have the requested content, regardless of its
tier. This assumption guarantees that users always benefit from
caching, and can be easily relaxed by assigning to each tier a
user association preference [30].

IV. PROBLEM FORMULATION

We propose to use our system model to answer three specific

questions regarding the value of vehicular caches:

o Demand functions. How do the optimal demands for
vehicular and small cell caches change with respect to
the time, region, prices, and user intensities?

o Economic viability. Can operators make money by sub-
scribing to vehicular caching? How much value does
vehicular caching add to existing caching products?



o Value of competition. Compared to using only small
cells or vehicles, how much gain in utility, or reduction
in cost, can the operator obtain when both are available?

The first two questions can be answered by solving the
operator’s profit maximization problem to find the optimal
intensities Ly, L% to which it should subscribe.

Problem 1 (Profit Maximization).

maximize  yU(Ly,, L) — tr(PTL,) — tr(PT L)
L,,L €RTXD
subject to Ly(t,d) >0, Ls(t1,d) = Ls(t2,d) >0

Here U(L,, Ls) is a utility function, to be defined in Sec-
tion V, quantifying the benefits of different caching intensities
L, and L, for the operator, and +y is a scaling coefficient. The
remaining terms represent the cost of using each type of cache.

To quantify the added value of vehicular compared to small
cell caches, we solve a variant of Problem 1:

Problem 2 (Utility Maximization).

maximize  U(L,, L)
Lv,LSGRTXD
subject to tr(PI'L,) +tr(P'L,) < Py

Lu(t7d) Z OvLs(tlad) = LS(tQad) 2 0

This problem quantifies the maximum attainable utility subject
to a fixed budget constraint. The value of competition is thus
the difference of the achieved utilities for the competitive
market and single-product markets (i.e., when only vehicular
or small cell caches are available). In reality, vehicular and
small cell caching providers may decrease their prices in order
to better compete with each other, leading to higher utility for
the network operator; thus, the solution given by Problem 2
can be interpreted as a lower bound of the real utility gain.

We will solve these optimization problems to answer our
research questions analytically and numerically in Sections VI
and VII. First, we define the utility function U(L,, L).

V. DEFINING OPERATOR UTILITIES

The utility function measures the benefits that an operator
obtains from caching. Different types of operators may then
have different metrics for utility. We first define a general
network operator utility model and then discuss three special
cases that are particularly realistic models for operators that
are CDN providers that sell cache capacity to CPs or ISPs
who use caching to improve their users’ quality-of-service.

General utility model. All of our utility models can be
written in terms of the probability that users can connect to
each caching tier. Thus, we define C, as an indicator variable
of whether a user chooses tier k£ and connects to it. Formally,
Cr = 1(SIRy > 7, Sel = k), where Sel is a random variable
denoting the tier selected for serving a typical request. We then
write the general utility functions

Uy = Ela(C, + Cs) + bCl,] )

where a and b are scalar weights; we use specific values of
a and b to define three cases of particular interest below. We

also write Sel; as the tier selected to provide content i. We
can now solve for the tier k connectivity, defined as probability
that users can access tier k, E[Cy]:

Theorem 1 (Expected Tier Connectivity).

N
=——3 Lu(t,d)Y_ fi(t,dE[Cyi(t,d)] (3)

||LU||1 t,d i=1
where Cy ;(t,d) = 1(SIR > T,Sel; = kl|t,d) indicates if
a typical request for content i is served by tier k at (t,d),
and ||-||, is the ¢, norm. For a typical user, let X}, ; be the

distance to the nearest tier-k point that has content i cached
and Ry, = min; Xy, ;. If Ri|Sel; = Xy ;|Sel;, Vi, then

E[Cy]

Hk,z’ (t, d)pkg Lk (t, d)

> (p+ Hji(t,d)p; L;(t,d)
JEN

E[Chi(t, d)] = @)
Hyi(t.d)p;: Li(t, d)

ppkELk(t,d) + Z Hj,i(t,d)ijLj(t,d)
JEN

E[Cy,i(t,d)] =

(&)

for the sharing and orthogonal spectrum schemes respectively,
with p = 12/ foo 2 (14 u%)~'du a function of T and «.

