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The availability of accurate numerical waveforms is an important requirement for the creation and
calibration of reliable waveform models for gravitational wave astrophysics. For black hole-neutron star
binaries (BHNS), very few accurate waveforms are however publicly available. Most recent models are
calibrated to a large number of older simulations with good parameter space coverage for low-spin
nonprecessing binaries but limited accuracy, and a much smaller number of longer, more recent
simulations limited to nonspinning black holes. In this paper, we present long, accurate numerical
waveforms for three new systems that include rapidly spinning black holes, and one precessing
configuration. We study in detail the accuracy of the simulations, and in particular perform for the first
time in the context of BHNS binaries a detailed comparison of waveform extrapolationmethods to the results
of Cauchy characteristic extraction. The newwaveforms have<0.1 rad phase errors during inspiral, rising to
∼ð0.2–0.4Þ rad errors at merger, and ≲1% error in their amplitude. We compute the faithfulness of recent
analytical models to these numerical results for the late inspiral and merger phases covered by the numerical
simulations, and find that models specifically designed for BHNS binaries perform well (faithfulness
F > 0.99) for binaries seen face on. For edge-on observations, particularly for precessing systems,
disagreements between models and simulations increase, and models that include precession and/or
higher-order modes start to perform better than BHNS models that currently lack these features.
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I. INTRODUCTION

Over the last five years, our ability to observe gravita-
tional waves frommerging compact objects has grown at an
impressive rate. The first observation of two merging black
holes (GW150914) [1] was followed by nine more black
hole mergers during the “O1” and “O2” observing runs of
the LIGO-Virgo Collaboration (LVC) [2], as well as the
first detection of a binary neutron star merger (GW170817)
[3]. Most recently, 39 merger candidates were found in the

first half of the O3 observing run (O3a) [4]. The second half
of O3 (O3b) is still being analyzed by the LVC, with many
candidate events already released as public alerts.1

Of the three main observable types of compact binary
mergers, black hole-neutron star (BHNS) systems remain
the most elusive. The robust classification of a specific
event as a BHNS binary is a difficult task, due to
uncertainties about the mass range of black holes and
neutron stars, and the inability of current observatories to
directly demonstrate the presence of a neutron star in the

*francois.foucart@unh.edu 1See e.g., https://gracedb.ligo.org/superevents/public/O3/.
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absence of an electromagnetic counterpart to the gravita-
tional wave signal. Among the candidate gravitational wave
events of O3a reported in [4], three have a nonzero
probability of being BHNS mergers. In GW190814 [5],
the lower mass object has a mass m2 ∈ ½2.50; 2.67�M⊙

(90% credible level), and could be either the lowest mass
black hole or the highest mass neutron star observed to
date. In GW190425 [6], the primary has mass m1 ∈

½1.61; 2.52� (allowing for non-negligible spins). If black
holes in the mass range ð2–3ÞM⊙ exist, this primary could
potentially be a black hole, making GW190425 a BHNS
system. Both events have fairly low false alarm rates (FAR
of< 10−5 yr−1 and 7.5 × 10−4 yr−1, respectively, using the
GstLAL FARs reported in [4]). Finally, GW190426 rep-
resents a low-significance candidate BHNS event with FAR
of 1.4 yr−1 [4]. Assuming GW190426 is a real signal of
astrophysical origin, [4] estimates its component masses as
m1 ∈ ½5.4; 9.7�, m2 ∈ ½1.0; 2.3�. For this event, the uncer-
tainty lies mostly in whether the signal is real, rather than in
what type of binary it corresponds to (if real). Overall, there
is therefore a reasonable chance that a BHNS merger was
already observed. Unfortunately, we will only be sure of the
detection of a BHNS binary when we observe either a
system where both masses provide unambiguous informa-
tion about the nature of the merging objects (a statement
that clearly depends on one’s priors for the possible
distribution of black hole and neutron star masses), or
when we observe an electromagnetic counterpart to a GW
event for which the most massive object is guaranteed to be
a black hole (e.g., with m1 ≳ 3M⊙). A third avenue would
be to robustly measure a nonzero tidal deformability (i.e., a
finite size) for the lower mass object in a system where the
higher mass object is clearly a black hole, though this is a
difficult measurement to make when considering a single
gravitational wave event.
Nearly all GW observations performed so far relied on

the availability of accurate signal template banks.2 This
may lead to some complications and observation biases
when observing BHNS binaries. Among the GW events in
O1, O2 and O3a, only three have a most likely mass ratio
Q > 3, two of which are the potential BHNS mergers
GW190426 and GW190814 [4]. If black holes in BHNS
binaries have a mass distribution close to the observed
population of galactic black holes [7] or the observed
population of merging black holes [4] (which is not
guaranteed to be true), most BHNS mergers should have
Q≳ 5. Mixed binaries are thus likely to have, on average,
larger mass asymmetries than black hole binaries and
neutron star binaries. The use of aligned-spin templates
in detection pipelines can lead to the loss of a significant
fraction of events for asymmetric binaries with significant
orbital plane precession [8], and may thus be particularly

detrimental to the detection of BHNS binaries if there is a
significant population of spinning black holes in these
systems. Additionally, models limited to the dominant (2,2)
mode of the GW signal become less accurate for higher
mass ratios (see e.g., [9]). Existing waveform models that
take tidal disruption into account, however, do not account
for higher order modes in the GW signal. GW templates
including precession, higher-order modes, tidal effects, and
the potential disruption of the neutron star may help
alleviate these issues, and will certainly be valuable to
perform parameter estimation. Existing models for the GW
signals emitted by BHNS binaries, however, have only
recently begun to include both phase and amplitude
corrections associated with tidal distortion and with the
disruption of the neutron star (see e.g., [10–12]), and do not
so far account for precession.
This is where numerical simulations play an important

role: analytical models are tested and calibrated on numeri-
cal simulations, to make sure that the models properly
capture the late-time inspiral and nonlinear merger phase.
Numerical waveforms hybridized with analytical models at
early times can also be injected into parameter estimation
pipelines to estimate model biases (see e.g., [13,14] for
BHNS mergers). There is, however, a limited number of
available numerical waveforms to perform these tests. The
134 SACRA simulations used by Lackey et al. [10] still
provide the most extensive parameter space coverage of
BHNS mergers, yet these waveforms are now quite old.
The limited length and accuracy of the simulations make
them most useful to calibrate amplitude corrections at the
time of merger (as in [10,15]), but not as useful to the
modeling of the GW phase. Additionally, these waveforms
are limited to aligned BH spins with dimensionless spins
χ < 0.75. We have recently published a much smaller set of
5 longer, more accurate SpEC simulations [16], publicly
available as part of the SXS catalog,3 but these simulations
are limited to nonspinning black holes and obviously do not
come close to the SACRA waveforms in term of parameter
space coverage.4 Two of the five have very high neutron
star spins, to help efforts to model dynamical tides in
BHNS mergers [18], but are otherwise less useful to
calibrate models within the most likely range of BHNS
parameters.
In this paper, we present a new set of 3 BHNS binaries

[19–21] performed with the SpEC code. These simulations
complement our existing set of long, accurate simulations.
All of these systems have more realistic mass ratios than
most of our public waveforms (Q ¼ 3; 4). Two have higher
BH spins than existing public waveforms (χBH ¼ 0.9),
aligned with the orbital angular momentum of the binary.

