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We develop new strategies to build numerical relativity surrogate models for eccentric binary black hole

systems, which are expected to play an increasingly important role in current and future gravitational-wave

detectors. We introduce a new surrogate waveform model, NRSur2dq1Ecc, using 47 nonspinning, equal-

mass waveforms with eccentricities up to 0.2 when measured at a reference time of 5500M before merger.

This is the first waveform model that is directly trained on eccentric numerical relativity simulations and

does not require that the binary circularizes before merger. The model includes the (2,2), (3,2), and (4,4)

spin-weighted spherical harmonic modes. We also build a final black hole model, NRSur2dq1Ec-

cRemnant, which models the mass, and spin of the remnant black hole. We show that our waveform

model can accurately predict numerical relativity waveforms with mismatches ≈10−3, while the remnant

model can recover the final mass and dimensionless spin with absolute errors smaller than ≈5 × 10−4M and

≈2 × 10
−3 respectively. We demonstrate that the waveform model can also recover subtle effects like mode

mixing in the ringdown signal without any special ad hoc modeling steps. Finally, we show that despite

being trained only on equal-mass binaries, NRSur2dq1Ecc can be reasonably extended up to mass ratio

q ≈ 3 with mismatches ≃10−2 for eccentricities smaller than ∼0.05 as measured at a reference time of

2000M before merger. The methods developed here should prove useful in the building of future eccentric

surrogate models over larger regions of the parameter space.

DOI: 10.1103/PhysRevD.103.064022

I. INTRODUCTION

Detection of gravitational waves (GWs) [1,2] by the

LIGO [3] and Virgo [4] detectors has opened a new window

in astrophysics to probe binary compact objects—binary

black holes (BBHs) being the most abundant source for

these detectors. Both detection and extraction of source

properties from the GW signal relies on the availability of

accurate inspiral-merger-ringdown (IMR) waveform mod-

els for BBHs. While numerical relativity (NR) provides the

most accurate gravitational waveforms for BBHs, they are

computationally expensive, taking weeks to months to

generate a single waveform. Data-driven surrogate model-
ing strategies [5–16] have been shown to be capable of
producing waveforms that are nearly indistinguishable

from NR with evaluation times of less than 0.1 seconds.
While NR surrogate waveform models for nonspinning [7],
aligned-spin [10], and precessing BBHs [9,13] are well

developed, NR surrogate modeling of eccentric systems is
completely unexplored.

So far, all GW detections of BBHs are consistent with

signals emitted from quasicircular binaries [17–23]. In fact,

eccentricity has been traditionally ignored in most GW data

analyses (for e.g. Refs. [1,2]). This is motivated by the

expectation that even if a binary is formed with a nonzero

eccentricity, it should circularize before reaching the*
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frequency band of ground based detectors, as eccentricity

gets radiated away via GWs during the long inspiral [24].

However, this assumption may not always hold, especially

for binaries formed in dense environments like globular

clusters or galactic nuclei [25–32]. Indeed, recent follow-up

analysis of GW190521 [33] claims this event to be

consistent with a BBH source with eccentricity ranging

from ∼0.1 [34] up to ∼0.7 [35] (see also [36,37]).

Eccentricity, if present in GW signals, carries precious

astrophysical information about the environment in which

the binary was formed. The detection of an eccentric merger

would not only be a smoking-gun signature of sources

formed via dynamical encounters, but would point towards

a specific type of interactions, namely GW captures [38],

taking place in those environments. Catching eccentric

sources in the mHz regime targeted by the LISA space

mission is also a promising avenue to distinguish astro-

physical formation channels [39–45].

Furthermore, ignoring eccentricity in our models can

lead to systematic biases if the actual signal corresponds to

an eccentric system [46]. Such biases can also lead to

eccentric systems being misidentified as a violation of

general relativity (GR). Even if all binaries are found to be

circular, eccentric models are necessary to place bounds on

the eccentricity. Therefore, including eccentricity in our

GW models is important, especially as the detectors

become more sensitive.

In the past few years, a handful of eccentric inspiral-only

[47–52] and IMR models [53–58] have become available.

We highlight some recent eccentric IMR models in the

following. ENIGMA [55,56] is a nonspinning eccentric

BBHmodel that attaches an eccentric post-Newtonian (PN)

inspiral to a quasicircular merger based on an NR surrogate

model [7]. SEOBNRE [58] modifies an aligned-spin qua-

sicircular effective-one-body (EOB) waveform model [59]

to include some effects of eccentricity. Similarly, Ref. [57]

modifies a different aligned-spin EOB multipolar wave-

form model for quasicircular BBHs [60,61] to include some

effects of eccentricity. The model is then further improved

by replacing the carrier quasicircular model with a generic

eccentric one [62]. In addition to these models, Ref. [63]

recently developed a method to add eccentric modulations

to existing quasicircular BBH models.

Notably, all of these models rely on the assumption that

the binary circularizes by the merger time. While this is

approximately true for many expected sources [55,64], this

necessarily places a limit on the range of validity of these

models. In addition, none of these models are calibrated on

eccentric NR simulations, even though their accuracy is

tested by comparing against eccentric simulations.

Apart from the waveform prediction, BBH remnant

modeling from eccentric sources is also of crucial astro-

physical importance [65–68]. For example, recoils from

eccentric mergers can be up to 25% higher than the circular

case [67,68], which results in a higher likelihood of

ejections from astrophysical hosts like star clusters and

galaxies.

It is, therefore, timely to invest in building faithful

eccentric BBHs waveform and remnant models that address

some of these limitations. In this paper, we develop a

detailed framework for constructing a surrogate model with

eccentric NR data. We then build a two-dimensional

surrogate model, NRSur2dq1Ecc, over parameters that

describe eccentricity for equal-mass, nonspinning systems

to demonstrate the efficacy of the proposed methods. This

is the first eccentric waveform that is directly trained on

eccentric NR simulations and does not need to assume that

the binary circularizes before merger. The model can

produce waveforms that are of comparable accuracy to

the NR simulations used to train it. Furthermore, despite

being trained only on equal-mass eccentric BBHs, we find

that the model can be reasonably evaluated beyond its

training range up to mass ratio q ≈ 3 provided the eccen-

tricities are small.

In addition to the waveform model, we build a

surrogate model for the remnant mass and spin,

NRSur2dq1EccRemnant, which can provide accurate

predictions for the final state of eccentric binary mergers.

This work paves the way forward for building future

eccentric surrogate models: we expect that the methods

developed here can be applied straightforwardly to aligned-

spin eccentric BBHs, while the precessing case requires

significantly more work.

The rest of the paper is organized as follows. Section II

describes the NR simulations. Section III describes data

decomposition, parametrization and construction of the

surrogate model. In Sec. IV, we test the surrogate model by

comparing against NR waveforms. We end with some

concluding remarks in Sec. V.

