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Accuratemodels of gravitationalwaves frommerging binary black holes are crucial for detectors tomeasure
events and extract new science. One important feature that is currently missing from the Simulating eXtreme
Spacetimes (SXS)Collaboration’s catalog ofwaveforms formergingblackholes, andotherwaveformcatalogs,
is the gravitational memory effect: a persistent, physical change to spacetime that is induced by the passage of
transient radiation.We find, however, that byexploiting theBondi-vanderBurg-Metzner-Sachs (BMS)balance
laws, which come from the extended BMS transformations, we can correct the strain waveforms in the SXS
catalog to include the missing displacement memory. Our results show that these corrected waveforms satisfy
the BMS balance laws to a much higher degree of accuracy. Furthermore, we find that these corrected strain
waveforms coincide especiallywellwith thewaveforms obtained fromCauchy-characteristic extraction (CCE)
that already exhibit memory effects. These corrected strain waveforms also evade the transient junk effects that
are currently present inCCEwaveforms. Last, wemake our code for computing these contributions to theBMS
balance laws and memory publicly available as a part of the PYTHON package SXS, thus enabling anyone to
evaluate the expected memory effects and violation of the BMS balance laws.
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I. INTRODUCTION

When Bondi, van der Burg, Metzner, and Sachs (BMS)
tried to recover the Poincaré group of special relativity
as the symmetry group of asymptotically flat spacetimes
in general relativity, they instead found an unexpected
infinite-dimensional group of transformations, known as
the BMS group [1,2]. Fundamentally, the BMS group
extends the Poincaré group with an infinite number of
transformations called supertranslations.1 More recent

research [3–10] motivates the consideration of an extended
BMS group that includes another set of transformations
known as super-Lorentz transformations.2 When these
transformations are included, the group is then called the
extended BMS group. Like rotations and boosts in special
relativity, we refer to the magnetic parity piece of super-
Lorentz transformations as superrotations and the electric
parity piece as superboosts.
One of the more useful features of the extended BMS

group is that for each transformation there is a corresponding
balance law. Just as the translation symmetries lead to
the four-momentum and its balance laws at null infinity,
the supertranslations and super-Lorentz transformations
of the extended BMS group induce “super” balance laws.
These super, or just BMS, balance laws can be extracted
from the Einstein field equations by examining certain
evolution equations [7,11–13]. There is an infinite tower

*kmitman@caltech.edu
1Formally, the BMS group is simply a semidirect product of

the Lorentz group with this infinite-dimensional Abelian group of
spacetime supertranslations, which contains the usual translations
as a normal subgroup. If one represents spacetime translations as
the l < 2 spherical harmonics, then supertranslations can be
viewed as the l ≥ 2 spherical harmonics, i.e., when acted on by a
supertranslation the Bondi time u≡ t − r changes as

u0 ¼ u − αðθ;ϕÞ for α ¼
X

l≥2

X

m≤jlj
αlmYlmðθ;ϕÞ; ð1Þ

with αl;m ¼ ð−1Þmᾱl;−m to ensure that u0 is real.

2Originally, these transformations were known as superrota-
tions. They can be thought of as a Virasoro-like symmetry acting
on the sphere at asymptotic infinity, i.e., the jmj ≥ 2 elements of
the Virasoro algebra, which is just an extension of the more
common group of Möbius transformations.
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of balance laws: one for each point on the two-sphere or,
equivalently, one for each spherical harmonic mode.
Furthermore, the BMS flux part of these balance laws can
be broken into two contributions, called “hard” and “soft,”
which are based on the order in which the gravitational wave
strain appears: nonlinear for the hard contribution and linear
for the curious soft contribution. An example of the relation-
ship between BMS charges and BMS fluxes is the well-
known mass loss equation [1]

_m ¼ −
1

4

_h _̄hþ 1

4
Re½ð2 _h�; ð2Þ

where m is the Bondi mass aspect, h is the strain, and ð is
the spin-weight operator (see Sec. I B for more details). In
Eq. (2), the left-hand side is the BMS charge, while the right-

hand side is the BMS flux, with the “ _h _̄h” term being the hard
contribution (notice that this term is just the time derivative
of the energy flux) and the “ð

2 _h” term being the soft
contribution.3 When integrated with respect to time, the soft
contribution to the total BMS flux is then proportional to the
gravitational memory, or just the memory, of the gravita-
tional wave. Consequently, the BMS balance laws can be
viewed as relating the memory to contributions coming
from the BMS charges and the hard part of the flux of an
arbitrary system.
The gravitational memory effect, on its own, has been

studied for decades [14–22]. Only recently [23–26], how-
ever, have new memory effects started to be understood in
relation to the elements of the extended BMS group.
Because of this connection, memory has been categorized
into three types based on which BMS transformations they
correspond to. We outline these types in Table I, along with
their physical meanings. Apart from these characteriza-
tions, memory is also classified by its ordinary and null

parts, with the ordinary part coming from the BMS charges
and the null part coming from the hard part of the flux.
Besides furthering the physical understanding of gravita-
tional memory, however, the BMS balance laws can also

offer practical uses to waveform modeling efforts. As was
proposed in [27], and as we will show throughout this
paper, the BMS balance laws can be used to both check the
accuracy of waveforms and also improve them if they are
missing certain flux contributions.
The framework provided by the extended BMS group

