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Abstract—Leading cloud providers recently introduced a new
instance type named burstable instances to better match the time-
varying workloads of tenants and further reduce their costs.
In the research community, however, little has been done to
understand burstable instances from a theoretical perspective.
This paper presents the first unified framework to model, analyze,
and optimize the operation of burstable instances. Specifically, we
model the resource provisioning of burstable instances, identify
key performance metrics, and derive the analytical performance
given the resource provisioning decisions. We then characterize
the equilibrium behind tenants’ responses to the prices offered for
different burstable instance service classes, taking into account
the impact of tenants’ actions on the performance achieved
by each service class. In addition, we investigate how a cloud
provider can leverage knowledge of this equilibrium to find the
prices that maximize its total revenue. Finally, we validate our
framework on real traces and demonstrate its usage to price
burstable offerings in a public cloud.

Index Terms—cloud, burstable instances, equilibrium, revenue
maximization

I. INTRODUCTION

O reduce costs for cloud tenants, today’s Infrastructure-
as-a-Service (laaS) providers offer various pricing
schemes, such as on-demand pricing, spot pricing, and re-
served pricing [2]. Under these pricing schemes, however,
tenants always obtain virtual machines (VMs) provisioned
with static amounts of resources, for example, one virtual
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TABLE I: Samples of Microsoft Azure burstable instances [8].

Type CPU credits Maximum CPU | Resource volume (vCPUs)
earned per hour | credits buffered | Maximum | Mean

Blls 3 72 0.05

Bls 6 144 1 0.1

Blms 12 288 0.2

CPU (vCPU) and 2 GB memory. On the other hand, empirical
studies [3], [4], [5], [6] have reported that workloads executed
on VMs in public clouds are usually time-varying. Therefore,
given the static amount of resources provisioned for VMs,
tenants have to book VM configurations that can satisfy their
peak workload demands. This peak-demand subscription strat-
egy leads to low actual utilization of the resources allocated
to VMs. Take CPU resource utilization as an example. The
utilization is lower than 35% on average according to a Google
cluster trace study [4], and lower than 20% for 60% of the
VMs according to a Microsoft Azure trace study [5]. These
observations imply that tenants’ costs can be further reduced
by time-varying resource provisioning. In other words, VMs
receive a high volume of resources for a short period of time in
exchange for fewer resources most of the time. A new class of
VMs, named burstable instances, has thus been introduced by
a number of cloud providers, such as the 2 and 3 instances
of Amazon EC2 [7], B-series instances of Microsoft Azure
[8], and fI-micro and gl-small instances of the Google Cloud
Engine [9]. In this paper, we approach burstable instances
from a theoretical perspective, and present the first unified
framework to model, analyze, and optimize their operation.
We show that cloud providers can use this framework to
understand the performance of burstable instances and set the
corresponding prices to optimize their total revenue.

A. Background on Burstable Instances

We list a few sample burstable instance configurations in
Table I. A burstable instance has a resource budget quantified
by CPU credits. Each CPU credit provides 100% of the full
capacity of a vCPU for a time slot’s duration (e.g., 1 minute
in Microsoft Azure [8]). CPU credits can be used in fractions,
such as spending 0.1 CPU credits for 10% of a vCPU. The
credits are earned at a constant rate per time slot for an
instance, with a limit on the maximum number of credits
that can be buffered. The maximum resource volume is the
maximum amount of resources that an instance can receive



in a time slot, which is one vCPU for all instances in Table
I. On the other hand, the rate of credit earning determines
the average resource volume (sometimes also referred to as
“baseline”) for an instance. For example, a Blls instance in
Table I receives 0.05 CPU credits per time slot (i.e., 1 minute),
enabling it to request 5% of a vCPU on average over time.

Burstable instances are suitable for services that demand
relatively small amounts of resources most of the time, while
occasionally requiring large amounts of resources. For exam-
ple, VMs operating as hot standbys [10] are usually idle with
low CPU utilizations. When a failover occurs, they demand
high resources to take over the jobs, but only for a short while
until the normal services are recovered. Applications with
periodic workloads, such as periodically updating machine
learning models [11], are also suitable for burstable instances.

Compared to traditional static resource provisioning meth-
ods, burstable instances can benefit both tenants and cloud
providers. Tenants no longer need to pay for their peak
resource demands all the time, so their costs are potentially
reduced with fewer resources purchased. Cloud providers can
also benefit in terms of over-commitment.! Though widely
employed, over-commitment traditionally suffers from the
difficulty of understanding VMs’ CPU utilization patterns,
which providers do not control [4]. Therefore, providers have
to co-locate VMs in a relatively conservative manner to offer
a guaranteed quality-of-service (QoS) level, i.e., the chance
that a VM can successfully receive its requested resources
[12]. The CPU utilization of burstable instances, however, is
regulated by the CPU credit mechanism, making the utilization
patterns more predictable for providers. Providers may then be
able to co-locate more burstable instances on a server while
still offering a guaranteed QoS level. Moreover, by jointly
optimizing the offered QoS and the prices charged to the
tenants, providers can maximize their total revenues. In this
paper, we provide a framework for them to do so.

B. Our Contributions

Although cloud computing with static resource provisioning
has been extensively studied, burstable instances are still an
emerging research topic with many unanswered questions.
Consider a cloud provider that offers different types of
burstable instances for multiple tenants. Hereinafter, we refer
to tenants as users, and to instance types as service classes
defined by the configuration parameters shown in Table 1. In
this paper, we aim to understand three fundamental questions
on burstable instances and use them to help cloud providers
(i) estimate the performance of burstable instances, and (ii)
increase their total revenue for operating this service.

How can we define and analytically evaluate the per-
formance of burstable instances? The QoS that a burstable
instance receives is determined by the amount of resources
that a VM is allocated compared to how many it requests, i.e.,
how well a user’s resource needs can be fulfilled. Note that the

'Over-commitment in clouds means the resources allocated to the VMs on
a server can exceed the server’s actual capacity, if the VMs are expected not
to fully utilize their reserved resources simultaneously [4]. Therefore, VMs
may not always receive the full resources that they demand.

QoS depends on whether the user’s requests are allowed by the
CPU credit mechanism, as well as how the cloud provider mul-
tiplexes its (over-committed) resources. Therefore, analytically
formulating the QoS representation is non-trivial as it requires
us to mathematically translate the CPU credit mechanism
to CPU utilization patterns and integrate the result with the
resource multiplexing scheme. To this end, in Section II, we
first formally define the QoS metric. We model the dynamics
of CPU credits as a token bucket regulation mechanism [13].
Meanwhile, we model two resource multiplexing schemes for
burstable instance services, random selection and proportional
allocation, and finally derive analytical QoS representations
for both of these multiplexing schemes.

From an individual user’s perspective, which service
class should (s)he select to maximize his/her reward?
We proceed to look at an IaaS cloud that offers burstable
instances with multiple service classes, each configured by
CPU credit parameters and a resource capacity. We refer to
these parameters as service class configurations hereinafter. A
service class charges a price to each user who subscribes to
it. Note that a rational user always favors a service class that
offers higher QoS with lower payment. Therefore, the user
will select the service class where his/her reward, which can
be regarded as his/her valuation of the received QoS minus the
payment, is maximized. In Section III, we analytically derive
users’ service class selections at the Nash equilibrium.

From a cloud provider’s perspective, how should it
price the service classes to maximize its total revenue?
The equilibrium derived above characterizes users’ responses
(i.e., service class selections) to the prices offered by service
classes, accounting for individual users’ heterogeneous QoS
valuations. Note that a cloud provider’s total revenue depends
on both the number of users subscribed to each service class
and the prices that the users should pay for their subscriptions.
Given the service class configurations, a cloud provider can
thus set prices leveraging prior knowledge of the equilibrium
on users’ corresponding subscription decisions to maximize
its total revenue at equilibrium.2 In Section IV, we formulate
a mixed-integer non-linear program to obtain such optimal
prices for the provider. While this problem can be solved by
general-purpose methods for mixed-integer programs [14], we
also propose an algorithm to compute an approximate solution
in a more efficient manner.

Our answers to the three questions above constitute a
framework to model, analyze, and optimize burstable instance
services in IaaS clouds. In Section V, we numerically validate
our framework using real-world traces [5] and show that it
can drastically improve the cloud provider’s total revenue
compared to heuristic pricing methods.

