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We present a detailed methodology for extracting the full set of Newman-Penrose Weyl scalars from

numerically generated spacetimes without requiring a tetrad that is completely orthonormal or perfectly

aligned to the principal null directions. We also describe how to implement an extrapolation technique for

computing the Weyl scalars’ contribution at asymptotic null infinity in postprocessing. These methods have

been used to produce Ψ4 and h waveforms for the Simulating eXtreme Spacetimes (SXS) waveform

catalog and now have been expanded to produce the entire set of Weyl scalars. These new waveform

quantities are critical for the future of gravitational wave astronomy in order to understand the finite-

amplitude gauge differences that can occur in numerical waveforms. We also present a new analysis of the

accuracy of waveforms produced by the Spectral Einstein Code. While ultimately we expect Cauchy

characteristic extraction to yield more accurate waveforms, the extraction techniques described here are far

easier to implement and have already proven to be a viable way to produce production-level waveforms that

can meet the demands of current gravitational-wave detectors.
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I. INTRODUCTION

As the field of gravitational-wave astronomy is preparing

for the next generation of detectors, it is becoming

increasingly important for numerical waveform models

to achieve the high degree of accuracy that will be needed

[1]. Part of this improvement must come from a systematic

understanding of gauge effects inherent in the waveforms.

Gauge effects in a waveform, if erroneously interpreted as

physical effects, can have a direct and adverse impact on

parameter estimation from a detected gravitational wave

[2–5]. Both phenomenological and surrogate waveform

models depend heavily on numerical relativity (NR) for

their construction [6,7]. Thus we need a thorough under-

standing of waveform extraction and gauge effects in

numerically generated spacetimes.

Even “gauge-invariant” waveforms are only invariant in

a very limited technical sense of perturbation theory; such

waveforms still generally have an infinite-dimensional set

of gauge freedoms described by the Bondi-Metzner-Sachs

(BMS) group—which includes the usual Poincaré group

along with the more general “supertranslations” [8–10].

These gauge freedoms are not restricted to infinitesimal

transformations and can result in appreciable finite-

amplitude gauge differences especially in numerical rela-

tivity. The BMS group induces a fractional change in the

waveforms directly proportional to the size of the gauge

change. And because gauge conditions used in NR sim-

ulations are complicated and widely varied, we can expect

to find significant effects in waveforms due to gauge

choices. In addition to the standard time offset and rotation

gauges, important effects due to boost and translation

have already been found in numerical waveforms [2–4,11].

To move beyond this basic analysis—and to understand

supertranslations—we need more information than is

currently produced by most NR codes.

Often, only the gravitational wave strain h and the

Weyl scalar Ψ4 are extracted from NR simulations for

the purpose of constructing waveforms. While these are the

quantities most directly relevant for gravitational-wave

detectors, they by no means provide complete information

regarding the curvature or radiation of the spacetime.

Since Ψ4 and h are particular components of tensors, we

need complete knowledge of all the components to apply

transformations [12]. Any attempt at understanding these

gauge freedoms and comparing different waveforms in a

meaningful way requires understanding how waveforms

behave under transformation, therefore requiring more

information than h and Ψ4 alone.

Accessing the information about spacetime curvature in

an NR simulation requires extracting the information stored

in theWeyl tensor. The usual prescription is to compute five

complex scalar fields from the inner product of the Weyl

tensor with the orthonormal basis vectors of a complex null*
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tetrad [13–16]. The null tetrad can be chosen so that the

five resulting Weyl scalars are related to quantities like

the gravitational radiation or the mass and spin of the

binary system [17].

The values of these Weyl scalars depend on the choice

of the tetrad, and so it is critical to pick a well-suited tetrad.

If one is interested in comparing the Weyl scalars across

different simulations, the tetrad needs to be consistently

chosen so that gauge effects may be understood and

isolated. The choice of a consistent and suitable tetrad

for NR continues to be explored [18,19]. Despite the

ongoing challenges, a technique for computing the Weyl

scalars has been successfully implemented and used for

analysis where detailed comparison between waveforms

was not necessary [20].

Even with a consistent and well-suited tetrad choice, a

coordinate system must be used to relate the tetrads at

different points. Additionally, tetrads are defined with

respect to the coordinates in NR. The issue here is that

coordinates are subject to even more freedoms than the

tetrads themselves. If the orthonormality constraint of the

tetrad can be relaxed, as will be discussed in Sec. II C,

then this further complicates the goal of understanding the

tetrad choice—and thus the waveform quantities—across

different spacetimes.

There are two separate arenas for analyzing the curvature

and radiation quantities; each has its own motivation and its

own challenges. It is important to make this distinction and

employ a technique for extracting curvature quantities that

will be best-suited for the particular analysis of interest. In

the first case, the goal is to analyze curvature quantities at

finite distances to provide information about the Petrov

classification of the spacetime, test properties of perturbed

Kerr black holes, probe regimes of strong gravity, etc.

[14,20–24]. In the second case, the goal is to analyze

curvature quantities extrapolated or evolved to asymptotic

null infinity to compute gravitational waveforms [25–30].

Our extraction methodology is suited for the second

case, the study of asymptotic radiation and curvature. The

primary challenge in this arena is that waveforms computed

at any finite distance in a simulation domain are not entirely

free of unwanted near-field effects or other sources of

gauge pollution [5], e.g., from the choice of simulation

coordinates. It is therefore necessary to extrapolate or

evolve the extracted waveform out to asymptotic null

infinity, using either perturbative extraction or Cauchy

characteristic extraction (CCE). At the current time, a

CCE code reliable enough for supplying production-level

waveforms has been developed [29,31,32]. However,

uncertainties in choosing the initial data for the character-

istic evolution have currently prevented its use as the

primary extraction method. We use a perturbative extrac-

tion technique with an extrapolation procedure in post-

processing to get the final asymptotic waveforms. By using

such an extrapolation procedure, we are able to gain further

computational improvements by relaxing the requirement

of working with a completely orthonormal tetrad aligned

to the principal null directions. While one should be able

to arrive at the same asymptotic waveform with either

perturbative extraction or CCE, the perturbative extraction

methodology described here is simpler to implement and

can serve as a point of comparison for a CCE scheme.

Although our extraction methodology does not require a

completely orthonormal tetrad aligned with the principal

null directions and thus cannot be used straightforwardly to

explore curvature quantities within the simulation domain

itself, we are able to get all of the necessary curvature

quantities at asymptotic null infinity and in such a frame as

to allow for the complete fixing of gauge freedom in the

waveforms [33,34].

Our extraction methodology is based on the idea of

using the characteristic fields of the Weyl tensor evolution

equations, which has already been successfully imple-

mented in the Spectral Einstein Code (SpEC) [35]. This

technique has proven remarkably robust and accurate by

serving as the primary means of wave extraction for the

Simulating eXtreme Spacetimes (SXS) waveform catalog,

the largest catalog of numerical waveforms available [36].

Previously, only Ψ4 and h have been extracted. For the first

time, we expand this method to include the full set of Weyl

scalars and produce production-level waveforms. Using

these new quantities, we use the Bianchi identities to

present a new analysis testing SpEC waveforms against

exact general relativity, providing a hard upper bound for

the accuracy of the waveforms.

II. EXTRACTION METHODOLOGY

A. Overview

In order to express the ten independent components

of the Weyl tensor as the five complex Weyl scalars,

we need to first define a complex null tetrad from a

linear combination of coordinate basis vectors. Consider

a 4-dimensional spacetime
1
described by the metric gab

with spherical coordinate basis vectors ðta; ra; θa;ϕaÞ. We

can construct linear combinations of these basis vectors to

define a complex null tetrad ðla; na; ma; m̄aÞ with two real

null vectors, la and na, a complex vector ma, and its

complex conjugate m̄a, such that −lan
a ¼ mam̄

a ¼ 1 and

all other inner products vanish. The vectors la and na are

aligned with outgoing and ingoing null geodesics.

For any choice of complex null tetrad, we can define the

Weyl scalars as the inner products of the Weyl tensor and

the null tetrad vectors,

1
We make use of the conventions described in the Appendix C

of [25]. Note that unlike in [25], the letters ða; b; c; d; eÞ are
reserved for four-dimensional spacetime indices and the letters
ði; j; k; l; p; qÞ are reserved for three-dimensional spatial indices.
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Ψ4 ¼ Cabcdn
am̄bncm̄d; ð1aÞ

Ψ3 ¼ Cabcdl
anbm̄cnd; ð1bÞ

Ψ2 ¼ Cabcdl
ambm̄cnd; ð1cÞ

Ψ1 ¼ Cabcdl
anblcmd; ð1dÞ

Ψ0 ¼ Cabcdl
amblcmd: ð1eÞ

The Weyl scalars are thus intimately connected to the tetrad

choice. It is critically important for a consistent tetrad

choice to be established for two reasons. First, so that the

Weyl scalars will most readily reveal properties of the

spacetime. Second, to enable a meaningful comparison of

the Weyl scalars across timesteps of a single simulation or

across different simulations altogether.

Several approaches for constructing a tetrad in NR

involve solving for the principal null directions of the

spacetime or performing a procedure to orthonormalize

a coordinate tetrad and then effectively solving for the

Lorentz transformation to achieve a desired frame

[15,19,37]. However, for the purpose of measuring the

Weyl scalars at asymptotic null infinity Iþ, we are only

interested in the leading-order contributions. Accordingly,

we do not need such an involved procedure and can take

advantage of a perturbative extraction technique in which

any errors become negligible at Iþ.
This technique is simpler to formulate, easier to imple-

ment, and results in asymptotic waveforms that are of

primary interest for gravitational wave astronomy. These

waveforms are still subject to the infinite-dimensional

gauge freedom at Iþ, described by the Bondi-Metzner-

Sachs (BMS) group. However, in principle a method

exists for partially fixing the BMS gauge freedoms of

the waveforms obtained from our perturbative extraction

technique [33,34].