II. NUMERICAL RELATIVITY DATA

NR simulations for this work are performed using the

Spectral Einstein Code (SpEC) [69] developed by the

Simulating eXterme Spacetimes (SXS) collaboration

[70]. We follow the procedure outlined in Ref. [71] to

construct initial orbital parameters that result in a desired

eccentricity. The constraint equations are solved employing

the extended conformal thin sandwich formalism [72,73]

with superposed harmonic Kerr free data [74]. The evolu-

tion equations are solved employing the generalized har-

monic formulation [75,76]. The time steps during the

simulations are chosen nonuniformly using an adaptive

time stepper [77]. Further details can be found in Ref. [77]

and references within. We perform 47 new eccentric NR

simulations that have been assigned the identifiers SXS:

BBH:2266–SXS:BBH:2312, and will be made available

through the SXS public catalog [78].

The component BH masses, m1 and m2, and dimension-

less spins, χ 1 and χ 2, are measured on the apparent horizons

[77] of the BHs, where index 1 (2) corresponds to the
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heavier (lighter) BH. The component masses at the relax-

ation time [77] are used to define the mass ratio q ¼
m1=m2 ≥ 1 and total mass M ¼ m1 þm2. Unless other-

wise specified, all masses in this paper are given in units of

the total mass. When training the surrogate model, we

restrict ourselves to q ¼ 1, χ 1; χ 2 ¼ 0 in this work.

The waveform is extracted at several extraction spheres

at varying finite radii from the origin and then extrapolated

to future null infinity [77,79]. These extrapolated wave-

forms are then corrected to account for the initial drift of the

center of mass [80,81]. The spin-weighted spherical har-

monic modes at future null infinity, scaled to unit mass and

unit distance, are denoted as hlmðtÞ in this paper.

The complex strain h ¼ hþ − ih× is given by

hðt; ι;φ0Þ ¼
X

∞

l¼2

X

l

m¼−l

hlmðtÞ−2Ylmðι;φ0Þ; ð1Þ

where hþ (h×) is the plus (cross) polarization of the

waveform,
−2
Y
lm are the spin ¼ −2 weighted spherical

harmonics, and ι and φ0 are the polar and azimuthal angles

on the sky in the source frame. We model modes with

ðl; mÞ ¼ ð2; 2Þ; ð3; 2Þ; ð4; 4Þ. Because of the symmetries of

equal-mass, nonspinning BBHs, all odd-m modes are

identically zero, and the m < 0 modes can be obtained

from the m > 0 modes. Therefore, we model all nonzero

l ≤ 3 and ð4;�4Þ modes, except the m ¼ 0 modes. We

exclude m ¼ 0 memory modes because (nonoscillatory)

Christodoulou memory is not accumulated sufficiently in

our NR simulations [82]; this defect was recently addressed

in both Cauchy characteristic extraction (CCE) [83–85] and

extrapolation [86] approaches. The (4,2) mode, on the other

hand, was found to have significant numerical error in the

extrapolation procedure [77,79]. We expect this issue to be

resolved with CCE as well. Therefore, in future models, we

should be able to include the m ¼ 0 modes as well as

modes like the (4,2) mode.

The remnant mass mf and spin χ f are determined from

the common apparent horizon long after the ringdown, as

described in Ref. [77]. For nonprecessing systems like the

ones considered here, the final spin is directed along the

direction of the orbital angular momentum. Unlike previous

surrogate models [13,87,88], we do not model the recoil

kick in this work, as the symmetries of equal-mass, non-

spinning BBHs restrict the kick to be zero.

III. SURROGATE METHODOLOGY FOR

ECCENTRIC WAVEFORMS

In this section, we describe our new framework to build

NR surrogate models for eccentric BBHs. We begin by

applying the following postprocessing steps that simplify

the modeling procedure.

A. Processing the training data

In order to construct parametric fits (cf. Sec. III D) for the

surrogate model, it is necessary to align all the waveforms

such that their peaks occur at the same time. We define the

peak of each waveform, τpeak, to be the time when the

quadrature sum,

AtotðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l;m

jhlmðτÞj
2

s

; ð2Þ

reaches its maximum. Here the summation is taken over all

the modes being modeled. We then choose a new time

coordinate,

t ¼ τ − τpeak; ð3Þ

such that AtotðtÞ for each waveform peaks at t ¼ 0.

Next, we use cubic splines to interpolate the real and

imaginary parts of the waveform modes onto a common

time grid of [−5500M, 75M] with a uniform time spacing

of dt ¼ 0.1M; this is dense enough to capture all frequen-

cies of interest, including near merger. The initial time of

−5500M is chosen so that we can safely eliminate spurious

initial transients in the waveform, also known as junk

radiation [77], for each waveform in our dataset.

Once all the waveforms are interpolated onto a common

time grid, we perform a frame rotation of the waveform

modes about the z axis such that the orbital phase is zero at

t ¼ −5500M. The orbital phase is obtained from the (2,2)

mode [cf. Eq. (14)]. Because of the symmetry of the equal-

mass, equal-spin systems considered here, the odd-m
modes are identically zero and so we need not worry

about remaining ϕorb → ϕorb þ π rotational freedom as was

necessary in Refs. [7–10,13]. This preprocessing of time

and phase ensures that the waveform varies smoothly

across the parameter space, which in turn makes modeling

easier.

B. Measuring eccentricity and mean anomaly

Departure of NR orbits from circularity is measured by a

time-dependent eccentricity andmean anomaly. Eccentricity

takes values between [0, 1] where the boundary values

correspond to a quasicircular binary and an unbound orbit

[89], respectively. Mean anomaly, on the other hand, is

bounded by ½0; 2πÞ. While it may seem most natural to

estimate orbital parameters from theBH trajectories, this task

is complicated by the fact that any such measurement will be

impacted by the gauge conditions chosen by the NR

simulation. We instead choose to estimate eccentricity and

anomaly parameters directly from the waveform data at

future null infinity.
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1. Measuring eccentricity

Various methods to extract the eccentricity from NR

simulations have been proposed in the literature [64,90–

92].As the eccentricity evolves during the binary’s orbit [24],

these methods use dynamical quantities such as some

combination of the (2,2) mode’s amplitude, phase, or

frequency. All of these methods reduce to the eccentricity

parameter in the Newtonian limit. The estimated value of the

eccentricity may differ slightly depending on the method

used and the noise in the numerical data. However, as long as

they provide a consistent measurement of eccentricity that

decays monotonically with time, one can use any of the

eccentricity estimators for constructing a surrogate wave-

formmodel. For this work, we use the following definition of

eccentricity based on orbital frequency [93]:

eðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi

ωpðtÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffi

ωaðtÞ
p

ffiffiffiffiffiffiffiffiffiffiffi

ωpðtÞ
p

þ
ffiffiffiffiffiffiffiffiffiffiffi

ωaðtÞ
p ; ð4Þ

whereωa andωp are the orbital frequencies at apocenter (i.e.

point of furthest approach) and pericenter (i.e. point of closest

approach), respectively. Unlike several other eccentricity

estimators proposed in literature [64,90–92], the one defined

in Eq. (4) is normalized and reduces to the eccentricity

parameter in the Newtonian limit at both low and high

eccentricities [46].

