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2 Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano,
20133, Italy
3 TAPIR 350-17, California Institute of Technology, 1200 E California Boulevard,
Pasadena, CA 91125, United States of America

E-mail: luca.reali@studenti.unimi.it

Received 4 May 2020, revised 2 September 2020
Accepted for publication 8 September 2020
Published 16 October 2020

Abstract

Multiple approaches are required to study the evolution of black-hole bina-
ries. While the post-Newtonian (PN) approximation is sufficient to describe
the early inspiral (even from infinitely large orbital separation), only numer-
ical relativity can capture the full complexity of the dynamics near merger.
We combine multi-timescale PN integrations with numerical-relativity surro-
gate models, thus mapping the entire history of the binary from its asymptotic
configuration at past-time infinity to the post-merger remnant. This approach
naturally allows us to assess the impact of the precessional and orbital phase
on the properties—mass, spin, and kick—of the merger remnant. These phases
introduce a fundamental uncertainty when connecting the two extrema of the
binary evolution.

Keywords: black holes, gravitational waves, numerical relativity, relativistic
astrophysics

(Some figures may appear in colour only in the online journal)

1. Introduction

Binary black holes (BHs) are prominent sources of gravitational waves (GWs). Ten [1] or more

[2, 3] BH mergers have been detected during the first two LIGO/Virgo observing runs. Data
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from dozens of other candidates [4] resulting from the third run are currently being analyzed.
With more interferometers becoming operational both on the ground [5, 6] and in space [7],
the observed population of BH binaries is expected to grow dramatically in the near future.

Some of the events observed so far show clear evidence for at least one BH with nonzero
spin [8–11]. Systems where both BHs are spinning represent the most general and complex
scenario: the three angular momenta of the binary (i.e. the spins of the two BHs and the orbital
angular momentum) are all coupled to each other and precess about the total angular momen-
tum of the system [12].Meanwhile, the emitted GWs dissipate energy and angular momentum,
causing the orbital separation to shrink [13] and ultimately driving the BHs to merger. GWs
also carry linear momentum, which results in a recoil (or kick) imparted to the center of mass
of the system [14]. The final Kerr BH left behind following a merger is fully characterized by
its mass Mf , spin χf , and proper velocity vf .

Measurements of relative orientations of the three angular momenta can provide a powerful
tool to distinguish stellar-mass BH binaries originating from different astrophysical formation
channels [15–20]. In particular, spin directions are believed to be strong indicators to discrim-
inate whether the two BHs formed in isolation [21], star clusters [22], triple systems [23], or
active galactic nuclei [24]. For the case of supermassive BH binaries, spin orientations provide
constraints on phenomena like star scattering and disk accretion [25–27].

Precessing BH binaries evolve on three different timescales. Let us denote the binary total
mass with M, the orbital separation with r, and use geometrical units c = G = 1. The BHs
orbit about each other with period torb/M ∝ (r/M)3/2, the angular momenta precess on a
timescale tpre/M ∝ (r/M)5/2 [12], and GW radiation-reaction takes place on the timescale
tRR/M ∝ (r/M)4 [13]. In the early inspiral where the dynamics is well described by the
post-Newtonian (PN) approximation, one has r ≫ M and therefore torb ≪ tpre ≪ tRR. This
timescale separation implies that BH binaries complete a very large number of orbits and pre-
cessional cycles before they merge. By the time they become detectable, BHs will have lost
memory of the precessional and orbital phasewith which they formed.Astrophysical formation
models aimed at describing BH binaries from assumptions on their progenitors cannot predict
the orbital and precessional phase with which GW sources enter the detector sensitivity band.

The same reasoning applies to the properties (final mass, spin and kick) of the merger rem-
nant which are known to depend significantly on both the precessional [28, 29] and the orbital
dynamics [30, 31]. These quantities are set by two phases, describing orbit and precession,
which are essentially random.

The timescale hierarchy of spinning binary BHs has been exploited to develop orbit- [32,
33] and precession-averaged [34, 35] PN approaches. Together, these schemes are capable of
evolving sources from their asymptotic configuration at r→∞ ( f → 0, where f is the GW
frequency) down to the small separations where the PN approximation ceases to be an accu-
rate physical description. From those small separations, estimates of the remnant parameters
can be quickly obtained by evaluating surrogate models trained on numerical-relativity (NR)
simulations [36–38]. These models have been shown to reach accuracies comparable to those
of the underlying NR data. In particular, reference [38] recently presented a surrogate model
for the spin dynamics and remnant properties of generically precessing binary BHs covering
mass ratios from 1:1 to 1:4 and dimensionless spin magnitudes up to 0.8.