Proof sketch. For any (t,d), we use the probability density
functions (PDFs) of Rj; and Xj; and the approximation
Ry|Sel; = Xy ;|Sel; to find the joint probability P(Ry >
r,Sel; = k), as well as the PDF of Ry|Sel;. Then we use the
law of total probability to find P(SIR > 7|Sel; = k), which
we simplify by using the Laplace transform of the interference.
Reorganizing, we find E[C}, ;(t,d)] as in (4), (5), and we use
the law of total expectation to derive (3). O

The approximation Ry |Sel; = Xy, ;|Sel; in Theorem 1, i.e.,
that content 7 is served by the closest physical point with that
content, holds when all points in the same tier in each region
cache the same items, as for the greedy placement policy. In
general, it is close to reality if the requested content is cached
with a high probability, i.e., when Hj, ; is close to 1. For less
popular contents ¢, the approximation has limited influence on
E[Ck] in (3) since the corresponding preferences f; are small.

Utility from cache connectivity. Our first utility model can
apply to network operators that are ISPs or CDN providers.
Since CDN providers are typically paid for the amount of
data directed to their devices, we can model their utility as
the probability that a typical request is served by the cache,
i.e., the rate of successful cache connectivity, which we define
as the sum of the vehicle and small cell connectivity:

U, =E[C, + C4] (6)

where we have set « = 1,b = 0 in (2). The ~ coefficient in
Problem 1°s objective then denotes the marginal value of cache
connection, which is proportional to the per-byte monetary
payoff to the CDN service. Similarly, an ISP might also receive
a payoff proportional to the cache connectivity, as each cache
connection reduces the operating cost of serving the user’s
request through the core network.



When the network coverage is good and interference can
be ignored, we can assume the SIR threshold 7 = 0. In this
case the cache connectivity (C, + Cs = 1(SIR > 7, Sel; =
s,v|t,d)) simply becomes the cache hit rate since we have
SIR), > 7 = 0. We thus define the cache hit utility, Us:

Ay 2
Uy =

1(SIR; > 0,Sel = k) =1(Sel =k)  (7)
E[A, + Ag). ®)

By assuming no interference, U represents an optimistic
approximation of the cache connectivity; while U; can be
viewed as the worst-case estimation of cache connectivity as
the derivation of C} in Theorem 1 assumes all stations are
transmitting at all time, which is unlikely to happen in reality.
The gap between U; and U, gets larger as we increase the SIR
threshold 7. With U,, we are able to get closed-form solutions
for Problems 1 and 2 in the next section. We first derive Us
and prove its concavity.

Theorem 2 (Expected Cache Hit Rate). E[Ay] is given by

N
Lu(t,d) > fi(t,d)B[Ayi(t,d)]  (9)

=1

E[AL] = ——
A ST 2

where Ay ; = 1(Sel; = k), and
2
Hy, z(t d)p;; Lk (t, d)

Z H;i(t, d)pj L;(t,d)

E[Ag,i(t,d)] = (10)

Proof. The proof is analogous to the proof of Theorem 1. [

Since the interference has been removed, (9) and (10) are
independent of the spectrum allocation scheme, and Theorem
2 does not require that Xy, ;|Sel; = Ry|Sel; as in Theorem 1.
In fact, (10) is a special case of (4) and (5) when 7 = 0. We
find that the cache hit utility U is a concave function:

Theorem 3 (Concavity of Cache Hit Utilities). The utility
function (8) is concave with respect to L, and L.

Proof. Plugging (9) and (10) into (8), the utility function is
L,(t,d)f;(t,d
U= (t,d) fi(t, d)

2" Ll

From (10), E[A,, i(t,d)] is a convex function. Thus (1 —
E[A,, (t,d)]) is concave, as is Uy in (11). O

(1 *E[Am,i(ta d)]) (11)

We finally define a third type of utility function, which is
again a special case of the general utility (2).