We first compute the orbital frequency,

ωorb ¼
dϕorb

dt
; ð5Þ

where ϕorb is the orbital phase inferred from the (2,2) mode

[cf. Eq. (14)], and the derivative is approximated using

second-order finite differences. We then find the times

where ωorb passes through a local maxima (minima) and

associate those to pericenter (apocenter) passages, to obtain

ωp (ωa). We find that using the local maxima/minima of the

amplitude of the (2,2) mode to identify the pericenter/

apocenter times leads to a consistent value for the eccen-

tricity. We then interpolateωp andωa onto the full time grid

using cubic splines. This gives us ωpðtÞ and ωaðtÞ, which
are used in Eq. (4).

Figure 1 shows an example of the measured eccentricity

for the NR simulation SXS:BBH:2304. We see that our

method provides a smooth, monotonically decreasing eðtÞ.
The estimate becomes unreliable near merger where find-

ing local maxima/minima in ωorb becomes problematic as

the orbit transitions from inspiral to plunge. The estimate

also becomes problematic whenever the eccentricity is

extremely small, thereby preventing the appearance of an

identifiable local maxima/minima. This does not affect our

modeling, however, as we only require an eccentricity

value at a reference time while the binary is still in the

inspiral phase. We select a reference time of tref ¼ −5500M
and parametrize our waveform model by

eref ¼ eðtrefÞ: ð6Þ

While estimating eref , we include the data segment slightly

before tref as this allows us to interpolate, rather than

extrapolate, when constructing eðtÞ in Eq. (4).

2. Measuring mean anomaly

In the Newtonian context, the mean anomaly l of an

eccentric orbit is defined as

l≡ 2π
t − t0

P
; ð7Þ

where t0 is a time corresponding to the previous pericenter

passage and P is the radial period, which is defined to be

the time between two successive pericenter passages. In the

Newtonian case P is a constant, but in GR it changes as the

binary inspirals. However, one can continue to use Eq. (7) as

a meaningful measurement of the radial oscillation’s phase

for the purpose of constructing a waveform model [54].

For each NR waveform, we compute the times for

all pericenter passages using the same procedure as in

Sec. III B 1. We divide the time array into different orbital

windows defined as ½tperii ; t
peri
iþ1

Þ, where tperii is the time for ith
pericenter passage. The orbital period in each window is

given by Pi ¼ t
peri
iþ1

− t
peri
i , and the mean anomaly by

FIG. 1. Time evolution of the eccentricity eðtÞ (upper panel)

and the orbital frequency ωorbðtÞ (lower panel) for NR simulation

SXS:BBH:2304. ωp and ωa denote, respectively, the orbital

frequency at pericenter (local maxima, cyan circles) and apoc-

enter passages (local minima, green circles). From this data we

construct spline interpolants to obtain ωpðtÞ (cyan curve) and

ωaðtÞ (green curve). The eccentricity is then estimated

using Eq. (4). The red dashed vertical line corresponds to the

reference time tref ¼ −5500M at which the surrogate model is

parametrized.
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liðtÞ ¼ 2π
t − t

peri
i

Pi

: ð8Þ

Note that each liðtÞ grows linearly with time over ½0; 2πÞ for

the window ½tperii ; t
peri
iþ1

Þ. To obtain the full lðtÞ, we simply

join each liðtÞ for consecutive orbits. Finally, the value

for mean anomaly parametrizing our waveform model is

then simply the evaluation of the mean anomaly at

tref ¼ −5500M:

lref ¼ lðtrefÞ: ð9Þ

Figure 2 shows an example application of our method to

estimate the mean anomaly of the NR simulation SXS:

BBH:2304.

3. Targeted parameter space

In Fig. 3, we show the measured values for eccentricity

and mean anomaly at tref for all 47 NR waveforms, which

leads to the following 2d parameter space for our model:

(i) eccentricity: eref ∈ ½0; 0.2�;
(ii) mean anomaly: lref ∈ ½0; 2πÞ.

Figure 3 shows a large gap in the parameter space, which

reflects an inherent limitation in our current approach to

achieve target eccentricity parameters from the initial data.

The method we use to construct initial orbital parameters

[71] seeks to achieve target values of ðeref ; lrefÞ at a time

500M after the start of the simulation. The initial orbital

frequency is chosen such that time to merger is 6000M, as

predicted by a leading-order PN calculation. Unfortunately,

this is only approximate, leading to different merger times

for different simulations. Consequently, when we estimate

the eccentricity parameters at tref ¼ −5500M, this is no

longer a fixed time from the start of the simulation. The

eccentricity parameters evolve differently for different

simulations during this time, leading to the clustering in

Fig. 3. In the future, we plan to resolve this using a higher

order PN expression, or an eccentric waveform model

[55–57] to predict the time to merger.

C. Waveform data decomposition

Building a surrogate model becomes more challenging

for oscillatory and complicated waveform data. One sol-

ution is to transform or decompose the waveform data into

several simpler “waveform data pieces” that also vary

smoothly over the parameter space. These simpler data

pieces can then be modeled more easily and recombined to

get back the original waveform. Successful decomposition

strategies have been developed for quasicircular NR sur-

rogates [7–10,13]. In order to develop similar strategies for

eccentric waveform data, we have pursued a variety of

options. We now summarize the most successful decom-

position technique we have tried, while relegating some

alternatives to the Appendix.

FIG. 2. Time evolution of the mean anomaly lðtÞ (upper panel)
and the orbital frequency ωorbðtÞ (lower panel) for the NR

simulation SXS:BBH:2304. Green dashed vertical lines indicate

the times for pericenter passages. The anomaly lðtÞ grows linearly
with time over ½0; 2πÞ in between two successive pericenters. The
red dashed vertical line corresponds to the reference time tref ¼
−5500M at which the surrogate model is parametrized.

FIG. 3. The parameter space covered by the 47 NR waveforms

(circle markers) used in the construction of our surrogate model.

The axes show the eccentricity and mean anomaly values at tref .
We also show the dependence of the maximum (over the sky of

the source frame) flat-noise mismatches on the parameters

eccentricity and mean anomaly (cf. Sec. IVA 2). The colors

indicate the maximum mismatch, which systematically increases

near the high eccentricity boundary where few training data

points are available.
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1. Decomposing the quadrupolar mode h22

The complex (2,2) waveform mode,

h22 ¼ A22e
−iϕ22 ; ð10Þ

can be decomposed into an amplitude, A22, and phase, ϕ22.