In this paper, we combine the multi-timescale approach of references [34, 35] with the NR
surrogate model of reference [38]. We design a procedure to put together precession-averaged,
orbit-averaged, and NR-surrogate evolutions. This allows us to connect the asymptotic param-
eter space of precessing BH binaries to the properties of the merger remnant, thus mapping
the entire general relativistic two-body problem from past to future time infinity. We highlight
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how, for a given astrophysical configuration, the predictions of the remnant properties suffer
from theoretical uncertainties due to the sampling of the orbital and precessional phases.

The paper is organized as follows. In section 2 we illustrate our procedure for numeri-
cally evolving BH binaries; in particular we describe the implementation of multiple layers
of PN/surrogate techniques as well as the random sampling of the phases. In section 3 we
present our results. We first focus on individual sources and assess the impact of phase sam-
pling on the merger remnant properties. We then consider BH binary populations to determine
the impact of spin precession on the statistical distributions of the remnant parameters. We
draw our conclusions in section 4.

2. Multiple layers of black-hole evolution

Let us consider spinning BH binaries on quasi-circular orbits. Let m1 and m2 be the masses
of the two BHs, M = m1 + m2 the total mass, q = m2/m1 � 1 the mass ratio, η = m1m2/M

2

the symmetric mass ratio, Si = m2
i χi (i = 1, 2) the BH spin magnitudes (with 0 � χi � 1),

and L = m1m2

√

r/M the magnitude of the Newtonian orbital angular momentum. We write
vectors in boldface, denote the corresponding unit vectors by hats, and their magnitudes as e.g.
L = |L|. Let us also define the following angles describing the spin directions

cos θ1 = Ŝ1 · L̂, cos θ2 = Ŝ2 · L̂,

cos θ12 = Ŝ1 · Ŝ2, cos ∆Φ =
Ŝ1 × L̂

|Ŝ1 × L̂|
· Ŝ2 × L̂

|Ŝ2 × L̂|
. (1)

2.1. Early inspiral

Much like the inequality torb ≪ tpre can be exploited to average over the orbital motion, the
relation tpre ≪ tRR allows averaging over spin precession. The computational cost of orbit-
averaged integrations blows up as r/M→∞ where infinitely many precession cycles need to
be tracked. On the contrary, precession-averaged evolutions are capable of modeling the binary
inspiral from its asymptotic conditions at past time infinity. The cost one pays for precession
(orbital) averaging is the ability to track the precessional (orbital) phase.

The relative orientations of the three angular momenta L, S1, and S2 at a given separation r
(or equivalently L) are fully specified by the following three parameters:

• the projected effective spin4

ξ = M−2[(1+ q)S1 + (1+ q−1)S2] · L̂, (2)

which is conserved on both tRR and tpre at 2PN order [33, 39] ;
• the magnitude of the total angular momentum

J = |L+ S1 + S2|, (3)

which is constant on tpre but slowly varies on tRR ;
• the magnitude of the total spin

S = |S1 + S2|, (4)

4This same parameter is more often indicated as χeff in the GW literature.
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which oscillates between two extrema S+ ≡ maxξ,J(S) and S− ≡ minξ,J(S) on the shorter
timescale tpre.
The BH binary inspiral can thus be modeled by averaging over S (the only parameter that

varies on tpre) and solving a single ordinary differential equation for J (the only other parameter
that varies on on tRR). In practice, the parameter S sets the phase of the coupled precessional
motion of L, S1, and S2.

Since J ∼ L ∝ √
r diverges at large separations, it is convenient to introduce the auxiliary

variable

κ ≡ J2 − L2

2L
(5)

which instead asymptotes to a constant

κ∞ ≡ lim
r/M→∞

κ = lim
r/M→∞

(S1 + S2) · L̂. (6)

The integration domain can be compactified by setting u = 1/(2L) such that initializing an
evolution at u = 0 corresponds to integrating over the entire past history of the binary.

Performing a precession-averaged integration at 1.5PN reduces to solving [35] (see also
[40])

dκ
du

=

∫ S+
S−

S2
∣

∣

dS
dt

∣

∣

−1
dS

∫ S+
S−

∣

∣

dS
dt

∣

∣

−1
dS

, (7)

where dS/dt is obtained directly from the 2PN orbit-averaged spin-precession equations, cf
equation (26) in reference [35]. This scheme is implemented in the public code PRECESSION
[41].