Delivery rate utility. If the network operator is an ISP,
caching can not only reduce its cost, as discussed above, but
also improve user QoS and attract new users. ISPs might
then wish to maximize the downlink delivery rate [27], which
characterizes the throughput experienced by a typical user and
thus the spectrum efficiency. The marginal value of this utility
(i.e. the value of v in Problem 1) can be determined using
tools like the discrete choice model [31].

For the utility function to represent the delivery rate, we set
a =log(l+7),b=ry, <log(l+ 7) in the utility expression

(2). That is, the typical user is served with constant rate log(1+
7) if she is in coverage and served by cache tiers. If she is in
coverage yet served by macro cells, the latency is controlled
by the processing and queuing rate of the backhaul; thus the
user is served with a lower delivery rate 7, < log(l + 7).
The value of 7} is jointly determined by factors such as the
maximum bandwidth of the backhaul, the distribution of macro
cells, etc.; we treat it as a known constant. As a result, we can
write the delivery rate utility, Us, from (2) as

Us = E[log(1 4 7)(Cy + Cs) + 1,Ch)] (12)

VI. OPTIMAL CACHING INTENSITIES

In this section, we will answer Section IV’s research ques-
tions on the caching demand functions and economic viability
by solving Problem 1, and on the value of competition by
solving Problem 2, with Section V’s utility functions. With
the cache hit utility Us in (8), both problems are convex, and
can be solved in closed-form. However, the cache connectivity
and delivery rate utilities U; and Us in (6) and (12) are
not concave. We design an efficient fractional programming
algorithm to find the optimal solution in these cases.

A. Solutions for Profit Maximization (Problem 1)

We first consider the cache hit utility (8) before giving an
algorithm to solve Problem 1 with more general objectives.

Theorem 4 (Demand Functions under Cache Hit Utilities).
Under the general placement policy (1), assume [, < .
With utility function (8), the solution to Problem 1 is:

LY (d) = = FposLon(-d) +
Vs Lo (2 ), (Qu (8, d) =0, (6, ) Qu(t, ) Lu(t.d)
HLqu Us Zt PS(t’d) - 6v(t7d)%Fstv(t7d)
. oL (5, A)Qu(t, d) Lu(t, d)
L”(t’d)‘\/ 1Ll w0 Po(td) 14
— 34(t, d) F%L*( d) — ! — Fpy L+, d)
Here Q(t,d) = z“kN W(t,d), (t,d) = L(Li(t,d) >

0), Fx; = (pr/p;)**. If the term inside the square root of
(13) is negative, or if (13) or (14) is negative, we set the
corresponding intensity to zero.

Proof. The result follows from the KKT (Karush-Kuhn-
Tucker) optimality conditions. O

Demand functions. Theorem 4 allows us to quantify how
the optimal demands L} and L} vary with the user intensities
L. Surprisingly, we observe that the caching intensity L} for
k € {s,v} is a square root function of L,/ ||L,|,, and thus
increases at a slower rate than the tier connectivity, which
is linear in L, (t,d)/||Ly||; (Theorem 1), as user requests
become more concentrated in a single time and region (¢, d)
(Ly(t,d)/ ||Ly||, increases). The optimal small cell demand
L(t,d) depends on the aggregated user intensity » ., L, (t,d),



as we would expect given small cells’ lack of mobility, while
the vehicle demand L (¢, d) only depends on the users at other
times through the small cell demand L%(¢,d). In fact, small
cells substitute for vehicles: as L*(t, d) increases, the vehicular
demand L¥(t,d) decreases linearly. The marginal rate of
substitution, d(t, d) 2= Fy,, is independent of L, (t,d)/ || L.||;
but depends on the ratios of the small cell and vehicle transmit
powers p;/p, and cache capacities /.

We next investigate the dependence on the prices Pj. The
optimal demand L} decays on the order of \/Py for both
tiers k € {s,v}. As with the user intensity, the optimal small
cell demand L%(-,d) is a function of the aggregated price
>~ Ps(t,d) at each location d. However, the optimal vehicle
demand L} (t,d) is only affected by the prices P, at other
times through the small cell demand L%(¢,d). We can thus
find the cross-time price sensitivity of this demand:

Corollary 1 (Cross-Time Sensitivity for Vehicles’ Prices). For
cache hit utilities, if the price P,(t1,d) increases for some t1,
the optimal demands of vehicles in other time slots L7 (ta,d) :
to # t1 either decrease or stay unchanged.