For nonprecessing systems in quasicircular orbit, A22 and

ϕ22 are slowly varying functions of time, and have therefore

been used as waveform data pieces for many modeling

efforts. For eccentric waveforms, however, both amplitude

and phase show highly oscillatory modulations on the

orbital time scale (cf. Figs. 1 and 2 for the frequency, which

is a time derivative of the phase). This demands further

decomposition of the waveforms into even simpler data

pieces. One natural solution could have been to build

interpolated functions of the local maxima and minima of

A22 and ϕ22. The secular trend of these functions can then

be subtracted out from the original amplitude and phase.

The resulting residual amplitude and phase data may be

easier to model. Unfortunately, as mentioned in Sec. III B 1,

finding the local maxima/minima becomes problematic

near the merger.

We instead follow a simpler approach whereby the

amplitude and phase of a quasicircular q ¼ 1, nonspinning

NR waveform (SXS:BBH:1155) is used as a proxy for the

secular trend of the amplitude and phase. We then compute

the residual amplitude and phase,

ΔA22 ¼ A22 − A0

22
; ð11Þ

Δϕ22 ¼ ϕ22 − ϕ0

22
; ð12Þ

where A0

22
and ϕ0

22
are the amplitude and phase of the

noneccentric waveform, respectively, which have been

aligned according to the same procedure outlined in

Sec. III A. In the upper-left panel of Fig. 4, we show the

amplitude of an eccentric waveform (SXS:BBH:2304)

along with the amplitude of its noneccentric counterpart

(SXS:BBH:1155) which traces the secular trend of the

nonmonotonically increasing eccentric amplitude. The

difference of these two amplitudes, ΔA22, is then plotted

in the lower-left panel. ΔA22 is simpler to model than A22,

as it isolates the oscillatory component
1
of A22. Similarly, in

the right panels of Fig. 4, we show the phase evolution of

the same eccentric waveform (SXS:BBH:2304), its non-

eccentric counterpart (SXS:BBH:1155), and their differ-

ence Δϕ22 which isolates the oscillatory component of ϕ22.

Note that noneccentric waveform data is plentiful [77] and

accurate surrogate models have been built for noneccentric

NR waveforms [10,13]. So extending the residual ampli-

tude and phase computation to spinning, unequal-mass

systems is straightforward. For instance the surrogate

model of Ref. [10] can be used to generate A0

22
and ϕ0

22

for generic aligned-spin systems.

2. Decomposing the higher order modes

In this paper, we model the quadrupolar mode and the

higher-order modes differently. For h22, we model data

FIG. 4. Example decomposition of the amplitude and phase of the (2,2) mode. Upper left: amplitude A22 of the eccentric waveform

SXS:BBH:2304 (with eccentricity eref ¼ 0.181) along with the amplitude A0

22
of the noneccentric waveform SXS:BBH:1155. Lower

left: the residual amplitude ΔA22 ¼ A22 − A0

22
. Upper right: phase ϕ22 of the eccentric waveform SXS:BBH:2304 and the phase ϕ0

22
of

the noneccentric waveform SXS:BBH:1155. Lower right: the residual phase Δϕ22 ¼ ϕ22 − ϕ0

22
. In this work we model ΔA22 and Δϕ22.

1
In fact, the relatively simple oscillatory behavior of ΔA22

suggests the use of a Hilbert transform for further simplification.
However, we found that this does not improve the accuracy of our
model. Such further simplifications may become necessary for
larger eccentricities than considered in this work, as the mod-
ulations will be more pronounced.
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pieces closely associated with the amplitude and phase as

described above. On the other hand, for higher order

modes, we first transform the waveform into a co-orbital

frame in which the waveform is described by a much

simpler and slowly varying function. This is done by

applying a time-dependent rotation given by the instanta-

neous orbital phase:

hC
lm ¼ hlme

imϕorb ; ð13Þ

ϕorb ¼
ϕ22

2
; ð14Þ

where ϕ22 is the phase of the (2,2) mode [cf. Eq. (10)], ϕorb

is the orbital phase, and hC
lm represents the complex modes

in the co-orbital frame.

We use the real and imaginary parts of hC
lm as our

waveform data pieces for the nonquadrupole modes. As

shown in Fig. 5, the hC
lm data have less structure, making

them easier to model. We find that using quasicircular hC
lm

to subtract off the secular trend does not provide any

modeling advantage. We, therefore, model the real and

imaginary parts of hC
lm without any further data

decomposition.

3. Summary of waveform data pieces

To summarize, the full set of waveform data pieces we

model is as follows: ΔA22, Δϕ22 for the (2,2) mode, and

real and imaginary parts of hC
lm for the (3,2) and

(4,4) modes.

D. Building the waveform model

We decompose the inertial frame waveform data into

many waveform data pieces as summarized in Sec. III C 3.

For each of these data pieces, we now build a surrogate

model using reduced basis, empirical interpolation, and

parametric fits across the parameter space. The detailed

procedure is outlined in Refs. [5,9], which we only briefly

describe here.

For each waveform data piece, we employ a greedy

algorithm to construct a reduced basis [94] such that the

projection errors [cf. Eq. (5) of Ref. [9]] for the entire

dataset onto this basis are below a given tolerance. We use a

basis tolerance of 10−2 radians for Δϕ22, 1.5 × 10−3 for

ΔA22 and 2 × 10−5 for the real part of hC
32
. For all other

data pieces, basis tolerance is set to 5 × 10−5.

These choices are made so that we include a sufficient

number of basis functions for each data piece [nine for

ΔA22, 12 for Δϕ22, seven (five) for the real (imaginary) part

of hC
32

and ten (six) for the real (imaginary) part of hC
44
] to

capture the underlying physical features in the simulations

while avoiding overfitting. We perform additional visual

inspection of the basis functions to ensure that they are not

noisy in which case modeling accuracy can become

comprised (cf. Appendix B of Ref. [9]).

The next step is to construct an empirical interpolant in

time using a greedy algorithm which picks the most

representative time nodes [5,95–97]. The number of the

time nodes for each data piece is equal to the number of basis

functions used. The final surrogate-building step is to

construct parametric fits for each data piece at each of the

empirical time nodes across the two-dimensional parameter

space feref ; lrefg. We do this using the Gaussian process

regression (GPR) fitting method as described in

Refs. [87,98].

E. Evaluating the waveform surrogate

To evaluate the NRSur2dq1Ecc surrogate model, we

provide the eccentricity eref and mean anomaly lref as

inputs. We then evaluate the parametric fits for each

waveform data pieces at each time node. Next, the

empirical interpolant is used to reconstruct the full wave-

form data pieces (cf. Sec. III C 3).