A BH binary spin configuration at r/M→∞ can be equivalently described using either ξ
and κ∞, or the asymptotic projections of the two spins along the orbital angular momentum:

cos θ1∞ ≡ lim
r/M→∞

cos θ1 =
M2ξ − κ∞(1+ 1/q)

S1(q− 1/q)
, (8)

cos θ2∞ ≡ lim
r/M→∞

cos θ2 =
κ∞(1+ q)−M2ξ

S2(q− 1/q)
. (9)

2.2. Late inspiral

As shown extensively in reference [35], precession- and orbit-averaged PN techniques are in
very good agreement for separations r�50M. In the late inspiral, the timescales tpre and tRR
become more comparable and the precession-averaged approach loses accuracy. We transition
from precession- to orbit-averaged integrations at an orbital separation rpre→orb = 1000M. This
value is well within the validity of the precession-averaged approach and allows keeping the
computational cost of the orbit-averaged evolution under control. The robustness of this choice
is investigated in section 3.5.

Initializing an orbit-averaged evolution requires the mutual orientations of the spins and
the orbital angular momentum, which can be specified by either (θ1, θ2,∆Φ) or equivalently
(ξ, J, S). Only two of these parameters are provided by the previous precession-averaged treat-
ment which averages over S. We estimate a value Spre→orb of S at the transition threshold statisti-
cally by drawing a random sample from the probability distribution function p(S) ∝ |dS/dt|−1

between S+ and S−. Intuitively, it is more (less) likely to find the binary with a precessional
phase S if the ‘velocity’ dS/dt is smaller (larger).
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Our orbit-averaged code employs corrections up to 2PN in spin precession and 3.5PN (2PN)
in radiation reaction for (non) spinning terms as reported in equations (24)–(27) of reference
[41].

2.3. Plunge and merger

The mass, spin and recoil velocity of the merger remnant are estimated using the NR surrogate
models of reference [38]. This includes the NRSUR7DQ4 model for the spin dynamics, and
the NRSUR7DQ4REMNANT model for the remnant properties. Both models are trained on
NR simulations with mass ratios q � 0.25, spin magnitudes χ1,χ2 � 0.8, and generic spin
directions. Surrogate remnant predictions outperforms alternative fitting formulae by orders of
magnitude [37, 38] and have recently been shown to be critical to model and extract BH kicks
from GW signals [31, 42].

The surrogate fits are provided as a function of the initial orbital frequency ω, mass ratio q,
and six Cartesian components of the spins S1 and S2. The orbit averaged scheme used in the
previous step only captures the relative orientation of the spins and the orbital plane, which
corresponds to five spin degrees of freedom (i.e. χ1, χ2, ξ, J, and S). The additional parameter
needed is the orbital phase ϕ, describing the location of the BHs on their orbits with respect to
the spins or, equivalently, the orientation of the in-plane components of the spins with respect
to the vector connecting the two BHs.

The PN orbit-averaged evolution is carried over until the orbital frequency reaches
ωorb→sur = 0.025 rad/M. This falls well within the validity of the NRSUR7DQ4 model, which
only includes∼ 20 orbits before the merger5; tests are reported in section 3.5. The conversion
between PN separation r and orbital frequency ω is performed using the 2PN6 expression [43]

ω2 =
M

r3

{

1− (3− η)
M

r
−

∑

i=1,2

χi cos θi

[

2
(mi

M

)2
+ 3η

](

M

r

)3/2

+

[

6+
41
4
η + η2 − 3

2
ηχ1χ2(cos θ12 − 3 cos θ1 cos θ2)

](

M

r

)2
}

.

(10)

At the transition frequency,we sample a valueϕorb→sur of the orbital phase uniformly in [0, 2π],
since quasi-circularity implies binaries spend equal time at all phases. First, the NRSUR7DQ4
spin dynamics is evolved from the initial orbital frequencyωorb→sur to a time t = −100M before
the waveform amplitude peak. Second, the NRSUR7DQ4REMNANT model is evaluated to
predict the remnant mass, spin, and recoil velocity.

The Gaussian-process regression algorithm [37, 44] implemented in reference [38] returns
mean values Mf, χf and vf and 1–σ errors σMf , σχf and σvf of respectively the remnant mass,
spin, and kick. Unless otherwise specified, we estimate these quantities by sampling values
Mf , χf and vf from the corresponding normal distributions, thus incorporating the fitting errors
of the NR surrogate model.