2The first event, GW150914, was loud enough to be detected
with a less model-dependent pipeline [1].

3https://data.black-holes.org/waveforms.
4The SACRA code is also capable of generating longer, more

accurate waveforms, as demonstrated for binary neutron star
mergers [17].
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The third has a significant BH spin (χBH ¼ 0.75) mis-
aligned with the orbital angular momentum by 45°, leading
to significant precession of the orbital plane. All three
waveforms are long by the standard of BHNS simulations
(26–33 cycles). They also have accuracy comparable to the
BHNS waveforms in our current catalog, despite the use of
higher mass ratios and higher black hole spins. In fact, the
numerical accuracy of these waveforms is high enough that
we have to more carefully analyze the uncertainty asso-
ciated with the extrapolation of the GW signal to null
infinity. We thus perform a detailed study of waveform
extrapolation errors, and compare for the first time the
results of waveform extrapolation to the waveforms
obtained using Cauchy characteristic extraction (CCE)
methods. We note that while we had already performed
simulations for similar mass ratios and black hole spins
with the SpEC code [22], the new simulations presented
here are more than twice as long, and provide significantly
higher accuracy up to the time of merger. This is mostly due
to the use of higher order numerical methods in the
simulations [23], and is the main reason the new waveforms
are sufficiently accurate to meaningfully test BHNS wave-
form models.
We describe our numerical methods in Sec. II, the

resulting waveforms in Sec. III A, and our numerical
accuracy in Sec. III B. A comparison between waveform
extrapolation and CCE is provided in Sec. III C. In the rest
of this paper, we use units such that G ¼ c ¼ 1, and define
MBH, MNS as the ADM masses of the black hole and
neutron star at infinite separation, M ¼ MBH þMNS as the
total mass of the system, and χBH as the dimensionless
black hole spin. All neutron stars in our simulations are
initially nonspinning.

II. METHODS

A. Evolution methods

The simulations presented here are performed with the
SpEC numerical relativity code.5 SpEC evolves Einstein’s
equations in the generalized harmonic formalism [24] on a
pseudospectral grid. The grid rotates and contracts to
follow the evolution of the binary, and is distorted so that
the apparent horizon of the black hole remains nearly
spherical [25]. A sphere of constant grid-frame radius is
excised from the grid to avoid evolving the interior of the
black hole. The general relativistic equations of hydro-
dynamics are solved on a separate cartesian grid [22,26].
Our latest algorithm follows the prescriptions of Radice
et al. [23] to obtain high-order convergence in smooth
regions while capturing shocks.
The neutron star matter is described by a Γ ¼ 2 ideal gas

equation of state, with an ad hoc thermal component:
P ¼ 101.45ρΓ

0
þ Γρ0T, with P the pressure and ρ0 the

baryon density. We choose the central density of the
neutron star to get a small but reasonable compactness
CNS ¼ MNS=RNS ¼ 0.144 for MNS ¼ 1.4M⊙. The use of
such a simple equation of state has a few advantages,
including lower simulation costs and higher numerical
accuracy than for more realistic models, and the possibility
to rescale the result of the simulations with the total mass of
the system. Hence, in this paper, we typically report all
masses, times, and distances as dimensionless numbers. Its
main disadvantage is that while the dimensionless tidal
deformability of the neutron star is reasonable (Λ ¼ 791,
around the upper bound allowed by current observations for
MNS ≲ 1.3M⊙

6), the internal structure of the star and the
inferred mass-radius relationship are not. This is less of an
issue for BHNS systems than for binary neutron star
systems (as the latter require us to construct two neutron
stars, potentially of different masses, with physically
consistent tidal properties), but would certainly be a major
limitation if we wanted to study the formation of a
postmerger accretion disk, or any microphysics. For GW
modeling, the tidal deformability has been shown to be the
main parameter setting the properties of GW signals both
before and during merger [10]. Further tests of the impact
of the equations of state beyond the dimensionless tidal
deformability would however be desirable in the future.
We use a third-order Runge-Kutta method for the time

evolution. At the end of each time step, the metric and its
derivatives are interpolated from the pseudospectral grid to
the finite difference grid, while the fluid variables are
interpolated from the finite difference grid to the pseudo-
spectral grid. At other times (e.g., at intermediate steps of
the Runge-Kutta algorithm, or when evaluating variables
using dense output), variables evolved on another grid are
evaluated using linear extrapolation, using their last two
communicated values. Overall, the simulations presented
here use the exact same numerical methods as the simu-
lations published in Foucart et al. [16].

B. Grid structure

The finite difference grid used in our simulations has
a relatively simple structure. Before merger, we use a
Cartesian grid with constant grid spacing Δxgrid in the grid
coordinates. As the grid contracts during the binary
inspiral, this would lead to a significant decrease in the
grid spacing in the inertial frame, to 0.4Δxgrid by the time of
merger, dramatically increasing the cost of the simulations.
Instead, whenever the grid spacing decreases by 20% in
the inertial frame, we reset it to the grid spacing at the initial
time, interpolating onto a coarser finite difference grid.

5http://www.black-holes.org/SpEC.html.

6The upper bound Λ1.4 ≲ 580 obtained in [27] for 1.4M⊙

neutron star indicates that Λ ∼ 791 is acceptable for MNS ≲

1.3M⊙, as Λ ∝ M−5

NS for small changes inMNS. Using a large Λ is
of course convenient for this type of studies, as tidal effects in the
waveforms are easier to resolve in the simulations.
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This operation is performed ∼4–5 times per simulation, and
keeps the resolution roughly constant during the evolution.
Once the neutron star disrupts, we use fixed mesh refine-
ment. The finest level of refinement is a grid of 3243 cells,
centered on the black hole, and with the same spacing as the
premerger grid in the inertial frame. Additional levels of
refinement are added as needed, each new level a 3243 grid
centered on the black hole and twice the grid spacing of the
previous level. We note that to save computational resour-
ces, these grids are divided into 273 cells blocks that can be
fully ignored by the evolution if no matter is present in the
region that they cover. After the gravitational wave signal
from the merger has left the finite difference grid, we save
computational resources by reducing the resolution of that
grid: by that point, following the gravitational waves to the
radius at which they are extracted is our only concern, and

this only requires evolution of Einstein’s equations. We
evolve each configuration at 3 resolutions, summarized in
Table I. If we assume MNS ¼ 1.4M⊙, these correspond to
initial grid spacings Δx0FD ¼ ð295; 236; 189Þ m.
Before merger, the pseudospectral grid is constructed

from 8 spherical shells surrounding the black hole, 1 ball
and 8 spherical shells covering the neutron star and its
surroundings, and 32 spherical shells covering the wave
region (centered on the center of mass of the binary, and
with radii ranging from 2.5 times the binary separation to
Rout ¼ 500M). Between these 3 regions, we use distorted
cylinders, with the line connecting the compact objects as
their axis. After merger, the region inside of the 32 outer
shells is covered with “CubedSphere” subdomains, i.e.,
cubes distorted so that one coordinate is constant at
constant radius (defined as the distance to the center of