In addition to the Weyl scalars, we extract the gravita-

tional wave strain h from the simulations via the Regge-

Wheeler-Zerilli (RWZ) extraction procedure [38–40].

B. Weyl characteristic fields

The goal of this section is to write the Weyl scalars in

terms of the various characteristic fields of the Weyl tensor

evolution equation instead of in terms of the full four-

dimensional Weyl tensor itself [16,41–43]. Numerical

relativists typically employ a 3þ 1 decomposition of the

spacetime, foliating the spacetime by spatial hypersurfaces

Σ [44,45]. Following this procedure, we would want to

express the Weyl tensor in terms of quantities that can be

computed on each spatial hypersurface. More specifically,

by doing this we wish to minimize the amount of numerical

noise introduced when computing the full spacetime Weyl

tensor, which normally requires second derivatives of the

spacetime metric.

For a timelike unit vector field sa orthogonal to Σ, we

can define the induced metric γab ¼ gab þ sasb. We also

introduce the lapse function N and shift vector Na,

N ¼ −tasa; ð2aÞ

Na ¼ γabt
b; ð2bÞ

to relate how the coordinates on Σ evolve from one

hypersurface to the next. By solving the generalized

harmonic formulation of the Einstein equations, we com-

pute not only γab but also its first derivatives dabc ≡ ∂aγbc
algebraically from the evolved variables [46]. Thus, we

can compute the spatial components of the extrinsic

curvature as

Kij ¼ −
1

2N
ðd0ij − Nkdkij − 2γkði∂jÞN

kÞ: ð3Þ

Following Eq. (2.20) in [46], we can also compute the

spatial components of the spatial Ricci tensor Rij from dijk
and ∂idjkl. All the terms involved in computing Kij and Rij

can either be taken directly from the evolved variables or

require an additional spatial derivative. By using a pseudo-

spectral code, spatial derivatives of quantities on Σ can be

computed by spectral differentiation instead of having to

use a finite-difference method. However, we cannot com-

pute the full Weyl tensor using quantities available on Σ,

so we must proceed to project the curvature information of

the Weyl tensor onto Σ.

Having already chosen a timelike unit vector field sa

orthogonal to Σ, the Weyl tensor can be split into an electric

and magnetic part,

Eij ¼ Cacbds
asbγciγ

d
j; ð4aÞ

Bij ¼ −C⋆
acbds

asbγciγ
d
j; ð4bÞ

where C⋆
abcd ¼ 1

2
Cabefϵ

ef
cd is the right dual of the Weyl

tensor. These tensors are symmetric, traceless, and orthogo-

nal to sa. The electric Weyl tensor Eij is the tidal tensor on

the spatial hypersurface, and the magnetic Weyl tensor Bij

encodes the differential frame-dragging on the spatial

hypersurface [21–23]. What makes this approach particu-

larly attractive in NR is that Eij and Bij can be computed

directly from Kij and Rij [16,42],

Eij ¼ Rij þ Kk
kKij − Ki

kKkj; ð5aÞ

Bij ¼ DkKlðiϵjÞ
lk; ð5bÞ

where ϵijk is the Levi-Civita tensor on Σ, Di is the spatial

covariant derivative on Σ, and nonvacuum terms have been

omitted.
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Comparing Eij and Bij in Eqs. (4) with how the Maxwell

electric and magnetic fields are defined on a spatial

hypersurface, it is clear that the Weyl tensor is taking

the place of the Faraday tensor [47–49]. We can continue

with this mathematical analogy to develop a pair of coupled

evolution equations for Eij and Bij that bear a strong

resemblance to the Maxwell equations [47]. For details, see

Appendix A. The six real-valued characteristic fields of

these coupled evolution equations are given by

U�
ij ¼ ðEkl � ϵk

pqrqBlpÞ
�

qkiq
l
j þ

1

2
qklqij

�

; ð6aÞ

V�
i ¼ ðEkl � ϵk

pqrqBlpÞrlqki; ð6bÞ

E ¼ Eijr
irj; ð6cÞ

B ¼ Bijr
irj; ð6dÞ

where ri is the radial unit vector on Σ and qij is the spatial

2-sphere metric orthogonal to ri. The U�
ij tensors, being

spatial, symmetric, and transverse-traceless, have two

independent components that describe the two gravitational

wave degrees of freedom. The fields E and B are the

tendicity and vorticity of the spatial hypersurface [21–23].

All that remains is to specify the tangent vectors θa and

ϕa on the 2-sphere orthogonal to ra and then construct the

complex null vector ma,

ma ¼ 1
ffiffiffi

2
p

r

�

θa þ i

sin θ
ϕa

�

; ð7Þ

where r is the coordinate radius. This allows us to write the
Weyl scalars as inner products of the characteristic fields

with ma and m̄a,

Ψ4 ¼ Uþ
ijm̄

im̄j; ð8aÞ

Ψ3 ¼
1
ffiffiffi

2
p Vþ

i m̄
i; ð8bÞ

Ψ2 ¼
1

2
ðE þ iBÞ; ð8cÞ

Ψ1 ¼ −
1
ffiffiffi

2
p V−

i m
i; ð8dÞ

Ψ0 ¼ U−
ijm

imj: ð8eÞ

C. Tetrad transformations in the asymptotic limit

In addition to any computational improvement that

results from computing the Weyl scalars from the real

characteristic fields of the Weyl tensor evolution system,

a further improvement can be made by relaxing two

requirements of our tetrad. First, a completely orthonormal

tetrad is not necessary, and second, the la and na vectors

need not be aligned to the outgoing and ingoing null

geodesics. Even a Schwarzschild spacetime with the center

of mass shifted from the coordinate center will result in our

l
a and na being misaligned. Handling l

a and na mis-

aligned with outgoing and ingoing geodesics will be

discussed in Sec. III A.

The reason the tetrad is not orthonormal for general

spacetimes is that we define θa and ϕa in Cartesian

coordinates for a sphere in flat spacetime. Using the flat

spacetime θa and ϕa has the advantage that ma can be

computed once at the start of the simulation and then

cached. We demonstrate that these limitations can be

safely mitigated for specific applications of the extraction

procedure.

Ultimately, we are interested in the asymptotic Weyl

scalars. Our “relaxed” tetrad can be thought of as a

transformation of an aligned, orthonormal tetrad. Since it

is the leading-order behavior of the Weyl scalars that

contributes to the asymptotic data, we ask which tetrad

transformations leave the leading-order behavior invariant

in an asymptotically flat spacetime.

Consider a physical spacetime ðM; gabÞ conformally

related to a spacetime ðM; gabÞ such that

gab ¼ Ω2gab; ð9Þ

where Ω ≥ 0 is a smooth function. The manifold M has a

boundary Iþ ¼ S2 ×R that terminates all future-directed

null geodesics, with Ω ¼ 0 and dΩ ≠ 0 at Iþ. The

expected asymptotic behavior of the Weyl scalars is given

by the peeling theorem,

Ψ4 ¼ OðΩÞ; ð10aÞ

Ψ3 ¼ OðΩ2Þ; ð10bÞ

Ψ2 ¼ OðΩ3Þ; ð10cÞ

Ψ1 ¼ OðΩ4Þ; ð10dÞ

Ψ0 ¼ OðΩ5Þ: ð10eÞ

A general tetrad transformation will introduce new terms

to the Weyl scalars. However, any new terms that are higher

order in Ω than the leading Weyl scalar term will not

contribute at Iþ. To find which tetrad transformations are

allowed, we can relate the tetrad basis vectors ðla; na; ma;
m̄aÞ on M to the tetrad basis vectors ðla;na;ma; m̄aÞ
on M,

la ¼ Ω2la; ð11aÞ

na ¼ na; ð11bÞ
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ma ¼ Ωma; ð11cÞ

m̄a ¼ Ωm̄a: ð11dÞ

If the tetrad onM is transformed such that the new terms

are subleading inΩ, then taking the limitΩ → 0will lead to

the same asymptotic tetrad. If the asymptotic tetrad is

invariant, then the asymptotic Weyl scalars will be invariant

to such a transformation. In this case, we can expect that

the Weyl scalars computed at finite radii in a simulation

domain with a nonorthonormal tetrad should converge to

the asymptotic Weyl quantities with increasing radius.

It is important to note that unlike the Weyl scalars and the

strain h, the Newman-Penrose shear σ actually depends

on subleading terms of the tetrad vectors. Therefore, the

asymptotic value of σ is still not invariant under these

transformations. For a full discussion, see Appendix C. We

do not extract σ from simulations so this does not present an

issue to our current considerations.

Constructing the Weyl scalars using Eqs. (8) is math-

ematically equivalent to contracting the following tetrad

with the full spacetime Weyl tensor as in Eqs. (1),

l
a ¼ 1

ffiffiffi

2
p ðsa þ raÞ; ð12aÞ

na ¼ 1
ffiffiffi

2
p ðsa − raÞ; ð12bÞ

ma ¼ 1
ffiffiffi

2
p

r

�

θa þ i

sin θ
ϕa

�

; ð12cÞ

m̄a ¼ 1
ffiffiffi

2
p

r

�

θa −
i

sin θ
ϕa

�

: ð12dÞ

Our choice of sa and ra ensures that lala ¼ nana ¼ 0

and lana ¼ −1 within machine precision, even at finite

radii. Furthermore, since θa and ϕa are defined on spheres

orthogonal to ra, we can ensure lama ¼ nama ¼ 0 as well.