The remainder of the paper is organized as follows. In
Sections II, III, and IV, we answer the three aforementioned
questions sequentially, and simultaneously develop our frame-

2Qur revenue maximization problem does not capture the temporal evolu-
tion in the number of users. However, the number of users does not change
much over time according to the state-of-the-art traces [5]. To apply our
proposed methods to real-world public clouds, we can use the user profiles
at the peak for pricing. Although conservative, the derived prices and total
revenue are still shown to be reasonably good (see Section V-C for details).



Resource requests
C)

Token bucket
size (by)

7

User request
regulator 1

Token generation rate (r;)

Requests
accepted
(Capacity = ¢4)

Service class 1

.

~ User request
Resource requests@ (&) regulator j Requests
[C)] '\f/ accepted

(Capacity = ¢))

bji
Tt

. ) .
. Service class j

Service class M

Fig. 1: The system model of M service classes in a cloud. A
user corresponds to a VM in the cloud and maintains a token
bucket. Users subscribing to the same service class share a
regulator that multiplexes the burstable resources. A resource
request either gets a token from the token bucket and proceeds
to the regulator, or is discarded because there are no longer any
available tokens in the token bucket. The regulator guarantees
that the burstable resources allocated to VMs do not exceed
the capacity of a service class.

work. We numerically validate our framework and study one
of its use cases in Section V. Related works are surveyed in
Section VI. We conclude the paper in Section VII. Due to the
limited space, we will present the derivations of all lemmas,
corollaries, and propositions of Section II and Section III in
Appendix B and Appendix C, respectively.

II. PERFORMANCE MODELING

In this section, we first introduce the system model of an
IaaS cloud offering burstable instances with multiple service
classes. Then we formally define our QoS metric and analyt-
ically derive the QoS that a service class can offer, in terms
of the number of users subscribing to it and the service class
configurations specified by the cloud provider.

A. System Model

We study a slotted time system with N users and M service
classes. The system model is shown in Figure 1. In the cloud,
each service class provides a certain level of QoS. A user
is associated with a burstable instance running in the cloud,
and can subscribe to a service class. Suppose service class

Jj € M = {1,2,..,M} has n; subscribed users. According
to an empirical study on burstable instances [13], the life-
cycle of CPU credits for each user is essentially the same as
that of the tokens in the token bucket model [15], [16], [17].
We thus employ a dedicated token bucket for each user, as
shown in Figure 1. In our model, we convert CPU credits
to a more fine-grained unit named tokens. A token stands
for the smallest resource unit that a user can request in a
time slot. In the beginning of a time slot, r; tokens are first
generated to the token bucket of each user subscribing to
service class j. As an example of the CPU-credit-to-token
conversion, suppose a token stands for 1% of the full capacity
of a vCPU, and the duration of a time slot is one minute. A
Blls instance shown in Table I receives 0.05 CPU credits per
time slot, equivalent to five tokens. The maximum number
of buffered tokens for a user subscribing to service class j
is b;. Moreover, an instance is guaranteed to receive a® rntd
token units® of resources to maintain its underlying essentials,
such as the operating system. Therefore, even if an instance’s
requests are all rejected in a time slot (for example, due to too
many simultaneous requests from peer instances), the instance
will not halt due to receiving insufficient resources. If we set
a8"4 = (), our model falls back to the basic burstable instance
design presented in Table I. Since guaranteed resources are
always available and are the same for each service class, they
do not affect users’ QoS, and thus a8” ntd s not included
in our following performance model. Apart from guaranteed
resources, in each time slot, an instance can make requests
for more resources. Service class j reserves c¢; token units of
resources for the requests from all its subscribers. If the total
amount of requested resources from users exceeds the resource
capacity of a service class, the limited resource capacity should
be allocated to users following a resource multiplexing scheme,
which will be discussed later in this sub-section. To sum up,
the configuration of a service class j can be characterized by
three parameters, b;, cj, and r;, which are set by the cloud
provider. Without loss of generality, we assume that b;, c;,
and r; are positive integers in this paper.

We continue to illustrate how users’ requests are made and
processed in each time slot. Each request is for one token unit
of resources. For example, if the user wants 5% of a vCPU for
a time slot, with one token standing for 1% of a vCPU, a batch
of five requests will be made. A user’s requests are processed
as soon as new tokens for this time slot are accumulated. As
Figure 1 shows, each request checks if there is an available
token in the token bucket; if so, the request proceeds to the
user request regulator and the corresponding token is deducted
from the user’s token bucket. Otherwise, the request will be
discarded. Therefore, when the number of available tokens
in the token bucket is smaller than the number of incoming
requests in a time slot, only a partial number of requests,
which equals the number of tokens currently available in the
token bucket, can proceed to the regulator, and the remaining
requests are discarded. The user may make new requests in the
coming time slots if (s)he still demands burstable resources.

3We refer to a token unit as a resource unit representing the amount of
resources corresponding to one token.



On the other hand, when the number of tokens in the token
bucket is no smaller than the number of incoming requests,
all of these requests can proceed to the regulator. This model
extends our earlier work [1], where all requests are simply
discarded without getting any tokens if the number of available
tokens in the token bucket is smaller than the number of
incoming requests.

At service class j’s user request regulator, all requests will
be approved if the total number of received requests does not
exceed the resource capacity, ¢;. Otherwise, the regulator will
allocate the limited resources to users following some resource
multiplexing scheme. We can consider two schemes, random
selection and proportional allocation. In random selection,
the regulator repeatedly chooses a user uniformly at random,
and admits his/her requests until the capacity c; is used up.
Extending our earlier work [1], we also consider proportional
allocation, where each user receives an equal proportion (e.g.,
90%) of his/her requested resources, so that the total amount
of resources allocated to users sums to the resource capacity,
c;j. Hence, a user may eventually receive a fractional amount
of resources. This paper will derive analytical results for both
of the multiplexing schemes and provide insights into their
numerical results so that a cloud provider can have a better
idea of which scheme to choose for its real operation.

B. Quantifying Users’ QoS

In this paper, we are interested in the analytical form of
a user’s received QoS by subscribing to a service class. For
simplicity, we assume that users are homogeneous in the
statistical patterns of their requests. The probability that a
user has at least one request in a time slot is denoted by
6. The number of requests that a user makes in a time slot,
given that (s)he has requests to make, is a random variable
0 € [1,0,max] N Z*.* For example, if a token stands for 1%
of a vCPU, with the maximum resource volume as one vCPU
and guaranteed resources as 2% of a vCPU (i.e., a8’"'? = 2)
for each instance, an instance can request up to 98% of a
vCPU as its burstable resources (i.e., 8,,4x = 98). To simplify
our mathematical model, we suppose that b; > 26,4, as
is typically the case in practice.” Denote the probability that
0 takes the value x by P(f = x). The distribution of 6
can be estimated from historical data of CPU utilization for
a particular application. We assume that P(8 = x) > O,
x € [1,0max] N Z*. This assumption will be later confirmed
by real-world traces [5] in Section V.

By making 6 requests, a user i € N = {1,2,..,N}
subscribing to service class j finally receives ¢; token units of

4For some applications, the number of requests made in a time slot may be
temporally correlated to that made in previous time slots. However, an IaaS
cloud has neither the knowledge of what applications are running on the VMs
nor the control of these applications. Therefore, our user request model does
not consider such temporal correlation. We will show in Section V that our
model is still accurate for realistic user request patterns from state-of-the-art
public cloud traces [S5], which may not be i.i.d. across time.

3 As typical values, suppose one token stands for 1% of a VCPU and the
maximum resource volume for an instance is one vCPU. Let a8 "4 =0, so
Omax Will go up to 100. Practically, the token bucket size is the total number
of tokens that can be buffered within 24 hours (see Table I). Therefore, even
if the token generation rate is r; = 1, with the duration of a time slot as one
minute, the token bucket size is b; = 1440, much greater than 6y, x -

resources, where ¢; is a random variable (that depends on 6).
Note that ¢; depends not only on b;, c;, and r;, the service
class configurations, but also on n;, the number of peer users
that are concurrently sharing the resources in service class j
with this user. Let 8 € [1, §,,4x]NZ* be the number of requests
that can traverse the token bucket and reach the regulator for a
given user in a time slot, given that the user makes requests in
this time slot. Note that 6 is a random variable with the same
range as that of 6 (i.e., Omax = Omax). Meanwhile, 4 is always
non-negative, because the token bucket has at least r; > 1
available tokens (the ones accumulated in the same time slot)
to accommodate potential requests. Given that a user makes
6 requests, there must be at least min{6, r;} requests that can
traverse the token bucket. We denote the probability that
takes the value y by P (67 = y).