TABLE I. Overview of the simulations presented in this paper.MBH;NS are the ADM masses of the BH and NS in
isolation, χBH the initial dimensionless BH spin, e the initial eccentricity, iBH the initial inclination of the BH spin
with respect to the orbital angular momentum vector, Λ̃ the effective dimensionless tidal deformability of the binary,
Ω0 the initial angular velocity, M ¼ MBH þMNS the total mass, tpeak the time at which the (2,2) mode of the GW

signal reaches its maximum amplitude and Δxt¼0

FD the initial spacing of the finite volume grid.

Name
MBH
MNS χBH e iBH Λ̃ Ω0M

tpeak
M

Δxt¼0

FD
MNS

Q3S9-L0 3 0.9 0.0004 0° 35.2 0.0236 2342.6 0.143
Q3S9-L1 3 0.9 0.0005 0° 35.2 0.0236 2346.8 0.114
Q3S9-L2 3 0.9 0.0005 0° 35.2 0.0236 2346.5 0.091

Q4S9-L0 4 0.9 0.0017 0° 15.3 0.0243 2661.7 0.143
Q4S9-L1 4 0.9 0.0018 0° 15.3 0.0243 2660.1 0.114
Q4S9-L2 4 0.9 0.0017 0° 15.3 0.0243 2660.2 0.091

Q3S75p-L0 3 0.75 0.0031 45° 35.2 0.0197 3473.5 0.143
Q3S75p-L1 3 0.75 0.0031 45° 35.2 0.0197 3469.9 0.114
Q3S75p-L2 3 0.75 0.0031 45° 35.2 0.0197 3472.3 0.091

FIG. 1. Simulation Q4S9 at a time when ∼30% of the neutron star mass has been accreted by the black hole. Left: matter with density
above 6 × 107 g=cm3, and apparent horizon of the black hole. Center: finite difference grid, showing both mesh refinement and the fact
that the grid does not cover vacuum regions. Right: inner region of the pseudospectral grid, showing mesh refinement close to the black
hole and in regions where dense matter is present. We only show points below the orbital plane and within ∼15M of the black hole’s
center. The pseudospectral grid extends to much larger distances (500M), using spherical shells not shown on the figure. All three
figures are taken from our lowest resolution simulation.
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the remnant black hole). The number of basis functions
within each of these subdomains is chosen adaptively, to
obtain a user-specified accuracy estimated from the spectral
coefficients of the evolved variables [22,28]. The target
accuracy on the pseudospectral grid scales as ðΔx0FDÞ

5.
Errors on the pseudospectral grid should thus converge to
zero faster than the errors on the finite difference grid.
Visualizations of the matter density, black hole apparent

horizon, finite difference grid, and pseudospectral grid are
provided in Fig. 1 for simulation Q4S9 (see next section),
around the time of merger. The figure illustrates the
adaptivity of both numerical grids.

C. Initial conditions

Initial conditions for all simulations are obtained using
our in-house Spells initial data solver [29–31]. Spells
solves for the constraints in Einstein’s equations and for
an irrotational velocity profile inside the neutron star, while
imposing hydrostatic equilibrium. We first find initial data
on a quasicircular trajectory [31,32], then reduce the
eccentricity according to the iterative procedure described
in Pfeiffer et al. [33]. Each iteration requires the evolution
of the binary for ∼3 orbits. We target eccentricities of
≲0.002 for nonprecessing systems. For the precessing
system in this paper, the eccentricity of the quasicircular
initial data was already very small (e ∼ 0.003), and could
not be reduced using our standard procedure.
We consider 3 initial configurations, summarized in

Table I. Figure 2 also provides an overview of these
simulations and of existing public BHNS waveforms.
The first configuration is a system with mass ratio
Q ¼ 3 and aligned BH spin χBH ¼ 0.9, hereafter named
Q3S9. The second is identical except for the choice of a
mass ratio Q ¼ 4, and is named Q4S9. The last configu-
ration has a dimensionless BH spin χBH ¼ 0.75, misaligned
by 45° with the orbital angular momentum, and initially
in the plane formed by the orbital angular momentum
vector and the line connecting the center of the compact
objects. The misalignment of the spin leads to significant
precession of the orbital plane of the binary. We label this
simulation Q3S75p. The initial orbital frequencies are
chosen to provide more than ∼12 orbits before merger,
and we find indeed that simulation Q3S9 evolves for 13.2
orbits before the peak of the dominant (2,2) mode of the
GW signal, Q4S9 for 15.6 orbits, and Q3S75p for 16.3
orbits. By this metric, these 3 simulations are longer than all
but one of the existing public BHNS waveforms7 [16]. In
terms of the number of time steps required, which may be
more relevant to the growth of numerical errors, the
simulations presented here are significantly longer than
any public BHNS waveform.

As shown on Fig. 2, the initial conditions for our
simulations are all in the regime where the neutron star
is strongly disrupted by the black hole—and would be
disrupted even for softer equations of state. The two high-
spin simulations are also out of the range of the SACRA

simulations used by Lackey et al. (LEA) [10], which makes
them useful to test models of both the phase evolution and
tidal disruption of BHNS mergers. Our lower spin wave-
form, on the other hand, has the advantage of being the only
precessing system shown on Fig. 2. Less effort has gone
into the production of waveforms for nondisrupting bina-
ries, in part because our best simulation in that regime [35],
the Q ¼ 6 simulation on Fig. 2, showed that the resulting
waveform could not be distinguished from an equivalent
BBH waveform, at least within our numerical errors (or
with any existing GW detector).

D. Waveform extraction

We use two independent methods to estimate the
gravitational wave signal at infinity from the values of
the metric at finite radii. The first, used in all of our
previous BHNS publications, follows the procedure out-
lined by Boyle and Mroue [36]. The Newman-Penrose
scalar Ψ4 and metric perturbation h are estimated on
spheres of constant inertial radii Ri (the latter using
Regge-Wheeler-Zerilli techniques), and decomposed into
spin ¼ −2 spherical harmonics components. For each Ri,
we then compute a retarded time tretðt; RiÞ approximately
accounting for the travel time of the wave from the merging
compact objects to Ri. We then fit the ansatz

FIG. 2. Distribution of the BHNS simulations in the SXS
catalog projected in the Q-χBHk plane. Simulations from [16] are

red dots (SXS2019), while simulations from this work are green
dots (SXS2020). The region of parameter space covered by 134
short waveforms from [10] is shown in gray (LEA). For context,
we also show the regions of parameter space where ð1.2–1.6ÞM⊙

neutron stars satisfying the equations of state constraints of [27]
always disrupt, disrupt for some equations of state and/or neutron
star masses only, or never disrupt, according to the fitting formula
from [34].

