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Numerical simulations of binary black holes are accompanied by an initial spurious burst of gravitational

radiation (called “junk radiation”) caused by a failure of the initial data to describe a snapshot of an inspiral

that started at an infinite time in the past. A previous study showed that the superposed harmonic (SH)

initial data give rise to significantly smaller junk radiation. However, it is difficult to construct SH initial

data for black holes with dimensionless spin χ ≳ 0.7. We here provide a class of spatial coordinate

transformations that extend SH to higher spin. The new spatial coordinate system, which we refer to as

superposed modified harmonic (SMH), is characterized by a continuous parameter—Kerr-Schild and

harmonic spatial coordinates are only two special cases of this new gauge. We compare SMH with the

superposed Kerr-Schild initial data by evolving several binary black hole systems with χ ¼ 0.8 and 0.9.

We find that the new initial data still lead to less junk radiation and only small changes of black hole

parameters (e.g., mass and spin). We also find that the volume-weighted constraint violations for the new

initial data converge with resolution during the junk stage ðt ≲ 700MÞ, which means there are fewer high-

frequency components in waveforms at outer regions.

DOI: 10.1103/PhysRevD.103.084029

I. INTRODUCTION

The detection of GW150914 [1] and other binary

compact objects [2–6] has opened a new era in astrophys-

ics. With the improvement of detector sensitivity, more and

more events are expected to be detected in the near future

[7]. Therefore, an accurate modeling of coalescing binaries

is crucial for data analysis. Numerical relativity (NR)

remains the only ab initio method to simulate the coa-

lescence of binary black hole (BBH) systems. With NR,

one can obtain the entire BBHwaveform including inspiral,

merger, and ringdown. Moreover, gravitational wave mod-

els [8–15] used to analyze detector data are ultimately

calibrated against NR.

Numerical simulations of BBHs are based on splitting

the Einstein equation into constraint and evolution parts,

where the constraint equations provide the initial data to

evolve. However, the constructed initial data do not exactly

correspond to a quasiequilibrium state of an inspiral that

started at an infinite time in the past. For example, the tidal

distortion of a BH is not fully recovered, and the initial data

do not usually include gravitational radiation already

present. As a result, once the evolution begins, the system

relaxes into a quasiequilibrium state and gives rise to a

pulse of spurious radiation, which is referred to as “junk

radiation.” Several attempts have been made to reduce

junk radiation, by introducing post-Newtonian corrections

[16–21] or by using a curved conformal metric [18,22,23].

Recently, Varma, Scheel, and Pfeiffer [23] carried out a

systematic study of initial data and its effects on junk

radiation and computational efficiency of the subsequent

time evolution. The simulations studied in Varma, Scheel,

and Pfeiffer were performed with an NR code: the spectral

Einstein code (SpEC) [24], where the construction of initial

data is based on the extended conformal thin sandwich

(XCTS) formulation [25,26]. Within this formalism, sev-

eral free fields, including the conformal metric, must be

provided. Different choices of the free fields generate

different physical initial data; the data still correspond to

two black holes with the same desired mass ratio and spins,

but the initial tidal distortions and strong-field dynamics

differ. Varma, Scheel, and Pfeiffer showed that the junk

radiation and efficiency of the subsequent evolution depend

on the given free fields. In particular, choosing the initial

data based on two superposed black holes in time-

independent harmonic coordinates [27] [heretofore called

superposed harmonic (SH) data] leads to less junk radiation

than superposed Kerr-Schild (SKS) initial data [22], which

are typically used in SpEC simulations [28]. Varma, Scheel,*
sma@caltech.edu
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and Pfeiffer also found that SH initial data have higher

computational efficiency. However, SH initial data work

well only for BHs with dimensionless spin χ ≲ 0.7. For

high-spin BHs, the horizons become so highly deformed

that it is difficult to construct initial data (cf. Fig. 10

in Ref. [23]).

For both SH and SKS initial data, the conformal spatial

metric and the trace of the extrinsic curvature are deter-

mined by superposing the analytic solutions for two single

Kerr black holes. The difference is that SKS uses the Kerr

metric in Kerr-Schild coordinates, and SH uses the Kerr

metric in time-independent harmonic coordinates [27].

It may be surprising that making a different coordinate

choice—the choice of coordinates for the single-BH

analytic solution—leads to a different physical BBH

solution. The reason is that the superposition of two

single-BH solutions does not solve the Einstein equations

for a BBH and is used to compute only some of the fields;

the remaining fields are computed by solving constraints

and by quasiequilibrium conditions. For a single black

hole, following the complete initial data procedure (includ-

ing solving the constraints numerically) for both SKS and

SH would result in the same physical Kerr metric but in

different coordinates.

In this paper, we extend SH to higher spins by using a

spatial coordinate map to transform the free data for the

single-BH conformal metric while retaining harmonic time

slicing for this single-BH conformal metric. The coordinate

transformation defines a class of spatial coordinate systems

that are characterized by a continuous parameter α. We refer

to these coordinates as the modified harmonic (MH)

coordinate system. MH coordinates are purely harmonic

with α ¼ 1 and correspond to spatial KS when α ¼ 0.

Similar to the cases of SKS and SH, initial data for a BBH

system can also be constructed by superposing two single

Kerr black holes in MH coordinates. We refer to these

initial data as superposed modified harmonic (SMH). For

the BBH systems with χ > 0.7, a value of α < 1 results in

less distorted horizons. However, it is desirable to keep α

as close to 1 as possible so that SMH data still share the

desirable properties of SH initial data.