is applicable only to asymptotic Bondi gauge waveforms.
The waveforms that are extracted at finite radii in current
numerical simulations do not fall into this category,
however, since the simulation coordinates are not neces-
sarily in the Bondi gauge and there are subleading terms
in the waveforms in addition to the asymptotic contribution
[28]. Therefore, these finite-radius waveforms must be
either extrapolated [29] or evolved [30–32] to asymptotic
infinity with respect to Bondi coordinates.
Additionally, the extrapolated strain waveforms that are

made publicly available in the SXS catalog [33,34] and
other waveform catalogs [35,36] fail to capture the dis-
placement memory for an unknown reason [20,37]. But, by
using an alternative waveform extraction technique called
Cauchy-characteristic extraction (CCE) [30], the memory
can be captured and the resulting waveforms appear to
minimally violate the BMS balance laws [37]. Our goal in
this paper is to use the balance laws to help improve the
extrapolated strain waveforms; in particular, to make them
exhibit the displacement memory effect so that they are
more on a par with the CCE waveforms. Consequently, we
not only need to know the total memory, but also how the
memory evolves. That is, we must use the finite-time
version of the balance laws as opposed to the global
version, i.e., we must compare the BMS charges to the
BMS fluxes as functions of time rather than the net changes
in the two. This version of the BMS balance laws can be
rewritten to give the gravitational wave strain h as a
combination of two unique terms: an energy flux term
JE and a more oscillatory term JΨ that depends on the Weyl
scalar Ψ2.

4 With these new terms, we can then write the
balance laws as

TABLE I. The three types of memory and their physical interpretations.

Memory type
BMS

transformation Physical interpretation

Displacement
memory

Supertranslations Change in the relative position of two freely falling, initially comoving observers.
Appears in the strain.

Spin memory Superrotations Change in the relative time delay of two freely falling observers on initially counterorbiting
trajectories. Appears in the retarded time integral of the strain.

Center-of-mass
memory

Superboosts Change in the relative time delay of two freely falling observers on initially antiparallel
trajectories. Appears in the retarded time integral of the strain.

3Originally [1], Eq. (2) was written after it had been integrated
over the two-sphere so the ð

2 _h term could be ignored since its
l ¼ 0, 1 modes are zero.

4While JΨ is certainly more oscillatory than JE , it is important
to note that JE does not always change monotonically and can
exhibit oscillatory behavior as well for certain BBH systems,
such as precessing systems.
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h ¼ JE þ JΨ: ð3Þ

The energy flux term, which is the primary contribution
to the strain’s total displacement memory [37,38], was first
computed in [38] and depends only on the news _h.5

Because the current extrapolated strain waveforms in the
SXS catalog fail to capture the displacement memory,
we can therefore ask if these waveforms are reasonably
modeled by just the JΨ term. If so, we can then add the JE
term to the extrapolated strain waveforms to see if the
violation of the BMS balance laws and the mismatch
between extrapolated and CCE waveforms are improved.
Indeed, we find empirically that extrapolation gives the JΨ
term to reasonable accuracy and adding the energy flux JE
term gives a more complete and improved waveform.
We find that when the expected memory JE is added to

the extrapolated strain waveforms, the extrapolated wave-
forms obey the BMS balance laws to roughly the same
degree as those obtained by CCE. Furthermore, we observe
that the mismatch between extrapolated and CCE wave-
forms near merger is considerably improved. We find that
the next-leading cause for the violation of the BMS balance
laws is due to the part of the waveform that is the primary
contribution to the spin memory effect. For an unknown
reason, there is already an incomplete6 spin memory
contribution to the extrapolated waveform, unlike the
displacement memory contribution which is completely
absent [37]. Unfortunately, this means that we have no
justified way to correct the spin memory contribution
without using the Weyl scalar Ψ2, which has not yet
been extracted for the simulations in the SXS catalog.
Nonetheless, we find that the extrapolated waveform is
indeed a good approximation to the JΨ term, although it
does not wholly capture the spin memory. Therefore,
whenever extrapolated waveforms are used for any kind
of analysis, they should first be corrected by the JE term to
include memory and thus remain consistent with expect-
ations from theory.
Apart from improving the extrapolated waveforms, we

also observe that once the JE correction is added, the Bondi
frame of our extrapolated waveforms after ringdown is
nearly the same as that of the waveforms obtained from
CCE. This is important because gravitational wave
astronomy expects the waveforms produced by numerical
relativity to be close to, if not in, the super rest frame7 to
circumvent frame ambiguities. Without the displacement
memory correction, however, the extrapolated waveforms
in the SXS catalog would prompt one to think that the
system was already fairly close to the super rest frame,

which would be markedly incorrect. Consequently, the
displacement memory correction not only serves as an
important improvement to the extrapolated waveforms, but
is also crucial for correctly comparing the Bondi frame of
the multitude of waveforms in the SXS catalog to the super
rest frame and ensuring that waveforms, when being
compared to each other, are in the same Bondi frame.
We make our code for computing these contributions to

the BMS balance laws and memory publicly available as a
part of the PYTHON package SXS [39]. An example of how
this code can be used is provided in a Jupyter notebook in
the supplementary material [40].