5The code of reference [38] also allows to wrap the surrogate evaluation with a PN evolution to specify the spin
directions at earlier times. That functionality is not used in this paper; we only make use of the NR surrogate.
6This PN order is appropriate. The 2 PN term in equation (10) introduces variations in ω of about 1–5% which are
subdominant, see section 3.5.
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Figure 1. Schematic representation of our procedure. We initialize a precession-
averaged PN evolutions at infinitely large separation, providing initial conditions on
the mass ratio q, spin magnitudes χi, and spin directions θi∞. At moderate separations
rpre→orb = 1000M, we sample the precessional phase S and switch to an orbit-averaged
PN formulation. When the orbital frequency reaches ωorb→sur = 0.025 rad/M, we sam-
ple the orbital phase ϕ and evaluate the NR surrogate models to predict the remnant
properties Mf , χf , and vf .

2.4. Summary

Our procedure is summarized in figure 1. We map the entire history of the binary from
its asymptotic configuration at r/M→∞ to its merger product. We start by initializing a
precession-averaged PN evolution at u = 0 (r = ∞) for a binary with parameters q, χ1, χ2,
θ1∞, and θ2∞. We integrate equation (7) from the initial configuration to an orbital separa-
tion rpre→orb = 1000M. At this separation we sample the precessional phase S according to
p(S) ∝ |dS/dt|−1 and integrate the PN orbit-averaged equations until the orbital frequency
reaches ωorb→sur = 0.025 rad/M. We then sample the orbital phase ϕ uniformly from [0, 2π]
and evaluate the NR surrogate model to obtain the parametersMf , χf , and vf .

Each point in the asymptotic space (q,χ1,χ2, θ1∞, θ2∞) thus corresponds to a distribution
in remnant space (Mf ,χf , vf). In the following, we characterize the remnant properties using
90% intervals and define

δx =
x95 − x5

2 x50
, (11)

where x = {Mf ,χf , vf} is any of the remnant properties and xn indicates the nth percentile of
its marginalized distribution.

3. Impact of orbital and precessional phases

3.1. Uncertainty of the black hole remnant

We start by considering a single binary at r/M→∞ and studying the impact of the two phases.
In the examples below we selected a source with q = 0.6, χ1 = χ2 = 0.8, θ1∞ = π/3, and
θ2∞ = π/5 but the trends we highlight are generic.

We first evolve this same binary 105 times repeatedly sampling over all three sources of
uncertainty: the precessional phase Spre→orb, the orbital phase ϕorb→sur, and the surrogate Gaus-
sian errors. Figure 2 shows the resulting distribution of the BH remnant properties. GWs
dissipate energy and angular momentum relatively gradually during the inspiral; on the other
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Figure 2. Joint distribution of final mass Mf , final spin χf and final kick vf for a single
binary with mass ratio q = 0.6, spin magnitudes χ1 = χ2 = 0.8 and asymptotic spin
directions θ1∞ = π/3, θ2∞ = π/5. Solid contours enclose the regions containing 99%
of the binaries. This figure is produced with 105 evolutions.

hand, the vast majority of the linear momentum is emitted during the last few orbits and plunge
[30, 31]. The exact configuration with which the binary approaches merger, therefore, plays a
more crucial role for vf compared toMf and χf . For this specific binary, the final mass presents
a median value ofMf ≃ 0.937M with a dispersion δMf ≃ 0.1%. The final spin presents uncer-
tainties that are up to an order of magnitude larger: the 90% confidence interval extends for
about δχf ≃ 1.4% from a median value χf ≃ 0.82. The kick is subject to variations which are
even more extreme: possible values of the final recoil range from vf ∼ 0 to ∼ 0.01.

3.2. Contributions to the remnant uncertainty

We now dissect the various contributions entering these uncertainties.
Figure 3 shows the remnant properties of the same asymptotic configuration considered

previously, but now assuming a fixed value of the precessional phase Spre→orb = 0.34M2. We

7
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Figure 3. The loop structure in the mass-spin-kick space. We consider a generic binary
initialized with parameters q = 0.6, χ1 = χ2 = 0.8, θ1∞ = π/3 and θ2∞ = π/5. The
precessional phase is set to Spre→orb = 0.34M2. The orbital phase ϕorb→sur is varied from
0 to 2π as indicated on the color bar at the top. Themean values of the remnant properties
returned by theNR surrogate are displayed with a solid curve; circles indicate a statistical
sample extracted from the corresponding Gaussian distributions.

then vary ϕorb→sur from 0 to 2π. The solid curves in figure 3 show the median values Mf, χf

and vf returned by the NR surrogate; circles mark a sample of remnants extracted from the
corresponding Gaussian distributions.