This paper is organized as follows. In Sec. II, we

provide some basic information about how we compute

initial data and evolve BBH systems. In Sec. III, we

compare the behavior of different single-BH coordinate

systems. In particular, in Sec. III E, we explicitly point

out the numerical reason that SH does not work for high-

spin BHs. This immediately leads to a class of spatial

coordinate transformations, defined in Sec. III F, that

can cure the numerical issues. We then use the MH

coordinate system to construct initial data for BBHs (i.e.,

SMH) with χ ¼ 0.8 and 0.9 and evolve these systems. In

Sec. IV, we discuss the results of our simulations. Finally,

in Sec. V, we discuss our results and highlight possible

future work.

Throughout the paper, we use Latin letters to stand for

the spatial indices and Greek letters to represent spacetime

indices.

II. BBH INITIAL DATA AND EVOLUTION

Following the discussions in Ref. [23], we use the XCTS

formulation to construct initial data for a binary black hole

system. Within this formalism, one can freely specify the

conformal metric ḡij, trace of extrinsic curvature K, and

their time derivatives ∂tḡij and ∂tK. To obtain quasiequili-

brium initial data, we choose

∂tḡij ¼ 0; ∂tK ¼ 0: ð1Þ

The construction of the other free fields, ḡij and K, is based

on the 3-metric g
β
ij and the trace of extrinsic curvature Kβ

of two single boosted Kerr BHs, where the superscript

β ¼ 1, 2 labels each of the two BHs in the binary system.

The conformal metric and the trace of the extrinsic

curvature are then given by

ḡij ¼ fij þ
X

2

β¼1

e−r
2

β
=w2

β

�

g
β
ij − fij

�

; ð2Þ

K ¼
X

2

β¼1

e−r
2

β
=w2

βKβ; ð3Þ

respectively, where fij is the flat 3-metric and rβ is the

Euclidean coordinate distance from the center of each

BH [29]. Note that each metric is weighted by a Gaussian

with width

wβ ¼ 0.6d
L1

β ; ð4Þ

where d
L1

β is the Euclidean distance between the Newtonian

L1 Lagrange point and the center of the black hole labeled

by β. Here, g
β
ij and Kβ correspond to the Kerr solution

expressed in either the KS, harmonic, or MH coordinate

systems. BBH initial data constructed from the two Kerr

solutions in the aforementioned coordinates are referred to

as SKS, SH, and SMH, respectively.

After specifying the free fields, the initial data are

completed by solving a set of coupled elliptic equations

that ensure satisfaction of the constraints and an additional

quasiequilibrium condition. Additionally, these elliptic

equations require boundary conditions. At the outer boun-

dary (typically chosen to be 109M from the sources), we

impose asymptotic flatness [cf. Eqs. (11)–(13) in Ref. [23]],

and at each inner boundary we enforce an apparent horizon

condition [cf. Eqs. (15)–(24) in Ref. [23]]. After generating

initial data in the XCTS formalism, we also need to specify

the initial gauge for time evolution. Here, we use the most
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common choice for SpEC simulations: ∂tN ¼ ∂tN
i ¼ 0 in

a corotating frame, where N is the lapse function and Ni is

the shift vector. It was shown that the damped harmonic

gauge [30] is the most suitable for mergers, so we do a

smooth gauge transformation on a timescale of ∼50M
during the early inspiral, to transform from the initial gauge

to the better-suited damped harmonic gauge.

III. MODIFIED HARMONIC COORDINATE

SYSTEM

In this section, we aim to investigate the reason that

makes the harmonic coordinates problematic for high-spin

BHs. We begin with a brief review of KS coordinates in

Sec. III A. Then, in Sec. III B, we outline a method that can

be used to study the numerical behavior of Kerr metric in

different coordinate systems. It is then applied to KS spatial

coordinates with harmonic slicing in Sec. III C and to

harmonic coordinates in Sec. III D. Those analyses allow

us to explicitly show the numerical problem with using

harmonic coordinates for high-spin BHs, as discussed in

Sec. III E. Finally, in Sec. III F, we provide a coordinate

map to fix the problem.

A. Kerr in Kerr-Schild coordinates

For a stationary Kerr BH with mass M and angular

momentum χM2 in the z direction, the metric in KS

coordinates x
μ
KS ¼ ðtKS; xKS; yKS; zKSÞ is given by [31]

ds2 ¼ gμνdx
μ
KSdx

ν
KS ¼ ðημν þ 2HlμlνÞdxμKSdxνKS; ð5Þ

where ημν is the Minkowski metric, H is a scalar function,

and lμ is a null covariant vector. The expressions for H and

lμ are not used here but can be found in Ref. [31]. With KS

coordinates, the radial Boyer-Lindquist coordinate r can be
written as [31]

r2 ¼ 1

2
ðx2KS þ y2KS þ z2KS − a2Þ

þ
�

1

4
ðx2KS þ y2KS þ z2KS − a2Þ2 þ a2z2KS

�

1=2

ð6Þ

or, equivalently,

x2KS þ y2KS
r2 þ a2

þ z2KS
r2

¼ 1: ð7Þ

Here, we have used a ¼ χM for the sake of conciseness.