A. Overview

We organize our computations and results as follows.
In Sec. II, we outline the BMS balance laws that we will use
to measure waveform accuracy, using results obtained in
[27,37]. Following this, in Sec. III A, we illustrate the main
sources of BMS balance law violations for the extrapolated
waveforms in comparison to CCE and then explain which
of these sources we can correct and why. Next, in Sec. III B,
we present the changes to the extrapolated waveforms
once displacement memory is included, explore other
sources of the violation of the BMS balance laws, and
then compare the corrected extrapolated waveforms to
the waveforms that are obtained using CCE. Finally, in
Sec. III C, we measure the Bondi frame of the corrected
extrapolated waveforms and discuss prospects for mapping
to the super rest frame.

B. Conventions

We set c ¼ G ¼ 1 and use the Newman-Penrose con-
vention for the spin-weight operator ð [41] to coincide with
the recent work of [30,37],

ðsYlm ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl − sÞðlþ sþ 1Þ
p

sþ1
Ylm; ð4Þ

ð̄sYlm ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ sÞðl − sþ 1Þ
p

s−1Ylm: ð5Þ

We denote the strain8 by h and use the variable J to
represent any contribution to the strain that comes from
the BMS balance laws that we compute with our various
numerical outputs. Further, we represent the strain in a
spin-weight −2 spherical harmonic basis,

hðu; θ;ϕÞ ¼
X

l;m

hlmðuÞ−2Ylmðθ;ϕÞ; ð6Þ

where u≡ t − r is the Bondi time. For our calculations, we
use the operators D2 and D, which we construct as

5This term was also identified in [37] as being the null
component of the electric parity piece of the displacement
memory; see Table I.

6We find that the spin memory present in the extrapolated
strain is roughly 50% of what is seen in the CCE strain.

7See Sec. III C for a more thorough explanation.

8We explicitly define the strain as described in Appendix C
of [34].
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D2 ¼ ð̄ð; ð7aÞ

D ¼ 1

8
D2ðD2 þ 2Þ: ð7bÞ

Notice thatD2 is just the Laplacian on the two-sphere when
it acts on spin-weight 0 functions. The actions of these
operators on spin-weight 0 functions are

D2Ylm ¼ −lðlþ 1ÞYlm; ð8aÞ

DYlm ¼ 1

8
ðlþ 2Þðlþ 1Þlðl − 1ÞYlm: ð8bÞ

II. BMS BALANCE LAWS AND MEMORY

We now review some of the work on BMS balance laws
and present equations that will prove useful to our analysis.
As described in [27], the supermomentum balance law,
which gives the electric parity part of the strain, can be
written rather nicely as

Re½ð2h� ¼
Z

u

−∞

j _hj2du − 4Re

�

Ψ2 þ
1

4

_h h̄

�

− 4MADM ð9Þ

for a system with Arnowit-Deser-Misner (ADM) mass
MADM [42], if one uses the “post-Newtonian Bondi frame”
where h → 0 as u → −∞. The magnetic parity part of the
strain can be obtained from the relation between h and
Im½Ψ2�,

Im½ð2h� ¼ −4Im

�

Ψ2 þ
1

4

_h h̄

�

: ð10Þ

Consequently, by combining Eqs. (9) and (10), one has

ð
2h ¼

Z

u

−∞

j _hj2du − 4

�

Ψ2 þ
1

4

_h h̄

�

− 4MADM; ð11Þ

or equivalently

h ¼ 1

2
ð̄2D−1

�

1

4

Z

u

−∞

j _hj2du −

�

Ψ2 þ
1

4

_h h̄

��

; ð12Þ

9where D−1 is defined to map the l ≤ 1 modes to zero.
Equation (12) represents an infinite tower of balance laws:
one for each point on the sphere or, alternatively, one for
each spin-weight −2 spherical harmonic mode hlm.
Numerically, however, we do not have access to the full

past, i.e., u → −∞. Instead, we are restricted to some finite
start time u1. This truncation of the time integral in Eq. (12)
will cause our computation of the right-hand side to differ
from the limit u1 → −∞ by an unknown angle-dependent
constant. Additionally, there is another unknown

angle-dependent discrepancy that arises because our
numerical waveforms are not necessarily in the post-
Newtonian Bondi frame, as required by Eq. (12).
Consequently, when we compute the BMS strain J from
the BMS balance laws as

J ≡
1

2
ð̄
2D−1

�

1

4

Z

u

u1

j _hj2du −

�

Ψ2 þ
1

4

_h h̄

��

þ α; ð13Þ

we need to account for these angle-dependent shifts by
including an unknown constant α≡ αðθ;ϕÞ. However,
because we have access to both h, the asymptotic strain
obtained from a numerical spacetime, and J, the strain
computed from the BMS balance laws in Eq. (13), we may
simply solve for α either by minimizing the L2 norm of the
difference between the two waveforms or by making the
waveforms agree on the final time step of the simulation.
We may then check the violation of the BMS balance laws
in the numerical waveforms via

h − J ¼ 0; ð14Þ

where, again, h is the strain output by numerical relativity
and J is from Eq. (13), with α being the constant needed
to make h and J agree on the simulation’s final time step.
We choose the final time step, rather than optimizing over
all time steps, because this makes our comparison most
accurate the farthest away from junk radiation.
Equations (13) and (14) are then all that are needed to
check the violation of the BMS balance laws.
As mentioned before, Eq. (3) can be used to break J

into an energy flux term JE—the primary source of the
displacement memory—and a more oscillatory term JΨ,