The orbital-phase uncertainty on the remnant properties is due to the breaking down of the
PN timescale hierarchy. The series of binaries depicted in figure 3 is computed for different
phases ϕorb→sur and fixed orbital frequency ωorb→sur. For torb/tpre → 0 and torb/tRR → 0, this
sequence is equivalent to the same binary moved along a quasi-adiabatic orbit, and should just
result in identical remnants. Deviations from these limits imply that, although these sources
are identical up to rpre→orb, they evolve into different configurations and thus result in different
merger remnants.

8
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By construction, the curve describing the surrogate median values is periodic as ϕorb→sur

ranges from 0 to 2π. An approximate periodicity with period equal to π is also present, such
that the curve in figure 3 appears as two, largely overlapping loops. A period equal to twice the
orbital frequency corresponds to that of the dominant GW emission. The separation between
the two loops is typically smaller than the Gaussian errors of the surrogate model, and thus
largely disappears when these are considered (scatter points).

For binaries with q = 1 and S1 = S2, a transformation ϕ→ ϕ+ π can be absorbed into a
change of reference frame and thus results in identical values ofMf , χf , and vf . The two-loop
structure of figure 3 thus collapses into a single loop (in practice, this is only true within the
errors of the surrogate model because this expected symmetry was not built in explicitly in
reference [38]). For non-symmetric binaries, the π periodicity is broken resulting in a more
complex phenomenology. In general, we find that for binaries with more extreme mass ratios
q � 0.25, the loop of the median values becomes tighter and is eventually ‘filled’ as the surro-
gate errors are considered.We refer to references [45, 46] for a careful analysis of the expected
symmetries.

Figure 4 shows how the remnant properties vary with the precessional phase Spre→orb.
While the precise shape of the curves depends on the sampled value, the general behavior we
described remains valid: the remnant properties present an approximate period equal to that
of the dominant GW mode, which is half the orbital period. The region covered by the loops
mildly changes with S, such that the weighted superpositions of all the loops in figure 4 returns
the full distribution we first showed in figure 2. Each individual contribution is weighted by the
probability density function p(S) ∝ |dS/dt|−1, which is strongly peaked at the two extrema S−
and S+ [41]. The loops with the larger and smaller values of Spre→orb (top and bottom row in
figure 4) provide the largest contributions to the overall distribution and can indeed be glimpsed
when carefully inspecting figure 2. The bimodality observed in the marginalized distributions
on figure 2 is also a direct consequence of this loop structure.

3.3. Black-hole binary populations

We now consider BH binary populations and investigate the statistical properties of their
remnants.

In figure 5, we focus on a population with fixed q = 0.8 and χ1 = 0.6 and χ2 = 0.7. First,
we map the entire (cos θ1∞, cos θ2∞) plane into the (Mf ,χf) parameter space (gray region in the
right panel of figure 5). Final mass and final spin are strongly anti-correlated, with large values
of Mf corresponding to small values of χf , and vice-versa. This is due to the orbital hang-up
effect [39, 47, 48]. Binaries with spins which are both aligned to the orbital angular momentum
(θ1∞ ≃ θ2∞ ≃ 0, corresponding to larger positive values of ξ in the upper right corner of the left
panel of figure 5) inspiral for longer: they dissipate more energy via GWs and result in lighter
remnant. Their angular momenta add constructively (|L+ S1 + S2| ≃ L+ S1 + S2) resulting
in a larger final spin. On the contrary, binary with spins which are largely anti-aligned plunge
from afar but the spins and angular momentum partially cancel each other, thus producing
remnants which are heavier and more slowly rotating.

We then consider a subsample of 25 equispaced sources from the same population, shown
as colored dots in the left panel of figure 5. In particular, binaries are colored according to the
projected effective spin ξ (equation (2)). We evolve each of these systems 104 times, sampling
over Spre→orb, ϕorb→sur and the surrogate Gaussian errors. The corresponding distributions in
the remnant parameter space are shown in the right panel of figure 5 with the same color
scheme. The larger these regions, the more uncertain the remnant properties are. The size of
the regions correlates with ξ: remnant uncertainties tend to be larger for |ξ| ∼ 0 and smaller
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Figure 4. Final remnant properties as a function of the precessional phase Spre→orb mea-
sured at the transition between precession- and orbit-averaged PN evolution. From left
to right, we show the mass-spin, mass-kick and spin-kick planes. For this evolution we
assume q = 0.6, χ1 = χ2 = 0.8, θ1∞ = π/3, and θ2∞ = π/5. Each row is generated
similarly to figure 3, by keeping Spre→orb fixed while varying the orbital phase ϕorb→sur
from 0 to 2π. The value of Spre→orb increases from top to bottom from S− to S+ as
reported on the color bar. In particular, the panels are produced with representative values
Spre→orb ≃ 0.32, 0.34, 0.37, 0.39, 0.41 linearly spaced within the allowed range.