We compute the amplitude and phase of the (2,2) mode,

AS
22

¼ ΔAS
22
þ A0

22
; ð15Þ

FIG. 5. The waveform modes for NR simulation SXS:

BBH:2304 (eref ¼ 0.181) are shown. The top panel shows the

dominant (2,2) mode in the inertial frame. Two higher-order

modes (3,2) and (4,4) in the co-orbital frame are shown in the

middle and lower panels respectively. The waveform is aligned

such that the peak of the amplitude occurs at t ¼ 0 and the orbital

phase is zero at tref ¼ −5500M.
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ϕS
22

¼ ΔϕS
22
þ ϕ0

22
; ð16Þ

where ΔAS
22
≈ ΔA22 and ΔϕS

22
≈ Δϕ22 are the surrogate

models forΔA22 andΔϕ22 respectivelywhileA
0

22
andϕ0

22
are

the amplitude and phase of the quasicircular NR waveform

used in the decompositions [cf. Eqs. (11) and (12)]. We

obtain the (2,2) mode complex strain as hS
22

¼ AS
22
e−iϕ

S
22 .

For the nonquadrupole modes, we similarly evaluate the

surrogate models for the real and imaginary parts of the co-

orbital frame waveform data pieces hC;S
lm ≈hC

lm and treat it

as hC
lm. Finally, we use Eqs. (10), (13), and (14) to obtain

the surrogate prediction for the inertial frame strainhS
lm for

these modes.

F. Building the remnant surrogate

In addition to the waveform model, we also construct the

first model for the remnant quantities of eccentric BBHs.

The new remnant model, NRSur2dq1EccRemnant,

predicts the final mass mf and the component of the final

spin, χfz, along the orbital angular momentum direction.

The remnant model takes eccentricity eref and mean

anomaly lref as its inputs and maps to the final state of

the binary. The final mass and spin fits are also constructed

using the GPR fitting method as described in Refs. [87,98].

IV. RESULTS

In this section we demonstrate the accuracy of

NRSur2dq1Ecc and NRSur2dq1EccRemnant by

comparing against the eccentric NR simulations described

in Sec. II. We do this by performing a leave-one-out cross-

validation study. In this study, we hold out one NR

waveform from the training set and build a trial surrogate

from the remaining 46 eccentric NR waveforms. We then

evaluate the trial surrogate at the parameter value corre-

sponding to the held out data, and compare its prediction

with the highest-resolution NR waveform. We refer to the

errors obtained by comparing against the left-out NR

waveforms as cross-validation errors. These represent

conservative error estimates for the surrogate models

against NR. Since we have 47 eccentric NR waveforms,

we build 47 trial surrogates for each error study. We

compare these errors to the NR resolution error, estimated

by comparing the two highest available NR simulations.

A. NRSur2dq1Ecc errors

1. Time domain error without time/phase optimization

In order to quantify the accuracy of NRSur2dq1Ecc,

we first compute the normalized L2-norm between the NR

data and surrogate approximation

E½h; h̃� ¼
1

2

P

l;m

R t2
t1
jhlmðtÞ − h̃lmðtÞj

2dt
P

l;m

R t2
t1
jhlmðtÞj

2dt
; ð17Þ

where hðtÞ and h̃ðtÞ correspond to the complex strain for

NR and NRSur2dq1Ecc waveforms, respectively. Here,

t1 and t2 denote the start and end of the waveform data. As

the NR waveforms are already aligned in time and phase,

the surrogate reproduces this alignment. Therefore, we

compute the time-domain error E without any further time/

phase shifts.

In Fig. 6, we report both the full waveform and individual

mode errors for NRSur2dq1Ecc. For comparison, we also

show the NR resolution errors. When computing the full

waveform error we use all modes included in the surrogate

model ðl; mÞ ¼ ð2; 2Þ; ð3; 2Þ; ð4; 4Þ in Eq. (17). To compute

errors for individual modes, we restrict the sum in Eq. (17) to

only the mode of interest. The NRSur2dq1Ecc errors are

comparable to the NR errors in Fig. 6.

FIG. 6. Time-domain leave-one-out errors E, defined in Eq. (17),

for the full waveform as well as the individual modes considered in

themodel. For comparison, we also show the NR error between the

two highest resolutions. The largest errors are found near the

parameter domain’s boundarywhere the trial surrogate, built as part

of the cross-validation study, is extrapolating.
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However, we find that the surrogate errors have an

extended tail around 2 orders of magnitude larger than the

largest NR mismatch. While this could imply overfitting,

we find that highest mismatches correspond to the param-

eter space adjacent to the higher eccentricity eref boundary
where only few (to none) training waveforms are used. As

will be discussed in Sec. IVA 2, the sparsely sampled

region of the training domain around ðeref ¼ 0.2; lref ≲ 2Þ
leads to this extended high-error tail in Fig. 6.

We further note in Fig. 6 that the highest error in each

mode corresponds to the same point in the parameter space

indicating consistency in our modeling. Furthermore, as we

only deal with mass ratio q ¼ 1 waveforms, the contribu-

tion of the higher modes is expected to be negligible

compared to the dominant (2,2) mode (see for example,

Ref. [99]). Therefore, even though the (3,3) and (4,4)

modes have larger relative errors compared to the (2,2)

mode, their contribution to the total error is much smaller.

This can be verified by comparing the full waveform errors

to the (2,2) mode errors in Fig. 6.

2. Frequency domain mismatch with time/phase

optimization

In this section, we estimate leave-one-out cross-valida-

tion errors by computing mismatches between the NR

waveform and the trial surrogate waveform in the fre-

quency domain. The frequency domain mismatch between

two waveforms, h1 and h2 is defined as

hh1;h2i ¼ 4Re

Z

fmax

fmin

h̃1ðfÞh̃
�
2ðfÞ

SnðfÞ
df; ð18Þ

where h̃ðfÞ indicates the Fourier transform of the complex

strainhðtÞ, � indicates a complex conjugation, Re indicates

the real part, and SnðfÞ is the one-sided power spectral

density of a GW detector.

Before transforming the time domain waveform to the

frequency domain, we first taper the time domain wave-

form using a Planck window [100], and then zero pad to the

nearest power of 2. The tapering at the start of the

waveform is done over 1.5 cycles of the (2,2) mode.

The tapering at the end is done over the last 20M. Once

we obtain the frequency domain waveforms, we compute

mismatches following the procedure described in

Appendix D of Ref. [9]. The mismatches are optimized

over shifts in time, polarization angle, and initial orbital

phase. We compute the mismatches at 37 points uniformly

distributed on the sky of the source frame, and use all

available modes for the surrogate model.

We consider a flat noise curve SnðfÞ ¼ 1 as well as the

Advanced-LIGO design sensitivity Zero-Detuned-HighP

noise curve from Ref. [101]. We take fmin to be the

frequency of the (2,2) mode at the end of the initial

tapering window while fmax is set at 4f
peak
22

, where f
peak
22

is the frequency of the (2,2) mode at its peak. This ensures

that the peak frequencies of all modes considered in our

model are captured well, and we have confirmed that our

mismatch values do not change for larger values of fmax.