The QoS that user i subscribing to service class j receives,
denoted by g;, is defined as the probability that the user can
finally receive @ (0 < @ < 1) of his/her requested resources
in a time slot given that (s)he makes requests in this time
slot, where « is a cloud-provider-specified parameter. In other
words, provided that a user makes 6 = x requests in a given
time slot, g; is the probability that this user can finally receive
no fewer than ax token units of resources. Practically, a can
be a fractional number that is close to 1, for example, 0.9. In
this case, our performance metric characterizes the probability
that a user receives 90% of his/her requested resources. Our
QoS metric guarantees the tail probability on the fraction of a
user’s resource requests that are ultimately fulfilled. This tail
probability guarantee strategy has been widely adopted in the
cloud computing literature [18], [19].

Similar to existing studies on IaaS clouds [6], [20], our QoS
metric quantifies the resource availability on the infrastructure
level instead of modeling the application-level performance
(e.g., job completion time). A CPU credit (a.k.a. a token) can
be interpreted as an opportunity that a user can spend to obtain
resources. Our QoS metric represents the probability that the
CPU credits can finally turn into the allocated resources. To
understand the infrastructure-level QoS, users who deploy
their applications on the cloud-provided VMs may need to
translate the infrastructure-level QoS to the application-level
performance. Although such a translation is out of the scope
of our paper, which targets an IaaS cloud, we still provide a
few translation examples in Appendix A.

We make comments from a qualitative perspective on how
the service class configurations b;, c¢;, and r; will affect the
QoS for a given number of users in service class j. Generally,
increasing b; and r; at the token bucket side leads to a higher
chance of the users’ requests passing the token bucket, as
Figure 1 shows. If the regulator’s capacity c; is underutilized,
the QoS of users will improve due to the increases in b; and
rj. However, if the capacity is already overutilized with a
multiplexing scheme in place, to improve the QoS, we should
also increase c¢; to adapt it to the increased number of requests
that reach the regulator.

We continue to derive the analytical QoS. Assume the
system is stationary. We can formulate g; by enumerating the
probabilities that a user makes x resource requests, with y
requests successfully traversing the token bucket, and finally
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receives at least ax token units of resources, as equation (1) at
the top of this page. In equation (1), P (¢j > axl|d = x) is the
probability that a user initially makes x requests and finall
receives at least ax token units of resources, P (5 =yl8 = x§
is the probability that exactly y requests successfully traverse
the token bucket for a user, given that (s)he initially makes x
requests, and P (¢ > ax|f=y0= x) is the probability that a
user finally receives no fewer than ax token units of resources
given that (s)he makes x requests and y requests successfully
traverse the token bucket. Consider a user who initially makes
x requests, with y requests successfully traversing the token
bucket. In order for this user to receive no fewer than ax token
units of resources in the end, a necessary condition is that
y > ax. Since y is an integer, in the inner summation with
regard to y in equation (1), we only consider the situations
when [ax] <y < x.

It can be observed from equation (1) that the value of g;
depends on the following two factors: (i) How many requests
can get the corresponding tokens and traverse the token
bucket, characterized by P (é =ylf = x); (ii) Whether enough
requests that have already traversed the token bucket can be
admitted by the regulator after multiplexing with other peer
users’ requests, characterized by P (¢ > ax|f = y,0 = x). In
the rest of this section, we will model the token bucket
mechanism and the resource multiplexing scheme at the
regulator side to get the expression of P (gé =ylf = x) and
P (¢; = ax|f = y,0 = x), respectively.

1) Modeling the token bucket mechanism: We model the
dynamics of the token bucket as a Markov chain, with the
state defined as the number of tokens in the token bucket in a
time slot, after r; tokens are generated, but before the potential
requests are made and processed. In this case, the token bucket
has at least r; tokens, and thus we have b; —r; + 1 states.
Let state d = rj,r; +1,...,b; be the (d —r; + 1)th state of the
Markov chain with d tokens in the bucket. The state transition
probabilities of the Markov chain are given by Proposition
1. Note that although this proposition is based on our prior
assumption of b; > 20,,,, our derived results can be easily
generalized to the cases where 6,,qx < b; < 26,45 using the
same methodology. (For each service class, b; > 6,4, should
always hold to meet the users’ requests.)

Proposition 1. The transition probability P from state d
to state h for the Markov chain is as follows:

(i) When rj < d < 0pax — 1, we have

§-YimaxP(@=k)  h=ry

5 P(H—d+rj—h) ri+1<h
Py = Sd+l’j—1,

1-6 h=d+r,

0 otherwise.

(ii) When O,,4x < d < b; — 1), we have

§-P(0=d+rj—h) d+r;j—Omax<h
< =1
Pd—>h= _d+rj ’
1-6 h=d+rj,
0 otherwise.
(iii) When b; —r; + 1 < d < bj, we have
5-P(0=d+r;—h) d+71j = Omax
d+rj-b;
Py, = 70
s Y P@=kb+a-6 h=b;
k=1
0 otherwise.

The Markov chain is positive recurrent and aperiodic, so it is
ergodic [21]. Denote the steady-state probability of state d by
n;l . The physical meaning of 7¢ is the steady-state probability
that there are d tokens available in the token bucket waiting
for potential requests to be processed. We can obtain nj‘.’ by
solving the balance equation.

With the Markov chain model above, we are ready to derive
P (5 =yl6 = x). Note that we always have no fewer than
r; tokens in the token bucket when requests arrive. For this
reason, when 1 < x < r;, all of the requests can traverse the
token bucket, which means

~ 1 y=x,
P(=yld=x)=
( o ) {0 otherwise.

2

When r; < x < Omax, however, depending on the token

availability in the token bucket, either all or a part of the
requests can traverse the token bucket, and thus

bj 4
2igex T

Yy =4
P(§=y|9=x)= ﬂ]y ri <y<ax, 3)
0 otherwise.

With the expressions of P (5 =ylf = x) derived above, we
can further construct the probability mass function P (5 = y)
of random variable 6 by enumerating all the possible numbers
of requests that a user initially makes, namely,

Omax

ZP(ézyw:x)P(e:x). (4)
x=1

Substituting equations (2) and (3) into (4), we obtain the full
representation of P (6 = y) as
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The first and second term in equation (5) for r; <y < Omax
corresponds to the cases where at least y tokens are available
with y requests being made, and where only y tokens are
available with more than y requests being made, respectively.

We proceed to derive P (¢j >ax|d=y,6= x) in equation
(1). To this end, we will respectively model the two multiplex-
ing schemes, random selection and proportional allocation.

2) Modeling the regulator’s resource multiplexing scheme:
Since we assume that users are homogeneous, it suffices
to derive P (q)j >axlf=y,6= x) from the perspective of
an individual user, who is referred to as the examined user
hereinafter. In what follows, we model random selection and
proportional allocation.

Random selection. Equation (6) at the top of this page
shows the analytical form of P (qﬁj >ax|d=y,0= x) under
random selection. First, the amount of resources that the
examined user can obtain is directly related to the number
of requests that also reach the regulator from other peer
users. We denote the number of such peer users by k in
equation (6), with the corresponding probability of occurrence
as ("fk_l)ék (1 = 8) % I(recall that & is the probability a user
makes at least one request), which are the first three terms
inside the outer summation of equation (6).

The random selection scheme can be equivalently described
as the following. The regulator keeps selecting a user uni-
formly at random to admit his/her requests until all the users’
requests are admitted or the residual capacity is used up. In
the latter case, the regulator will use its residual capacity
to partially satisfy the requests from the last selected user.
Following this scheme, given that there are k + 1 users in
total (including k peer users and the examined user) making
requests in the service class, the probability that the examined
user is the Ath (1 < h < k + 1) user to be selected by the
regulator is 1/(k +1). Each peer user [ (1 < [ < h—-1)
has 6; requests reaching the regulator, where f; is a random
variable that can be obtained from equation (5). The 7 — 1
previously selected users have Zf’;ll 6, requests reaching the
regulator in total. Therefore, the probability that this examined
user is admitted with no fewer than ax token units of resources
allocated is P (Z;’:’II 0, <cj— ax).