7The longest public BHNS waveform is a nonspinning,
Q ¼ 1.5 simulation evolved for 16.6 orbits.
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Almðtret; rÞ ¼
X

N

j¼0

Alm;jðtretÞr
−j; ð1Þ

ϕlmðtret; rÞ ¼
X

N

j¼0

ϕlm;jðtretÞr
−j ð2Þ

to the amplitude Alm and phase ϕlm of the ðl; mÞ component
of our spherical harmonics decomposition at a fixed set of
retarded times. The ðl; mÞmode at infinity is then estimated
to be Alm;0e

iϕlm;0 . This procedure can be applied to eitherΨ4

or h. In our simulations, we fit this ansatz to the estimated
values of h, Ψ4 at 20 radii between 100M and 400M,
equally spaced in r−1.
The second method is used here for the first time in our

fluid simulations. We perform CCE [37–41] using the
methods described in Moxon et al. [42], and implemented
in the open-source SpECTRE code.8 In CCE, we use the
evolution data on a surface of constant inertial radius
(R ¼ 200M, 300M, 400M here) as boundary condition
for a nonlinear evolution on a null foliation of the spacetime
outside of that surface, propagating the signal to null
infinity. CCE carries to null infinity the Bondi news, and
the SpECTRE implementation of CCE also provides
estimates of all five Weyl scalars and of the gravitational
wave strain—although with some caveats related to initial
data and Bondi-Metzner-Sachs (BMS) freedom for the
latter, discussed in Sec. III C.
With these two methods at our disposal, we can more

carefully study the reliability of our estimates of the signal
at null infinity.
The waveforms publicly released as part of the SXS

catalog include two versions of the extrapolated signal. The
first contains the waveform in the inertial frame of the
simulation. The second corrects for the motion of the
center-of-mass of the binary, and provides the waveform in
the rest frame of the system (before merger) [43,44]. This
procedure avoids some mode mixing in all cases, and is
particularly useful for the precessing system: precessing
BHNS binaries generated with our initial data solver have
nonzero velocity in the direction perpendicular to the initial
orbital plane (∼0.001c) that can lead to significant phase
errors at merger (∼0.3 rad) simply due to the change in
the time of flight of the waveforms from the binary to
the observer. Comparisons between numerical results and
analytical models presented in this paper are performed
after removal of the center-of-mass motion.

III. RESULTS

A. Overview

The evolution of all three configurations proceed as
is typical for BHNS systems with moderate mass ratios

Q ∼ 2–4 and significant spins: the neutron star disrupts
well out of the innermost stable circular orbit of the black
hole, leading to mass ejection and the formation of a
massive accretion disk (see Figs. 1–2). In these simulations,
however, we do not attempt to follow the evolution of the
postmerger remnant with enough accuracy to properly
measure the masses of the ejecta and postmerger accretion
disks, in part due to the high computational cost of
following rapid accretion by the black hole in BHNS
systems, and in part because the postmerger evolution
likely lacks realism when using a simple Γ ¼ 2 ideal gas
equation of state. Once the neutron star disrupts, stopping
GWemission, we focus on following the propagation of the
GW signal to large distances.
The extrapolated GW signals obtained from our simu-

lations are publicly available as part of the SXS catalog,
for extrapolation orders N ¼ 2–5 and for multipoles up
to l ¼ 8. Figure 3 shows the hþ and h× polarizations of
the GW signals, for observers who are, at t ¼ 0, in the
direction of the total angular momentum of the binary, or
perpendicular to that direction and in the orbital plane.
The clearest difference between these BHNS waveforms
and equivalent BBH waveforms is the rapid cutoff in GW
emission when the neutron star disrupts. The other features
of the signal are similar to BBH systems: the signal in the
direction of the total angular momentum of the system is
entirely dominated by the l ¼ 2,m ¼ �2modes and is thus
a nearly featureless chirping signal. For nonprecessing
systems, the edge-on signal shows more clearly the impact
of unequal masses. For Q3S75p, in addition to the mass
asymmetry, the precession of the orbital plane is clearly
visible for the initially “edge-on” observer. The h× signal,
in particular, clearly shows that the Q3S75p system goes
through slightly more than half a precession cycle during
the simulation.
An important aspect of the BHNS binary systems

presented here, as opposed to those previously published
in the SXS catalog [16], is the impact of subdominant
modes on the signal. For the Q3S9 (Q4S9) configuration,
the peak amplitude of the (3,3) mode of the strain is 18%
(21%) of the peak amplitude of the dominant (2,2) mode.
The (4,4) mode has 7% (8%) of the peak amplitude of the
dominant mode, while other modes remain below 5% of the
amplitude of the (2,2) mode. For Q3S75p, the precession of
the orbital plane additionally leads to the mixing of modes
with the same l but different m. All l ¼ 2 and l ¼ 3 modes
then have significant amplitude. Accordingly, these new
public waveforms should be particularly useful to test the
effect of higher-order modes on detection and parameter
estimation for BHNS binaries.

B. Numerical accuracy

The main expected uses of our waveforms are testing and
calibrating analytical waveform models and injection in
detection and parameter estimation pipelines used by GW8https://github.com/sxs-collaboration/spectre.
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observers. It is thus critical to provide careful, conservative
estimates of our errors, to avoid introducing systematic
biases in these studies, and in upcoming observations of
BHNS binaries. In Foucart et al. [16], we proposed a
standardized method to estimate phase errors in SpEC
BHNSwaveforms that accounts for 3 main sources of error:
finite resolution, extrapolation of the signal to infinity, and
mass loss at the boundary of the finite difference grid used
to evolve neutron stars. We summarize this method here,
and plot the resulting error estimates on Fig. 4 for the
dominant (2,2) mode of the signal.
Finite-resolution errors are estimated by comparing the

results of our low (L0), medium (L1) and high (L2)
accuracy simulations. We first measure the phase
differences between L0 and L2, and estimate the error in
the L2 waveform using Richardson extrapolation to infinite
resolution. The extrapolation is performed assuming sec-
ond-order convergence, a relatively conservative estimate
considering that the methods used in our simulations are
typically at least third-order convergent. We then perform
the same calculation, but using the results of the L1 and L2
simulations. At any time, the worst of these two error
estimates is assumed to be the finite-resolution error. We
note that we need this comparison because in the hybrid
spectral/finite volume algorithm used in SpEC, different
parts of the evolution may dominate the error budget at
different times. Unfortunately, as a result the sign of the
phase difference between two simulations may change over
the course of the evolution, leading to occasional cancel-
lations of the error estimates based on 2 resolutions only.
On the other hand, we have found that the more complex
error estimate described here has provided us with