for values at the extrema |ξ| ∼ (χ1 + qχ2)/(1+ q). This is because the former systems have
larger precessional amplitudes |S+ − S−| while for the latter the range where Spre→orb can be
sampled is more limited [35].

Figure 6 shows the uncertainties on the remnant properties for a wider set of BH binary pop-
ulations. In particular, we consider three cases with fixed values q = 0.6 and χ1 = χ2 = 0.3,
q = 0.6 and χ1 = χ2 = 0.8, q = 0.95 and χ1 = χ2 = 0.8, as well as a fourth scenario where
we distribute the mass ratio according to p(q) ∝ q6.7 in [0.25, 1] and the spin magnitudes uni-
formly in [0.1, 0.8]. The latter is motivated by current GW detections which favor equal-mass
systems [49] (but see reference [10]). In all four cases, we consider both isotropically dis-
tributed spins (top panels) and partially aligned spins (bottom panels) at past time infinity,
which correspond to distributing cosθi∞ either uniformly in [−1, 1] or with a truncated normal
distribution centered on 1 with dispersion 0.1, respectively.We extract 1000 samples from each
of these populations. These asymptotic configurations are then evolved 1000 times, sampling

10
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Figure 5. Mapping of the (cos θ1∞, cos θ2∞) plane (left panel) into the (Mf ,χf) param-
eter space (right panel) for a binary BH population with fixed q = 0.8, χ1 = 0.6 and
χ2 = 0.7. The gray area on the right panel represents the whole accessible region of
the (Mf ,χf) plane for a population with these values of q, χ1, and χ2. Circles on the
left panel mark a subsample of binaries with isotropically distributed spins at r→∞,
colored according to the their projected effective spin ξ. Each of these configurations is
mapped into a discrete region on the (Mf ,χf) parameter space.

the precessional and orbital phases, to obtain corresponding distributions of the remnant prop-
erties. We then construct the estimators δMf , δχf and δvf of equation (11) which are shown in
figure 6.

Uncertainties onMf and χf tend to be smaller for populations where a large fraction of the
binaries possess either (i) mass ratio q close to unity, (ii) small magnitudes χi, or (iii) small
spin misalignments θi∞. Binaries with q→ 1 result in more similar remnants because the spin
magnitude S asymptotes to a constant [50]. Systems with either q→ 0, χi → 0, or θi∞ → 0
are all well described by a single-spin approximation [33, 51] where S is also approximately
constant. Precession effects are less important for the distribution of vf because the contribution
of the orbital-phase sampling is more dominant. In general, for the populations studied here
we find δMf � 0.004, δχf � 0.03, and δvf � 1.5.

3.4. Relation to the spin morphologies

We now exploit our evolutionary procedure to highlight correlations between the remnant prop-
erties and the precessional dynamics at small separations. We make use of the concept of spin
morphology [34, 35, 50, 52, 53]. The dynamics of BH binaries can be unambiguously clas-
sified into three different classes according to the qualitative behavior of the spin angle ∆Φ

(equation (1)). In particular,∆Φ can either librate about 0 and never reach ±π (L0), circulate
through the full range [−π, π] (C), or librate about ±π and never reach 0 (Lπ). All bina-
ries belong to the circulating morphology at large separation, but GW radiation reaction will
generically cause transitions toward the two librating classes before merger. In the following,
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Figure 6. Distributions of the relative uncertainties over final mass (left panel), spin
(middle panel) and recoil velocity (right panel) of the remnant for different binary popu-
lations. The red histograms correspond to a sample of binaries withχ1, χ2 uniformly dis-
tributed within the range [0.1, 0.8] and q randomly extracted according to a distribution
p(q) ∝ q6.7 in [0.25, 1] (see reference [49]). The blue, orange and green histograms cor-
respond to three binary samples with fixed mass ratios and spin magnitudes q = 0.6 and
χ1 = χ2 = 0.3, q = 0.6 and χ1 = χ2 = 0.8, and q = 0.95 and χ1 = χ2 = 0.8, respec-
tively. The populations shown in the top (bottom) panels have isotropic (preferentially
aligned) spins at past time infinity.

we correlate the properties of the merger remnant to the spin morphology evaluated at ωorb→sur,
i.e. right before initializing the NR surrogate.