The outer and inner horizons of the BH are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
− a2

p

: ð8Þ

B. Transforming from KS to a different

coordinate system

Now we introduce a new coordinate system xμ ¼ ðt; x;
y; zÞ, which are related to the KS coordinates x

μ
KS through

0

B

B

B

@

dtKS

dxKS

dyKS

dzKS

1

C

C

C

A

¼
�

1 b

0 C

�

0

B

B

B

@

dt

dx

dy

dz

1

C

C

C

A

; ð9Þ

where b is a 3D vector and C is a 3 × 3 matrix. In Eq. (9),

we have assumed that the new spatial coordinates are

independent of tKS.
1
Note that we here keep the forms of b

and C generic, so that our present discussion can be applied

to different coordinate systems.

With the Jacobian at hand, we could transform the Kerr

metric into the new coordinates and study the numerical

features of each metric component, such as the problematic

behavior of harmonic coordinates for high-spin black holes,

but this usually involves very complicated calculations.

However, since gKSμν can be decomposed into two pieces

[Eq. (5)], it is simpler to study the transformations of ημν.
2

In the new coordinates, we have

ημν ¼
�

−1 0

0 I
3

�

→

�

1 b

0 C

�

T
�

−1 0

0 I
3

��

1 b

0 C

�

¼
�

−1 −b

−bT CTC − bTb

�

; ð10Þ

where I
3 is the three-dimensional identity matrix. Both the

3-metric ðCTC − bTbÞ and the shift vector −b above are

modified by the vector b. Any numerically problematic

term in b might cause difficulty to resolve the metric in the

new coordinates. Below, we focus on the z component of b,

bz, at the inner boundary r ¼ rþ, and study its numerical

behavior for high-spin black holes (especially when

a → M) with several coordinates.

C. Kerr-Schild spatial coordinates

with harmonic slicing

We first apply our discussion in Sec. III B to a mixed

coordinate system: KS spatial coordinates together with

harmonic temporal slicing; then we have

CKSHS ¼ I
3; ð11aÞ

bKSHS ¼
2M

r − r
−

∇r; ð11bÞ

1
Equivalently, ðxKS; yKS; zKSÞ are independent of t.
2
We have checked that the same problematic terms also occur

in the Hlμlν piece of Eq. (5).
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where the subscript “KSHS” stands for Kerr-Schild

spatial coordinates with harmonic slicing and r is the

radial Boyer-Lindquist coordinate. Note that Eq. (11b) is

the result of [27]

tKSHS ¼ tKS −

Z

2M

r − r
−

dr: ð12Þ

We refer the reader to the Appendix for the detailed

expression of ∇r. The z component of bKSHS at the inner

boundary r ¼ rþ is given by (as a → M)

bzKSHS ¼
M2zKS

r4þ þ ðazKSÞ2
: ð13Þ

D. Harmonic coordinates

Let us turn our attention to harmonic coordinates

x
μ
H ¼ ðtH; xH; yH; zHÞ, where the spatial coordinates also

become harmonic. For such a coordinate system, we

have [27]

ðr −MÞ2 ¼ 1

2
ðx2H þ y2H þ z2H − a2Þ

þ
�

1

4
ðx2H þ y2H þ z2H − a2Þ2 þ a2z2H

�

1=2

ð14Þ

and

x2H þ y2H
ðr −MÞ2 þ a2

þ z2H
ðr −MÞ2 ¼ 1; ð15Þ

where the subscript “H” stands for harmonic coordinates.

The harmonic slicing implies

bH ¼ 2M

r − r
−

∇r; ð16Þ

with the z component of bH at r ¼ rþ given by (as a → M)

bzH ¼ M2zH

ðrþ −MÞ4 þ ðazHÞ2
: ð17Þ

Expressions for the 3×3 block matrix, ðCHÞij ¼ ∂xiKS=∂x
j
H,

along with additional details, can be found in the

Appendix.

E. Problematic behavior of harmonic coordinates

In SpEC, the Legendre polynomials are used to numeri-

cally expand bzH and bzKSHS as functions of cos θ, defined by

cos θ ¼ zH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2H þ y2H þ z2H
p :

Here, θ is the polar angle in harmonic coordinates and is not

to be confused with the angular Boyer-Lindquist coordi-

nate. As a test, we first represent bzH [Eq. (17)] with 20

Legendre-Gauss collocation points and a BH spin of

a ¼ 0.95M. The results of this test are shown in Fig. 1.

From Fig. 1, we see that the function bzH is difficult to

resolve using Legendre polynomials. This is the primary

reason that harmonic coordinates fail to accurately re-

present high-spin BH initial data. Note that increasing the

resolution to l≳ 60 (for a single BH) eventually allows us

to resolve bzH, but in practice requiring such high resolution

is computationally prohibitive; furthermore, the required

resolution increases rapidly as the spin increases.

Previous studies have shown success in high-spin BBH

simulations with SKS initial data up to spins of χ ¼ 0.998

[32]. A natural question to ask is whether the spatial or

the time coordinates are more important in allowing KS

coordinates to better resolve highly spinning black holes.

Therefore, we also investigate the behavior of bzKSHS (see

Sec. III C), in which the time coordinate is harmonic but the

spatial coordinates are Kerr-Schild. Again, we represent

bzKSHS with 20 Legendre-Gauss collocation points and a BH

spin of a ¼ 0.95M, as shown in Fig. 1. The representation is

much better than the case of harmonic coordinates. And we

also confirm that, with such mixed coordinates, BBH initial

data can be indeed extended to higher spins. However, as we

show later, they do not lead to a smaller amount of junk

radiation than SKS initial data.