Even with respect to the full spacetime metric, we find

lama ¼ nama ¼ 0 within machine precision asymptoti-

cally. At this point we choose θa and ϕa as defined on a

sphere in flat spacetime, which implies that we cannot

guarantee mama ¼ 0 or mam̄a ¼ 0 at finite radii. If we still

expect our choice ofma to be complex null and normalized

at Iþ, then from Eqs. (11) we would hope to find the

following asymptotic behavior,

mama ¼ OðΩÞ; ð13aÞ

mam̄a ¼ 1þOðΩÞ: ð13bÞ

We do in fact find this behavior even in binary black

hole spacetimes using SpEC, for which the error in Eq. (13)

at Iþ is typically Oð10−8Þ. Since this is below our

desired tolerance, we proceed without needing any further

manipulation of ma.

III. IMPLEMENTATION

A. Extrapolation

The next problem to consider is that the accuracy of

the extracted waveform is directly related to how far away

from the center of the simulation domain the extraction is

performed. The typical simulation domain extends to a

coordinate radius r ∼ 103M at most, and even at this radius

the near-field, gauge, and tetrad effects contribute up to

about 1% of the waveform’s amplitude. If we can choose a

suitable conformal scaling function Ω ¼ ΩðrÞ that accu-

rately models the falloff of the finite-radius data, then we

can set up a procedure to extrapolate the data along null

rays to Ω ¼ 0. This would then be the asymptotic data.

There are two challenges to setting up this extrapolation

procedure. The first is that for a choice of simulation

coordinates ðt; x; y; zÞ, the coordinate time t and coordinate

radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

may not parametrize a null ray

simply as u ¼ t − r, which means our tetrad may be

misaligned even asymptotically. This would require a

more clever choice of u ¼ uðt; rÞ. The second challenge

is defining an appropriate conformal scaling function

Ω ¼ ΩðrÞ. If these two issues are addressed, then we

can loosely lay out our extrapolation procedure as:

(1) Extract each Weyl scalar Ψnðt; r; θ;ϕÞ, for

n ∈ f0; 1; 2; 3; 4g, at multiple radii each timestep.

(2) For each value of u, separately fit the real and

imaginary parts of Ψn extracted at various radii to a

polynomial in Ω.

(3) Take the value of the polynomial with Ω ¼ 0 to find

asymptotic data at the particular u, and repeat for

all u.
This procedure will now be described in greater detail.

We note that each Weyl scalar Ψn can be expressed as an

expansion in powers of the conformal scaling function Ω

with the leading term set by the peeling theorem,

Ψn ¼ Ω5−nðΨ0
n þ Ψ1

nΩþ Ψ2
nΩ

2 þOðΩ3ÞÞ: ð14Þ

The leading coefficient Ψ0
nðu; θ;ϕÞ is the asymptotic Weyl

scalar on Iþ, so we wish to isolate Ψ0
n from the extracted

finite radius data Ψn. Since we are primarily interested in

the radial dependence we can decompose the Weyl scalars

in terms of the spin-weighted spherical harmonics

(SWSHs),

Ψnðt; r; θ;ϕÞ ¼
X

∞

l¼jsj

X

jmj≤l
Ψ

ðl;mÞ
n ðt; rÞsYlmðθ;ϕÞ; ð15Þ

for spin weight s ¼ 2 − n. By working with the mode

weights Ψ
ðl;mÞ
n , we can ignore the angular dependence.
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We can compute the mode weights in the decomposition by

exploiting the orthogonality of the SWSHs,

Ψ
ðl;mÞ
4

¼
Z

S2
ðUþ

ijm̄
im̄jÞ−2Ȳlmr

2 sin θdθdϕ; ð16aÞ

Ψ
ðl;mÞ
3

¼ 1
ffiffiffi

2
p
Z

S2
ðVþ

i m̄
iÞ−1Ȳlmr

2 sin θdθdϕ; ð16bÞ

Ψ
ðl;mÞ
2

¼ 1

2

Z

S2
ðE þ iBÞȲlmr

2 sin θdθdϕ; ð16cÞ

Ψ
ðl;mÞ
1

¼ −
1
ffiffiffi

2
p
Z

S2
ðV−

i m
iÞ
1
Ȳ
lmr

2 sin θdθdϕ; ð16dÞ

Ψ
ðl;mÞ
0

¼
Z

S2
ðU−

ijm
imjÞ

2
Ȳ
lmr

2 sin θdθdϕ; ð16eÞ

where we have used Eqs. (8) to write the Weyl scalars in

terms of the characteristic fields. The mode weights are

computed on a set of concentric spheres of constant

coordinate radius r at each time step. To compute the

mode weights up to lmax, it suffices to have ð2lmax þ 1Þ2
points on each extraction sphere evenly spaced in θ and ϕ.

Since the complex null tetrad vector ma is defined for a

sphere in flat space, it does not change throughout the

simulation. Therefore, we can precompute most of

the integrand at each ðθ;ϕÞ point, only needing to update

the characteristic fields each time step.

With the angular dependence factored out of the Weyl

scalars, we proceed to find a good definition of uðt; rÞ and
ΩðrÞ. The naive choice u ¼ t − r does not leave us with a

good parametrization of the null rays asymptotically. This

is to be expected, since the simulation coordinates were not

chosen for this intent. An attempt at improving this might

be to use the radial tortoise coordinate r� to define the

parametrization u ¼ t − r�. However, this shows only a

marginal improvement and still does not leave us with a

good enough parametrization for effective extrapolation.

Figure 1 illustrates how a choice of uðt; rÞ that fails to

accurately parametrize null rays will adversely affect the

extrapolation.

A better choice for a retarded time u that parametrizes

outgoing null rays in the asymptotic limit involves a radial

tortoise coordinate R� constructed from the areal radius as

well as a choice of “corrected time” tcorr [50],

u ¼ tcorr − R�; ð17aÞ

R� ¼ Rþ 2MADM log

�

R

2MADM

− 1

�

; ð17bÞ

tcorr ¼
Z

T

0

hNi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2MADM=R
p dT 0; ð17cÞ

where MADM is the ADM energy of the initial data at the

start of the simulation, hNi is the average value of the lapse
over the extraction sphere, and R is the areal radius defined

by computing the surface area of the extraction sphere,

R ¼
�

1

4π

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgabÞ
p

dΩ2

�

1=2

: ð18Þ

For the conformal scaling function, it suffices to use the

inverse areal radius,

Ω ¼ R−1: ð19Þ

We also scale out the waveform data’s leading falloff in R
so that the data to be fitted is as constant in R as possible.

Additionally, we scale the data by an appropriate factor of

the mass of the system M so that we can work with the

dimensionless quantity R5−nMn−3Ψ
ðl;mÞ
n . For our work, we

choose the system mass M to be the sum of the

Christodoulou masses of the black holes measured at the

earliest time after initial transients, i.e., junk radiation, have

decayed from the simulation.

The goal is to find a least-squares polynomial fit in R
to data from a discrete set of extraction radii fRjg ¼
fRmin;…; Rmaxg. Thus for each mode ðl; mÞ and time ui,
there are two sets of data,

FIG. 1. An example of how a poor choice of retarded time

uðt; rÞ fails to capture the falloff behavior of gravitational

radiation along an approximate outgoing null ray. The plot on

the left illustrates a small section of three Ψ4 waveforms extracted

at different radii, one green curve per extraction radius. The blue

dots represent points that lie along a true null ray. If the choice of

uðt; rÞ accurately parametrizes the null rays then the curves

should be aligned, i.e., the blue dots should all be vertically

aligned having the same value of ui. Because of a poor choice of
uðt; rÞ, in this example u ¼ t − r using simulation coordinates,

the curves are all misaligned and the orange diamonds denote the

values of Ψ4 along the approximate null ray. The right plot

illustrates how the values of Ψ4 as a function of radius along an

approximate null ray (orange diamonds) deviate from the values

along the true null ray (blue dots). Extrapolating polynomials are

shown in the right plot as thick dashed lines for both data. Notice

that extrapolating Ψ4ðuiÞ along r → ∞ leads to an incorrect

asymptotic value if a bad uðt; rÞ is chosen.
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fΞjg ¼ fR5−n
j Mn−3ℜΨ

ðl;mÞ
n ðui; RjÞg; ð20aÞ

fϒjg ¼ fR5−n
j Mn−3ℑΨ

ðl;mÞ
n ðui; RjÞg; ð20bÞ

to which we perform the following polynomial fit solving

for coefficients ξðiÞ and ζðiÞ,

fΞjg ≃ ξð0Þ þ ξð1ÞR−1 þ � � � þ ξðpÞR−p; ð21aÞ

fϒjg ≃ ζð0Þ þ ζð1ÞR−1 þ � � � þ ζðpÞR−p; ð21bÞ

truncated at some finite order p. Comparing the right-hand

sides of Eqs. (21) and Eq. (14), we can see that if the

unwanted effects in the data are all captured by the

subleading terms of the polynomial, then the leading-order

terms ξð0Þ and ζð0Þ are the asymptotic data. Thus we have,

Mn−3Ψ
0ðl;mÞ
n ðuiÞ ¼ ξð0Þ þ iζð0Þ: ð22Þ

For the sake of reducing cumbersome notation, we will

refer to the dimensionless asymptotic Weyl scalars by

ψ
ðl;mÞ
n ≡Mn−3Ψ

0ðl;mÞ
n : ð23Þ

This fitting procedure is repeated for each ui to get the

full asymptotic waveform of the ðl; mÞ mode, ψ
ðl;mÞ
n ðuÞ.

The extrapolation should be repeatedly performed with

increasing extrapolation order p until ψ
ðl;mÞ
n ðuÞ converges

to a desired tolerance.