The spin morphology before merger provides a useful mapping between the two asymptotic
configurations of the evolution—the large-separation limit and the post-merger remnant. In
figure 7 we illustrate this point showing a population of 105 sources with q = 0.95, χ1 = 0.8,
χ2 = 0.7, and isotropic spin directions at large separations. Binaries in each each of the three
morphologies tend to cluster in well defined regions of both the (θ1∞, θ2∞) and the remnant
parameter spaces7. If∆Φ librates about 0 (π), in-plane spin components are closer to alignment
(anti-alignment) with each other and produce, on average, final BHs with masses and spins
which are above (below) the hang-up anti-correlation (top-right panel of figure 7)

In the left panel of figure 8, we consider the same population and focus on the distributions
of the recoil velocities. We find that ∼ 35% (∼ 100%) of the binaries with vf � 1000 km s−1

(3000 km s−1) belong to the ∆Φ ∼ π morphology before merger. This can be also be seen

7 For fixed q, χ1, χ2, and r, the morphology separation in the (θ1∞, θ2∞) plane is exact [35]. In this case, we are
evaluating the morphology at fixed orbital frequency ωorb→sur which causes minor overlaps between the different
classes.

12



Class. Quantum Grav. 37 (2020) 225005 L Reali et al

Figure 7. Connecting the asymptotic (top left) and remnant (top right, bottom left, bot-
tom right) parameter spaces using the spin morphologies. We consider a sample of 105

binaries with q = 0.95, χ1 = 0.8, χ2 = 0.7 and isotropic spin orientations at r→∞.
Binaries are are colored according to their spin morphology at ωorb→sur: blue for binaries
librating about ∆Φ = 0 (L0), green for binaries circulating in∆Φ ∈ [0,π] (C) and red
for binaries librating about ∆Φ = π (Lπ).

in bottom panels of figure 7, where red points preferentially populate the regions with large
values of vf . The role of the spinmorphologycan be traced back to the very first ‘superkick’NR
simulations [54, 55] where BHs were initialized with |∆Φ| = π and θi = π/2. In this setup,
frame draggingof the the twoBHs can act constructively, boosting the recoil [30]. Binarieswith
|∆Φ| = π and partial alignment θi � π/2 result in even larger recoils because more energy is
emitted [56]. Conversely, binaries which librate about ∆Φ = 0 before merger present lower
kicks ofO(100) km s−1 and are responsible for the bulk of the population. Circulating sources
present a rather flat distribution and allow for most values of vf but the largest ones.

In the right panel of figure 8, we repeat the same exercise but assume amass ratio distribution
p(q) ∝ q6.7 [49] with q ∈ [0.25, 1] and uniform spin magnitudes χi ∈ [0.1, 0.8]. Compared
to the previous case, BHs have, on average, lower spins which implies weaker recoils [57]
and a larger fraction of circulating binaries [35]. The general trends we highlighted above
remain valid: the largest (smallest) kicks are largely due to binaries which were librating about
∆Φ = π (∆Φ = 0) before merger.

3.5. Transition thresholds

Finally, we investigate the robustness of our approach with respect to the two transition thresh-
olds rpre→orb and ωorb→sur. Figure 9 shows how median and 90% interval of the three remnant
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Figure 8. Distributions of the recoil velocities for two binary populations, divided
according to the spin morphology at ωorb→sur. Both samples consist of 105 binaries with
isotropic spin directions at r→∞. The left panel shows a population with fixed val-
ues q = 0.95, χ1 = 0.8 and χ2 = 0.7. In the right panel we sample mass ratios from
p(q) ∝ q6.7 [49] in [0.25, 1] and spin magnitudes uniformly in [0.1, 0.8]. Black his-
tograms correspond to the entire populations; colored histograms indicate the subsets
of binaries in either the librating about ∆Φ = 0 (blue), circulating (green), or librating
about ∆Φ = π (red) spin morphology.

quantities vary for a population of 1000 binaries with q uniformly distributed in [0.25, 1], χi
uniformly distributed in [0.1, 0.8], and isotropic spin directions θi∞. We evolve each source
1000 times, sampling over Spre→orb, ϕorb→sur and the surrogate Gaussian errors, and report the
90% interval of the remnant properties (figure 9). We do this for 100 values of rpre→orb spread
evenly in [50M, 3000M] with fixed ωorb→sur = 0.025 rad/M, and for 100 values of ωorb→sur

spread evenly in [0.02 rad/M, 0.03 rad/M] with fixed rpre→orb = 1000M. The remnant popula-
tion does not depend sensibly on either of the thresholds in these ranges, though we observe
greater discrepancies in vf than the other remnant properties.