JE ¼ 1

2
ð̄2D−1

�

1

4

Z

u

u1

j _hj2du
�

þ α; ð15aÞ

JΨ ¼ 1

2
ð̄
2D−1

�

−

�

Ψ2 þ
1

4

_h h̄

��

: ð15bÞ

The hypothesis we test below is that the SXS extrapolated
strain waveforms contain only the primarily oscillatory
piece JΨ, and one can simply compute and then add the
energy flux piece JE to obtain a waveform with the correct
gravitational wave memory. If true, this procedure can then
be performed for all of the numerical simulations in the
public SXS catalog to substantially improve the extrapo-
lated strain waveforms.
While Eqs. (13) and (14) are all that are needed to

check the violation of the BMS balance laws, in [37] it was
shown that J can be decomposed into four terms, which
more directly relate to the various memory effects and
prove useful when examining numerical waveforms. These
terms are

J ¼ Jm þ JE þ JN̂ þ JJ ; ð16Þ
9The operator 1

8
ð̄
2D−1 is equivalent to ð

−2 on spin-weight 0
functions, but is in a form convenient for numerical evaluation.
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where

Jm ¼ 1

2
ð̄
2D−1m; ð17aÞ

JE ¼ 1

2
ð̄
2D−1

�

1

4

Z

u

u1

j _hj2du
�

þ α; ð17bÞ

JN̂ ¼ 1

2
ið̄2D−1D−2Im½ð̄ð∂uN̂Þ�; ð17cÞ

JJ ¼ 1

2
ið̄2D−1D−2Im

×

�

1

8
½ðð3hð̄ _̄h−3_h ð̄ h̄þ _̄h ð̄ h − h̄ ð̄ _hÞ�

�

; ð17dÞ

and

m ¼ −Re

�

Ψ2 þ
1

4

_h h̄

�

; ð18aÞ

N̂ ¼ 2Ψ1 −
1

4
h̄ðh − uðm −

1

8
ððhh̄Þ: ð18bÞ

The reason why we construct these contributions to J is
because of their parity and type of memory contribution,
which we list in Table II. Note that one can eliminate theΨ1

term in Eq. (18) by using one of the Bianchi identities for
the Weyl scalars, which produces the relation

_Ψ1 ¼ −
1

2
ðΨ2 þ

1

4
h̄ð _h: ð19Þ

We now use these observables to examine whether the
extrapolated strain waveforms actually capture all terms in
Eq. (13) except JE . We do this by adding JE and checking
the violation of the BMS balance laws, Eq. (14), and
comparing to CCE waveforms that already capture the
gravitational memory effects.

III. RESULTS

For the following results, we numerically evolved a set of
13 binary black hole (BBH) mergers with various mass
ratios and spin configurations using the Spectral Einstein
Code [43]. We list the parameters of these evolved
BBH systems in Table III. Each BBH simulation contains
roughly 19 orbits prior to merger and is evolved until the
gravitational waves from ringdown leave the domain.
Unlike evolutions in the SXS catalog, the full set of
Weyl scalars and the strain have been extracted from these
runs and the asymptotic waveforms have been computed
using both the extrapolation technique described in [29]
and the CCE procedure described in [30,31]. Extrapolation
is performed using the PYTHON module SCRI [44–47] and
CCE is performed using SpECTRE’s CCE code [30–32].
For the CCE extractions, the four world tube radii are
chosen to be equally spaced between 2ƛ0 and 21ƛ0, where
ƛ0 ¼ 1=ω0 is the initial reduced gravitational wavelength as
determined by the orbital frequency of the binary from the
initial data. These 13 waveforms will be made publicly
available in the SXS catalog [33].
As mentioned above, our asymptotic strain waveforms

are computed using two methods: extrapolation and CCE.
The first method uses Regge-Wheeler-Zerilli extraction to

TABLE II. The four contributions to J in terms of their parity,
type of memory contribution and interpretation in terms of more
common quantities in general relativity.

Variable Parity Memory Interpretation

Jm Electric Ordinary Bondi mass aspect
JE Electric Null Energy flux
JN̂ Magnetic Ordinary Angular momentum aspect
JJ Magnetic Null Angular momentum flux

TABLE III. Parameters of the BBH mergers used in our results. The mass ratio is q ¼ MA=MB, and the initial
dimensionless spins of the two black holes are χA and χB.

Name q χA: ðx̂; ŷ; ẑÞ χB: ðx̂; ŷ; ẑÞ
Q1_NOSPIN 1.0 (0,0,0) (0,0,0)
Q1_ALIGNED_CHI0_2 1.0 (0,0,0.2) (0,0,0.2)
Q1_ALIGNED_CHI0_4 1.0 (0,0,0.4) (0,0,0.4)
Q1_ALIGNED_CHI0_6 1.0 (0,0,0.6) (0,0,0.6)
Q1_ANTIALIGNED_CHI0_2 1.0 (0,0,0.2) ð0; 0;−0.2Þ
Q1_ANTIALIGNED_CHI0_4 1.0 (0,0,0.4) ð0; 0;−0.4Þ
Q1_ANTIALIGNED_CHI0_6 1.0 (0,0,0.6) ð0; 0;−0.6Þ
Q1_PRECESSING 1.0 ð0.487; 0.125;−0.327Þ ð−0.190; 0.051;−0.227Þ
Q1_SUPERKICK 1.0 (0.6,0,0) ð−0.6; 0; 0Þ
Q4_NOSPIN 4.0 (0,0,0) (0,0,0)
Q4_ALIGNED_CHI0_4 4.0 (0,0,0.4) (0,0,0.4)
Q4_ANTIALIGNED_CHI0_4 4.0 (0,0,0.4) ð0; 0;−0.4Þ
Q4_PRECESSING 4.0 ð0.487; 0.125;−0.327Þ ð−0.190; 0.051;−0.227Þ
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compute the strain on a series of concentric spheres of
constant coordinate radius and then extrapolates these
values to future null infinity using 1=r approximations
[28,29,34,48–50]. This is the strain that can be found in
the SXS catalog. The other and more faithful extraction
method, known as CCE, computes the strain by using
the world tube data provided by a Cauchy evolution as the
inner boundary data for a nonlinear evolution of the
Einstein field equations on null hypersurfaces [30,31].
CCE requires freely specifying the strain on the initial
null hypersurface labeled u ¼ 0. Like [37], we choose
this field to match the value and the first radial derivative
of h from the Cauchy data on the world tube, using the
ansatz,