In summary, this extrapolation procedure accomplishes

lim
R→∞

R5−nMn−3Ψ
ðl;mÞ
n ðu; RÞ ¼ ψ

ðl;mÞ
n ðuÞ; ð24Þ

and is readily available in the open-source PYTHON module

scri [2,51–53]. This extrapolation procedure is also used

in the same way to find the asymptotic gravitational wave

strain h0 from the finite-radius extracted strain h,

lim
R→∞

RM−1hðl;mÞðu; RÞ ¼ h0ðl;mÞðuÞ: ð25Þ

B. Junk radiation

Binary black hole simulations suffer from a spurious

but strong burst of gravitational radiation that is emitted at

the start of the evolution [54–56]. This “junk” radiation

propagates outward through the domain and should pass

through the outer boundary without affecting the rest of the

simulation.

We found that the extracted waveforms for Ψ2, Ψ1, and

Ψ0 all showed effects of the junk radiation reflecting off the

outer boundary and propagating back into the domain. In

addition, there was also significant evidence that the junk

radiation was self-interacting after being initially emitted

and scattering off the nonflat geometry back into the

domain before even reaching the outer boundary. The

radial falloff of the junk radiation is subleading for Ψn≥3

but not for Ψn≤2. If the junk radiation is not subleading,

then the extrapolation procedure will amplify its effects

rather than removing them.

Three schemes were implemented to reduce the magni-

tude of the junk radiation, mitigate the effect of back-

scattered junk in the waveform data, and prevent the

reflection of junk off the outer boundary. All of these

procedures had a negligible effect on the run time of the

simulation.

In order to reduce the junk overall, a different choice of

initial data gauge was made, which was found to lower the

magnitude of the junk by roughly 80%. The default gauge

choice for initial data in SpEC is the superposed Kerr-

Schild (SKS) gauge, which allows one to create initial data

with near-extremal parameters [57]. Instead, the super-

posed harmonic Kerr (SHK) gauge was used [56]. This

gauge has the benefit of lower junk radiation at the cost of

being unable to create initial data for BBH runs with high

spin. A maximum effective dimensionless spin of around

0.7 can be reached, but anything higher would require the

SKS gauge.

In order to reduce the backscattered junk, we first notice

that the junk radiation is not subleading in radial falloff

for Ψn≤2. Thus to limit the contribution of junk to the data,

we must place the innermost extraction radius closer to the

coordinate center. We set up 24 extraction radii, evenly

spaced in inverse radius, from 2ƛ0 to about 21ƛ0, where

ƛ0 ¼ 1=ω0 is the initial reduced gravitational wavelength as

determined by the orbital frequency of the binary from the

initial data. Since Ψ1 and Ψ0 have such sharp falloff with

radius, the amplitudes of waveforms quickly fall below the

noise floor ε determined by the simulation resolution. If the

extraction radii with insignificant waveform data are

included in the set of data to be extrapolated, Eq. (20),

then the extrapolation will not converge. To improve the

extrapolation then, we exclude these insignificant radii

from the extrapolation. For Ψ1 and Ψ0, we determine the

cut-off radius Rc at each value of retarded time for which

we will exclude data from an extraction radius if it is larger

than Rc. The value of Rc is defined to be the radius at which

the dominant mode of Ψ1 (or Ψ0) is equal to ε. For the

numerical results in Sec. IV B 1 we used ε ¼ 10−9.

Preventing the junk from reflecting off the outer domain

boundary would properly require improving the boundary

conditions, which is a nontrivial task. Rather than take this

approach, we decided to prevent reflection by effectively

“deleting” the outgoing burst when it reached the outer

boundary. More specifically, the outer part of the domain

where extraction takes place is constructed from concentric

spherical shells. We extend the domain with an additional

spherical shell that has no extraction radii and within which
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the entire burst of junk radiation will be contained when it

reaches the outer boundary. Once the junk is inside this

extra shell we can stop the simulation, delete the extra shell,

and continue the simulation with the now smaller domain.

As a rough heuristic, the burst of junk radiation is typically

≲450M wide, so we extend the outer boundary of the

domain by adding an extra 250M-wide spherical shell.

When the peak of the junk radiation reaches the outer

boundary, the first half of the junk pulse will have already

been reflected so that the entire burst of junk radiation can

be contained within the extra shell. We ensure that the

coordinates inside the domain do not shift when the extra

shell is deleted so that this procedure has no adverse effect

on the waveforms being extracted.

IV. NUMERICAL RESULTS

All numerical work, apart from extrapolation in post-

processing, was done using SpEC. The extrapolation was

done with scri [51].

A. Shifted Kerr

We begin by testing this extraction-extrapolation pro-

cedure with an analytic case in order to verify convergence

of the extrapolation procedure to the correct result.

For a Kerr spacetime in Kerr-Schild coordinates, the

tetrad in Eqs. (12) based on spheres of constant coordinate

radius will be neither orthonormal nor aligned with the

principal null directions. The outgoing null tetrad vector

points radially outward from the coordinate center and does

not take into account any shift due to the angular momen-

tum of the spacetime. As expected, these effects are most

pronounced at small radii r≲ 100M. Furthermore, if the

center of mass of the black hole is offset by a distance δz
along the z-axis from the coordinate center, then this further

misaligns the outgoing tetrad null vector.

For a Kerr metric in Kerr-Schild coordinates with a

center of mass shifted by δz, the only nonzero asymptotic

Weyl scalar modes are

ψ
ð2;0Þ
0

≡ lim
R→∞

R5Ψ
ð2;0Þ
0

¼
ffiffiffiffiffiffiffiffi

24π

5

r

ða2 − 2iaδz − δz2Þ; ð26aÞ

ψ
ð1;0Þ
1

≡ lim
R→∞

R4Ψ
ð1;0Þ
1

¼
ffiffiffiffiffiffi

6π
p

ðai − δzÞ; ð26bÞ

ψ
ð0;0Þ
2

≡ lim
R→∞

R3Ψ
ð0;0Þ
2

¼ −
ffiffiffiffiffiffi

4π
p

; ð26cÞ

ψ
ð1;0Þ
3

≡ lim
R→∞

R4Ψ
ð1;0Þ
3

¼ ψ
ð1;0Þ
1

; ð26dÞ

ψ
ð2;0Þ
4

≡ lim
R→∞

R5Ψ
ð2;0Þ
4

¼ ψ
ð2;0Þ
0

; ð26eÞ

where a is the Kerr spin parameter, andM ¼ 1. Usually, the

Weyl scalars of a Kerr spacetime are considered with

respect to a Kinnersley tetrad, in which the only non-zero

Weyl scalar is Ψ2; for our tetrad, there is a nonzero mode

for each of the Weyl scalars even when δz ¼ 0. Since Kerr

is a nonradiating spacetime, notice that the leading orders

for Ψ4 and Ψ3 are R−5 and R−4. This demands that the

power of R in Eq. (24) be adjusted accordingly for

extrapolating Ψ4 and Ψ3 in this case.

Using SpEC, we computed a Kerr spacetime with the

center of mass shifted by δz ¼ 1M. The Weyl scalar mode

weights up to lmax ¼ 8 were determined at 10 extraction

radii equally spaced in inverse radius from Rmin ¼ 10M to

Rmax ¼ 500M. Since the spacetime is time-independent,

we need not worry about the added complication of

choosing a parametrization of null rays uðt; rÞ for this

analysis.

For a range of extrapolation orders, we computed a

measure of the relative error in each computed asymptotic

Weyl scalar,

ΔKerr ¼ jψ ðl0;m0Þ
n j−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l;m

�

�

�ψ
ðl;mÞ
n − ψ̂

ðl;mÞ
n

�

�

�

2

s

; ð27Þ

where ψ̂n denotes the computed asymptotic Weyl scalar, ψn

denotes the analytic asymptotic Weyl scalar, and ðl0; m0Þ is
the only non-zero analytic mode. The results for 3 ≤ p ≤ 9

are plotted in Fig. 2.

As the extrapolation order increases, the errors decrease

exponentially until they converge. Since we are using 10

extraction radii, we can have a fitting polynomial of

p < 10. However, using a value of p ∼ pmax will result

in overfitting. This is especially the case for complicated

dynamic spacetimes, as will be discussed in Sec. IV B 1.

Even with a simple spacetime like Kerr, the error begins to

FIG. 2. The relative error in the asymptotic Weyl scalars

computed from a Kerr spacetime in Kerr-Schild coordinates with

the center of mass shifted by δz ¼ 1M.

DANTE A. B. IOZZO et al. PHYS. REV. D 103, 024039 (2021)

024039-8



slowly increase because of overfitting for p > 6 with ψ4

and ψ0.

The extrapolation convergence with numerical resolution

in the simulation grid was also investigated. Since SpEC

employs a pseudospectral method, we define the average

radial grid density as the number of radial spectral

collocation points divided by the coordinate distance

between the outer and inner domain boundaries. The region

inside the apparent horizon is excised so the excision

surface is the inner boundary of the domain.

Figure 3 shows the relative error in the asymptotic Weyl

scalars for p ¼ 9 as a function of average radial grid

density. We see that the error decreases exponentially as the

resolution is increased until the errors converge.

B. Binary black hole coalescence

For a complicated dynamical spacetime, like that of a

binary black hole coalescence, we do not have the luxury

of comparing the computed asymptotic Weyl scalars to

known analytic values. Instead, we analyze the conver-

gence behavior of the extrapolation procedure in general.

We can also analyze the amount by which the computed

asymptotic Weyl scalars violate the Bianchi identities,

which gives us a self-consistency test against exact general

relativity.

1. Extrapolation convergence

A 20-orbit equal-mass precessing binary black hole

inspiral, coalescence, and ringdown were simulated with

dimensionless spins,

χA ¼ ð 0.4684; 0.1803; −0.3287 Þ;
χB ¼ ð−0.1924; 0.0285; −0.2284 Þ;

and 24 extraction radii equally spaced in inverse radius

between Rmin ¼ 73M and Rmax ¼ 770M.