Proportional allocation. Equation (7) at the top of this
page shows the analytical form of P (¢ i 2 ax|f =y,0 = x)
under proportional allocation. Similar to random selection,
we examine the 2;‘:1 6; requests reaching the regulator made
by the k peer users. The range of Y¥_ 8; is [k, kOpax].
Recall that the examined user now has y requests reaching
the regulator. Here, y should be no smaller than ax to meet
the QoS requirement, as the index of the inner summation in

equation (1) shows. If Zle d; is no more than c¢j -, the total
number of requests received by the regulator does not exceed
its capacity. In this case, all the requests will be admitted,
and the examined user will get y token units of resources.
Otherwise, each user will get his/her share of the total capacity
c; proportional to his/her requested resources. In other words,
the amount of resources that the examined user receives is
cy/(y + Z;‘Zl ;). In view of the QoS metric, we need to
ensure that

which yields

To sum up, given that k users in service class j have requests
in a time slot, the probability that the examined user can get
no fewer than ax token units of resources is

k
~ Cj
P(Y 6 < (—f - 1) ,
< (1))
which is the last term inside the outer summation of equation
(.

By sequentially substituting equations (2), (3), and (5) into
(6) or (7), and finally into (1), we obtain the analytical form
of g;. When referring to equation (1) as the analytical QoS
for burstable instances in the rest of this paper, we mean its
complete representation after all the above substitutions.

ITII. EQUILIBRIUM ANALYSIS

Given the service class configuration parameters b;, c;, and
r;, in the last section, we have derived the relationship between
the QoS ¢; that a service class j can deliver with respect to
its number of subscribers 7, as shown in equation (1). When
operating multiple service classes of burstable instances, the
cloud provider assigns a price p; for each service class j to
charge to the corresponding subscribers. In this section, we
continue to understand the users’ responses, i.e., their preferred
selections of service classes, to the prices issued by the cloud
provider. Specifically, let each user i € N specify a coeffi-
cient u; that represents his/her valuation of the received QoS
(e.g., relationship between the received QoS and the resulting
application-level performance); the user will therefore harvest
a utility of u;g; by subscribing to service class j. Following
prior works in the network economics literature [22], [23], we
assume that each user’s u; value lies on a continuum with
range (0,7y]. Let f(x) be the cumulative distribution function



(CDF) of the random variable u; at x € (0,y]. Denote the
reward that user i earns by subscribing to service class j by
wi, j» which can be calculated by the user’s harvested utility
minus payment, i.e.,

Wi j = uiqj — pj. 3

We focus on deriving the Nash equilibrium of users’ service
class selections. From an individual user i’s perspective, at
the Nash equilibrium, (s)he should receive more reward from
his/her selected service class, denoted by 7 (i), than from other
service classes, which can be mathematically written as

Wi p(i) = max {wi,j,O} ,Vje M\{n()). )

Let (i) = 0 if user i decides not to subscribe to any service
class. According to equation (9), this can happen if all the
service classes deliver negative rewards to this user.

Suppose a Nash equilibrium exists and has been reached.
(The existence of a Nash equilibrium will be proved in
Proposition 2 later in this section.) Each service class j has n;
subscribers and delivers a QoS of g; according to equation (1).
We next analytically characterize the relationship among n;,
Dj> q;, ui, and n(@), i € N, j € M, at the Nash equilibrium.

Our first result finds a sufficient condition that a service
class has no subscribers:

Lemma 1. Consider two service classes, j and k, where p; <
Pk If qj = qr, then nx = 0 at equilibrium.

We know from Lemma 1 that for a service class that charges
a higher price but offers a lower QoS than another service
class at equilibrium, the former service class has essentially
no subscribers. The following corollary elaborates a similar
idea for two service classes that charge the same price.

Corollary 1. For two service classes, j and k, where p; = py,
if ¢j > qx, then nx =0 at equilibrium.

As Corollary 1 suggests, if two service classes charge the
same price but offer different QoS at equilibrium, the service
class that offers a lower QoS has essentially no subscribers.
Note that we should prevent a service class from having no
subscribers at equilibrium because the cloud provider will
derive no profit from it. Therefore, we learn from Lemma 1
and Corollary 1 that the prices of service classes should be
properly set so that at the Nash equilibrium (i) a service class
that charges a higher price should also offer a higher QoS,
and (ii) the service classes that charge the same price should
offer the same QoS. In the rest of this section, we assume that
the prices of the service classes are set as aforementioned.
Without loss of generality, we index the service classes in
non-decreasing order with respect to the QoS that they offer
at equilibrium (ie., ¢; < gk, Yj < k and j,k € M). Since
we properly set the prices, we have p; < pi, Vj < k and
J.k € M. Also, if p; = pi, j,k € M, then q; = gx. Also,
we suppose that if two users, i and k with u; < ug, have
decided to subscribe to different service classes with the same
offered QoS (and thus the same price) at equilibrium, their
subscriptions follow 7 (i) < n(k).

From an individual user’s perspective, we continue to derive
which service class the user will subscribe to. In the next

lemma, we qualitatively illustrate the relationship between
users’ QoS valuations and their service class selections as a
necessary condition for a Nash equilibrium.

Lemma 2. Suppose user i selects service class n(i). For any
user k with a QoS valuation uy > u;, his/her service class
selection n(k) satisfies n(k) > n(i).

We can also derive a sufficient condition when each user
has an incentive to subscribe to a service class.

Corollary 2. Each user will have an incentive to subscribe to
a service class at equilibrium (i.e, ¥Yi € N, Jj e M, w; ; > 0)
if p1 =0.

Lemma 2 shows that users’ service class selections are
monotonic with regard to their QoS valuations: users with
higher QoS valuations u; will subscribe to service classes
with higher QoS levels (i.e., higher indices) at equilibrium.
In other words, as users’ u; values lie on a continuum within
the region (0,7y], we can partition the region into multiple
non-overlapping intervals (0,vo), [vj-1,v;), j € M\ {M},
and [vas—1,vam], where vy, = . Users with QoS valuations
u; € [vj_1,vj), j € M\ {M} will subscribe to service class
j, while users with u; € [up;—1, ups] will subscribe to service
class M. When p; > 0, users with u; € (0,vy) do not have
incentives to subscribe to any service class. On the other hand,
if p; =0, then vy = 0 according to Corollary 2, meaning that
all users will have incentives to subscribe to service classes.
Given this quantitative description, we can fully characterize
users’ service class selections by determining the boundary
points {v;, j =0,1,.., M -1} of the intervals, at which a user
is indifferent to the choice between the neighboring service
classes. We can establish the relationship between the number
of subscribers n; of service class j and the corresponding
boundary points v;_; and v; as

n; :N(f(vj)—f(vj_l)), jeM.

Note that f(var) = f(y) = 1. Define ng as the number of users
who have no incentive to join any service class. We have

no = Njf(vo). (11)

With the users’ service class selections defined above, we can
analytically characterize a Nash equilibrium as follows.

(10)

Proposition 2. Equation (12) serves as a necessary and
sufficient condition that p;, q;, vj, and n;, j € M, constitute
a Nash equilibrium:

J
Pj =Vvoqi1 + Z Vi—1 (6]k - C]k—l) , VjeM (12)

k=2

From an individual user’s perspective, the Nash equilibrium
finds the best trade-off in achieving a high utility u;g; with a
low payment p;, as defined in equation (9). If user i attaches
more importance to the received QoS, (s)he should also have
a higher affordability. The user can then take a higher value of
u;. At equilibrium, the user will be assigned to a service class
that delivers a higher QoS, which correspondingly charges a
higher price. Otherwise, the user should take a smaller value



of u;, which will potentially lead to a lower QoS delivered
and a lower price charged to the user at equilibrium.

From the cloud provider’s perspective, the Nash equilibrium
characterizes users’ corresponding responses (i.e., service class
selections) to the prices set by the provider. In the next
section, we will continue to study how to take advantage of
the knowledge of this equilibrium to set optimal prices.

IV. REVENUE MAXIMIZATION FOR THE CLOUD PROVIDER

The equilibrium derived from Section III provides an oppor-
tunity for the cloud provider to maximize its total revenue via
optimal pricing. More specifically, with prior knowledge of the
relationship between users’ service class selections and prices,
as given in Proposition 2, the cloud provider can indirectly
control the number of users in each service class via setting the
corresponding prices. Because the total revenue of the provider
is related to both the prices and the actual numbers of users
subscribed to the service classes, we can define a revenue
maximization problem to find the prices that maximize the
provider’s total revenue at the Nash equilibrium.