hðu ¼ 0; r; θAÞ ¼ AðθAÞ
r

þ BðθAÞ
r3

; ð20Þ

where the two coefficients AðθAÞ and BðθAÞ are fixed
by the Cauchy data on the world tube. Note that con-
structing a satisfactory initial null hypersurface for CCE
is currently an open problem in numerical relativity.
Consequences of this choice manifest as transient effects
appearing at early times [37]. This hypersurface choice
also determines the Bondi frame of the resulting asymp-
totic waveform.
As a result of these junklike transient effects in the

CCE waveforms, we cannot expect our extrapolated and
CCE waveforms to be in the exact same Bondi frame. Two
strain waveforms from the same physical system but in
different Bondi frames have infinite degrees of freedom
relating them. Therefore, it is only meaningful to compare
waveforms if they are in the same Bondi frame.
Fortunately, we can numerically apply a BMS transforma-
tion to our waveforms until they are in approximately
the same Bondi frame [46]. Thus, for any comparisons
between extrapolated and CCE waveforms, we use an
optimization to find the supertranslation that minimizes
the L2 norm10 of the difference of the two strains. For this
optimization, the l ≤ 2 modes of the supertranslation are
free parameters, while the l > 2modes are set to zero since
their inclusion tends to produce negligible changes.11

Last, we note that both our extrapolated and CCE
waveforms have been postprocessed so that they are
approximately in the center-of-mass frame [51].

A. Issues with extrapolated waveforms

We first illustrate the extrapolated waveforms’ inability
to capture the energy flux term JE in comparison to CCE
and the strain from the BMS balance laws. As shown in the
top panel of Fig. 1, the extrapolated strain waveform’s (2,0)
mode is constant except for quasinormal mode oscillations
near merger and ringdown. However, the strain that is
computed from the BMS balance laws J not only contains
these quasinormal mode oscillations, but also a contribu-
tion from the growth of the memory. Further, the bottom
panel of Fig. 1 shows that the displacement memory
contribution to J predominantly comes from the energy
flux term JE . The dominance of JE should not come as a
surprise since it has been shown that the ordinary con-
tributions to the displacement memory, Jm and JN̂ , should
be negligible for BBH mergers [27,52], and the contribu-
tion from JJ should be zero at late times since the news

FIG. 1. Comparison of the extrapolated strain (2,0) mode
(hEXT, black/solid) to the strain that is extracted using CCE
(hCCE, gray/solid) and to what is expected according to the other
modes of the extrapolated waveform using the various BMS
balance laws (JEXT, red/dashed) computed by using the extrapo-
lated waveform in Eq. (17). We take the news to be the retarded
time derivative of the strain. In the middle panel, we plot the
absolute error: jhCCE − JEXTj. In the bottom panel, we outline the
individual contributions that come from the Bondi mass aspect
(black/solid), the Bondi angular momentum aspect (red/dashed),
the energy flux (blue/dotted), and the angular momentum flux
(green/dashed/dotted). BBH merger: Q1_NOSPIN (see Table III).
CCE waveform: CCE-R0292 (with a supertranslation applied).

10Recall that the L2 norm of a function hðΩÞ is given by

jjhðΩÞjj≡
Z

jhðΩÞj2dΩ: ð21Þ

11This is because most of the transient effects that are present
in CCE waveforms, which are the main causes of the misalign-
ment, primarily manifest in the l ¼ 2 modes.
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vanishes for Kerr spacetimes. What is perhaps surprising,
though, is that the BMS balance law strain J that we
compute from the extrapolated waveform is nearly
identical to the CCE strain. We explore this comparison
between extrapolated and CCE waveforms more thor-
oughly in Sec. III B 3. Note that for the plot in Fig. 1
and all of the following plots we take upeak to be the time at
which the L2 norm of the extrapolated strain achieves its
maximum value.
Because of the extrapolated waveforms’ inability to

capture the energy flux contribution, we expect their
violation of the BMS balance laws, Eq. (14), to be much
more significant than for waveforms extracted using CCE.
In Fig. 2, we plot the violation of the BMS balance laws
over the two-sphere (top plot) and as a function of certain
modes (bottom plot) for the extrapolated waveforms and
the CCE waveforms corresponding to the four available
world tube extraction radii. The values that we plot in
the bottom plot are the normalized time integrals of the
BMS balance law violation from one full orbit past the
retarded time u ¼ 0M onward. We exclude the first orbit to
suppress misleading effects that the Cauchy evolution junk
radiation or the CCE transient effects may induce [34,37].
As can be seen in the top plot, the violation of the BMS
balance laws by the extrapolated waveforms is roughly 2
orders of magnitude more than the worst-performing CCE
waveform (R0070) and 4 orders of magnitude more than
the best-performing CCE waveform (R0292). Moreover,
in the bottom plot of Fig. 2, one can easily observe that
sources of this violation are predominantly from the m ¼ 0

primary memory modes, as is perhaps expected.