Note that, when computing mismatches using Advanced

LIGO noise curve, for masses below ∼70 M⊙, fmin is

greater than 20 Hz, meaning that the signal starts within the

detector sensitivity band.

The mismatches computed using the flat noise curve are

shown in the left panel of Fig. 7. The histograms include

FIG. 7. Left panel: flat noise mismatch between the NRSur2dq1Ecc model (following the leave-one-out validation procedure) and

the highest-resolution NR waveform data. For comparison, we also show the NR resolution error, obtained by comparing the two highest

available resolutions. Right panel: NRSur2dq1Ecc (validation) mismatches computed using the advanced LIGO design sensitivity

noise curve, as a function of the total mass of the binary. For comparison, we also show the NR mismatches. For each mass, the

distribution of mismatches is shown as a smoothed vertical histogram (or a violin). The histograms are normalized so that all violins have

equal width. The largest errors are found near the parameter domain’s boundary where the trial surrogate, built as part of the cross-

validation study, is extrapolating.
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mismatches for all 47 NR waveforms and source-frame sky

locations. We find that the typical surrogate mismatches are

10−5–10−3, which are comparable to but larger than the NR

errors. As an example, Fig. 8 shows the surrogate and NR

waveforms for the case that leads to the largest mismatch in

the left panel of Fig. 7.

In Fig. 3, we show the dependence of the mismatches on

the parameter space. It can be easily recognized that the

surrogate yields largest errors at and around ðeref ¼
0.2; lref ≲ 2Þ where the training grid becomes sparse.

Further, when these sparse data points themselves are left

out when computing the cross-validation errors, the surro-

gate is effectively extrapolating in parameter space. This

indicates that the surrogate accuracy could be improved by

adding new NR simulations in this high-eccentricity region.

However, achieving target values of eref and lref has proven
difficult. We return to this issue in the conclusions.

The right panel of Fig. 7 shows the mismatches com-

puted using advanced LIGO design sensitivity noise curve

[101] for different total masses M of the binary. For each

M, we compute the mismatches for all 47 NR waveforms

and source-frame sky locations and show the distribution of

mismatches using vertical histograms known as violin

plots. Over the mass range 20–180 M⊙, the surrogate

mismatches are at the level of ∼10−4–10−3 but with an

extending tail as before. However, we note that these errors

are typically smaller than the mismatches for other eccen-

tric waveform models [55–57].

B. Mode mixing

NR waveforms are extracted as spin-weighted spherical

harmonic modes [102,103]. However, during the ring-

down, the system can be considered a single Kerr black

hole perturbed by quasinormal modes; perturbation theory

tells us that the angular eigenfunctions for these modes are

FIG. 8. Real part of the waveform modes for the case that results in the largest flat noise mismatch (∼0.04) for NRSur2dq1Ecc (red

dashed line) in the left panel of Fig 7. We also show the corresponding NR waveform, SXS:BBH:2308 (black solid line). The parameter

values for this waveform are eref ¼ 0.176 and lref ¼ 2.51. Note that this plot is generated using a trial surrogate that was not trained

using this NR waveform data.

FIG. 9. The absolute values of different spherical-harmonic

modes are shown as dashed (solid) curves for the surrogate (NR)

for SXS:BBH:2308, for which the surrogate produces largest flat

noise mismatch (∼0.04). The parameter values for this waveform

are eref ¼ 0.176 and lref ¼ 2.51. Mode mixing for the (3,2) mode

is clearly seen in the ringdown signal of the NR waveform and is

accurately reproduced by the surrogate.
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the spin-weighted spheroidal harmonics [104,105]. A

spherical harmonic mode hlm can be written as a linear

combination of all spheroidal harmonic modes with the

same m index. During the ringdown, each (spheroidal-

harmonic) quasinormal mode decays exponentially in

time, but each spherical-harmonic mode has a more

complicated behavior because it is a superposition of

multiple spheroidal-harmonic modes (of the same m
index) with different decay rates. This more complicated

behavior is referred to as mode mixing, since power flows

between different spherical-harmonic modes [106]. This

mixing is particularly evident in the (3,2) mode as

significant power of the dominant (2,2) spherical-har-

monic mode can leak into the (3,2) spherical-harmonic

mode. As the surrogate accurately reproduces the spheri-

cal harmonic modes from the NR simulations, it is also

expected to capture the effect of mode mixing without any

additional effort [10]. We demonstrate this for an example

case in Fig. 9 where we plot the amplitude of individual

modes of the waveform during the ringdown. We show

that the mode mixing in the (3,2) mode is effectively

recovered by the surrogate model.

C. NRSur2dq1EccRemnant errors

In addition to the waveform surrogate, we also build a

remnant surrogate model, NRSur2dq1EccRemnant,

that predicts the mass and spin of the final BH left behind

after the merger. This is the first such model for eccentric

BBHs (but see e.g. Refs. [67,68]). Figure 10 shows the

cross-validation errors of NRSur2dq1EccRemnant in

predicting the remnant mass and spin. We find that

NRSur2dq1EccRemnant can predict the final mass

and spin with an accuracy of ≲5 × 10−4M and ≲2 ×

10−3 respectively. We further compute the errors for a

noneccentric remnant model, NRSur3dq8Remnant [87],

when compared against the same eccentric NR simulations,

finding that errors in NRSur3dq8Remnant are compa-

rable with NRSur2dq1EccRemnant errors. This

suggests that noneccentric remnant models may be suffi-

cient for equal-mass nonspinning binaries with eccen-

tricities eref ≤ 0.2. However, we expect such models to

disagree with eccentric simulations in the more general case

of unequal-mass, spinning binaries (see for e.g. Ref. [46]).

D. Extending NRSur2dq1Ecc to

comparable mass systems

We now assess the performance of NRSur2dq1Ecc

when evaluated beyond its training parameter range

FIG. 10. Leave-one-out error histograms of NRSur2dq1EccRemnant (red) for the remnant mass mf (left) and remnant spin χfz
(right). For comparison we plot the NR errors (black), estimated by comparing the two highest resolution NR simulations, and errors for

the noneccentric model NRSur3dq8cRemnant (green).

FIG. 11. Mismatches against NR for the NRSur2dq1Ecc+

model (a simple extension of NRSur2dq1Ecc) when the

surrogate is evaluated beyond its training parameter range

(q ¼ 1). The mismatches are shown as a function of the binary

total mass M (at ι ¼ π=3, φ0 ¼ 0.0), and are computed using the

advanced LIGO design sensitivity noise curve. We show mis-

matches for q ¼ 2 (q ¼ 3) as solid lines (dashed lines). We use

star markers to denote waveforms with eref smaller than ∼0.05

and diamond markers for the rest. All eccentricity values are

computed at a reference time of tref ¼ −2000M.
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(q ¼ 1). To generate surrogate predictions at a given

ðq; eref ; lrefÞ, we first evaluate NRSur2dq1Ecc at ðq ¼ 1;

eref ; lrefÞ and refer to the output as hS
lmðq ¼ 1; eref ; lrefÞ.