Intuitively, if P,(¢1,d) increases, small cells become more
attractive than vehicles in region d. Thus, L%(t1,d) either
increases or stays the same. Since small cells are fixed over
time, the number of small cells at (¢2,d) also increases or
stays the same, prompting a decrease in L} (t2,d).

Economic viability. We next use Theorem 4 to find con-
ditions under which vehicular caching is viable, i.e., there is
positive demand for some time slots and regions.

Corollary 2 (Economic Viability of Vehicular Caching). As-
sume [, < us. If at the optimal point all intensities L), and
L% are positive, the following relation holds

ZPtd () ZPl,td

In words, the region-accumulative price ), Ps(t,d) of
small cells is lower bounded by that of vehicles, scaled by
the ratio of transmit power and caching capacities. We can
thus interpret (15) as a lower bound on the small cell prices
for which all intensities are positive, i.e., the operator uses both
vehicles and small cells. If the small cells are sufficiently less
expensive or have sufficiently higher capacity (us > u,,), the
operator will not utilize the vehicular caches at all.

Profit maximization with general utility functions. We
now turn to the general utility function Uy. In this case, we
solve Problem 1 with a quadratic transform [29] as it does not
have a closed-form solution. From Theorem 1, we can write

Wh.i(t,d)
Zyi(t,d)

where Wy, ; and Z, ; are affine functions of L, and L.
Thus, defining o, = ay = a, a,,, = b, (2) can be written as

_ u(t,d) Wi.i(t, d)
%Zgﬁan””Mmm>

15)

E[Ch,q(t,d)] = (16)

A7)

We then introduce the auxiliary utility function (17):

L,
S o (t,d)

t,d,ik ||L ||1

<2yk,i(ta d)\/ Wi,i(t,d)

V(yv vaLs) =

fi(t,d)x

(18)
Rt D200 )
Substituting (17) with (18) in Problem 1, we find the equiva-
lent optimization problem:

Problem 3 (Transformed Profit Maximization).

maximize  yV (y, Ly, Ls) — tr(P! L,) — tr(PTLy)
Y, Lo, Ls
subject to L,(t,d) > 0, Lg(t1,d) = Ls(te,d) >0

For general content placement policies, the dimension of y
is in the order of ©(T'DN). However, if the value of Hy
is fixed for most contents (e.g. the general placement policy
(1)), the summation over ¢ can be greatly simplified, and the
number of auxiliary variables y can be reduced to ©(T'D).

Theorem 5 (Equivalence of Problems 1 and 3). The variable
(L%, L) maximizes Problem 1 if and only if (L, L) together
with some y* maximizes Problem 3. Furthermore, Problems I
and 3 have the same objective value at the optimal point.

Proof. See Appendix A of [29]. O

The transformed Problem 3 is not necessarily a convex
problem. However, it is easy to see that this problem is convex
with respect to (L., Ls) when the value of y is fixed. On the
other hand, given (L,, L), the optimal y can be written as

= \/Wh,i(t,d)/ Zyi(t,d)

This useful property allows the use of a block coordinate
ascent algorithm to find the optimum by iteratively solving for
the optimal (L., L) given y and the optimal y given (L, L;).
The convergence of this procedure to optimality follows from
that of the block coordinate ascent method [32].

Yk,i(t, d) (19)

B. Solutions for Utility Maximization (Problem 2)

As in Theorem 4, we can also derive a closed-form solution
to Problem 2 for the cache hit utility (8). Based on that we
can conclude Corollary 3 and 4 below. Given a limited budget,
the maximum utility in the competitive market is bound to
be no worse than that of single-product markets as the latter
are special cases of the two-product optimization. We first
consider the value of competition with infinite budgets, when
the prices of the small cells and vehicles do not matter:

Corollary 3 (Upper Bound of Cache Hit Utilities). With
infinite budget, the maximum utility for the vehicle only and
the small cell only market using utility (8) can not exceed

U< Z

Here Q(t,d) is given in Theorem 4, and the upper bound for
the competitive market is the same as the small cell market,
as we assume |1, < s in the definition of Q.