To provide a measure of the convergence of the extrapo-

lation procedure, we compute the time-averaged relative

difference between a waveform fp found with extrapola-

tion order p and a waveform fp−1 found with extrapolation

order p − 1,

Δp;p−1 ¼
1

uH − u0

Z

uH

u0

jfpðuÞ − fp−1ðuÞj
jfpðuÞj

du; ð28Þ

where u0 is the time of the simulation after the junk

radiation has passed and uH is the time at which the

common horizon forms.

We expect Δp;p−1 to decrease as p increases as in the

case for the Kerr spacetime, cf. Fig 2. However, with a

dynamic spacetime we have the added complication of

choosing an appropriate value for the retarded time u that

accurately parametrizes outgoing null rays. Any choice of u
that poorly parametrizes the null rays will result in errors in

the extrapolation procedure. For the most part, our ansatz

for uðt; rÞ, Eqs. (17), shows a significant improvement over

simply using u ¼ t − r. However, there is still room for

future work in improving the choice of u. The net effect is
that Δp;p−1 will decrease until the extrapolating polynomial

begins to fit to artifacts from the choice of u and numerical

noise. Higher extrapolation orders will have a build up of

error and so it will be important to decide on an optimal

value for p.
Figure 4 shows the relative difference of successive

extrapolation orders for each Weyl scalar. The quantities h,
Ψ4, and Ψ3 show convergence in the extrapolation of the

dominant mode up to p ¼ 7, after which overfitting errors

start to build up. It appears that the (0,0) mode of Ψ2 does

not benefit much from the extrapolation procedure and is

relatively constant with p. This permits an extrapolation

order to be chosen that improves the subleading (2,2) mode.

As expected, Ψ1 and Ψ0 are not able to converge to the

same tolerance as the other Weyl scalars with slower radial

falloff. Pleasantly enough,Ψ1 shows some improvementwith

extrapolation and converges to about Oð10−3Þ. Before the

implementation of the techniques mentioned in Sec. III B,

extrapolation of Ψ1 and Ψ0 was severely unstable even

at p ¼ 2.

As mentioned in the introduction, the most immediate

future work resulting from acquiring asymptotic wave-

forms is to develop a procedure for completely fixing the

BMS gauge freedom of numerical waveforms. For this

purpose, it is specifically the Weyl scalars ðΨ4;Ψ3;Ψ2Þ that
are of primary importance [2,5,34]. Here we see that for

some extrapolation order, we are able to get all three

FIG. 3. The relative error in the asymptotic Weyl scalar

mode weights for a Kerr spacetime with the center of mass

shifted by δz ¼ 1M. The average radial grid density is given by

the number of radial spectral collocation points divided by the

distance between the outer domain boundary and the excision

boundary.
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waveforms respecting the leading falloff to a relative error

of Oð10−5Þ.
Instead of time-averaging the relative difference in a

waveform from two successive extrapolation orders, we

can plot the relative difference as a function of u to see

where in the waveform convergence is improving or

diverging. In Fig. 5, we have chosen to study the con-

vergence behavior of the ψ
ð2;2Þ
3

waveform since it shows

both good convergence behavior for p ≤ 7 and a buildup of

overfitting errors for p > 7.

By plotting the full waveform we can see that there is a

difference in convergence behavior for the early inspiral

and late inspiral. The late inspiral converges to a tolerance

that is almost two orders of magnitude lower than the

earliest part of the inspiral. This effect is seen with all of the

Weyl scalars. Thus for late inspiral alone, we can expect

even better convergence behavior than shown in Fig. 4.

This is to be expected. Near-field effects fall off as ƛ=r
decreases. Since ƛ decreases when the binary is closer to

merger, so also do the near-field effects even at a fixed

radius. Therefore, the waveform at times closer to merger

will be less contaminated by near-field effects, so it is easier

for the extrapolation procedure to separate the asymptotic

waveform from these near-field effects. Further discussions

about the extrapolation procedure can be found in [25,50].

2. Bondi gauge analysis

The Bianchi identities provide a convenient tool to

provide a self-consistency test on asymptotic NR wave-

forms. In an asymptotic spacetime, Bondi gauge is any

choice of coordinates in which the metric and its derivatives

approach Minkowski spacetime asymptotically. Our

extrapolation procedure assumes an asymptotically flat

spacetime, which should result in Bondi-gauge waveforms

on Iþ. By taking the Bianchi identities written in the

Newman-Penrose formalism and applying the assumptions

for Bondi gauge, we are left with a set of constraint

equations that must be satisfied for any consistent set of

Bondi gauge waveforms,

Ψ0

4
¼ −ḧ0; ð29aÞ

Ψ0

3
¼ 1

ffiffiffi

2
p ð _h0; ð29bÞ

_Ψ
0

3 ¼ −
1
ffiffiffi

2
p ðΨ0

4
; ð29cÞ

_Ψ
0

2 ¼ −
1
ffiffiffi

2
p ðΨ0

3
þ 1

4
h̄0Ψ0

4
; ð29dÞ

_Ψ
0

1 ¼ −
1
ffiffiffi

2
p ðΨ

0

2
þ 1

2
h̄0Ψ0

3
; ð29eÞ

_Ψ
0

0 ¼ −
1
ffiffiffi

2
p ðΨ0

1
þ 3

4
h̄0Ψ0

2
; ð29fÞ

where an overdot signifies a derivative with respect to u.
We are using the ð operator as defined for a spin-weighted

function f of spin weight s,

FIG. 4. Extrapolation convergence of the extractedWeyl scalars

for a precessing binary black hole inspiral and merger. The

relative difference measure Δp;p−1, Eq. (28), is plotted for the

dominant mode of each Weyl scalar. Note that all p ¼ 1 wave-

forms are taken to be the finite-radius waveforms from the

outermost extraction radius. This is done to provide a comparison

with unextrapolated data.

FIG. 5. Relative difference of ψ
ð2;2Þ
3

computed from successive

extrapolation orders for a precessing binary black hole inspiral,

merger, and ringdown. The extrapolation order p ¼ 2 waveform

is compared with the unextrapolated waveform of the outermost

extraction radius. The formation of the common horizon occurs at

time uH . The time-averaged value of each curve is the value of a

point for the ψ
ð2;2Þ
3

curve in Fig. 4.
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ðf ¼ −
ðsin θÞs

ffiffiffi

2
p

�

∂

∂θ
þ i

sin θ

∂

∂ϕ

�

½ðsin θÞ−sf�; ð30Þ

which acts on the spin-weighted spherical harmonics
2
as

the ladder-operator,

ðsYlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðl − sÞðlþ sþ 1Þ

r

sþ1
Y
lm; ð31aÞ

ð̄sYlm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðlþ sÞðl − sþ 1Þ

r

s−1Ylm: ð31bÞ

The factors that appear in Eqs. (29) may seem to dis-

agree with the existing literature. See Appendix B for a

discussion on these differences. The derivation of

Eqs. (29b)–(29f) assumes that tetrads have been chosen

such that h0 ¼ σ̄0; the Bianchi identities themselves do not

depend directly on h. Following the considerations in

Sec. II C and Appendix C, the use of h in these equations

leaves a possible subleading term of σ unaccounted for.

This would mean that these constraint equations with h are

only approximate constraints. Nonetheless, comparisons

with CCE waveforms suggest that this subleading term in σ

is negligible for our current precision, and even these

approximate constraints are satisfied to a tolerance that

allows for practical application.

Using the information from Fig. 4 and plots like Fig. 5

for each asymptotic quantity, we chose the following values

of p for each waveform to test the Bondi gauge constraints:

(i) p ¼ 7 for ψ4 and ψ3

(ii) p ¼ 5 for ψ2 and h0

(iii) p ¼ 3 for ψ1

(iv) p ¼ 2 for ψ0

Using these waveforms, we can find the relative magnitude

of the violations of Eqs. (29). The deviation from equality is

scaled with respect to the magnitude of the left-hand side of

the equation. For each mode, we take the time average

of the violation, setting the initial time to when the initial

junk radiation has passed and setting the final time to

uH þ 80M. The results are plotted in Fig. 6. The time

derivatives were performed by fitting a cubic spline to the

waveform and then evaluating the derivative of the spline.

Since the sampling of the data is not uniform in time—with

a higher density of points near merger—we performed a

minimization of the violations while varying the density of

the time sampling used in each time derivative.

For the modes that predominantly contribute to the

waveform—the ðl;�lÞ and ðl;�ðl − 1ÞÞ modes—we

see violations from Bondi gauge between Oð10−5Þ and

Oð10−2Þ. The h0 and ψ4 waveforms are of the greatest

interest for gravitational wave astronomy. Although we

cannot make any direct statements on how well any

individual waveform satisfies the Bondi constraints, we

can parse out some more information by considering

FIG. 6. The relative magnitude of the violation of the Bianchi identity constraints, Eqs. (29), by numerical Bondi-gauge asymptotic

waveforms of a binary black hole coalescence. For each value of l, the modes are plotted from ðl;−lÞ to ðl;lÞ in order of increasingm.

Each letter in the legend refers to the equation in Eqs. (29) that is being plotted. Specifically, the values plotted here are the left-hand

sides of the equations minus the right-hand sides, all scaled by magnitude of the left-hand sides. A full discussion of this data is found in

Sec. IV B 2 after Eqs. (31). The modes for each value of l have been connected for ease of visualization.

2
The −2Y2m SWSHs as SpEC defines them are given in

Eqs. (C.25–C.27) in [25].
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Eqs. (29a)–(29c). All three equations only involve

ðh0;ψ4;ψ3Þ, and Eq. (29c) is the only constraint equation

that does not include h0. Although Eq. (29b) and Eq. (29c)

are effectively the same relation, just differing by an overall

time derivative, the latter demonstrates smaller violations

by roughly half an order of magnitude. This may imply that

a large part of the violation is due to h0, which would not be
unreasonable given that an entirely different extraction

procedure is used for the strain. It has also been observed in

several SXS waveforms that the h0 waveform seems to

contain more noise than the ψ4 waveform. A further

analysis of the RWZ extraction procedure for the strain

may shed more light on this.