Looking more closely at Fig. 1, bzKSHS has fewer

structures than bzH, which makes bzKSHS easier to represent

by Legendre polynomials. More quantitatively, we write

FIG. 1. The function bz in KSHS [Eq. (13)], harmonic

[Eq. (17)], and MH [Eq. (23)] coordinates with α ¼ 0.7. Solid

lines represent bz, whereas triangles represent the Legendre-

Gauss collocation approximation to each function bz using 20

Legendre polynomials. The spin of the BH is a ¼ 0.95M. bz is
better approximated by a fixed number (l ¼ 20) of Legendre

polynomials for MH than for harmonic coordinates.
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bzH ∼
1

u2 þ ϵ
1þϵ

; ð18Þ

with

u ¼ a

rþ −M
cos θ; ϵ ¼ ðrþ −MÞ2

ðrþ −MÞ2 þ a2
: ð19Þ

In Eq. (18), we have omitted unimportant functions of

cos θ, since they are well represented by Legendre poly-

nomials. We see bzH has two poles: u ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ=ð1þ ϵÞ
p

.

The domain of convergence for Legendre series Pnðcos θÞ
is an elliptic region on the complex plane [33]. If we restrict

ourselves to the real axis, we can obtain the radius of

convergence as

j cos θj≲
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϵ

1þ ϵ

r

rþ −M

a
: ð20Þ

The radius becomes less than 1 if a≳ 0.75M; thus, in that

case the Legendre polynomials fail to provide a good

representation for the metric. This is the main reason that

BBH simulations using SH become difficult when spins

are larger than about a ¼ 0.7M [23]. We remark that

Chebyshev series have the same domain of convergence

as Legendre series; hence, we do not expect that the

situation can be improved by changing basis.

F. Modified harmonic coordinates

We have seen that bzH is sensitive to cos θ for high-spin

BHs. To reduce such dependence, we define a more general

coordinate system

x2MH þ y2MH

ðr − αMÞ2 þ a2
þ z2MH

ðr − αMÞ2 ¼ 1; tMH ¼ tH; ð21Þ

which leads to

ðr − αMÞ2 ¼ 1

2
ðx2MH þ y2MH þ z2MH − a2Þ

þ
�

1

4
ðx2MH þ y2MH þ z2MH − a2Þ2 þ a2z2MH

�

1=2

:

ð22Þ

Here, we introduce a new constant parameter α. As

mentioned earlier, we refer to this new choice of spatial

coordinates as the MH coordinate system. MH coordinates

become harmonic (spatial) coordinates when α ¼ 1

[Eq. (15)] and become KS (spatial) coordinates when

α ¼ 0 [Eq. (7)]. Meanwhile, the time slicing of MH

coordinates is the same as in harmonic, regardless of the

value of α. With this new coordinate system, the radius

of the outer horizon along the spin direction is

ð1 − αÞM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
− a2

p
. For a → M, this radius goes to

M for KS coordinates (α ¼ 0), and it goes to zero for

harmonic coordinates (α ¼ 1). Therefore, the horizon with

harmonic coordinates is highly compressed in the spin

direction. However, if we let α be a number smaller than but

still close to 1, the horizon will be less distorted. On the

other hand, since α is close to 1, we can expect that it still

shares some similar properties (e.g., less junk radiation)

with harmonic coordinates.

As in Sec. III E, we use the function bz as an example to

see the improvement offered by MH coordinates. In the

MH coordinate system, we have

bzMH ¼ M2zMH

ðrþ − αMÞ4 þ ðazMHÞ2
: ð23Þ

Now ðrþ −MÞ2 is replaced by ðrþ − αMÞ2. The problem-

atic part of bzMH takes the same form as Eq. (18), except that

u ¼ a

rþ − αM
cos θ; ϵ ¼ ðrþ − αMÞ2

ðrþ − αMÞ2 þ a2
: ð24Þ

And the radius of convergence is given by

j cos θj≲
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϵ

1þ ϵ

r

rþ − αM

a
: ð25Þ

In Fig. 2, we plot the radius of convergence as a function of

χ ¼ a=M for several values of α. We see the convergent

region for a fixed χ is enlarged if α becomes smaller. As a

consequence, it should be easier for Legendre polynomials

to represent bzMH. To see that this is the case, in Fig. 2 we

plot bzMH with α ¼ 0.7 and a ¼ 0.95M, using the same

set of angular Legendre-Gauss collocation points as for the

other curves in the figure. As expected, the representation

in Legendre polynomials of bzMH shows an enormous

improvement over the same representation of bzH.

FIG. 2. The radius of convergence given in Eq. (25).
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IV. RESULTS

In this section, we investigate the numerical behavior of

BBHs evolved starting with SMH initial data, compared to

evolution of SKS data. We pick four cases, as summarized

in Table I. To make comparisons, we consider constraint

violations, computational efficiency, changes of BH param-

eters (mass and spin), and junk radiation. For the first three

factors, we show the general features of SMH by focusing

on case I. For junk radiation, we study all cases. For each

simulation, we evolve with three resolutions (labeled Lev1,

2, and 3 in order of increasing resolution). The resolution is

chosen by specifying different numerical error tolerances to

the adaptive mesh refinement (AMR) algorithm [34]. The

orbital eccentricity is iteratively reduced to below ∼10−3

[35]. The coordinate sizes of the black holes are different

for SMH and SKS, so the excision boundaries (which are

placed just inside each apparent horizon) are also different

for SMH and SKS; this means that the grids are not exactly

the same between the two cases, but the grid points are

chosen by AMR so that the two cases have the same

approximate numerical error.