We then evaluate the noneccentric surrogate model

NRHybSur3dq8 [10] at the given mass ratio q and mass

ratio q ¼ 1, and refer to the output as h0

lmðqÞ and

h0

lmðq ¼ 1Þ. We then compute the difference in amplitude

and phase between hS
lmðq ¼ 1; eref ; lrefÞ and h0

lmðq ¼ 1Þ:

ΔAS
lmðq ¼ 1; eref ; lrefÞ

¼ AS
lmðq ¼ 1; eref ; lrefÞ − A0

lmðq ¼ 1Þ; ð19Þ

ΔϕS
lmðq ¼ 1; eref ; lrefÞ

¼ ϕS
lmðq ¼ 1; eref ; lrefÞ − ϕ0

lmðq ¼ 1Þ: ð20Þ

Even though these amplitude and phase differences are

computed at q ¼ 1, we treat them as a proxy for the

modulations due to eccentricity at any q. We then add these

modulations to the amplitude and phase of h0

lmðqÞ, the
noneccentric surrogate model evaluated at the given q, to
get the full amplitude and phase:

AS
lmðq; eref ; lrefÞ

¼ ΔAS
lmðq ¼ 1; eref ; lrefÞ þ A0

lmðqÞ; ð21Þ

ϕS
lmðq; eref ; lrefÞ

¼ ΔϕS
lmðq ¼ 1; eref ; lrefÞ þ ϕ0

lmðqÞ: ð22Þ

The final surrogate prediction, which we view as a new,

simple model NRSur2dq1Ecc+, is then

hS
lmðq; eref ; lrefÞ ¼ AS

lmðq; eref ; lrefÞe
−iϕS

lm
ðq;eref ;lrefÞ: ð23Þ

To assess the accuracy of NRSur2dq1Ecc+ we com-

pare against eight publicly available eccentric NR simu-

lations with q ¼ 2 and q ¼ 3 [54,77]. These NR

waveforms are shorter in length than the ones used to

train our surrogate model. To ensure fair comparison

between surrogate predictions and NR waveforms, we

build a test surrogate
2
which is parametrized by eref and

lref at tref ¼ −2000M.

In Fig. 11, we show mismatches computed using the

advanced LIGO design sensitivity noise curve, between the

NRSur2dq1Ecc+ model and eccentric NR data at q ¼ 2,

3. We include all modes available in the model while

computing the mismatch. For simplicity, we only consider a

single point in the source-frame sky, with an inclination

angle of π=3. For eref (at tref ¼ −2000M) smaller than

∼0.05, mismatches are always smaller than 10−2. As we

increase eref (at tref ¼ −2000M) to 0.09, the mismatches

become significantly worse, especially for q ¼ 3, reaching

FIG. 12. We show the NRSur2dq1Ecc+ prediction (red dashed line) beyond training range (q ¼ 1) of the surrogate for the case that

results in the largest mismatch (Fig. 11) in the region defined by eref (at tref ¼ −2000M) smaller than ∼0.05. We also show the

corresponding NR waveform SXS:BBH:1371 (black solid line). The parameters for this waveform are q ¼ 3, eref ¼ 0.050 and lref ¼
2.45 (at tref ¼ −2000M).

2
While building the test surrogate, we exclude SXS:BBH:2294

(eref ¼ 7 × 10
−4, lref ¼ 5.766 at tref ¼ −5500M) from the train-

ing set as the binary circularizes enough by t ¼ −2000M such
that our eccentricity estimator defined in Eq. (4) becomes
unreliable.
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values ∼10−1. As an example, Fig. 12 shows the surrogate

prediction (and NR waveform) for the case that leads to the

largest mismatch in Fig. 11 with eref (at tref ¼ −2000M)

smaller than ∼0.05.

This suggests that our scheme to extend the surrogate

model to comparable mass systems produces reasonable

waveforms for small eccentricities. However, we advise

caution with extrapolation-type procedures in general.

E. Importance of mean anomaly for data analysis

Many existing waveform models [55–58] for eccentric

binaries parametrize eccentric characteristics of the wave-

form by only one parameter eref while keeping lref fixed.
We, however, use both eref and lref as parameters in our

model. We find that not allowing lref as an independent

parameter results in large modeling error, indicating that the

mean anomaly is important to consider when modeling the

GW signal from eccentric binaries.

To demonstrate the importance of mean anomaly also in

data analysis, we present a simple study. We generate

NRSur2dq1Ecc predictions hS
lmðq ¼ 1; eref ¼ 0.1; lrefÞ

with lref ∈ ½0.0; 2π�. The left panel of Fig. 13 shows

mismatches between the waveform at lref ¼ 0 and various

lref , parametrized by Δlref ¼ lref − 0. For simplicity, we

only consider a single point in the source-frame sky, at

ι ¼ π=3, φ0 ¼ 0.0. As expected, we find that Δlref ¼ 0.0

and Δlref ¼ 2π produce identical waveforms. However, the

mismatch reaches a value of ∼0.1 at Δlref ¼ π. As we

already account for allowed time and frame shifts when

computing the mismatch, ignoring this difference can lead

to modeling errors or biased parameter estimation. In the

right panel of Fig. 13, we show the waveform amplitude for

the cases with lref ¼ 0 and lref ¼ π. The clear differences in

the amplitude reinforce our assertion that this mismatch

cannot be accounted for by a time or frame shift.

V. CONCLUSION

We present NRSur2dq1Ecc, the first eccentric NR

surrogate waveform model. This model is trained on 47 NR

waveforms of equal-mass nonspinning BBH systems with

eccentricity eref ≤ 0.2, defined at a reference time tref ¼
−5500M before the waveform peak. The model includes

the (2,2), (3,2) and (4,4) spin-weighted spherical harmonic

modes. Due to the symmetries of the equal-mass, non-

spinning systems considered here, this is equivalent to

including all l ≤ 3 and ð4;�4Þ modes, except the m ¼ 0

modes. This is the first eccentric BBH model that is directly

trained on eccentric NR simulations and does not require that

the binary circularizes before merger. We also present

NRSur2dq1EccRemnant, the first NR surrogate model

for the final BH properties of eccentric BBH mergers. This

model is also trained on the same set of simulations.

We use Gaussian process regression to construct the para-

metric fits for both models. Both NRSur2dq1Ecc and

NRSur2dq1EccRemnantwill bemade publicly available

in the near future.