conservative estimates of the numerical error whenever
improved numerical methods/increased computational
resources have allowed us to test it against higher accuracy
results.
Extrapolation errors are estimated by measuring the

phase difference between second-order and third-order
extrapolation between t ¼ 0 and tpeak (the time when the
amplitude of the (2,2) mode of the GW signal is maximum,
see Table I). The maximum phase difference over that time
span is taken as the extrapolation error. This is a very
conservative choice that was made largely because, as
opposed to BBH simulations, BHNS simulations do not
show clear convergence of the extrapolated waveform with
the chosen extrapolation order. This has not been much of
an issue so far, as extrapolation errors remained much
smaller than finite resolution errors [16]. Figure 4 shows
that this is no longer the case in these new simulations. We
thus perform a more in-depth study of extrapolation errors
in the following section, that indicates that extrapolation
using a second-order polynomial in 1=r leads to extrapo-
lation errors that are significantly smaller than those shown
in Fig. 4.
Finally, a small mass loss at the boundary of our finite

difference grid could lead to an error in the mass of the
neutron star, and thus in the phase evolution of the system.
However, none of the simulations presented here loses
more than 10−4M⊙ over the course of the binary inspiral,
and the phase error due to mass loss at grid boundaries is
thus negligible.
Overall, we note that the phase error at tpeak is

ð0.2–0.4Þ rad and limited by the finite resolution of the
simulation, while during inspiral it is ≲0.1 rad and limited

FIG. 3. GW strain for simulations Q3S9 (left), Q4S9 (center) and Q3S75p (right). Each plot shows results for an observer in the
direction of the total angular momentum (top, “face on” for nonprecessing system) and from a direction that, at t ¼ 0, is orthogonal to
the total angular momentum and within the orbital plane of the binary (bottom, “edge on” at t ¼ 0). We show both polarizations hþ
(solid lines) and h× (dashed lines) and shift the average value of the strain for readability. The edge-on signals clearly show the impact of
mass asymmetry (oscillations in the maximum of the strain, due to a significant l ¼ 3, m ¼ 3 mode) and, for Q3S75p, precession (slow
oscillation in the amplitude of the signal, nonzero value of h×). Q3S75p goes through slightly more than half a precession cycle over the
course of the simulation.
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by the estimated extrapolation error. We will however see in
Sec. III C that the true extrapolation error is nearly certainly
significantly smaller than what is shown on Fig. 4. We keep
the estimate on Fig. 4 to allow for direct comparisons with
our previous waveforms [16]. Only one simulation from
[16] has smaller phase errors, and it is an equal mass,
nonspinning configuration that is significantly easier for

our code to evolve, and slightly shorter (in number of
orbits) than the simulations presented here.
We can also estimate the uncertainty in the amplitude of

the GW signal in our simulations. Figure 5 shows relative

FIG. 4. Estimates of the phase error for the (2,2) mode of the
GW signal in each simulation. We include the impact of mass
losses (ΦdM), extrapolation error (Φext), and grid resolution
(Φdis), following the methods described in [16] and Sec. III B.
The vertical dot-dashed curves indicate tpeak.

FIG. 5. Estimates of the relative error in the amplitude of the
(2,2) mode of the GW signal for each simulation. From top to
bottom, we show results for Q3S9, Q4S9 and Q3S75p. Dashed
curves show comparisons between the amplitude obtained with
different numerical resolutions (L0, L1, L2), while the solid
curves show comparisons between the amplitude for different
extrapolation orders (N2, N3, N4). The vertical dot-dashed
curves indicate tpeak. We clearly see that extrapolation is the
main source of error when estimating the GW amplitude.
Amplitude errors are ≲1%, except for simulation Q4S9 at the
time of merger.
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differences between the amplitude of the (2,2) mode of the
waveforms at different resolutions, and using different
extrapolation orders. We see that the errors are small
(typically ≲1%), especially when compared to current
calibration uncertainties in GW detectors (e.g., 7%–10%
for GW170817 [45]). Finite-resolution errors often appear
negligible when compared to extrapolation errors. This is
because the main error due to finite resolution is a small
shift of the time required for binaries to orbit/inspiral. This
has a much larger effect on the phase of the gravitational
wave signal than on its slowly varying amplitude.
Very similar results are found for higher-order ðl; mÞ

modes, except that the phase error is multiplied by l=2, i.e.,
the ratio of the frequency of the ðl; mÞ mode and the
frequency of the (2,2) mode. This is once more a conse-
quence of the fact that the dominant source of error is a
slight change in the evolution timescale of the system. The
resulting time shift in the waveform is the same for all
modes, and the associated phase error is thus proportional
to the frequency of the mode. Relative errors in the
amplitude of the signal only increase slightly for higher
order modes (see e.g., Figs. 10–12 in the next section). The
absolute error in the amplitude of the signal is thus
dominated by the error in the dominant l ¼ 2 mode(s)
for most binary orientations.

C. Extrapolation errors and Cauchy

characteristic evolution

The previous section showed that extrapolation errors
may significantly contribute to our error budget. However,
extrapolation errors are difficult to assess: there is no clear
improvement as the order of extrapolation increases, and in
fact errors tend to grow beyondN ¼ 4 extrapolation. In this
section, we will argue that N ¼ 2 extrapolation is more
accurate than our previous estimates would indicate. The
main argument to that effect is a direct comparison of
the GW signals obtained using extrapolation, and those
obtained using CCE. We begin with a study of the Weyl
scalar Ψ4 (proportional to the second time derivative of the
strain), for reasons that will become clear below. Figure 6
shows the phase and amplitude differences between all
wave extraction methods for case Q3S9, and Figs. 7 and 8
provide the same information for the other two cases.
Differences between simulations at 3 resolutions are also
shown for reference. We note that CCE does not provide
an absolute value of the time that can be used consistently
for all waveforms, due to the unknown travel time between
the inner boundaries of the various CCE evolution
systems, and the differences between the simulation time
of extrapolation and the asymptotically inertial time of
CCE. Accordingly, all comparisons in this section are
performed after application of a time and phase shift to
the waveforms, chosen to minimize the phase difference
before merger. Phase differences between waveforms using
different resolution are naturally smaller than without

alignment, to the point that after alignment differences
between extrapolation methods are at least of the same
magnitude as differences between numerical resolutions.
However, all cases show two important results: all CCE
waveforms are in very good agreement with each other
(≲0.01 rad phase difference and ≲0.1% amplitude error),
and all CCE waveforms agree well with N ¼ 2 extrapo-
lation. As Ψ4 is expected to be recovered to high accuracy
by CCE, this is a first indication that N ¼ 2 extrapolation
provides accurate predictions for the GW signal at infinity.
We also note that for Q3S75p, calculating the modes of the
waveform in the center of mass frame of the binary is an
important step in order to obtain good agreement between
various estimates of the (2,2) mode of the waveforms.
Comparing results in the coordinate frame of the simulation
(in which the binary has a non-negligible motion along the
direction of the initial angular momentum vector) to results