(t,d), k 20



Corollary 3 suggests that as the network operator’s budget
increases, the value of competition approaches zero: the util-
ities under the competitive and small cell only markets have
the same upper bounds. With infinite budget, either vehicles or
small cells can achieve their optimal utilities as their costs are
insignificant. We verify this result in Section VII: as the budget
increases, the competitive market achieves nearly the same
utility as the small cell only market. Corollary 3 also implies
that the value of the competitive market is bounded away from
1, i.e., perfect cache hits, due to the limited capacities of
the caches. However, despite this lack of competition, both
products are purchased at large budgets:

Corollary 4 (Linear Increase of Optimal Demands). Under
cache hit utilities (8), for a sufficiently large value of the
budget Py > 0, the optimal intensities L}, and L% increase
linearly with respect to Py at every (t,d).

Thus, for sufficiently large budgets, there is effectively no
change in the competition between vehicles and small cells:
a budget increase yields constant marginal increases in the
demands for both types of caching. This result is consistent
with the linear substitution of small cells for vehicles from
Theorem 4. Together with Corollary 3, it implies that the
marginal value of additional caching intensities is eventually
zero, which we verify in Section VII.

To solve Problem 2 for general utility functions, we can
still apply the quadratic transform (18) and update rule (19)
as for Problem 1. We can then use a block coordinate ascent
algorithm to find the optimal solution.

VII. NUMERICAL SIMULATIONS

We next verify Section VI’s results numerically. We first
consider the optimal demands in Section VII-A and the value
of competition in Section VII-B. We then investigate the
impact of variations in the system model in Section VII-C.

We use the SF311 database [33] to simulate the temporal
and spatial dynamics of user requests. The database records the
location and time for each mobile 311 service request in San
Francisco, California. Figure 2 shows the hourly distribution of
user requests for the 30 most popular neighborhoods, averaged
over all weekdays in 2017. To facilitate the visualization of
our results, we focus on two representative regions: the busi-
ness/office region Financial District (referred to as R1), and the
residential/leisure region Showplace Square (R2). Both regions
have about 5000 daily requests and similar land area. We scale
their distributions such that the highest hourly intensity equals
50 per squared kilometer (Figure 2). We define the business
hour (T1) as 10:00 to 16:00, and the off hour (T2) as 18:00
to 24:00. For both regions, we average the intensities within
each time slot, thus yielding four intensity bins (km~2): 39.5
(T1+R1), 11.8 (T1+R2), 27.4 (T2+R1), 25.0 (T2+R2). For
both regions, the intensity of macro cells is 0.3 km~2. Unless
otherwise noted, we set P; = 18, P,(1,) = 2, P,(2,-) = 5.

We set the transmit power (Watt) as p,,, = 40, ps = 6.3, and
py = 1.0 [34]. We let the SIR threshold 7 = 1(0 dB), and the
path-loss coefficient « = 4. We consider a content catalog with
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Fig. 2. Left: the distribution of user requests in a typical day for the top
30 neighborhoods with highest request counts. Right: The scaled hourly
user request intensities for the “business” region Financial District and the
“residential” region Showplace Square show different temporal patterns.

a total of N = 10000 chunks, and let N,, = 30, Ny = 100. For
simplicity, we assume users’ preferences for content chunks
do not change for different time slots and regions, and follow
the Zipf distribution with shape coefficient equal to 1.2 [35].
For the delivery rate model, let r, = 0.5log(1 + 7), i.e. the
delivery rate when the cache is missed is half that for the cache
hit rate. The marginal utility value (i.e. ) is set to be 500 for
the connectivity utility U; in (6) and the cache hit utility Us
in (8), and 1000 for the delivery rate utility Us in (12).

A. Demands of Caching

Hourly demand of vehicular caching. An advantage of
vehicular caching over small cells is its ability to better
respond to the change of user intensities: at any time, more
vehicles may be dispatched to regions that currently have
higher user intensities. Thus, the hourly dynamics of the
optimal vehicle demands are expected to match the patterns
of user requests shown in Figure 2.