B. Correcting extrapolated waveforms

Having thoroughly described the problems with the
extrapolated waveforms, we now discuss our method for
“adding memory” to these waveforms. We then reevaluate
their violation of the BMS balance laws and compare them
to the CCE waveforms.

1. Adding memory to extrapolated waveforms

As has been shown analytically in [27,52] and also
numerically in [37], the ordinary and magnetic contribu-
tions to the displacement memory should be negligible, if
not vanish completely. In other words, the net change in the
function J should be almost entirely sourced by JE, the
energy flux contribution. In agreement with our hypothesis,
Fig. 1 shows that the extrapolated waveform is indeed
reasonably modeled by just the JΨ term, thereby implying
that JE provides the missing time evolution of the extrapo-
lated strain. Consequently, since JE is a function only of
the news, we can recover the full time dependence of the
displacement memory’s growth.
Following the works of [37,38], we now use Eq. (17) to

compute the time evolution of the displacement memory in

the extrapolated strain. To avoid any memory effects that
are induced by junk radiation, we do not time integrate the
entire waveform. We instead take the lower limit u1 to be
half of one orbit past the retarded time u ¼ 0M, which
roughly matches up with the relaxation time, i.e., the time at
which the junk radiation from the Cauchy evolution is
considered to be negligible [34]. Unlike [38], after comput-
ing JE , we then add this contribution back to the strain to
produce a more BMS-accurate waveform.
In Fig. 3, we show the violation of the BMS balance laws

by the memory-corrected extrapolated strain over the two-
sphere and as a function of certain modes. Again, the values
that we plot in the bottom plot are the normalized time

FIG. 2. Violation of the BMS balance laws, Eq. (14), for
extrapolated and CCE waveforms. In the top plot, we show the
norm of Eq. (14) over the two-sphere. Here J in Eq. (14) is
computed by Eq. (13) and the Ψ2 used in Eq. (13) for the
extrapolated or CCE waveforms is extracted using the procedures
described in [29] and [30,31]. In the bottom plot, we show the
normalized time-integrated L2 norm as a function of a few
important spin-weight −2 spherical harmonic modes. Note that
we integrate each of these modes by starting at one full orbit past
the retarded time u ¼ 0M to suppress misleading effects that the
Cauchy evolution junk radiation or the CCE transient effects may
induce. BBH merger: Q1_NOSPIN (see Table III).
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integrals of this violation from one full orbit past the
retarded time u ¼ 0M onward. As expected, the overall
violation of the BMS balance laws over the two-sphere
improves by nearly 4 orders of magnitude, with the major
improvements seen in the l ¼ even; m ¼ 0 memory
modes, but also in unexpected modes, such as the (2,2)
and (4,2) modes. For a precessing system, the improve-
ment can be seen in many more modes, as shown in Fig. 4.
We choose to show the results for the equal mass
precessing system, rather than the q ¼ 4 precessing
system, because the memory is known to increase as
the mass ratio approaches unity [37,53]. We note that for
evaluating the balance laws it is important to compute the
BMS strain J from Eq. (13) rather than Eq. (17) since the
Weyl scalar Ψ1 tends to make extrapolated waveform
computations of J noticeably worse, in terms of the
balance law violation, because of spurious effects induced
by junk radiation.
Figure 5 shows the time integral of the norm of the BMS

balance law over the two-sphere for all the systems listed
in Table III, both before and after the memory corrections

to the extrapolated strain waveforms. As can be seen, for
every type of BBH merger that we present, the improve-
ments to the extrapolated waveforms are quite considerable.
A few of the extrapolated waveforms in Fig. 5 seem to

be better than the corresponding CCE waveforms. This is
simply because our time-integration range is chosen to
ignore the Cauchy evolution’s junk radiation completely,
but not all of the longer-lasting transients caused by
imperfect CCE initial null hypersurface data. If we instead
choose u1 to be later in the inspiral, then these CCE
waveforms also outperform the corrected extrapolated
waveforms. One can easily see this by comparing the
violations for extrapolation and CCE around the time of
merger in, for example, the top plot of Fig. 3.

2. Limitations of the corrected waveforms

As one may have noticed in the top plot of Fig. 3, while
the overall violation of the BMS balance laws is improved
by including the energy flux contribution, near merger the
extrapolated waveforms’ violation is much larger than that
of the various CCE waveforms. The reason for this is that,
while we have corrected the extrapolated waveforms by
adding just JE , we have done nothing regarding the
magnetic terms JN̂ and JJ . These magnetic terms are, in
part, the source of the spin memory effect when the strain is
integrated with respect to retarded time [24,26,54]. The
relevance of the magnetic component can be seen by
noticing that the (3,0), (2,1), and (3,2) modes—which
are a few of the primary contributors to the spin memory—
are the largest sources of the BMS balance law violation,
even after the displacement memory correction is applied.
(See, e.g., the bottom plot of Fig. 3.)
As has been shown previously [37], even though the

extrapolated waveforms capture the spin memory effect—
which we recall is a memory effect in the time integral of
the strain—for some unknown reason the magnitude of the
spin memory is roughly 50% of what it should be according

FIG. 3. Identical to Fig. 2, but now with the violations for the
memory-corrected extrapolated strain. BBH merger: Q1_NOSPIN
(see Table III).