A. Constraint violations and computational efficiency

Figure 3 shows the evolution of the volume-weighted

generalized harmonic constraint energy Nvolume, which is

given by [Eq. (53) of Ref. [36]]

Nvolume ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

V FðxÞ2d3x
R

V d
3x

s

; ð26Þ

with FðxÞ the generalized harmonic constraint energy at x.
For the first ∼25M of evolution, the constraints of SMH are

much larger than those of SKS. This is because BHs with

SMH initial data are more distorted than SKS, and the

metric is more difficult to resolve; however, the metric is

much easier to resolve for SMH than SH (which is not

shown because even constructing the initial data for SH

is problematic with a spin of χ ¼ 0.8). Furthermore, at

slightly later times, constraints decrease rapidly. During the

junk stage (t≲ 700M), the constraints for the evolution of

SMH initial data are smaller than those of SKS by an order

of magnitude. After the junk leaves the system, the

evolution of SMH initial data is still a little bit better than

that of SKS initial data, although constraints of SKS and

SMH become similar at late times (t≳ 3000M for Lev3

and t≳ 2000M for Lev2).

During the junk stage, we make no attempt to resolve the

junk oscillations; i.e., the AMR algorithm is intentionally

set to change the grid very infrequently (and not at all in the

wave zone) during the junk stage of the evolution. We do

this because resolving junk is computationally expensive

and because the junk is not part of the physical solution we

care about. Accordingly, the SKS curves in Fig. 3 are not

well resolved during the junk stage and do not show good

convergence. However, we notice that the simulations of

SMH initial data are better resolved than for SKS, and

they converge with resolution even during the junk stage;

convergence during the junk stage was also observed for

SH with low-spin BHs [23].

The convergence plot looks slightly different when the

norm of the constraint energy is determined using a

pointwise L2 norm over grid points rather than an integral

over the volume, as given by

Npointwise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
i¼1

ðFiÞ2
N

r

; ð27Þ

TABLE I. A summary of parameters (mass ratio q and

dimensionless spins χ ) for four simulations, where the spins of

case II are chosen randomly. The orbital angular momentum is

pointing along (0,0,1). In the final column, we show the value of

α for MH coordinates.

Simulation label q χ 1 χ 2 α

Case I 1 (0,0,0.8) (0,0,0.8) 0.9

Case II 1 (0.44,0.44,0.50) (0.13,0.64,0.46) 0.9

Case III 2 (0,0,0.7) (0,0,0.8) 0.8

Case IV 1 (0,0,0.9) (0,0,0.9) 0.7

FIG. 3. The volume-weighted generalized harmonic constraint

energy for evolutions of case I, with both SKS (dotted lines) and

SMH (solid lines) initial data. Three resolutions are shown,

labeled “Lev1” (red), “Lev2” (blue), and “Lev3” (black) in order

of decreasing AMR tolerance (i.e., in order of increasing

numerical resolution). At the beginning, BHs of SMH initial

data are more distorted on the grid, so the constraints are worse.

However, as the gauge transition proceeds, the constraints decay

quickly. During most of the junk stage ð25M ≲ t≲ 700MÞ, the
constraints of SMH initial data are smaller than SKS by an order

of magnitude. They also converge with resolution. After the junk

stage, SKS and SMH finally become comparable.
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where the subscript i stands for the index of a grid point and
N is the total number of grid points. The pointwise norm is

shown in Fig. 4. For the pointwise norm, the improvement

of convergence of SMH over SKS is not as good as for the

volume-weighted norm. This is because the pointwise norm

gives larger weight to the interior regions near the BHs

where there are more points, whereas the volume norm

gives larger weight to the exterior wave zone which covers

more volume. The difference between Figs. 3 and 4

illustrates that the improvement of the constraints in the

case of SMH mainly comes from the outer region, where

the high-frequency components in the waveforms are

smaller (i.e., less junk radiation). Figure 4 also shows

that the pointwise norms (L2 norm) for evolutions of both

initial datasets become comparable much earlier than the

volume norms (t ∼ 200M). This is because the pointwise

norms are monitored by AMR, and, therefore, their values

remain consistent with the numerical error tolerance in

AMR during the evolution as AMR makes changes to the

grid resolution.

To understand how the computational efficiency of the

evolution depends on the initial data, in Fig. 5 we show the

total number of grid points in the computational domain as

a function of time. At the beginning, SMH needs many

more points than SKS. As the gauge gradually transforms

to the damped harmonic gauge, the BHs become less

distorted and AMR decides to drop grid points. During the

evolution, there are two factors that mainly control the

number of grid points. One is AMR, which adjusts grid

points based on the numerical error tolerance. The other

one is the domain decomposition [37]. SpEC splits the

entire computation region into various subdomains. In

particular, there are a series of concentric spherical shells

around each BH. The subdomain boundaries are fixed in

the “grid frame,” the frame in which the BHs do not move,

but these boundaries do move in the “inertial frame,” the

frame in which the BHs orbit and approach each other [38].