In Figure 3, we show a heat map of the optimal vehicle
intensities for the top 30 neighborhoods under the cache hit
utility Us. In Figure 4, we compare the vehicle intensities in
the business and residential regions (R1 and R2) for all three
utilities Uy, U, and Us. Comparing Figures 2 and 3, more ve-
hicles are used in the daytime due to higher request intensities,
and the vehicle intensity also adapts to variation over different
locations. Under all utility functions, the temporal patterns of
vehicle demands in R1 and R2 (Figure 4) closely track those
of the user requests (Figure 2).

Viability and accumulative demand. The accumulative
demand for each caching tier is the sum of the temporally
averaged demands across regions. In our setting, it reflects the
operators’ daily demands for both caching tiers. Thus, vehic-
ular caching is economically viable only if its accumulative
demand is positive. We consider the economic viability for
two time slots (T1, T2) and two regions (R1, R2) for ease of
visualization. For clarity we assume the prices do not change
over time and regions (we explore price variation below), and
set Ps = 18. We then vary the price of vehicles P,, and find
the corresponding demands as per Theorems 4 and 5.
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Fig. 3. Heat map of the optimal vehicle demands over 24 hours for the top
30 neighborhoods with the cache hit utility Us, which adapt to spatiotemporal
user request variations.
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Fig. 4. The optimal vehicle demands over 24 hours in the business region
(R1) and the residential region (R2) resemble user request patterns (Figure 2).

Figure 5 shows the accumulative demand curves for the
three utility functions using the greedy content placement
policy and the spectrum sharing scheme. The accumulative
demand for vehicles decreases with a diminishing elasticity
as the price goes up at approximately a rate of (v/Py)~1, as
expected from Theorem 4. Each of the three utility functions
considered exhibit qualitatively similar demand curves. For all
three utility functions, the accumulative demand for vehicles
drops to zero above a threshold price around 8: vehicular
caching is economically viable only if its price is below this
threshold. Corollary 2 gives an lower bound of 7.17 on this
threshold price, which is very close to the actual threshold.

Spillover effects on time and region. The demands of
vehicles and small cells at different times are highly correlated.
From Corollary 1, if the price of vehicles increases in some
(t1,d1), operators will decrease their demands for vehicles
L,(t1,d1) and subscribe to more small cells, increasing
Ls(t1,dy). Since the small cell intensities are fixed over
time, L4(t2,d;) also increases, and the operators subscribe
to fewer vehicles L,(¢2,d;). To reveal this spillover effect,
we fix P = 18,P,(2,-) = 5, and vary vehicles’ price in
business hours P, (1, -), assuming prices do not change across
regions. Figure 6 shows the resulting change of demands with
greedy placement and spectrum sharing. As P, (1, -) increases,
demand for vehicles (small cells) decreases (increases) at all
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Fig. 5. Accumulative demand curves for vehicular caching as the vehicle price
Py (-,-) varies. Intensities are aggregated over regions and averaged across
time. Vehicles exhibit zero demand when the price exceeds a certain threshold.
The dash-dot line at 7.17 represents the lower bound of this threshold given
by Corollary 2.
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Fig. 6. Spillover effect caused by change of vehicles’ prices. X-axes are
intensities, Y-axes are price of vehicular caching in business hours P, (1, ). As
the vehicle price in business hours increases, the vehicle (small cell) demand
in both the business and off hours decreases (increases).

time slots and regions. The change of vehicle demand in off
hours is consistent with Corollary 1: it first decreases, then
stays unchanged. However, the decrease is most pronounced
during business hours (T1), when the price itself changes.

Effect of user intensities. The dynamics of users’ requests
can significantly affect the economic performance of vehicular
caching. Intuitively, vehicles are more attractive if user inten-
sities are more divergent across time and regions. To illustrate
this effect, we set the user intensities as L, (1,1) = L,(2,2) =
30+dy, L,(1,2) = L,(2,1) = 30 — d,,. As d,, grows higher,
the distribution of users becomes more uneven. We use the
cache hit utility Us.