We optimize the provider’s total revenue given the service
class configurations b;, cj, and r;. Also, we consider no and
vo, which characterize the provider’s preference in accepting
users, as pre-specified by the cloud provider. (For example,
a provider that wishes to accommodate every user will take
vo = 0, with all users being accepted.) We also let the
provider specify another parameter, 7, which indicates the
minimum QoS that each service class should offer. Let p =
1, opml’e d = [g1.qo - qu]”, 0 = [, no, .. np T,
and v = [vy,...vap—1]7 be the concatenated vectors of decision
variables. With the performance model and user selection
equilibrium respectively defined in Sections II and III, we can
formulate the revenue maximization problem as

M
maximize in;, 13
Sy ]Zz;p] j (13)
subject to constraints (1), (10), and (12),
qj < gj+1, Yj € M\ (M}, (14)
q 2T, (15)
njeZ", ¥je M. (16)

In the objective function (13), the provider’s total revenue is
the summation over the revenue p;n; gained by each service
class j. Together with constraints (1) and (10), constraint (12)
defines the relationship among the decision variables at the
Nash equilibrium. Since vector q is sorted in a non-decreasing
order at equilibrium, without loss of generality, we configure
the service classes as bj < bji1, ¢j < Cjp1, j S Tjs1, ] €
M\ {M}. Therefore, it is natural to expect that service classes
with richer resources will offer higher QoS levels, as indicated
in constraint (14). Meanwhile, constraints (14) and (15) jointly
guarantee that the QoS g; offered by each service class j
satisfies the minimum requirement 7.

Following similar models from the network economics
literature [22], [23], we use users’ statistical characteristics
(i.e., existing the CDF of u;) for optimal pricing, as shown in
constraint (14). The realizations of users’ utility parameters u;

Algorithm 1 Approximation Algorithm for the Revenue Max-
imization Problem in Section IV.

Input: Service class configurations {b;,c;,r;, ¥j € M},
provider-specified parameters ng and v, user profiles N,
0, 6, QoS metric parameter @, and the pre-calculated
{n;.‘pper, j e M.
Output: p, q, n, and v.
1: Relax constraint (16) as a continuous constraint:

nj >0, Vj e M. (17)

2: Linearly or quadratically approximate constraint (1), and
also constraint (10) if it is neither linear nor quadratic.

3: Construct and solve the semidefinite relaxed formulation
of the revenue maximization problem.

4: Recover feasible solution p, q, n, and v to the original
revenue maximization problem from the optimal solution
to the semidefinite relaxed formulation in Step 3.

5. return p, q, n, and v.

may not exactly match the distribution f(-), where the actual
revenue achieved by the cloud provider may deviate from
that derived from our optimization problem. However, this
deviation will be negligible when the total number of users, N,
is large. We can thus interpret the optimal revenue derived by
our optimization problem as the “expected” revenue (which we
still refer to as the revenue hereinafter for brevity) given users’
statistical characteristics. Our optimal solution also guarantees
constraint (14) with probability one for realizations of u;.

As a mixed-integer non-linear program, our revenue max-
imization problem is a hard problem in general, which can
incur a high computational complexity to get an optimal
solution by existing general-purpose solution algorithms for
mixed-integer programs in the literature (e.g., brute-force
search) [14]. Therefore, in the rest of this section, we also
propose Algorithm 1, an approximation algorithm, to compute
an approximate solution for the optimization problem in a
more efficient manner. Details of the algorithm are illustrated
as follows.

Taking a close look at the problem structure, we find
that the optimization problem is almost an inhomogeneous
quadratically constrained quadratic program (QCQP)® except
that we know the exact form of neither the performance
model in equation (1) nor the CDF f(-) in equation (10).
Therefore, the core notion of our algorithm is to construct
an approximate QCQP of the optimization problem, and
then apply semidefinite relaxation (SDR) [24] to relax a few
constraints towards an efficiently solvable convex optimization
problem. Specifically, we first construct an inhomogeneous
QCQP of the original optimization problem by relaxing the
discrete constraint (16) as a continuous constraint (17) and
approximating constraint (1), indicated by step 1 and step 2,
respectively, in Algorithm 1. Depending on the actual form
of f(-), we also need to approximate constraint (10) if it is
neither linear nor quadratic (but not necessarily convex). We

6According to the definition in [24], an inhomogeneous QCQP is a QCQP
with linear terms in its objective function and/or constraints.



TABLE II: Service class configurations.

J rj b; cj Resource volume (vCPUs) | a8777d
Maximum | Mean

1 4 1,152 | 100 0.05

2 6 1,728 | 200 0.07 1%

3 3 2,304 | 300 1 0.09 of a

4 14 | 4,032 | 400 0.15 vCPU

35 19 | 5,472 | 500 0.2

present Algorithm 1 as a general framework that allows any
approximation method for a linear or quadratic approximation.
The reason for not allowing higher-order approximations is
that the resulting formulation after approximation has to be
an inhomogeneous QCQP so that SDR can be applied in
the following steps. We will demonstrate in Section V the
detailed approximation method that we use in deriving our
numerical results. As SDR is a widely-used technique, we do
not elaborate the details of constructing a semidefinite relaxed
formulation in step 3 here, but refer interested readers to
Appendix D-A. The constructed convex optimization problem
can be efficiently solved by well-developed algorithms (e.g.,
interior-point methods [25]). In step 4, we recover a feasible
solution to the original revenue maximization problem from
the optimal solution to the semidefinite relaxed problem. The
detailed algorithm that we use for recovery is presented in
Appendix D-B.

V. NUMERICAL VALIDATION AND CASE STUDY

Above, we have defined our theoretical framework to
analytically model the performance of burstable instances,
analyze the user selection equilibrium, and maximize the
total revenue of a cloud provider. In this section, we first
numerically validate this framework and then demonstrate
how it can be used to price a public cloud. A Java-based
simulator is implemented to simulate the operations of token
buckets, regulators, and VMs. The simulations are driven by
the Microsoft Azure traces [5]. Released in 2017, these traces
are the latest characterization of VM resource utilization in
public clouds.

A. Validating Our Performance Model

We validate our performance model (Section II) in this sub-
section.

1) Simulation settings: The Microsoft Azure traces record
CPU utilization of VMs at a time granularity of five minutes.
Therefore, the duration of a time slot in our simulations is
also set to be five minutes, and a token refers to 1% of the
full capacity of a vCPU for five minutes. Five different service
class configurations, listed in Table II, are considered in the
simulations. We set the token bucket size b; as the number of
tokens earned in 24 hours, as done in Amazon EC2 [7] and
Microsoft Azure [8]. At the beginning of the time horizon,
every instance is assigned initial tokens for a smooth bootstrap,
the amount of which is equivalent to 1/6 of its token bucket
size. Meanwhile, since the average resource volume received
per instance is no larger than 20% of a vCPU according to
Table II, VMs with an average CPU utilization higher than

20% of a vCPU are excluded from the simulations because
they definitely cannot receive their requested resources and
are thus not suitable for our burstable instance services. (These
VMs may subscribe to traditional static instances due to their
high volumes of CPU resources requested.)

We sort the instance records in chronological order, and
randomly select 200 of the first 5, 200 records’ as samples to
estimate the parameter 6 and the distribution of the random
variable 8 € [1,99] N Z*. We use these estimates to set
our parameters throughout this section. The remaining 5, 000
instance records are used as festing data in the simulations
in this sub-section. The § value and the 6 distribution are
respectively obtained by simply counting the number of times
that users have resource requests to make and the frequency
of appearance of different 8 values in the 200 sample instance
records. Our obtained ¢ value is 0.9948. Interested readers
can refer to Figure 8 in Appendix E-A for the obtained
cumulative distribution of §. We confirm from the traces that
P(8 = x) for random variable 6 is positive at all integral points
x €[1,991NZ", meaning that our prior assumption in Section
II-B holds. We also observe that the distribution of 6 has a
long tail, indicating that the users’ resource requests are indeed
bursty (i.e., varying significantly over time). The @ parameter
in the QoS metric and the QoS lower bound 7 are set to be
0.9 and 0.1, respectively.

2) Results: Our performance model in Section II-B presents
the analytical performance of an individual service class given
its configuration parameters (b;, ¢j, and r;) and the number
of subscribers (7). Due to the limited space, we take three
of the service classes from Table II, namely, j = 1, 3, and
5, as representatives to validate our performance model. Note
that all five service class configurations listed in Table II will
be considered as we move on to cloud-level simulations with
multiple service classes later in this section. We simulate a
total period of five days, and play back the workloads in
the traces. Our performance models with both the random
selection and proportional allocation schemes will be verified.