FIG. 6. Difference in the phase of the (2,2) mode for various
estimates of Ψ4 in system Q3S9, after application of a time and
phase shift minimizing the phase error in the window
t ∈ ½500; 2300�. We show phase differences between our numeri-
cal resolutions (L0,L1,L2), between different extrapolation
orders (N2,N3,N4, for the highest resolution simulation), and
between the highest resolution simulation with N ¼ 3 and the
waveforms obtained using CCE from data extracted at R ¼ 200M
(Cce2), R ¼ 300M (Cce3) and R ¼ 400M (Cce4). We see very
good agreement between the various CCE waveforms, and
between N ¼ 2 extrapolation (solid blue curve) and CCE.
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in the center of mass frame introduces errors of the same
order as the numerical error.
Gravitational wave detectors, however, measure a pro-

jection of the complex strain h ¼ hþ þ ih×, not Ψ4.
Unfortunately, CCE predictions for h suffer from a small
drift in the average value of the strain over the first 1000M
of evolution, illustrated in Fig. 9. In Fig. 9, the average
value of h× increases, eventually leading to a constant shift
between the CCE and extrapolated results for t > 1000M,
and visible oscillations in the inferred amplitude and phase
of the GW signal.
This issue remains under investigation, although the

likely cause of the early slow drift and late constant shift in
the CCE strain is incomplete CCE initial data and a
corresponding maladapted BMS frame. The evolution
performed by CCE on outgoing null slices has a similar,
but somewhat less dramatic, initial-data problem as the
central Cauchy simulation: the accumulated effect of the
past inspiral is difficult to estimate, and therefore transient
effects appear during the early stage of the simulation.
These initial data transients occur on a longer timescale
than the Cauchy junk, due to the larger characteristic scale
of the system. The CCE scale is set by the extraction radius,

rather than the orbital scale of the compact merger. Finally,
the initial transient leaves a lasting imprint on the CCE
strain as an erroneous “memory” contribution.
This issue can be partially negated by applying a

constant offset to hþ, h×, chosen to zero the average of
the strain over a given time interval. Figure 10 shows phase
and amplitude differences for the strain for case Q3S9, with
the averaging performed over 8 GW cycles immediately
following t ¼ 1000M. Large oscillations due to the drift in
the strain dominate the errors, but once we make abstrac-
tion of this issue, results are similar to what we obtained for
Ψ4: the various CCE waveforms are very consistent with
each other, and agree well with N ¼ 2 extrapolation. The
oscillations observed at the frequency of the GW signal in
Fig. 10 can be avoided by applying a highpass filter on all
compared signals, as shown in Fig. 11. While this confirms
the origin of the phase error, this filtered signal cannot be
substituted for the original signal when performing model
comparisons; in our attempts to filter the signal, no filter
could remove the phase error due to the drift in the average
value of the strain without introducing larger phase
differences as a result of the filtering itself.
Finally, we can follow the same procedure, but for the

(3,3) mode of the strain. Figure 12 shows the resulting
differences between extrapolated and CCE waveforms.

FIG. 7. Same as Fig. 6, but for the (2,2) mode ofΨ4 in the Q4S9
configuration. We find very similar results, including very good
agreement between all CCE results and the N ¼ 2 extrapolation
results.

FIG. 8. Same as Fig. 6, but for the (2,2) mode of Ψ4 in the
Q3S75p configuration.
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Higher-order modes have very low amplitude early in the
evolution of the binary, when the drift in the CCE strain
occurs, and this appears to mitigate issues with the CCE

method. As for Ψ4 and the dominant mode of the strain,
we find good agreement between all CCE waveforms and
N ¼ 2 extrapolation.
We can also gain some confidence in the accuracy of

N ¼ 2 extrapolation by studying how robust extrapolation
results are when the finite radii used by the fits change.
This is illustrated in Fig. 13, where we show the results
of N ¼ 2, 3, 4, 5 extrapolation at a given retarded time
(t ¼ 3000M) using all 20 finite radii, dropping the 4 radii
farthest from the binary, and dropping the 8 radii farthest
from the binary. High-order extrapolation appears to be
significantly impacted by noise in the finite radius mea-
surements, leading to visibly problematic extrapolation
functions (e.g., non-monotonous behavior of AðrÞ). On
the other hand, N ¼ 2 extrapolation provides very con-
sistent results. While we find that the exact behavior of
the higher-order extrapolation methods depends on the
choice of retarded time under consideration, the robustness
of N ¼ 2 extrapolation does not.

FIG. 9. Imaginary part of the (2,2) mode of the GW strain (h×
polarization) using CCE extraction from R ¼ 400M and extrapo-
lation with N ¼ 3. The dotted line show the amplitude of the

signal (
ffiffiffiffiffiffiffiffi

jhj2
p

). In the CCE results, the average value of the strain
is shifted away from 0 during the first Δt ∼ 1000M.

FIG. 10. Same as Fig. 6, but for the (2,2) mode of the GW
strain. For all CCE waveforms, we subtract a constant value from
the strain (see text). Early time oscillation in the CCE results are
due to the initial drift in the average value of the GW strain.

FIG. 11. Same as Fig. 10, but after applying a highpass filter
to all signals to remove the drift in the average value of the
strain (tenth-order Butterworth filter with critical frequency of
0.002M−1

≈ 72 Hz). We note that this filter leads to changes in
the phase of the signal that are larger than any of the errors
displayed here; this plot indicates that most of the error observer
in Fig. 10 is indeed due to a slow drift in the average value of the
strain, but the filtering does not provide us with a better waveform
template.
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As a result of this exploration of CCE and wave-
form extrapolation, we can revisit our estimates for
extrapolation errors, and recommendation for the “best”

extrapolated waveform to use. The CCE waveforms
(evolved from 3 different radii) and N ¼ 2 extrapolation
provide results consistent to better than 1% in the
amplitude of the waveform, and better than 0.01 radian
in its phase after alignment of the waveforms using an

appropriate time and phase shift, and ignoring oscilla-

tions due to the drift in the average value of the strain in

CCE. For applications where waveform alignment is
necessary (e.g., comparisons with analytical models,
hybridization etc.), this should provide us with appropri-
ate estimates of the extrapolation error as long as we use

N ¼ 2 extrapolation, and not higher order methods.
Comparing N ¼ 2 and N ¼ 3 extrapolation provides a
reasonable upper bound on the extrapolation error with
N ¼ 2 if that comparison is performed over the entire
duration of the simulation.