Figure 7 shows our results. For both regions, as L, di-
verges, L¥(-,d) first remains constant, then decreases. This
is consistent with Theorem 4: since ), L,(t,d) = 60 in
our setting, L changes only when some vehicle demands L},
become zero. On the other hand, L} changes significantly at
a rate of v/d,. When d, = 30, i.e., there are no users in
the business (residential) region during off (business) hours,
L¥(1,2) = L%(2,1) = 0. When d, = 0 and the user
intensities are uniform, vehicle demand is still positive due
to the lower prices P, compared to small cell prices P.
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Fig. 7. Evolution of caching demands as user intensities diverge. X axes
represent d,, (user divergence), Y axes represent caching demands. While L
visibly changes, L keeps unchanged before some L7 (t, d) becomes zero.

B. Value of Competition

As discussed in Section III, we evaluate the value of
competition by comparing the solutions to Problem 2 for the
competitive and single-product markets.

Figure 8 shows our achieved utilities with greedy placement
policy and spectrum sharing. Both plots follow the same
pattern. At first, when the budget is small, vehicular caching
obtains a higher utility level than small cells, and the optimal
choice in the competitive market is to subscribe only to
vehicles. In this phase, the competitive curve overlaps with
the vehicle curve; the value of competition is thus zero. As
the budget increases, we start to observe a positive value of
competition - the competitive market achieves a higher utility
level than both single-product markets. When the budget is
large enough, small cells start to outperform vehicles, and
the vehicle curve and the small cell curves intersect. In the
meantime, the utility gain from competition continues to rise.
Finally, when the budget goes to infinity, the competitive curve
converges to the small cell curve, i.e., the value of competition
gradually drops to zero. For the cache hit utility, the utility
bounds can be calculated by Corollary 3, which states that the
curves will eventually converge at ), = 0.639 for the vehicle
only market and ); = 0.751 for both the competitive market
and the small cell only market.

These phase transitions can be explained as follows. When
the budget is small, few caching points are deployed in the
network. Thus, even requests for popular content chunks can
not be served by the cache. In this situation, cached chunks in
vehicles can be better utilized due to their mobility, making
vehicular caching more valuable. When the budget increases,
however, the increase of utility is constrained by the finite
vehicle capacity N,. As a result, the total utility is driven by
the larger capacity Ny of the small cells.

C. Variations in the System Model

We finally test the robustness of our results to inaccuracies
in our cache intensity models. To do so, we add bias to
the optimal intensities L,k € {v, s}, and re-calculate the
resulting operator profit. The bias is drawn from a Gaussian
distribution with zero mean, and the standard deviation equals
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Fig. 8. Comparison of maximum utilities with fixed budget. X-axes represent
budgets, Y-axes represent utilities. While initially only vehicles are preferred,
as the budget increases the utility in the competitive market approaches that
of the market with only small cells.
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Fig. 9. The change of profits under Uz when the optimal intensity is offset
by a zero mean bias term. The grey lines represent results of 500 trials. The
black lines are envelopes, showing little variation in the achieved profit.

L} xo for some o. In the case an intensity value is negative, we
set it to zero. We run a total of 500 trials, gradually increasing
o from O to 0.3. As is illustrated in Figure 9, the profit drops
by at most 10 (5.8%) for ¢ < 0.2, implying our model is
robust to small intensity deviations.

VIII. CONCLUSION

In this paper, we have proposed a framework to evaluate
the economic value of vehicular caching. A system model is
developed to capture the economic and physical dynamics of
caching tiers. We then use this model to derive the utility
functions for different network operators, including both CPs
and ISPs. The value of vehicular caching is quantified through
its viability, demands, and the gain of competition. These
research questions are answered by solving two optimization
problems, for which we have provided both analytical and
algorithmic solutions. We find that vehicular caching does not
add value if its price exceeds a finite threshold or the operator
has infinite budget. Simulation results verify the economic
value of vehicular caching, and illustrate the dynamics of the
system. Future work may build on our model to verify its
accuracy under more realistic mobility patterns, and extend
our analysis from mobile caching to other network services,
e.g., mobile devices that act as edge servers or network relays.
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