In Figure 2, we show comparisons between our analytical
(from Section II) and simulated QoS curves, both obtained
by varying the number of users n; from 1 to 100 for service
classes j = 1, 3, and 5, with random selection and proportional
allocation, respectively. In the simulated QoS curves, a point
corresponding to n; users shows the average QoS over 25
runs, with n; instance records randomly drawn from the 5, 000
testing records in each run. Qualitatively, it can be observed
from the figure that our analytical curves are close to their
simulated counterparts. The average error ratios of our ana-
lytical curves to the simulated curves for service class j = 1,
3, and 5 is 2.76%, 2.32%, and 0.49% for random selection,
and 2.96%, 2.92%, and 0.76% for proportional allocation,
respectively, which are relatively small. Thus, our analytical
performance model can both qualitatively and quantitatively
well approximate the actual QoS.

3) Insights: Next, we elaborate the insights delivered by
the QoS curves shown in Figure 2. Under the same service

TAll of these 5, 200 instances start in the first time slot of the time horizon
and have durations longer than five days.
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Fig. 2: The analytical and simulated QoS curves obtained by
varying n; from 1 to 100 for service classes j = 1, 3, and 5,
whose parameters are listed in Table II. Both random selection
and proportional allocation are considered. The error ratios
of our analytical curves from (a) to (f) are 2.76%, 2.96%,
2.32%, 2.92%, 0.49%, and 0.76% In summary, our analytical
performance model can approximate the actual QoS.

class configuration (e.g., j = 1), the QoS achieved by random
selection and proportional allocation at nj = 1 is the same.
This is because when n; = 1, the examined user has no
other peer users to compete with for resources. Meanwhile,
the resource capacity at the regulator is always sufficient to
accommodate this user’s requests (i.e., ¢; > Omax ). Therefore,
the QoS for n; = 1 represents the probability that o of a
user’s requests can traverse the token bucket, and such a QoS
is not influenced by the multiplexing scheme at the regulator
as long as ¢; > Omax. On the other hand, with the increase of
nj, the QoS achieved by proportional allocation deteriorates
much faster than that achieved by random selection. This is
because under the proportional allocation scheme, when the
total number of requests received by the regulator exceeds
the resource capacity, each user gets an equal proportion of
his/her requested resources that are received by the regulator.
That is to say, if service class j’s regulator receives more than
cj/a requests in a particular time slot, none of the users’ QoS
requirements (i.e., receiving at least @ of the user’s requested

resources) can be fulfilled in this time slot. However, if random
selection is applied to the same situation, some of the users
will be selected to receive their full requested resources, while
other users’ requests will be rejected. In this case, even if more
than c;j/a requests arrive at the regulator, there will still be
some users whose QoS requirements can be satisfied.

The observations above imply a performance-fairness trade-
off behind the multiplexing schemes. When users’ QoS re-
quirements cannot be satisfied simultaneously, each user still
receives an equal proportion of his/her resource requests that
reach the regulator under the proportional allocation scheme,
although none of the users’ received resources can achieve
the QoS-required amount (i.e., @ of the requested resources).
In contrast, users are no longer guaranteed to receive any
resources under the random selection scheme for this situation.
Only some of the users can receive their requested resources
with the corresponding QoS requirements satisfied, while the
remaining users will be allocated no resources at all.

To further illustrate the fairness of the multiplexing
schemes, we calculate the Gini coeﬁﬁciem‘8 on the ratio of
each user’s received resources to the requests that the regulator
receives for this user in a given time slot. Figure 3 reports the
average Gini coefficient with three service class configurations,
j =1, 3, and 5, for both random selection and proportional
allocation when we vary n; from 1 to 100. Since users
receive the same proportion of their requests that reach the
regulator, the Gini coefficient for proportional allocation is
always 0. With random selection, it can be observed that when
the number of users in the service class (n;) is small, the
corresponding Gini coefficient is close to 0 because each user
receives the full amount of resources that (s)he requests to the
regulator most of the time. However, with an increase of n;,
the Gini coefficient also increases, as the regulator’s resource
capacity can no longer satisfy all users. In this case, only
a selected group of users are able to receive their requested
resources, making the proportions of received resources for
different users more diverse. Note that the average resources
received by each user over time is the same for the random
selection and proportional allocation schemes, but random
selection ensures users’ requests are occasionally matched.

B. Validating Our Equilibrium and Revenue Maximization

This sub-section validates our equilibrium analysis (Section
III) and revenue maximization scheme (Section IV).

1) Results: Consider that users’ QoS valuations u; follow
a uniform distribution within (0, 1]. The CDF at v; is thus

f(Vj)ZVj, j=(), 1,.. (18)

Substituting equation (18) into (10), (11), and (12), we obtain
the analytical equilibrium representation.

Two classes of approaches can be applied to solve our
revenue maximization problem in Section IV, the general-
purpose methods for solving mixed-integer programs [14]

M.

8The Gini coefficient is a widely used measure of dispersion on a set of
data. A Gini coefficient takes a fractional value within the range [0, 1], where
0 means the values of the elements in the data set are exactly equal to each
other, while 1 expresses the maximal inequality among the elements. Details
of the Gini coefficient can be found in [26].



0.8

—a&— Optimal
—=—SDR
—&— Uniform
—e— Gaussian

Total revenue of the provider

60
= = =j=1, Random _ -
+++ j=3, Random - 5 —4— Optimal
0.6l = - =5, Random e 5 50 | —=—SDR
=  |[——i=18385, Proportional | .~ 5 —=— Uniform
:g - . f:j 40 —e— Gaussian
Q04 ,/ ! S
o , R E 30
£ 4 : ," g
(0] v Ka o
0.2 fos ~’ =
,I ,;' % 20‘
’ K4 = g
v R ,~’
s = 10
50

150

75 100

Fig. 3: The Gini coefficients for the six
simulated QoS curves in Figure 2.

(among which we use the brute-force search algorithm for the
simulations in this section), and the SDR-based Algorithm 1
specifically designed based on our problem structure. We will
evaluate the performance of both approaches. In the SDR-
based approach, a least-squares quadratic approximation is
used to approximate g; in Step 2 of Algorithm 1. Since g;
is non-increasing in n;, we first use a bi-section method to
find the maximum #; that can satisfy the QoS requirement 7,
denoted by n;’p’”r, where g; (nJ) <7, Vnj > n;.‘pper. Note
that n}"P¢" will also be used later in constructing heuristic
benchmarks to be compared with our proposed approaches.
Next, we numerically calculate g;(n;) for n; = 1, n; =
n?” P€’ and all the n; that are integral multiples of 20. For
example, if n'/"7" = 90, we calculate g;(n;) for n; = 1, 20,
40, 60, 80, and 90. These numerically calculated gq;(nj) points
are used for the least-squares quadratic approximation. We will
demonstrate in the upcoming results that this simple approxi-
mation method can provide sufficiently good results. Note that
our Algorithm 1 can be combined with any approximation
algorithm that returns linear or quadratic approximations of
q;(nj).

We compare the results derived from the general-purpose
method (referred to as the optimal approach hereinafter) and
SDR-based Algorithm 1 (referred to as the SDR approach
hereinafter) with two benchmarks: the uniform benchmark
and the Gaussian benchmark, both of which heuristically
determine n;, j € M. Note that ng users with the lowest
QoS valuations u#; do not have incentives to subscribe to
service classes; we then set no/N = 0.1. Among the remaining
N — ng users, the basic idea for the uniform benchmark is
to admit an equal number of users to each service class.
Nevertheless, if (N —ng) /M > n''PP¢" for service class j,
i.e., a strict uniform allocation would lead to infeasible QoS
in class j, we assign n;.'pper users to this service class, and
equally assign the remaining users to other service classes with
richer resources (i.e., with indices larger than j). The uniform
benchmark is formally presented as Algorithm 3 in Appendix
E-B. The Gaussian benchmark determines n;, j € M\ {M}
sequentially, starting from j 1. To determine an n;, we
first draw a random number v from a Gaussian distribution
with mean (N — Zi;:) nr)/ (M — j + 1) and standard deviation

(N =3I m)/3(M—j+1). Welet n; = v if v < nirrer,

N
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Fig. 4: Provider’s total revenue under different schemes by varying N.

_ upper

and n; n otherwise. Finally, nys is calculated by
equation (10). The Gaussian benchmark is formally presented
as Algorithm 4 in Appendix E-B. By employing the Gaussian
benchmark, we aim to randomly add some non-linearity to
the solution and see if a better performance can be achieved.
After vector n is worked out for the two benchmarks, other
decision variables p, q, and v are then determined by equations
(1), (10), and (12) to ensure that they constitute a Nash
equilibrium. Other simulation settings stay unchanged from
those in Section V-A2. The simulation parameters are properly
selected to ensure the feasibility of the revenue maximization
problem.