D. Comparison with analytical models

With these error estimates in mind, we now move to
a short investigation of the agreement between our
numerical waveforms and commonly used waveform
models in data analysis. We note than an in-depth study
of modeling uncertainties goes beyond the scope of this
paper. Here, we are mostly interested in providing a broad
overview of the impact that various modeling choices and
the physical effects of precession, higher modes, tidal
effects during inspiral, and tidal disruption have on the
agreement between numerical and analytical waveforms.
We consider the following models, where the string
“IMRPhenom” indicates a model in the family of phe-
nomenological inspiral-merger-ringdown models in the
frequency domain [46–54], and “SEOBNR” a model in
the family of time-domain inspiral-merger-ringdown
models based on the effective-one-body formalism and
calibrated to numerical simulations [55–70]:

FIG. 12. Same as Fig. 10, but for the (3,3) mode of the GW
strain. The CCE method provides much better result for this
mode, with great self-consistency between CCE results using
different extraction radii, and small differences between CCE and
N ¼ 2 extrapolation.

FIG. 13. Amplitude of the (2,2) mode of the GW strain at a retarded time t ¼ 3000M for simulation Q3S9-L2. We show the values
estimated at finite radii (normalized to Rmin ¼ 100M), and the extrapolation polynomials of order N ¼ 2, 3, 4, 5. From left to right, we
show extrapolation functions fitted to data at all 20 radii used by our simulation, the 16 smallest radii of that set, and the 12 smallest radii
of that set (only the N ¼ 3 results is distinguishable from the others on the middle panel). While low-order extrapolation provides
consistent and visually reasonable results, higher order extrapolation is less reliable. This can be contrasted with results in vacuum
simulations, where results converge to a well-defined answer as N increases.
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(1) IMRPhenomXAS [71]: an aligned-spin BBH model
that only includes the dominant (2,�2) modes of the
strain

(2) IMRPhenomXP [72]: a BBH model that only
includes the dominant (2, �2) modes of the strain
and accounts for the main features of precession

(3) IMRPhenomXHM [73]: an aligned-spin BBH
model that includes higher-order modes

(4) IMRPhenomXPHM [72]: a BBH model that in-
cludes higher-order modes and the main features of
precession

(5) SEOBNRv4 [61]: an aligned-spin BBH model that
uses only the dominant (2, �2) modes to determine
the strain

(6) SEOBNRv4P [74]: a BBH model that includes pre-
cession by describing all six spin degrees of freedom
throughout the BBH coalescence, but uses only the
dominant (2, �2) modes to determine the strain

(7) SEOBNRv4HM [75]: an aligned-spin BBH model
that includes higher-order modes

(8) SEOBNRv4PHM [74]: a BBH model that includes
higher-order modes and precession by describing all
six spin degrees of freedom throughout the BBH
coalescence

(9) IMRPhenomPv2_NRTidalv2 [76]: a model whose
BBH baseline includes the main features of pre-
cession that also incorporates tidal effects based on
calibrating analytical results to numerical simula-
tions of NSNS binaries [76–79], but not higher order
modes. This model only describes the inspiral, with
the signals tapered to zero at the NSNS merger
frequency predicted by numerical simulations, and

does not attempt to model the disruption of a neutron
star by a black hole companion.

(10) SEOBNRv4T [18,80]: an aligned-spin model that
includes analytical descriptions of tidal effects, but not
higher-order modes. This model only describes the
inspiral, with the signals tapered to zero at the NSNS
merger frequency predicted bynumerical simulations,
and does not attempt to model the disruption of a
neutron star by a black hole companion.

(11) IMRPhenomNSBH [11]: an aligned-spin model
specifically designed for BHNS binaries: it includes
both tidal effects from [76] and the disruption of the
neutron star by the black hole. The model does not
include higher-order modes.

(12) SEOBNRv4_ROM_NRTidalv2_NSBH [12]: an
aligned-spin model specifically designed for BHNS
binaries based on a reduced-order-model approxi-
mation to the frequency-domain BBH signals pre-
dicted by the SEOBNRv4 model: it includes both
tidal effects from [76] and the disruption of the
neutron star by the black hole. The model does not
include higher-order modes.

These models are generally representative of the latest
iteration of the IMRPhenom and SEOBNR models (for
recent models within another family of effective one body
models see e.g., [81–83]). To determine the agreement
between a model and numerical simulation, we calculate
the faithfulness

Fðh1; h2Þ ¼ max
tc;ϕ0

�

hh1; h2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1; h1ihh2; h2i
p

�

ð3Þ

TABLE II. Faithfulness of analytical models to the numerical results, for the þ polarization of the gravitational wave signal. For each
case, we consider face-on observation (F suffix) and edge-on observation (E) suffix. All faithfulnesses are computed using the pyCBC
library, as discussed in more detail in the text. We also provide the frequency flow used as a lower bound for the calculation of the
faithfulness, and the SNR of the part of the signal above flow for systems at a distance of 100 Mpc. All calculations are performed using
the Zero-Detuned High-Power noise power spectrum of LIGO.

Model Q3S9-F Q3S9-E Q4S9-F Q4S9-E Q3S75p-F Q3S75p-E

flow [Hz] 300 300 250 250 300 300
SNR [100 Mpc] 12.5 5.9 16.7 7.9 11.7 5.1

IMRPhenomXAS 0.972 0.957 0.981 0.955 0.988 0.917
IMRPhenomXP 0.969 0.955 0.976 0.951 0.986 0.959
IMRPhenomXHM 0.971 0.964 0.979 0.967 0.987 0.928
IMRPhenomXPHM 0.968 0.961 0.974 0.962 0.987 0.964

SEOBNRv4 0.966 0.952 0.976 0.950 0.987 0.915
SEOBNRv4P 0.966 0.952 0.976 0.951 0.970 0.955
SEOBNRv4HM 0.966 0.956 0.976 0.946 0.987 0.929
SEOBNRv4PHM 0.966 0.957 0.976 0.962 0.971 0.932

IMRPhenomPv2_NRTidalv2 0.985 0.972 0.969 0.947 0.984 0.957
SEOBNRv4T 0.977 0.963 0.983 0.956 0.976 0.872

IMRPhenomNSBH 0.991 0.977 0.994 0.969 0.992 0.904
SEOBNRv4_ROM_NRTidalv2_NSBH 0.988 0.973 0.991 0.966 0.992 0.900
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with

hh1; h2i ¼ 4Re

Z

fhigh

flow

df
h�
1
ðfÞh2ðfÞ

SnðfÞ
ð4Þ

and SnðfÞ the one-sided power spectral density of the
detector noise. Here, we take fmax to be very large
(∼100 kHz), and set flow to a value sufficiently large to
avoid artifacts due to the finite length of the numerical
simulations (250 Hz for the Q ¼ 4 system, and 300 Hz for
theQ ¼ 3 systems). The faithfulness is calculated using the
pyCBC library [84], and that same library is used to
generate the waveform models. Table II shows the faithful-
ness of the various analytical models to the highest-
resolution numerical simulation (using N ¼ 2 extrapola-
tion). We calculate F for the þ polarization of the
waveform and for observers located along the direction
of the total angular momentum of the system (face-on) and
in a direction orthogonal to the total angular momentum
(edge on). We note that the faithfulness of the low-
resolution simulation to the high-resolution simulation is
F > 0.9999 for all configurations and orientations, much
larger than the faithfulness of any of the models. We also
emphasize that the faithfulness values obtained here are
only for the part of the signal with f > flow, i.e., the late
inspiral and merger, and ignore the many cycles with f <
flow that would be detectable by current detectors but for
which we do not have any numerical data.
For the precessing simulations, defining the initial spins

require a few additional assumptions. For models that only
include aligned spins, we define the black hole spin as the
component of the spin aligned with the orbital angular
momentum at the beginning of the numerical simulation.
For models that do include precession, we also have to
maximize F over the phase of the precession of the spin at a
reference frequency, or over the reference frequency atwhich
the spin is defined (depending on the inputs of the model).