FIG. 4. Identical to the bottom plot of Fig. 3, but now for an
equal mass, precessing system. BBH merger: Q1_PRECESSING
(see Table III).
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to comparisons with the BMS balance laws and CCE
waveforms. In Fig. 6, we compare the strain of the
extrapolated waveform to the strain obtained from the
BMS balance laws for the main spin memory mode:
the imaginary part of the (3,0) mode. As can readily be
seen in the lower panel, the BMS strain is primarily sourced
by the JN̂ and JJ terms, with the contribution of JN̂
representing the oscillatory part and the contribution of JJ
representing the time derivative of the nonoscillatory spin
memory. However, unlike the displacement memory mode,
cf. Fig. 1, which is not present in the extrapolated wave-
forms, the top panel of Fig. 6 shows that there is a nonzero
contribution to the time derivative of the spin memory.
Consequently, without using the Weyl scalar Ψ2, there is
unfortunately no method to accurately correct the spin
memory component of the extrapolated waveforms. While
we could make this correction to our limited set of BBH
simulations, we could not apply such a correction to the
entire SXS catalog, since Ψ2 has not been extracted for
those simulations.
To provide a measurement of this subtle discrepancy,

we compute the mismatch between the extrapolated strain
with the memory correction and the BMS strain computed
from the extrapolated waveform via

Mðu; hEXT
lm ; JEXT

lm Þ≡ 1 −
hhEXT

lm ; JEXT
lm i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhEXT
lm ; hEXT

lm ihJEXT
lm ; JEXT

lm i
p ;

ð22Þ

where the inner product is given by

hhEXT
lm ; JEXT

lm i≡
Z

u

u1

hEXT
lm JEXT

lm du: ð23Þ

For an equal mass, nonspinning system, the mismatches for
the (2,2), (2,0), and (3,0) modes are

Mðufinal; hEXTð2;2Þ; J
EXT
ð2;2ÞÞ ¼ 6.84 × 10−8; ð24aÞ

Mðufinal; hEXTð2;0Þ; J
EXT
ð2;0ÞÞ ¼ 2.43 × 10−5; ð24bÞ

Mðufinal; hEXTð3;0Þ; J
EXT
ð3;0ÞÞ ¼ 1.36 × 10−2: ð24cÞ

Thus, we observe that the mismatch for the (3,0) mode is
considerably worse than the primary strain mode and the
displacement memory mode. Nonetheless, despite the
remaining problemswith magnetic memory effects, it is clear
that the physical accuracy of the extrapolated waveforms

FIG. 5. The time-integrated norm of the BMS balance law violation as a function of the BBH system. Integration is performed from
one full orbit past the retarded time u ¼ 0M onward to avoid errors introduced by the Cauchy evolution junk radiation and most of the
CCE transient effects. The labeling CCE-R[0,1,2,3] represents the four world tube radii (from smallest to largest). This plot
demonstrates that the displacement memory can be effectively added to the extrapolated waveforms with the result satisfying the BMS
balance laws to comparable accuracy as CCE. The parameters of these systems can be found in Table III.
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can be vastly improved by correcting the strain waveform via
the addition of JE , as discussed above.

3. Comparisons with CCE

Finally, we compare our memory-corrected extrapolated
waveforms to those of CCE. Figure 7 illustrates the
mismatch between the memory-corrected extrapolated
strain waveform and the CCE strain waveforms integrated
over the two-sphere. Expressed differently, we plot

Mðu; hEXT; hCCEÞ≡ 1 −
hhEXT; hCCEi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhEXT; hEXTihhCCE; hCCEi
p ;

ð25Þ

where the inner product is given by

hhEXT; hCCEi≡
Z

u

u1

Z

S2
hEXThCCEdΩdu: ð26Þ

Figure 8 shows the same mismatch but in the (2,0) mode
only, which is the primary displacement memory mode.

For this figure, we compute the mismatch using Eq. (22),
but with JEXT

lm replaced by hCCE
lm instead. Further, for the

mode-by-mode comparison, we use the CCE waveform
corresponding to the second smallest extraction radius,
since this waveform appears to be the most accurate in
terms of the BMS balance laws. Recall that we also align
the extrapolated and CCE waveforms by applying an l ≤ 2

supertranslation to the CCE waveforms that minimizes
the L2 norm of the difference of the two strain waveforms.
As can be seen in Fig. 7, the mismatch between the
extrapolated and CCE waveforms is roughly the same
for the unchanged and memory-corrected strains during the
first 1000M of the inspiral phase. But beyond this point, the
mismatch between the waveforms is considerably better
when using the memory-corrected extrapolated waveform.
As expected, this improvement is primarily due to the
smaller mismatch in the l ¼ even; m ¼ 0modes, as shown
for the (2,0) mode in Fig. 8.