When varying N, the total number of users, the correspond-
ing revenues generated by our proposed approaches and the
benchmarks for random selection and proportional allocation
are shown in Figure 4a and Figure 4b, respectively. It can be
seen from the figures that the optimal approach always derives
the maximum revenue. Our proposed SDR approach is also a
good approximation of the optimal approach.

2) Insights: Table III lists the prices (p;), analytical QoS
(g;), numbers of admitted users (u;), and the QoS valuation
boundary points (v;) generated by our proposed approaches
and the benchmarks for each service class j when N = 250.
(Due to the limited space, we take the statistics of N = 250 as
an example.) This table offers us insights into three interesting
observations from Figure 4.

First, we elaborate the reasons why our proposed approaches
outperform the benchmarks, as shown in Figure 4. It can be
observed from Table III that our approaches attach more im-
portance to improving the QoS offered by service classes with
richer resources (i.e., with larger indices) by restricting them
to fewer users. These users also have higher QoS valuations
u; according to Lemma 2, resulting in higher utilities (u;q;)
being achieved. They are thus willing to pay higher prices,
ultimately leading to an increase in the provider’s revenue.

The second observation from Figure 4 is that random
selection derives a slightly higher optimal revenue than pro-
portional allocation when N > 230, while the opposite is true
when N < 230. To understand this better, we additionally list
the service-class-wise results obtained by the optimal approach
for N = 200 in Table IV. Note that the price for a service
class depends on the differences in the offered QoS between it
and its neighboring service classes according to equation (12).



Intuitively, a service class charges more if it “distinguishes”
itself more from its lower-level service classes in terms of
QoS. Meanwhile, Figure 2 shows that given the same number
of users in a service class, random selection can offer a better
QoS than proportional allocation. Therefore, when the total
number of users N is not large (e.g., N = 200), proportional
allocation offers worse QoS for low-level service classes (with
small indices) than random selection. In high-level service
classes (with large indices), however, there are still few users
and thus little competition among users so that proportional
allocation can still offer good QoS. In this case, the inter-class
QoS differences for proportional allocation are higher than
those for random selection, ultimately leading to a higher total
revenue. However, with the increase of N, the QoS offered
by low-level service classes for proportional allocation will
reach their lower bounds 7. To accommodate more users (e.g.,
when N = 250), the QoS of high-level service classes must
be impaired. On the contrary, random selection can still offer
high QoS for high-level service classes. In this case, random
selection produces larger inter-service-class QoS differences
and thus a higher revenue.’

Our third observation from Figure 4 is that as N increases,
the total revenues derived by the benchmarks get closer to the
optimal revenue for proportional allocation, but get farther
away for random selection. Note that both our proposed
approaches and the benchmarks should guarantee 7, the lower
bound of the QoS offered by service classes. We define
n"PP" as the corresponding maximum number of users that
service class j can admit to guarantee 7. Figure 2 shows
that n''??¢" is lower for proportional allocation than it is for
random selection with the same service class configurations.
The maximum number of users that proportional allocation
can admit under Table II's service class configurations is
Zj”il n''PPe" = 297, In contrast, Zj”il n;.’p”er is larger than
1,000 for random selection. Therefore, when N is getting
closer to 297, especially within [220, 250], as shown in Figure
4b, the decision space (i.e., the number of feasible combi-
nations) in n for proportional allocation is shrinking, while
that for random selection is still expanding. Thus, as dis-
cussed above, the optimal revenue for proportional allocation
increases less than for random selection with the number of
users. Expanding the decision space, to the contrary, enlarges
the range, and reduces the chances that good performances
will be generated by the benchmarks. Take N = 250 for
proportional allocation, as shown in Table III, as an example.
The number of users admitted by service class 1 reaches its
upper bound n{””" = 39 for both our proposed approaches
and the benchmarks, meaning n; is always at its optimal value.

3) Impact of ny on total revenue: From the provider’s
perspective, ng/N can be interpreted as the rejection rate
of users. A smaller ny/N means more users whose QoS

9Practically, whether to implement random selection or proportional allo-
cation depends on the cloud provider’s understanding of the market as to what
the corresponding parameter N and distribution of u; will be. For example,
proportional allocation may attract fewer users than random selection due
to the lower absolute QoS offered. Interested readers may refer to research
on consumer behaviors for this. The aim of this paper is to help providers
understand the performance and set prices for burstable instances given the
system parameters.

TABLE III: Service-class-wise results for the N = 250 case
in Figure 4. The result that generates the median revenue over
25 runs for the Gaussian scheme is reported.

l J [ 1 (2 [3 14 [5 |
[ Random Selection |
pPj 0.0142 | 0.3409 | 0.4488 | 0.4768 | 0.4799
q; 0.1419 | 0.7514 | 0.9512 | 0.9935 | 0.9972
Optimal | n; 109 1 31 38 46
Vi 0.5360 | 0.5400 | 0.6640 | 0.8160 | 1.0000
DPj 0.0184 | 0.2657 | 0.2855 | 0.4136 | 0.4166
q;i 0.1841 | 0.7514 | 0.7956 | 0.9919 | 0.9957
SDR n; 84 3 51 39 48
Vi 0.4360 | 0.4480 | 0.6520 | 0.8080 | 1.0000
Dj 0.0336 | 0.1071 | 0.1344 | 0.3871 | 0.3917
q; 0.3362 | 0.5950 | 0.6515 | 0.9948 | 1.0000
Gaussian | n; 46 50 63 37 29
Vi 0.2840 | 0.4840 | 0.7360 | 0.8840 | 1.0000
pj 0.0344 | 0.1218 | 0.2198 | 0.2878 | 0.3063
q; 0.3437 | 0.6558 | 0.8690 | 0.9752 | 0.9978
Uniform | n; 45 45 45 45 45
Vi 0.2800 | 0.4600 | 0.6400 | 0.8200 | 1.0000
[ Proportional Allocation ]
Dj 0.0113 | 0.0187 | 0.2748 | 0.4214 | 0.4483
q; 0.1129 | 0.1418 | 0.7085 | 0.9433 | 0.9771
Optimal | n; 39 49 43 43 51
Vi 0.2560 | 0.4520 | 0.6240 | 0.7960 | 1.0000
pj 0.0113 | 0.0293 | 0.2071 | 0.4098 | 0.4847
q; 0.1129 | 0.1835 | 0.5803 | 0.9010 | 0.9928
SDR n; 39 48 46 46 46
Vi 0.2560 | 0.4480 | 0.6320 | 0.8160 | 1.0000
pj 0.0113 | 0.0989 | 0.2710 | 0.2963 | 0.2965
q; 0.1129 | 0.4552 | 0.8574 | 0.9010 | 0.9012
Gaussian| n; 39 43 38 46 59
Vi 0.2720 | 0.4480 | 0.6320 | 0.8280 | 1.0000
pj 0.0113 | 0.0551 | 0.1855 | 0.3742 | 0.4619
q; 0.1129 | 0.2840 | 0.5803 | 0.8827 | 0.9908
Uniform | n; 39 46 46 47 47
Vi 0.2560 | 0.4400 | 0.6240 | 0.8120 | 1.0000

TABLE 1IV: Service-class-wise results for the N = 200 case
in Figure 4 by the optimal approach.

l J [ 1 [2 [3 [ 4 [ 5 |
pj|l 0.0176 | 0.3284 | 0.4406 | 0.4656 | 0.4667
Random q; || 0.1758 | 0.7514 | 0.9572 [ 0.9975 | 0.9989
Selection n;| 88 1 15 34 42
vj || 0.5400 | 0.5450 | 0.6200 | 0.7900 | 1.0000
pj|l 0.0113 | 0.0198 | 0.4599 | 0.4862 | 0.4871
Proportional | g; [ 0.1129 | 0.1418 | 0.9568 | 0.9975 | 0.9987
Allocation nj|l 39 49 21 31 40
v; | 0.2950 [ 0.5400 | 0.6450 | 0.8000 | 1.0000

valuations satisfy u; € [ng/N,y] will be admitted by service
classes at equilibrium. To understand how ng influences the
revenue, we vary ng with N fixed as 150 and 250, and report
the corresponding optimal revenues in Figure 5 for random
selection. Due to the limited space, results for proportional
allocation are not presented as they are similar to those for
random selection. In Figure 5, when ng/N starts to increase
from O, the overall u; values of the admitted users also
increase. As fewer users are admitted, the offered QoS g¢;
increases for service classes. According to equation (8), higher
u;q; values leave more room for providers to set higher prices
pj, so the corresponding revenue rises. On the other hand,
when ng/N is too high, the number of admitted users becomes
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Fig. 5: Optimal total revenues under
different ny/N for random selection.

extremely low. Setting higher prices can no longer compensate
for the smaller number of users admitted, ultimately leading
to a decrease in the total revenue.