V. CONCLUSION

All gravitational waveforms have an inherent infinite-

dimensional set of gauge freedoms. When working with

asymptotic waveforms at Iþ, we can understand trans-

formations between waveforms in different asymptotic

coordinates via the BMS group. Before attempting to build

any phenomenological or surrogate models from NR

waveforms, we must both ensure that the waveforms are

free from all near-field effects and also be able to

systematically fix the BMS gauge freedom. This is crucial

if we want to separate artifacts of gauge from the actual

physical information in the waveform.

A method for fixing the BMS gauge freedom has been

proposed by Moreschi [33,34], which requires reliable

extraction of the asymptotic quantities of h,Ψ4,Ψ3, andΨ2.

The extraction procedure implemented in this paper, using

the real characteristic fields of the Weyl tensor evolution

equations, is efficient and readily implementable given the

standard 3þ 1 variables from any NR code. We have

demonstrated a successful implementation in the Spectral

Einstein Code.

The extraction procedure achieves its efficiency at the

cost of using a tetrad choice that is not guaranteed to be

orthonormal nor aligned with the principal null directions

of the spacetime. However, we have demonstrated that

nonorthonormal and misaligned tetrads can still be used in

getting the asymptotic Weyl scalars as long as the spurious

effects of the tetrad choice fall off with radius at orders

subleading to those specified by the peeling theorem. This

paper has explored an extrapolation procedure by which we

can determine the asymptotic waveform data from the

finite-radius extracted data. Using a coordinate-shifted Kerr

metric, we have shown that the extraction and extrapolation

procedure is able to recover the correct asymptotic values.

For a precessing, unequal mass ratio, binary black hole

coalescence we have shown that we can find convergence

in the extrapolation procedure for h, Ψ4, Ψ3, and Ψ2, while

extrapolation still leads to improvement for Ψ1 and Ψ0. We

discussed several methods to reduce the effect of junk

radiation in waveforms resulting from binary black hole

initial data.

There are several limiting factors to the extrapolation

procedure. As ansatzes, we have taken the choice of

conformal scaling function Eq. (19), the expansion of

the Weyl scalars as a polynomial Eq. (14), and the

approximate parametrization of null rays Eq. (17). An

improvement in any one of these may improve the

extrapolation convergence. Despite these limitations, we

are able to obtain numerical waveforms for the full set of

Weyl scalars that agree with those of an asymptotic Bondi-

gauge spacetime up to a relative error of Oð10−2Þ for the
first few dominant modes. For the waveforms specifically

required for the BMS gauge-fixing procedure, we are able

to obtain waveforms that agree with asymptotic Bondi-

gauge waveforms up to a relative error of Oð10−3Þ. Further
analysis can be performed once other extraction proce-

dures, such as CCE, produce asymptotic waveforms to

compare against.

By expanding upon the robust and well established wave

extraction method of SpEC, we have presented the first

production-level waveforms for the entire set of Weyl

scalars that are immediately ready for use as tools for

gravitational wave astronomy. Having the full set of Weyl

scalars allows us to use the Bianchi identities to test our

extracted waveforms against exact general relativity and

provide hard upper bounds on their accuracy. This analysis

is straightforward to perform and can test each waveform

mode individually, as we have demonstrated in Fig. 6.

A small public catalog of simulations with the full set

of Weyl scalar waveforms will soon be made available.

The Weyl characteristic field extraction-extrapolation pro-

cedure that we have presented has now set the stage for a

reliable method that will finally provide the gravitational

wave astronomy community with completely gauge-fixed

waveforms.
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APPENDIX A: COMPLEX WEYL

CHARACTERISTIC FIELDS

Requiring the Faraday tensor to be divergenceless and

satisfy the Bianchi identity results in two constraint

equations and two evolution equations for the Maxwell

electric and magnetic fields. In a similar way, requiring the
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Weyl tensor to be divergenceless
3
and satisfy the Bianchi

identities,

∇½aCbc�de ¼ 0; ðA1aÞ

∇aCabcd ¼ 0; ðA1bÞ

results in two constraint equations and two evolution

equations for Eij and Bij. Since we are interested in the

propagation of radiation, we will focus on the evolution

equations. Just as in the Maxwell case, we have two

coupled evolution equations for Eij and Bij, which we

can combine into a single equation,

∂tQij − Nk∂kQij − iNk∂kQlðiϵjÞ
kl ¼ SQ; ðA2Þ

where Qij ¼ Eij þ iBij, and SQ is all of the source terms.

These source terms are purely algebraic in Eij and Bij. We

can further decompose the quantity Qij with respect to the

geometry of the simulation domain. In the region we would

be extracting Qij, the domain is constructed of concentric

spherical shells, that is, a radial foliation of the spatial

hypersurfaces. If we have a 2-sphere metric qij and an

outgoing spatial radial vector ra, then the spatial and

symmetric tensor Qij can be decomposed irreducibly into

a scalar function C, a vector Ci, and a transverse-traceless

tensor Cij,

Qij ¼ C

�

rirj −
1

2
qij

�

þ 2rðiCjÞ þ Cij; ðA3aÞ

C ¼ ðEij þ iBijÞrirj; ðA3bÞ

Ci ¼ ðEjk þ iBjkÞrjqki; ðA3cÞ

Cij ¼ ðEkl þ iBklÞ
�

qkiq
l
j þ

1

2
qklqij

�

: ðA3dÞ

Thus we can express the Weyl scalars in terms of the

complex characteristic fields,

Ψ4 ¼ Cijm̄
im̄j; ðA4aÞ

Ψ3 ¼
1
ffiffiffi

2
p Cim̄

i; ðA4bÞ

Ψ2 ¼
1

2
C; ðA4cÞ

Ψ1 ¼ −
1
ffiffiffi

2
p Cim

i; ðA4dÞ

Ψ0 ¼ Cijm
imj: ðA4eÞ

It is simpler numerically to store and work with real

numbers. Using the following identities [42],

imi ¼ −rjmkϵijk; ðA5aÞ

im̄i ¼ rjm̄kϵijk; ðA5bÞ

we can rewrite the three complex fields as the six real

characteristic fields in Eqs. (6).

APPENDIX B: TETRAD CONVENTIONS

The goal of this section is to express the relations

between asymptotic quantities in Bondi gauge in a way

that is completely agnostic of sign convention and scale

factors. As such, all the assumptions and results in this

section are only valid with a Minkowski metric. We start by

defining a sign variable s0 to account for different choices

of the metric signature,

s0 ¼
�

1 for metric signature ð−;þ;þ;þÞ
−1 for metric signature ðþ;−;−;−Þ

ðB1Þ

For the sake of simplicity, all variables introduced in this

section that are named sn will be used to generalize a sign

convention and can only take the value �1. In this section,

gab and ηab are the ð−;þ;þ;þÞ signature metrics and

explicit factors of s0 will be used to account for metric

signature.

In the literature, it is common to define a complex null

tetrad by first constructing la to be a null vector tangent to

outgoing null hypersurfaces parametrized by constant

retarded time u,

la ∝ ðduÞa: ðB2Þ

The ingoing null tetrad vector na is then defined by

enforcing the normalization lan
a ¼ −s0. There remains

the freedom to introduce a scaling by λ that still satisfies

the normalization, ðλlaÞðλ−1naÞ ¼ −s0. We can absorb this

freedom, which includes a sign ambiguity, into the defi-

nition of la by defining it as

la ¼ −
λ
ffiffiffi

2
p ðdt − drÞa: ðB3Þ

While λ parametrizes the boost freedom of the tetrad, there

is still a spin freedom on the choice ofma, for which we can

see that ma ↦ eiΘma does not affect the normalization

mam̄a ¼ s0. Therefore, we absorb this freedom, parame-

trized by 0 ≤ Θ < 2π, into the definition of ma,

3
The divergence of the Weyl tensor is properly sourced by the

stress-energy tensor,

∇aCabcd ¼ ∇½d

�

−Tc�b þ
1

3
Tgc�b

�

;

where here Tab is the stress-energy tensor, and thus only vanishes
in vacuum, cf. Eq. (A1b). This is analogous to the divergence of
the Faraday tensor vanishing in the absence of sources.
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ma ¼
eiΘ
ffiffiffi

2
p ðdθ þ idϕÞa; ðB4Þ

This orientation is chosen so that for Θ ¼ 0, on the z axis
we would find that ðdθÞa points along the positive x axis.

Throughout this section we are defining ð as appropriate to

each author’s definition of ma.

The Christoffel symbols of the second kind contain no

factors of s0 so they are agnostic to metric signature,

Γc
ab ¼

1

2
gcdð∂bgda þ ∂agdb − ∂dgabÞ; ðB5Þ

Using the above definition for the Christoffel symbol, there

is a choice of sign convention on the definition of Riemann

tensor, which we parametrize by s3,

s3R
a
bcd ¼ ∂cΓ

a
db − ∂dΓ

a
cb þ Γa

ceΓ
e
db − Γa

deΓ
e
cb; ðB6Þ

Note that a factor of s0 appears for the lowered-index

Riemann tensor,

Rabcd ¼ s3s0ð∂cΓadb − ∂dΓacb þ ΓaceΓ
e
db − ΓadeΓ

e
cbÞ:

ðB7Þ

We then need to define the sign variables s1 and s2 to take

in account the choice of sign in the definitions of the Weyl

scalars and the Newman-Penrose shear σ,

Ψ4 ¼ s1Cabcdn
am̄bncm̄d; ðB8aÞ

σ ¼ s2m
amb∇alb; ðB8bÞ

where here the terms on the right-hand sides are in each

author’s own convention. The Bondi gauge Bianchi iden-

tities can now be written as

_Ψ
0

3 ¼ −
λeiΘ
ffiffiffi

2
p ðΨ0

4
; ðB9aÞ

_Ψ
0

2 ¼ −
λeiΘ
ffiffiffi

2
p ðΨ0

3
þ 1

ffiffiffi

2
p s0s2λσ

0Ψ0

4
; ðB9bÞ

_Ψ
0

1 ¼ −
λeiΘ
ffiffiffi

2
p ðΨ

0

2
þ 2

ffiffiffi

2
p s0s2λσ

0Ψ
0

3
; ðB9cÞ

_Ψ
0

0 ¼ −
λeiΘ
ffiffiffi

2
p ðΨ0

1
þ 3

ffiffiffi

2
p s0s2λσ

0Ψ0

2
: ðB9dÞ

A list of the conventions for various papers is given in

Table I.