C. Measuring the Bondi frame

Another important and useful aspect of the BMS group
in numerical relativity is determining a BBH system’s BMS
frame.12 The SXS catalog already provides waveforms that
have a center-of-mass correction [34,51]. Yet, just as space

FIG. 7. Mismatch between the extrapolated and CCE strains
with (light/solid curves) and without (dark/dashed curves) the
memory correction applied to the extrapolated strain. We com-
pute the mismatch between the various waveforms according to
Eq. (25). To improve the alignment between the extrapolated and
CCE waveforms, we have applied an optimized l ≤ 2 super-
translation to the CCE waveforms. BBH merger: Q1_NOSPIN (see
Table III).

FIG. 6. Comparison of the extrapolated strain (3,0) mode
(hEXT, black/solid) to the BMS strain that we compute using
the terms in Eq. (17) (JEXT, red/dashed). In the bottom panel,
we display the contributions that come from the Bondi mass
aspect (black/solid), the Bondi angular momentum aspect (red/
dashed), the energy flux (blue/dotted), and the angular mo-
mentum flux (green/dashed/dotted). BBH merger: Q1_NOSPIN
(see Table III).

12Generally, the BMS frame refers to the asymptotic frame that
is defined by all BMS freedoms, while the Bondi frame refers to
the frame that is defined just by supertranslation freedoms.
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and time translation symmetries correspond to four-
momentum, the symmetries of the supertranslations cor-
respond to an infinite-dimensional group of conserved
charges that are called the supermomentum. Further,
analogous to how the four-momentum can be used to
define a unique frame, such as the rest frame, up to an
arbitrary spacetime translation, so can the supermomentum
be used to define a unique Bondi frame up to some
spacetime translation. This frame is known in the literature
as the nice section or the super rest frame.
While there are many different constructions of the

supermomentum [55–59], the one that corresponds to
the Bondi frame of an asymptotic waveform is understood
to be the Moreschi supermomentum [60],

Ψ
M
lm ≡ −

1
ffiffiffiffiffiffi

4π
p

Z

S2
Ylm

�

Ψ2 þ
1

4

_h h̄þ 1

4
ð
2h

�

dΩ; ð27Þ

where S2 represents the two-sphere.
In Fig. 9, we plot the L2 norm of the l ≥ 2 modes of

the Moreschi supermomentum for the various CCE wave-
forms and the extrapolated waveform, both with and
without the memory correction, for the equal-mass non-
spinning system. We see from this plot that before the JE
contribution is added, i.e., the memory correction, the

extrapolated waveform appears to be much closer to the
super rest frame than the CCE waveforms. However, when
the expected time evolution is included, the final Bondi
frame of the extrapolated waveform is closer to the frames
of the CCE waveforms from the three largest world tube
radii. Consequently, we observe that correcting the extrapo-
lated waveforms with displacement memory not only
decreases the violation of the BMS balance laws and thus
the accuracy of the waveforms, but also makes important
changes to the Bondi frame. Were one to try to apply a
“super rest correction,” similar to that of a center-of-mass
correction [51], it is critically important to use memory-
corrected extrapolated strain waveforms, rather than the
raw extrapolated strain waveforms in the SXS and other
waveform catalogs.

IV. CONCLUSION

Gravitational memory is a unique physical observable
that occupies the low frequency range and will most likely
be measured by a future gravitational wave detector, such
as LIGO Voyager, the Einstein Telescope, or LISA.
Consequently, it is imperative that the waveforms that
are produced by numerical relativity include memory so
that when such an effect is detected we can check for any
discrepancies with general relativity. At present, however,
while the waveforms produced by CCE exhibit memory,
the many waveforms that are made publicly available in the
SXS catalog [33,34] and others [35,36] do not. Throughout
this paper, we have demonstrated that the SXS catalog’s
extrapolated waveforms can be corrected by adding the
contribution to the displacement memory that is sourced by
the system’s energy flux.

FIG. 8. The strain (2,0) mode for the CCE strain waveform
(second smallest extraction radius) and the extrapolated strain
waveform with and without the memory correction. In the inset
panel, we plot the mismatch between the extrapolated and CCE
strain waveforms for the same mode using Eq. (22). Further, to
improve the alignment between the extrapolated and CCE wave-
forms, we have applied an l ≤ 2 supertranslation to the CCE
waveforms that minimizes the L2 norm between the extrapolated
and CCE waveforms. The negative slope in the CCE strain around
−6000M is an example of the junklike transient effects in CCE
waveforms [37]. BBH merger: Q1_NOSPIN (see Table III).

FIG. 9. Norm of the proper Moreschi supermomentum, as
defined by Eq. (27), for the extrapolated waveforms, both with
and without memory corrections, and the CCE waveforms. BBH
merger: Q1_NOSPIN (see Table III).
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We started by checking that the oscillatory JΨ contri-
bution to the strain is indeed representative of the extrapo-
lated strain waveform, as previously hypothesized. We then
examined the BMS balance law violation both before and
after applying our memory correction and found that
adding the energy flux contribution improves the overall
violation by roughly 4 orders of magnitude for 13 numeri-
cally evolved BBH systems that span a wide range of
parameter space. After this, we noted that the main source
of the remaining violation is from the time derivative of the
spin memory contribution, which for an unknown reason is
nonzero but is also not what is expected according to the
BMS balance laws or by comparing to CCE waveforms.
Finally, we showed that, besides satisfying the BMS
balance laws, including the expected displacement memory
also allows one to make a more correct measurement of the
underlying system’s BMS frame, which will prove vital for
mapping waveforms to the super rest frame and making

sure that waveforms computed by different methods are in
the same frame.
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