As the separation between the BHs decreases, the inertial-

frame widths of the subdomains between them decreases as

well. During the evolution, the inertial-frame widths of the

spherical shells are monitored. Once one of the shells

becomes sufficiently squeezed, the algorithm drops one of

the shells and redistributes the computational domain. In

Ref. [23], the authors pointed out that evolutions of SH

initial data are faster than for SKS initial data. However,

that statement is not true at very early times, when SH starts

with more spherical shells and more grid points, which

leads to low speed. The evolution of SH initial data then

gradually speeds up after several spherical shells are

dropped and eventually becomes faster than the corre-

sponding evolution of SKS data. Our simulation here is

similar. In Fig. 5, AMR modifies Ngrid smoothly, while the

discontinuous jump is caused by the shell-dropping algo-

rithm. For each BH, we have six spherical shells initially.

However, four of them are dropped during the first ∼200M.

In the end, the number of grid points for evolutions of SMH

is smaller than for evolutions of SKS. This not only

improves the computational efficiency of each time step,

but also increases the time step Δt allowed by the Courant

limit (Δt ∼ N−2

grid). As shown in Fig. 6, the time step for

SMH jumps several times because of the shell-dropping

FIG. 4. The same as Fig. 3, except that L2 norm is used.

FIG. 5. Computational efficiency of evolutions of SMH

(α ¼ 0.9) and SKS initial data for case I, with the highest

resolution. The upper panel is the total number of grid points

as a function of time. At the beginning, the SMH initial data

require many more grid points to meet the error tolerance. As the

gauge transition to damped harmonic gauge proceeds (on a

timescale of ∼50M), the BHs become less distorted, so AMR

gradually drops points. At the same time, several concentric

spherical shells around each of the BHs are dropped, which leads

to discontinuous jumps in the number of grid points. In the end,

evolution of SMH initial data has fewer collocation points than

for SKS. The lower panel is the accumulated CPU hours versus

time. The SMH initial data are extremely slow at the beginning.

As the collocation points and subdomains are adjusted, they

speed up. The total CPU hours for evolutions of both initial

datasets are similar.
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algorithm. In the end, Δt for SMH is larger than the one for

SKS. Both Ngrid and Δt contributes to the high speed of

evolutions of SH and SMH initial data. And we have

checked that the increase of Δt plays the major role in the

speed increase.

The bottom panel in Fig. 5 shows the accumulated CPU

hours of the simulation. At first, the evolution of SMH is

extremely slow. Once several shells are dropped, the

simulation gradually speeds up. This suggests that both

SH and SMH initial data start with more shells than

necessary. Therefore, it might be possible to further

improve the computational efficiency solely by reducing

the number of shells.

B. Junk radiation and changes in parameters

Since the BHs in the initial data are not in true

quasiequilibrium, the masses and spins of BHs relax once

the evolution begins, resulting in slight deviations from

their initial values. In Fig. 7, we show the change of

irreducible massΔMirrðtÞ ¼ jMirrðtÞ −Mirrðt ¼ 0Þj and the
change of spin ΔχðtÞ ¼ jχðtÞ − χðt ¼ 0Þj as functions of

time, for three resolutions. We can see the variations are on

the same order for both SMH and SKS initial data, but

SMH has smaller oscillations. With the highest resolution,

the deviation of SMH is smaller by a factor of ∼1.5–2.

To study the junk radiation in the waveform, in Fig. 8 we

plot the amplitudes of different spin-weighted spherical

harmonic modes hlm, for cases I, II, and III listed in Table I
(case IV will be discussed later). Note that the linear growth

of h21 for case II appears because only the initial part of the
waveform is shown; over the entire evolution, the mode is

oscillatory.

We can see that the junk radiation of evolutions of SMH

initial data is less than for SKS for most of the modes. In

general, the junk radiation leaves the system faster for SMH

initial data than for SKS. However, the decrease of junk

radiation for SMH is not as significant as SH for low-spin

BHs [23]. Some modes of SMH initial data, such as h33, are
similar to SKS. Comparing cases II and III, we note that

the junk radiation of α ¼ 0.8 SMH is larger than that of

α ¼ 0.9, presumably because α ¼ 0.8 deviates more from

SH initial data (α ¼ 1). Note that case II has similar junk

FIG. 6. The time step as a function of evolution time. The

resolution is Lev3. Initially, the time step for evolutions of SKS

initial data is larger than for SMH. However, after several jumps

due to the shell-dropping algorithm, SMH eventually has a larger

time step than SKS.

FIG. 7. The evolution of irreducible mass (left) and dimensionless spin (right) of the first BH for case I, with three resolutions. The

quantities shown are deviations from their values at t ¼ 0. Evolutions of SMH initial data have fewer oscillations than SKS. Deviations

of three parameters for both initial datasets are on the same order.
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radiation as case III when both cases are evolved from

SKS initial data; this suggests that the difference in junk

radiation between cases II and III seen in Fig. 8 is probably

not due to differences in parameters like the mass ratio.

For case IV, a BBH system with dimensionless spins 0.9,

we need to decrease α to 0.7, since for that large of spin

α ¼ 0.8 requires too high resolution and sometimes the

initial data solver does not converge. To speed up the

evolution, we start the SMH initial data with fewer

spherical shells around each BH than the standard choice

made by SpEC. The comparison of the waveform is in

Fig. 9, where we show only h22 and h44. We can see the

junk radiation for SMH initial data is still less than for SKS.

But the improvement is not as good as other cases. For

modes other than h22 and h44, we do not see improvements.