We can also define a parameter ζ to account for different

scaling factors of the gravitational-wave strain,

h ¼ ζ−1
h

1

2
ðhθθ − hϕϕÞ − ihθϕ

i

; ðB10Þ

where hab ¼ s0ðgab − ηabÞ. From this we can write the

relation between Ψ0

4
and h0 as

Ψ
0

4
¼ −ðs1s3ζλ−2e−2iΘÞḧ0; ðB11Þ

In order to convert a quantity in the SpEC convention

to a different convention, the appropriate factors can be

determined by

Ψ
0½X�
n ¼ s0s1s3ðλeiΘÞ2−nΨ0½SpEC�

n ; ðB12aÞ

h0½X� ¼ s0ζ
−1e−2iΘh0½SpEC�; ðB12bÞ

where all of the parameters are from the column of

convention [X] in the table. Although we can easily relate

h0 and Ψ0

4
between different conventions, the situation is

far more complicated for σ0. These complexities will be

discussed in Appendix C.

APPENDIX C: SUBLEADING TETRAD HAZARDS

In Sec. II C, we discussed that in the asymptotic limit the

Weyl scalars and the strain h are invariant under tetrad

transformations that leave the leading order tetrad behavior

unchanged. However, this does not hold for all the

Newman-Penrose scalars. Most importantly it does not

hold for the shear σ. Although we are not extracting σ from

simulations, the analysis of numerical waveforms using the

BMS group still requires understanding how σ relates to the

Weyl scalars and h. Furthermore, a formidable difficulty

arises when attempting to establish a connection with the

literature. Waveform quantities cannot be generally con-

verted between the different formalisms because the sub-

leading tetrad behavior is often not specified sufficiently.

This Appendix will explore the effects of subleading tetrad

behavior on the asymptotic quantities that are of primary

interest to the study of gravitational radiation.

TABLE I. Sign conventions and scaling factors for various

papers. For convenience, a shorthand name for each convention is

given in the first row. N/A signifies that the particular convention

is not specified in that paper.

SpEC MB NP ADLK BR C

s0 1 −1 −1 1 1 −1

s1 1 1 −1 1 −1 −1

s2 1 1 1 −1 N/A 1

s3 1 1 1 1 1 1

λ 1 −
ffiffiffi

2
p

−
ffiffiffi

2
p

−
ffiffiffi

2
p

1 −
ffiffiffi

2
p

Θ 0 0 π 0 0 0

ζ 1 2 N/A 1 1 N/A

reference [25] [2,5] [58] [59] [30] [60]
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The waveform quantities that fall off as 1=r2 or faster are
vulnerable to dependence on the definitions of the tetrads

off Iþ. The reason for these corrections is simple, but

calculating them is laborious and establishing complete

agreement of the competing conventions is deeply vexing,

especially because the subleading behavior in 1=r of tetrads
is not nearly so universally prescribed as the leading

behavior described in Appendix B.

The discussion of this Appendix is closely related to the

concept of tetrad rotations, which is covered at length in

previous publications [61,62]. The challenge that we face

here, however, distinguishes itself because the distinct

calculations, especially those performed during Cauchy

evolution, often do not guarantee that the tetrad basis is

orthonormal or null in the bulk of the spacetime, only at its

boundary. Therefore, the alteration between conventions is

somewhat more free even than generic Oð1=rÞ tetrad

rotations.

To motivate this discussion, first consider the havoc

generated by the simple alteration of the angular tetrads at

subleading order in 1=r (holding for this illustrative sketch

l0 ¼ l and n0 ¼ n),

m0α ¼ mα þ 1

r
ðAmα þ Bm̄αÞ: ðC1Þ

In particular, the Newman-Penrose spin coefficient

σ ¼ mαmβ∇αlβ ∼Oðr−2Þ is altered as

σ0 ¼ σþ 1

r
ð2Bρþ 2AσÞ þ 1

r2
ðA2σþ 2ABρþB2σ̄Þ; ðC2Þ

where ρ ¼ m̄αmβ∇αlβ, and ρ ¼ ρ̄ by assumption. However,

because ρ ∼Oð1=rÞ, we find that the definition of σ that we
had hoped to standardize now depends on the subleading

values of the tetrad mα. Fortunately, in this restricted case,

none of the leading contributions to the Weyl scalars are

altered, but it is not hard to construct alterations to l and n at
subleading order in 1=r that would cause disruption all

down the chain of Weyl scalars according to the peeling

theorem.

In Appendix Sec. C 1, we derive the alteration between

the SpEC tetrad and the tetrad used in SXS CCE [63]. In

Appendix Sec. C 2 we expand the correction between the

SXS CCE tetrad and a generic asymptotic null tetrad,

which is an easier comparison to perform because we can

take advantage of the properties of null tetrad rotations. In

each case, we propagate the tetrad alteration to determine

the final modifications to the asymptotic values of the

waveform quantities h, σ, Ψ4, Ψ3, Ψ2, Ψ1, and Ψ0.

In each of these sections, we denote the tetrads of the

various conventions with text subscripts or superscripts

(e.g., lSpEC for the SpEC tetrad convention). To determine

the subleading dependence of the tetrads in the different

conventions, it is often necessary to expand the tetrads in

powers of inverse r, which we denote with the order of

inverse r in parentheses (e.g., l
ð0Þ
CCE). Implicitly, this is

written as the r coordinate in the SpEC convention, but

because we only work in a limited expansion in powers of

inverse r, all of the statements would be unchanged if

working in the Bondi-Sachs r
∘
. To avoid confusion, we do

not use the superscript 0 as in the body of the text to denote

the leading contribution to a waveform quantity asymp-

totically. Instead, we use the explicit power of r explicitly,

writing for instance Ψ0

4
as Ψ

ð1Þ
4
.

1. Subleading tetrads in CCE

In this section, we use the tetrads for a CCE formalism

described in [63],

m
μ
CCE ¼ −

1
ffiffiffi

2
p

r

 

ffiffiffiffiffiffiffiffiffiffiffiffi

K þ 1

2

r

qμ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð1þ KÞ J
s

q̄μ

!

; ðC3aÞ

n
μ
CCE ¼

ffiffiffi

2
p

e−2β
�

δμu −
1

2
ð1þ rWÞδμr

þ 1

2
Ūqμ þ 1

2
Uq̄μ

�

; ðC3bÞ

l
μ
CCE ¼ 1

ffiffiffi

2
p δμr; ðC3cÞ

where the Bondi-Sachs scalars J, K, β, V, U and coor-

dinates are as defined in [63], which each represent

components of the metric in Bondi-Sachs coordinates.

We assume that the tetrads constructed in Eq. (12) for

the SpEC Cauchy simulation are in agreement with the

CCE tetrad, Eqs. (C3), asymptotically. We expand

the relation in powers of inverse r, denoting (dropping

the “CCE” for brevity, understanding that the order sub-

scripts in this Appendix section will apply exclusively to

the tetrad derived in the CCE formalism),

m
μ
CCE ¼ m

μ

ð0Þ þ
1

r
m

μ

ð1Þ þOðr−2Þ; ðC4aÞ

l
μ
CCE ¼ l

μ

ð0Þ þ
1

r
l
μ

ð1Þ þOðr−2Þ; ðC4bÞ

n
μ
CCE ¼ n

μ

ð0Þ þ
1

r
n
μ

ð1Þ þOðr−2Þ: ðC4cÞ

Importantly, when attempting to compare the tetrads in

the disparate coordinate systems, we need to be aware of

the alterations associated with the conversion between the

Bondi-Sachs coordinate system and the Cauchy coordi-

nates. For simplicity of the current presentation, we expand

the Bondi-Sachs coordinates in terms of the Cauchy radial

coordinate,
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u
∘ ¼ uþ 1

r
u
∘ ð1Þ þOðr−2Þ; ðC5aÞ

r
∘ ¼ rþ r

∘ð0Þ þ 1

r
r
∘ð1Þ þOðr−2Þ; ðC5bÞ

x
∘A ¼ xA þ 1

r
x
∘ ð1ÞA þOðr−2Þ; ðC5cÞ

Unfortunately, the differences between these coordinate

systems depend on the myriad choices in constructing

a CCE evolution associated with a particular Cauchy

evolution, including extraction surface and data on

the initial hypersurface. The quantities u
∘ ð1Þ

, r
∘ð1Þ

, and

x
∘ ð1ÞA

can be determined numerically for a particular

Cauchy and CCE evolution, but practical implementations

of that calculation is beyond the scope of the current

discussion.

A contribution rð0Þ to Eq. (C5b), should it be non-

vanishing, has even more dire consequences on attempts to

establish asymptotic correspondence. This coordinate alter-

ation impacts the leading tetrads,

m
μ

ð0Þ ¼ m
μ
SpEC þ lμmν

SpEC∂νr
∘ð0Þ

; ðC6aÞ

n
μ

ð0Þ ¼ n
μ
SpEC þ lμnνSpEC∂νr

∘ð0Þ
: ðC6bÞ

Fortunately, such impact is easy to notice, as it will

manifest as a nonvanishing inner product n
μ
SpECgμνn

ν
SpEC or

n
μ
SpECgμνm

ν
SpEC at Iþ. We will assume from here on in this

Appendix that any such pathology has been avoided in the

Cauchy code and that we may safely set r
∘ð0Þ ¼ 0.