We also calculate the SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

hh; hi
p

of the numerical
waveform above flow for a binary located at 100 Mpc, to
put the faithfulness numbers into context. We note that this
is not the SNR of the full BHNS waveform, as a large
fraction of the SNR is at frequency f < flow. All faithful-
ness and SNR results are summarized in Table II.
We can see some clear trend in these tabulated results.

For systems observed face on, the two models specifically
designed for BHNS systems perform noticeably better,
with F ≳ 0.99. Including tidal effects without accounting
for the disruption of the neutron star helps for the Q3S9
system (F ∼ 0.98 for the tidal models, F ∼ 0.97 for the
BBH models), but has no noticeable impact on the faith-
fulness for Q4S9 and Q3S75p. The use of higher-order
modes and/or precession does not seem to impact F when a
system is observed face on. The faithfulness is generally
lower for systems observed edge on rather than face on.
The IMRPhenomX BBH models also indicates that, for

edge-on systems, F improves when including higher-order
modes and, for the precessing binary, when including
precession. With the SEOB models, higher-order modes
help us improve F for the nonprecessing systems, and
including precession helps with the precessing system—but
the model that include both effects actually perform worse
than the precession-only and higher-mode only models.
Finally, going from Q3S9 to Q4S9 to Q3S75p, the impact
of tides decreases while the impact of higher-order modes/
precession increases. As a result, the nonprecessing tidal
models (SEOBNRv4T, IMRPhenomNSBH, SEOBNRv4_
ROM_NRTidalv2_NSBH) become less faithful, down to
just F ∼ 0.90 for Q3S75p. We note however that it is
perfectly possible that an analytical waveform with param-
eters reasonably close to Q3S75p would provide a good
match to the numerical results—we do not here attempt to
find the best matching waveform, but only look at the
faithfulness of the waveform for fixed initial conditions.

FIG. 14. Top: amplitude of the complex strain h ¼ hþ þ ih×
for system Q3S9 seen face on. We show results for our low-
and high-resolution simulations, for the two BHNS models, as
well as for one tidal model that does not include neutron star
disruption and one BBH model that includes precession and
higher-order modes. Bottom: phase difference between the
models and the high-resolution numerical result. All signals
are aligned by minimizing the phase difference in the time
interval t ∈ ½500; 2000�M.
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We can glean more information about the strengths and
limits of various models by looking at Figs. 14 and 15. The
amplitude plots best capture the impact of the models
specifically designed for BHNS systems. The amplitude of
the signal is very well captured for Q3S75p. For Q3S9, a
system with a black hole spin higher than those used to
calibrate BHNS models, the agreement is a little worse, but
still noticeably better than for systems that do not account
for the disruption of the neutron star. The phase errors for
Q3S9 show the importance of including tidal phase
corrections in the models. This is very different from
our results for Q3S75p, for which the inclusion of pre-
cession and higher-order modes improves the phase accu-
racy far more than the inclusion of tidal effects.
We also note that nearly identical results are obtained

when comparing the second time derivative of the strain
from analytical models to the CCE results forΨ4, indicating
that one way to get around the drift in the strain when using
CCE results to calibrate models could be to directly use Ψ4

when performing these calibrations.

IV. CONCLUSIONS

We presented a new set of long, high-accuracy BHNS
waveforms generated using the SpEC code, which are now
publicly available. These waveforms sample regions of

parameter space not covered by existing waveforms: high
black hole spins, and one precessing system. All simu-
lations are quite long by the standard of BHNS evolutions
(>13 orbits), and are of high accuracy in both phase (0.2–
0.4 rad at merger) and amplitude (∼1% errors). They
should thus be particularly helpful for testing and calibrat-
ing future BHNS waveform models.
In previous BHNS simulations, errors due to the

extrapolation of the waveform to infinity were typically
negligible even when using conservative error estimates.
We find that this is no longer the case with our latest
simulations. Accordingly, we perform a more careful study
of extrapolation errors by comparing waveform extrapola-
tion to CCE. Results for Ψ4 at null infinity indicate very
good agreement between CCE initialized from different
simulation radii, and between CCE and low-order (quad-
ratic) extrapolation. Similar results appear to hold for the
strain h, up to a drift in the time-averaged value of h that
appears when using CCE. Higher-order extrapolation
appears less reliable. Overall, we conclude that while
extrapolation errors remain small (compared to finite-
resolution errors) in our simulations when using quadratic
extrapolation, one should avoid the use of higher-order
methods in BHNS SpEC simulations. More practically, we
thus recommend users of our waveform catalog to take the
highest resolution simulation with quadratic extrapolation
(N ¼ 2) as our “best” waveform when multiple resolutions
and/or extrapolation orders are available.
Finally, we compute the faithfulness to our simulation

of a range of existing binary black hole models, binary
neutron star models, and BHNS models. We focus on the
high frequency portion of the signal that can be studied
directly with our numerical waveforms; accordingly, while
our faithfulness calculations allow us to compare the
quality of various analytical models, they cannot be directly
used to infer biases in the inferred binary parameters or
SNR losses. To do so, one would need to account for the
many detectable waveform cycles that precede the begin-
ning of our simulations (as in e.g., [14]). We find that for
face-on observations, two recent BHNS models perform
quite well—as already demonstrated in [12] for our non-
precessing systems. The inclusion of higher-order modes
and/or precession effects is less crucial to high faithfulness
at high frequency. A more careful study of phase errors
however indicates that, even for observations along the total
angular momentum of the system, the inclusion of preces-
sional effects can help reduce phase differences with
respect to our precessing system. For nonprecessing sys-
tems observed edge-on, higher-order modes and tidal
effects are both significant. Finally, for the precessing
system observed edge-on, only a few of the models used
here manage to reach faithfulness ≳0.95 (all of them
precessing models), and no model reaches faithfulness
>0.97. Thus, there certainly remain important improve-
ments that could be made to BHNS models by combining

FIG. 15. Same as Fig. 14, but for system Q3S75p.
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recent progress in the modeling of finite size effects with
state-of-the-art results for precession in black hole binaries.
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