The main reason appears to be that α ¼ 0.7 deviates too

much from α ¼ 1, so that the benefit of SH initial data is

reduced. In addition, in Fig. 10 we compare the accumu-

lated CPU hours for evolutions of both initial datasets.

We can see the initial computational efficiency for SMH

initial data is much lower, but it gradually catches up after

several shells are dropped. For evolutions of only a few

orbits, the expense of evolving SMH initial data may not be

worth the extra computational cost. But for evolutions of

many orbits, the extra cost at the beginning of the evolution

will be comparatively small.

In most of the evolutions shown here, shortly after the

beginning of the simulation, several spherical shells around

each BH are dropped, leading to a smaller number of grid

points, a larger time step, and overall greater computational

efficiency. However, for a general evolution, we are not

always “lucky” enough to gain this efficiency, since the

current algorithm for dropping spherical shells aims only to

avoid narrow shells rather than to speed up the simulation.

To improve the computational efficiency for all simula-

tions, we could start with fewer spherical shells at t ¼ 0.

However, the benefit of this change is limited without

changing the shell-dropping algorithm. One workaround is

FIG. 8. Mode amplitudes of waveforms for cases I, II, and III with the highest resolution. Columns correspond to three cases, and rows

are for different modes. For SMH initial data, we pick α ¼ 0.9 for cases I and II and α ¼ 0.8 for case III. Note that the linear growth of

h21 for case II appears because only the initial part of the waveform is shown. Over the entire evolution, the mode is oscillatory. In

general, the junk radiation of SMH initial data leaves the system faster. It is also smaller than the junk radiation of SKS for most of the

modes. However, there are some modes, such as h33, that have the same peak as SKS.
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to use smaller α, which speeds up the simulation, but if α

deviates too much from α ¼ 1, we cannot have less junk

radiation. Therefore, we suggest that the algorithm that

divides the domain in to subdomains should be modified to

account for computational efficiency during the evolution,

or a better algorithm should be developed to initialize

subdomains. Given such future algorithmic improvements,

we could potentially run high-spin BBH evolution with

larger α, which can lead to less junk radiation.

V. CONCLUSION

In this paper, we extended SH initial data [23] to higher-

spin BBHs by introducing a class of spatial coordinate

systems that represent a time-independent slicing of a

single Kerr black hole and are characterized by a continu-

ous parameter α. This coordinate representation of Kerr is

used to supply free data for the initial-value problem for

BBH systems; we call the resulting initial-value solution

SMH initial data. The harmonic (α ¼ 1) and KS (α ¼ 0)

coordinate representations of Kerr are only two special

cases of our new representation. The coordinate shape of

the horizon becomes less spherical and more distorted for

larger α. Therefore, for high-spin BHs, we pick α < 1 to

decrease the distortion and ease requirements on very high

resolution during the BBH simulation. At the same time, α

should be close to 1 so that SMH initial data still have the

desirable properties of SH initial data as shown in Ref. [23],

such as less junk radiation. We have tested that for SMH

initial data with α ¼ 0, i.e., harmonic time slicing with KS

spatial coordinates, there is more junk radiation than for

SKS initial data.

We have evolved four BBH systems with dimensionless

spins 0.8 or 0.9 starting from SMH initial data with α

between 0.7 and 0.9, and we compared with evolutions

of the same system starting from SKS initial data. The first

three cases, all with dimensionless spin 0.8, represent

different situations: a nonprecessing system with equal

masses, a precessing system with random spin directions,

and a nonprecessing system with unequal masses. In

general, the junk radiation of SMH initial data leaves the

system faster than that of SKS. For most gravitational wave

modes, the SMH initial data lead to less junk radiation. The

exceptions, like the h33 mode and the h21 mode for case III,

have bursts with amplitudes similar to SKS. Furthermore,

α ¼ 0.8 SMH has more junk radiation than α ¼ 0.9.

Using case I as an example, we also studied other

properties of the evolution, including constraint violations,

computational efficiency, and changes in parameters. We

found the values of the volume-weighted constraints for

SMH initial data are smaller than those of SKS by factors of

10. Furthermore, the volume-weighted constraints of SMH

initial data converge with resolution during the junk stage.

However, L2-norm constraints do not have such conver-

gence. Therefore, the benefit is mainly from the outer

regions, where there is less junk radiation.

At the beginning of the evolution for case I, SMH

requires more collocation points than SKS to reach the

error tolerance because the horizon is distorted; hence, it

proceeds more slowly. At later times, SKS and SMH run at

FIG. 9. The h22 and h44 modes for the highest resolution of case

IV, an equal-mass BBH system with larger spins. The spins for

both BHs are (0,0,0.9), which we have not been able to run with

SH initial data. We can still see that the junk radiation for SMH is

less than SKS.

FIG. 10. The accumulated CPU hours for evolutions of SMH

and SKS initial data as functions of time. The BBH system is case

IV, and we plot results for the highest resolution. The initial

computational efficiency of SMH initial data is much lower than

for SKS, but after a short time both evolutions proceed at the

same number of CPU hours per simulation time.
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approximately the same rate, after both the computational

efficiency on each time slice and the size of the time step

increase for the SMH case.