Therefore, the leading tetrads at Iþ are assumed to be

in agreement between the Cauchy code and CCE:

l
μ

ð0Þ ¼ l
μ
SpEC, m

μ

ð0Þ ¼ m
μ
SpEC, n

μ

ð0Þ ¼ n
μ
SpEC.

Given the agreement between asymptotic tetrads, we can

use the subleading metric contracted with the leading

tetrads (from either formalism) to infer the metric compo-

nents that act as inputs to the tetrad definitions in Eqs. (C3).

In particular,

Jð1Þ ¼ g
ð1Þ
mm; ðC7aÞ

Uð2Þ ¼ g
ð1Þ
nm; ðC7bÞ

βð1Þ ¼ 1

2
g
ð1Þ
nl ; ðC7cÞ

Wð2Þ ¼ −
1

2
g
ð1Þ
nn : ðC7dÞ

When all effects are taken into account, the subleading

tetrad expressions for the CCE formalism are

m
μ

ð1Þ ¼ −Jð1Þm̄μ

ð0Þ; ðC8aÞ

n
μ

ð1Þ ¼
ffiffiffi

2
p

∂uu
∘ ð1Þðnμð0Þ þ l

μ

ð0ÞÞ þ
ffiffiffi

2
p

∂ur
∘ð1Þ

l
μ

ð0Þ

þ 1
ffiffiffi

2
p ∂ux

∘ ð1ÞAðmð0Þ
A m̄

μ

ð0Þ þ m̄
ð0Þ
A m

μ

ð0ÞÞ

− 2
ffiffiffi

2
p

βð1Þnμð0Þ −Wð2Þlμð0Þ

− Ūð2Þmμ

ð0Þ − Uð2Þm̄μ

ð0Þ; ðC8bÞ

≡ n
ð1Þ
n l

μ

ð0Þ þ n
ð1Þ
l n

μ

ð0Þ þ n
ð1Þ
m m̄

μ

ð0Þ þ n
ð1Þ
m̄ m

μ

ð0Þ; ðC8cÞ

l
μ

ð1Þ ¼ 0: ðC8dÞ

To summarize, the subleading contributions to the m

tetrad vector amounts simply to a Oðr−1Þ rotation in the m,

m̄ plane, the n tetrad vector has contributions along all of

the original tetrad directions, and the subleading l tetrad
vector vanishes. We emphasize that the tetrad corrections

between the CCE and SpEC tetrads are not simply a tetrad

rotation, so we must consider carefully the effects on the

waveform quantities.

Given the above CCE tetrad, Eqs. (C3), with explicit

Oðr−1Þ parts, Eqs. (C8), the conversion between the

waveform quantities derived from the SpEC tetrad and

CCE tetrad are as follows,

hð1ÞCCE ¼ hð1ÞSpEC; ðC9aÞ

σð2ÞCCE ¼ σð2ÞSpEC − Jð1Þðρð1ÞSpEC þ ρ̄ð1ÞSpECÞ; ðC9bÞ

Ψ
ð1ÞCCE
4

¼ Ψ
ð1ÞSpEC
4

; ðC9cÞ

Ψ
ð2ÞCCE
3

¼ Ψ
ð2ÞSpEC
3

; ðC9dÞ

Ψ
ð3ÞCCE
2

¼ Ψ
ð3ÞSpEC
2

; ðC9eÞ

Ψ
ð4ÞCCE
1

¼ Ψ
ð4ÞSpEC
1

; ðC9fÞ

Ψ
ð5ÞCCE
0

¼ Ψ
ð5ÞSpEC
0

: ðC9gÞ

The main take-away from this calculation is that the

leading strain and all of the Weyl scalars agree between the

two formalisms. The shear, however, is a bit of a sticking

point. In particular, if the ρ mimics typical Kerr behavior

asymptotically and σSpEC is asymptotically equal to the

leading part of the strain, the σCCE will differ from σSpEC by

an overall sign change.
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2. Tetrad rotations between CCE

and other formulations

Many of the methods of choosing a Newman-Penrose

construction at Iþ do not completely specify the tetrad

behavior at subleading order. In this section, we will make

some fairly general assumptions about the construction of

the subleading tetrad contribution, and derive the correc-

tions between possible choices in those constructions.

First, let us consider the case of unrestricted null tetrad

rotations. The condition that the tetrads remain orthonormal

and null constrains the set of degrees of freedom,

m̄
μ
G ¼ m̄

μ
CCE þ

1

r
ð−m̄Gð1Þ

l n
μ
CCE − m̄

ð1ÞG
n l

μ
CCE

þ m̄
ð1ÞG
m m̄

μ
CCEÞ þOðr−2Þ; ðC10aÞ

m
μ
G ¼ m

μ
CCE þ

1

r
ð−mGð1Þ

l n
μ
CCE −m

ð1ÞG
n l

μ
CCE

þ m̄
ð1ÞG
m m

μ
CCEÞ þOðr−2Þ; ðC10bÞ

n
μ
G ¼ n

μ
CCE þ

1

r
ð−nGð1Þl n

μ
CCE − m̄

ð1ÞG
n m

μ
CCE

−m
Gð1Þ
n m̄

μ
CCEÞ þOðr−2Þ; ðC10cÞ

l
μ
G ¼ l

μ
CCE þ

1

r
ðnGð1Þl l

μ
CCE − m̄

ð1ÞG
l m

μ
CCE

−m
Gð1Þ
l m̄

μ
CCEÞ þOðr−2Þ: ðC10dÞ

Generic rotations of the form Eq. (C10) give rise to

numerous corrections to the waveform quantities,

hð1ÞG ¼ hð1ÞCCE; ðC11aÞ

Ψ
ð1ÞG
4

¼ Ψ
ð1ÞCCE
4

; ðC11bÞ

Ψ
ð2ÞG
3

¼ Ψ
ð2ÞCCE
3

−Ψ
ð1ÞCCE
4

m
ð1ÞG
l ; ðC11cÞ

Ψ
ð3ÞG
2

¼ Ψ
ð3ÞCCE
2

− 4Ψ
ð2ÞCCE
3

m
ð1ÞG
l þ 2Ψ

ð1ÞCCE
4

ðmð1ÞG
l Þ2;

ðC11dÞ

Ψ
ð4ÞG
1

¼ Ψ
ð4ÞCCE
1

− 2Ψ
ð3ÞCCE
2

m
ð1ÞG
l þ Ψ̄

ð2ÞCCE
3

m̄
ð1ÞG
l m

ð1ÞG
l

− Ψ̄
ð1ÞCCE
4

ðm̄ð1ÞG
l Þ2mð1ÞG

l þ 3Ψ
ð2ÞCCE
3

ðmð1ÞG
l Þ2

−Ψ
ð1ÞCCE
4

ðmð1ÞG
l Þ3; ðC11eÞ

Ψ
ð5ÞG
0

¼ Ψ
ð5ÞCCE
0

− 4Ψ
ð4ÞCCE
1

m
ð1ÞG
l þ 5Ψ

ð3Þ
2
ðmð1ÞG

l Þ2

þ Ψ̄
ð1ÞCCE
4

ðm̄ð1ÞG
l Þ2ðmð1ÞG

l Þ2

− 4Ψ
ð2ÞCCE
3

ðmð1ÞG
l Þ2 þΨ

ð1Þ
4
ðmð1ÞG

l Þ4; ðC11fÞ

σð2ÞG ¼ σð2ÞCCE − 2βð1Þmð1ÞG
l − κð1Þmð1ÞG

n − τð1Þmð1ÞG
l

þm
ð0Þμ
G ∇μm

ð1ÞG
l −m

ð1ÞG
l n

ð0Þμ
G ∇μm

ð1ÞG
l : ðC11gÞ

In Eqs. (C11), we use the standard Newman-Penrose spin

coefficient notation β ¼ 1=2ðnαmβ∇βlα − m̄αmβ∇βmαÞ,
κ ¼ −mαlβ∇βlα, and τ ¼ −mαnβ∇βlα. This causes signifi-

cant difficulty in comparing the results from different

formalisms. However, there is a clear pattern associated

with which parts of the tetrad rotation are important for the

waveform comparisons.

In particular, if we merely impose that the null tetrad of

the formulation we are comparing with the CCE results

shares an l tetrad vector, we find that the comparison

expressions, Eqs. (C11), simplifies greatly (denoting as

LPG an “l-preserving generic” formalism that preserves the

CCE l vector—i.e., l
μ
CCE ¼ l

μ
LPG),

hð1ÞLPG ¼ hð1ÞCCE; ðC12aÞ

σð2ÞLPG ¼ σð2ÞCCE − κð1ÞmLPGð1Þ
n ; ðC12bÞ

Ψ
ð1ÞLPG
4

¼ Ψ
ð1ÞCCE
4

; ðC12cÞ

Ψ
ð2ÞLPG
3

¼ Ψ
ð2ÞCCE
3

; ðC12dÞ

Ψ
ð3ÞLPG
2

¼ Ψ
ð3ÞCCE
2

; ðC12eÞ

Ψ
ð4ÞLPG
1

¼ Ψ
ð4ÞCCE
1

; ðC12fÞ

Ψ
ð5ÞLPG
0

¼ Ψ
ð5ÞCCE
0

: ðC12gÞ

We emphasize that in the case where the l tetrad vector is
preserved between formalisms, all of the waveform quan-

tities can be directly compared except for the shear σ. In

particular, the relationship between the shear and the strain

can differ between formalisms with different subleading

tetrads, even if the tetrads evaluated at Iþ are identical.
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