We also show five random sources from the same population (gray curves in figure 9). The
median levels of the remnant mass and spin do not depend strongly on the threshold values,
though greater cyclic variation is present in the median levels of the remnant kick velocity.
Over the full population this variation is not significant compared to the reported dispersion.

4. Conclusions

We presented an evolutionary procedure aimed at capturing the entire history of coalescing
BH binaries. We combined multiple layers of PN integrations [34, 35] and surrogate models
trained onNR simulations [38]. Our scheme is robust with respect to the choice of the transition
thresholds between the various techniques we employ (section 3.5).

We map asymptotic binary configurations at r/M→∞ to the properties of the BH merger
remnant: final mass Mf , final spin magnitude χf , and recoil velocity vf . Crucially, this
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Figure 9. Dependence of the 90% intervals on the transition thresholds rpre→orb and
ωorb→sur for a population of 1000 binaries with q uniformly distributed in [0.25, 1], χi
uniformly distributed in [0.1, 0.8] and isotropic spin directions θi∞. In the top row we
vary the transition threshold rpre→orb for 100 values spread evenly in [50M, 3000M] and
keep ωorb→sur = 0.025 rad/M fixed. In the bottom row we vary ωorb→sur for 100 values
spread evenly in [0.02 rad/M, 0.03 rad/M] and keep rpre→orb = 1000M fixed. The bot-
tom, middle, and top colored lines in each panel are respectively the 5%, 50%, and 95%
levels of the remnant mass Mf (left), spin χf (middle) and kick vf (right). In each row
we also select five random sources from the population and plot their median levels in
gray.

mapping depends on the sampling of two quantities: the precessional phase Spre→orb and the
orbital phase ϕorb→sur. Physically, this is because the binary completes infinitely many orbits
and precession cycles before merger. Orbital and precessional phases impose a fundamen-
tal limit on the accuracy of models connecting the properties of astrophysical BH binary
progenitors to the parameters of their merger remnants.

We first concentrated on individual sources and exploited our procedure to assess the impact
of these uncertainties on the estimates of the remnant properties. Any given configuration at
r/M→∞ is mapped into a discrete region in the remnant parameter space (see figure 2). The
relative errors that can be inferred from our results are δMf ∼ 0.1% for the remnant masses
and δχf ∼ 1% for the remnant spins. The orbital phase has a major impact on the kick velocity,
resulting in δvf ∼ O(1).

We then disentagled the effects of the three different contributions to our uncertainties: the
sampling of Spre→orb, ϕorb→sur, and the NR surrogate errors. The orbital phase plays a domi-
nant role and traces suggestive loop structures in the remnant parameter space (figure 3). The
precessional phase determines the location and the precise shape of these loops. The remnant
uncertainties are found to correlatewith the projected effective spin ξ of the binary,with smaller
(larger) values of |ξ| presenting large (smaller) dispersion. Uncertainties are more prominent
for sources far from the equal-mass and single-spin limits.

Finally, we employed our evolutionary technique to study how the remnant properties cor-
relate with the precessional dynamics at small separations. Merger remnants carry robust
information about the precessional spin morphology in the late inspiral. Remnants originat-
ing from binaries with different morphological phases at small separations tend to cluster into
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different regions of the parameter space (figure 7). Final masses and final spins are strongly
anti-correlated: binaries with spins close to (anti-) alignment produce remnants with lower
(larger) masses and larger (lower) spins. BH binaries in the∆Φ ∼ 0 (∆Φ ∼ π) librating mor-
phology result in merger remnants that are systematically above (below) theMf–χf correlation.
Kicks are also strongly affected,with the vast majority of large recoils originating frombinaries
in the∆Φ ∼ π morphology.

Measurements of BH remnant properties fromGW observations [1, 42, 58, 59] are believed
to encode precious (astro) physical information for stellar-origin (e.g. [60]), supermassive (e.g.
[25]), and primordial (e.g. [61]) BHs. Our analysis highlights potential caveats and provides a
stepping stone to take those ideas to completion.
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