For case IV, which has BHs with dimensionless spin

0.9, we found that we needed to decrease α to 0.7. We

simulated an equal-mass BBH system with equal dimen-

sionless spins χ 1;2 ¼ ð0; 0; 0.9Þ and compared h22 and h44
for both SMH and SKS initial datasets. Junk radiation for

SMH is still less than for SKS, but the improvement is not

as good as the case of lower spin. The comparison of CPU

hours for these two cases show that the initial compu-

tation efficiency for SMH initial data is much lower. But

it gradually becomes the same as SKS after several shells

are dropped.

We also found that the algorithm for choosing the

number and sizes of subdomains in SpEC could use some

improvement, particularly for the initial choice of sub-

domains and the early stages of the evolution. In most

simulations but not all, AMR eventually chooses a sub-

domain distribution that increases computational efficiency.

Some improvements can be gained by simply starting

with fewer spherical shells around each BH, but we find

that the effects of this change are limited. Therefore, the

evolution of SMH initial data for high-spin BBH will

benefit from either an algorithm to adjust subdomain sizes

based on computational efficiency during the evolution

or a better algorithm to initialize subdomains. Those

algorithmic improvements could allow us to run high-spin

BBH evolutions with larger α, which can give rise to less

junk radiation.
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APPENDIX: DETAILS OF MH COORDINATES

For a Kerr BH with an arbitrary spin vector a, the

transformations between KS spatial coordinates and MH

spatial coordinates are given by

xKS ¼
a2 þ rðr − αMÞ
a2 þ ðr − αMÞ2 xMH

þ αM

a2 þ ðr − αMÞ2 ðxMH × aÞ

þ ðxMH · aÞa αM

ðr − αMÞ½a2 þ ðr − αMÞ2� ; ðA1Þ

where a2 ¼ a · a and r is the radial Boyer-Lindquist

coordinate. For α ¼ 0, we have xKS ¼ xMH, i.e., the identity

transformation. The Jacobian C
ij
MH ¼ ∂xiKS=∂x

j
MH between

KS and MH coordinates is given by
3

C
ij
MH ¼ a2 þ rðr − αMÞ

a2 þ ðr − αMÞ2 δ
ij þ αM

a2 þ ðr − αMÞ2 akϵ
ijk

þ aiaj
αM

ðr − αMÞ½a2 þ ðr − αMÞ2�

þMα½a2 − ðr −MαÞ2�
½a2 þ ðr −MαÞ2�2 xiMH∂

jr

−

2Mαðr −MαÞ
ða2 þ ðr −MαÞ2Þ2 x

MH
m akϵ

imk∂jr

− xmMHama
i∂jr

Mα½a2 þ 3ðr −MαÞ2�
½a2 þ ðr −MαÞ2�2ðr − αMÞ2 ;

ðA2Þ

where ϵijk is the Levi-Civita symbol, δij is the Kronecker

delta, and the Einstein summation convention is used.

For α ¼ 1, C
ij
MH becomes Cij defined in Sec. III D. By

differentiating Eq. (22), we have

∂ir ¼
xMH
i þ ða · xMHÞai=ðr − αMÞ2

2ðr − αMÞ
h

1 −
xMH·xMH

−a2

2ðr−αMÞ2
i : ðA3Þ

With MH coordinates, the null covariant vector l in Eq. (5)

can be written as

l ¼
�

dtMH þ 2M

r − r
−

dr

�

þ ðr − αMÞxMH − a × xMH þ ða · xMHÞa=ðr − αMÞ
ðr − αMÞ2 þ a2

· dxMH; ðA4Þ

where the first bracket corresponds to dtKS [see Eq. (12),

with tMH ¼ tH]. The scalar functionH in Eq. (5) is given by

H ¼ Mrðr − αMÞ2
r2ðr − αMÞ2 þ ða · xMHÞ2

: ðA5Þ

3
Here, we do not distinguish upper and lower indices of a

tensor in a Euclidean space.
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In addition, the lapse function N and the shift vector Ni in

MH coordinates are given by

N−2 ¼ 1þ 2Mðr − αMÞ2
r2ðr − αMÞ2 þ ða · xMHÞ2

r2 þ ðrþ 2MÞrþ
r − r

−

;

ðA6Þ

Ni ¼ Nrli þ Nϕ
ajx

MH
k ϵjki

a
; ðA7Þ

respectively, with

Nr ¼ N2
2Mrþ
ρ2

; Nϕ ¼ −N2
a

ρ2
2M

r − r
−

; ðA8Þ

ρ2 ¼ r2 þ a2cos2θ ¼ r2 þ ða · xMHÞ2
ðr − αMÞ2 ; li ¼ li; ðA9Þ

where θ is the polar Boyer-Lindquist coordinate and li is
the spatial component of the null covariant vector l.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. Abbott et al. (LIGO Scientific and Virgo Collaborations),

Phys. Rev. X 9, 031040 (2019).

[3] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),

Phys. Rev. Lett. 125, 101102 (2020).

[4] https://gracedb.ligo.org/superevents/S190412m/view/.

[5] https://gracedb.ligo.org/superevents/S190425z/view/.

[6] https://gracedb.ligo.org/superevents/S190814bv/view/.

[7] J. Abadie et al. (LIGO Scientific and VIRGO Collabora-

tions), Classical Quant. Grav. 27, 173001 (2010).

[8] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.

Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Phys.

Rev. Research 1, 033015 (2019).

[9] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.

Kidder, and H. P. Pfeiffer, Phys. Rev. D 99, 064045 (2019).

[10] S. Ossokine et al., Phys. Rev. D 102, 044055 (2020).

[11] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder,
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