Through a leave-one-out cross-validation study, we show

thatNRSur2dq1Ecc accurately reproducesNRwaveforms

with a typical mismatch of ∼10−3. We further demonstrate

that our remnant model, NRSur2dq1EccRemnant, can

accurately predict the final mass and spin of the merger

remnant with errors ≲5 × 10−4M and ≲2 × 10−3 respec-

tively. We showed that despite being trained on equal-mass

binaries,NRSur2dq1Ecc can be reasonably extended up to

mass ratio q ≈ 3 with mismatches ≃10−2 for eccentricities

eref ≲ 0.05 at tref ¼ −2000M. Finally, we demonstrate that

the mean anomaly, which is often ignored in waveform

modeling and parameter estimation of eccentric binaries, is

an important parameter to include. Exclusion of mean

anomaly can result in poor modeling accuracy and/or biased

parameter inference.

FIG. 13. Importance of mean anomaly for waveform modeling and data analysis. Left panel: flat noise mismatch (optimized over time,

phase and polarization angle shifts) between NRSur2dq1Ecc predictions with lref ¼ 0.0 and lref ¼ Δlref , at fixed q ¼ 1 and eref ¼ 0.1.

While the mismatch, as expected, is ∼0 for Δlref ¼ 0.0 and Δlref ¼ 2π, it reaches values ∼0.1 near Δlref ¼ π. Right panel: the (2,2)

amplitude of the waveforms leading to the maximum mismatch, i.e. lref ¼ 0 and lref ¼ π. These differences cannot be accounted for by a

time or phase shift, therefore, mean anomaly is an important parameter to include for waveform modeling and data analysis of eccentric

binaries.
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The NR simulations used for this work were performed

using the Spectral Einstein Code (SpEC) [69]. SpEC’s

development efforts have been primarily focused on evo-

lutions of binary black hole systems in quasicircular orbits

[77]. To efficiently generate accurate training data for high

eccentricity systems, it may be necessary to improve certain

algorithmic subroutines. For example, as noted in

Sec. III B 3, we found it difficult to achieve target values

of ðeref ; lrefÞ at a reference time before merger. We also

noticed that the waveform’s numerical error was noticeably

larger near pericenters, suggesting better adaptive mesh

refinement algorithms [107] may be necessary for highly

eccentric simulations.

We have also explored several data decomposition

techniques and parametrizations for building eccentric

NR surrogate models, which can guide strategies for future

models. Our final framework for building eccentric NR

surrogates is quite general, and we expect that it can be

applied straightforwardly to higher dimensional parameter

spaces including unequal masses and aligned spins. We

leave these explorations to future work.
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APPENDIX: CHOICE OF DATA

DECOMPOSITION AND PARAMETRIZATION

In this Appendix, we describe various alternate modeling

strategies we pursued before deciding on the formalism

presented in the main text.

1. Choice of data decomposition

In this work, we have modeled the amplitude (A22) and

phase (ϕ22) of the (2,2) mode by modeling the residual

(ΔA22, Δϕ22) of these quantities with respect to a quasi-

circular NR waveform (cf. Sec. III C). Alternatively, one

could instead model the amplitude and frequency (or their

residuals), and then integrate the frequency to obtain the

phase. The frequency of the (2,2) mode is given by

ω22 ¼
dϕ22

dt
; ðA1Þ

where ϕ22 is defined in Eq. (10). The corresponding

residual is given by

Δω22 ¼ ω22 − ω0

22
; ðA2Þ

where ω0

22
is the frequency of (2,2) mode for the quasi-

circular NR waveform.

We, therefore, explore four different data decomposition

strategies for the (2,2) mode, summarized below:

(i) Model fA22;ϕ22g directly.

(ii) Model fΔA22;Δϕ22g and then add them to the

amplitude and phase of the quasicircular NR wave-

form to obtain fA22;ϕ22g.
(iii) Model fA22;ω22g and integrate the frequency data to

get fA22;ϕ22g.
(iv) Model fΔA22;Δω22g; add them to the amplitude

and frequency of the quasicircular NR waveforms,

and finally integrate the frequency data to ob-

tain fA22;ϕ22g.
In order to explore the effectiveness of these strategies,

we build a separate surrogate model using each strategy.

When building the frequency surrogates (ω22 or Δω22) we

use a basis tolerance of 10−3 rad=M. For A22 (ϕ22) we use

the same tolerance as used for ΔA22 (Δϕ22) in Sec. III D.

We compute the normalized L2 norm between the NR data

and each surrogate approximation using Eq. (17). In

Fig. 14, we show the surrogate errors for all four different

strategies. We find that modeling the frequency ω22 or

residual frequency Δω22 yields at least 2-to-3 orders of

magnitude larger E than when we model the phase ϕ22 or

Δϕ22. Furthermore, modeling the residual amplitude ΔA22

proves to be slightly more accurate than the case where we
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model the amplitudeA22 directly. Therefore, in themain text,

we build surrogate models of the residual fΔA22;Δϕ22g
(cf. Sec. III C).

2. Choice of fit parametrization

When building the surrogate models in the main text, fits

across parameter space are required for the waveform

model as well as the remnant model (cf. Sec. III D).

These fits are parametrized by the eccentricity (eref) and
mean anomaly ðlrefÞ at the reference time tref . While

feref ; lrefg is a natural choice, we also explore the following
choices of parametrizations:

(i) feref ; lrefg,
(ii) feref ; sinðlref=2Þg,
(iii) flog10ð1 − erefÞ; lrefg,
(iv) flog10ð1 − erefÞ; sinðlref=2Þg.

Here sinðlref=2Þ is considered because it maps the periodic

parameter lref ∈ ½0; 2πÞ uniquely to the range [0, 1], while

still mapping the physically equivalent points lref ¼ 0 and

lref ¼ 2π to the same point [sinðlref=2Þ ¼ 0]. The same is

not true for other possible parametrizations such as

sinðlrefÞ, cosðlrefÞ, or cosðlref=2Þ. log10ð1 − erefÞ is consid-
ered because it flattens the spread in eccentricity, which can

be useful if the eccentricity varies over several orders of

magnitude in the NR dataset.

Similarly to the previous section, to explore the effec-

tiveness of these strategies, we build a separate surrogate

model using each strategy. Here, however, we consider all

modes included ðl; mÞ ¼ ð2; 2Þ; ð3; 2Þ; ð4; 4Þ and evaluate

E errors [cf. Eq. (17)]. In Fig. 15, we show E errors for each

parametrization strategy. We find that while the alternative

strategies using either log10ð1 − erefÞ, or sinðlref=2Þ, or

both, may be comparable, none of them result in errors

smaller than the original choice feref ; lrefg. As we do not

achieve a noticeable improvement with these alternative

parametrizations, we stick to the original choice feref ; lrefg
in the main text.
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