C. Pricing a Public Cloud: A Use Case Scenario

In this sub-section, we apply our framework to pricing a
public cloud for burstable instance services. The Microsoft
Azure traces are used as the VM workloads. Through trace
analysis, we find that although VMs are dynamically created
and terminated over time, the number of simultaneously run-
ning VMs is periodic on a daily basis. Therefore, we regard
the workload records from day 1 and day 2 as historical data,
which we use to calculate the prices. We then run simulations
to evaluate our derived prices using the workload records in a
five-day period from day 3 to day 7.

To accommodate the large number of concurrently running
VMs in the traces, we duplicate each service class j in
Table II 675 times, and refer to such a duplicated service
class as a type-j service class. In this case, we have 3,375
service classes from five types in total. Other parameters stay
the same as those in Section V-B. We set N = 135,000,
corresponding to the peak number of VMs in the system over
time. We then partition the service classes into 675 groups,
with five different types of service classes and 200 (= N/675)
users in each group. A group can be implemented using 17
(= a8 - NJ675 + 31| ¢;, where 8" = 0.01) vCPUs.
Since a group represents a separate set of VMs, a VM’s
received QoS depends only on the behaviors of other VMs
within the same group. We can thus calculate the prices for
our proposed approaches and the benchmarks within a group
at equilibrium, the same as in Section V-B. Since groups are
homogeneous, all type-j service classes essentially have the
same pj, g, nj, and v;. The simulation parameters are selected
to ensure that we eventually get non-trivial results, which are
not extreme cases and can gain us insights.

The cloud assigns VMs to service classes upon their cre-
ations and removes them upon their terminations. When a new
VM i needs to be created, we first check its u; to decide
which service class type it should go to. The VM is then
assigned to the service class that has the minimum number
of active VMs within this type, i.e., VMs that are currently
running. As the QoS and prices are designed with regard to

(a) With random selection.

(b) With proportional allocation.

Fig. 6: Hourly revenue over five days for the case study in Section V-C.

the peak demand, the actual number of VMs in a service
class is smaller than the designed number most of the time.
In this case, VMs can receive higher actual QoS than that
guaranteed by our pricing approach during off-peak periods.
When an existing VM terminates, we simply remove it from
its service class. We regard our derived prices as the payment
of an active VM for a time slot’s (i.e., five minutes’) duration.
For example, a VM subscribing to service class j for an hour
should pay 20p; in total. We plot the hourly-based revenues
in the time horizon under both our proposed approaches and
the benchmarks in Figure 6. Our optimal approach is shown
to yield the best revenues for both random selection and
proportional allocation. Our SDR approach also generates the
second-best revenues as a good approximation.

VI. RELATED WORK

Existing works on burstable instances fall into two classes.
On the infrastructure level, the first class of works studies
how the CPU credit mechanism works. Through extensive
measurements, Leitner et al. [27] verify that the CPU credit
mechanism works as advertised by cloud providers (e.g., Table
I). Wang er al. [13] further point out that this mechanism
essentially follows a token bucket model [15], [16], [17]. This
finding has motivated us to model burstable instances and
analytically study the performance. To bridge the gap between
the performance of burstable instances and their commercial
operation, we continue to study how a cloud provider should
price burstable instances for the maximum revenue. To the best
of our knowledge, we are the first to study optimal pricing for
burstable instances.

The second class of existing works focuses on use cases of
burstable instances. Wang ef al. [10] present the deployment
of backup services on burstable instances, while Baarzi et
al. [28] present another deployment of web servers and in-
memory cache. Also, both Yan et al. [29] and Ali et al
[30], [31] discuss how to shape the CPU resource utilization
of applications to make full use of the initial CPU credits
assigned to burstable instances. This class of works on the ap-
plication level is different from ours. From a cloud provider’s
perspective on the infrastructure level, we have no control over
the behaviors of applications, but just take and process their
resource requests.



Burstable instances and the correspondingly introduced re-
source provisioning mechanism have been attracting more and
more attention from the research community. While burstable
instances were initially designed for computation resources,
Park et al. [32] extend them to storage services. In their pro-
posed system, I/O credits, which follow the same philosophy
as CPU credits of burstable instances, take the role to regulate
users’ received storage resources.

Similar techniques to those employed in our work, such as
token bucket models and optimal pricing, have been used to
address different problems in the literature. For example, token
bucket models have been extensively adopted to regulate data
traffic [15], [16], [17]. Other works have priced service classes
with differentiated QoS levels in data networks [23], [33].
However, due to different system dynamics and characteris-
tics, these results cannot be directly applied to our burstable
instance scenario. Similarly, the distinct features of burstable
instances compared to traditional static cloud instances prevent
existing models on cloud pricing (e.g., [34] and [35]) from
being applied to our scenario.

Some early works have proposed alternative resource pro-
visioning ideas to tackle bursty workloads in clouds. Wang et
al. [36] propose to aggregate the bursty workloads in a cloud
broker for cost savings to users. The broker reserves cheap
long-term resources from the cloud provider and profits from
the aggregation. A similar notion has been studied in [37], but
the brokerage strategy follows a different business model and
system characteristics to ours. The model we study stems from
current practices in the industry. Another stream of works has
investigated, from the applications’ perspective, how resource
requests should be made via proactive prediction [38], [39]
or online algorithmic decision processes [40], [41], while our
work focuses on how resource requests already made by users
can be accommodated by a cloud provider.

VII. CONCLUSION

This paper presents a framework to analytically model the
performance of burstable instances given service class config-
urations (Section II), characterize users’ selections of service
classes at the Nash equilibrium (Section III), and maximize
the provider’s total revenue by finding the optimal prices at
equilibrium (Section IV). We validate our framework via trace-
driven simulations. The results show that our performance
model can estimate the QoS received by burstable instances
with an average error ratio lower than 3%, and our revenue
maximization scheme can increase the provider’s revenue
compared to heuristic methods (Section V).

As the first to study burstable instances from a theoretical
perspective, we regard this work as an initial framework that
captures the fundamental features of burstable instances. To
extend the work, more diverse settings can be integrated into
our framework. For example, we can consider a hybrid cloud
that offers both static and burstable instances. By allocating
different proportions of the resources to the two types of
instances, users’ selection behaviors and the cloud provider’s
optimal revenue could be further studied. Another direction
is to continue to study the theoretical bound of our proposed
SDR-based algorithm for revenue maximization.
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APPENDIX A
EXAMPLES ON TRANSLATING OUR
INFRASTRUCTURE-LEVEL QOS TO THE PERFORMANCE OF
USER-DEPLOYED APPLICATIONS

Similar to other studies on IaaS clouds, our QoS metric
quantifies the infrastructure-level resource availability. With
the control of low-level resources, such as the CPU, IaaS
cloud users deploy their applications onto the infrastructure
(i.e., the VMs) provided by the IaaS clouds. Since an IaaS
cloud provider has neither the knowledge of what applications
the users are running on their VMs, nor the control of these
applications, the QoS metric for an IaaS cloud does not
directly capture the performance of user-deployed applications
(e.g., the completion time of a Hadoop job [42]). Having the
full knowledge of his/her deployed applications, the user may
translate the infrastructure-level QoS to the application-level
performance to get a better understanding of the quality of
an laaS cloud service. Although such a translation is out
of the scope of our work, which focuses on the resource
provisioning of an IaaS cloud, we still shed some light on how
this translation may be done for the two sample applications
mentioned in Section I, namely, hot standbys and periodically
updating machine learning models.

Hot standbys and updating machine learning models belong
to a class of applications that tolerate partial execution [43].
In other words, although these applications may receive only a
part of their requested resources from the underlying burstable
instances, they can run with these partial resources and achieve
a certain performance.

The function of a hot standby is to execute as many work-
loads as possible for the main service when the main service
is down, in order to reduce the amount of pending workloads
when the main service recovers. From our infrastructure-level
QoS, the user, by making resource requests, can have an idea
of how many of them will be accepted. Although the user may
only receive a part of his/her requested resources, his/her hot
standby can still use these resources to process some of the
workloads submitted to the main service, and the application-
level performance improves when more workloads can be
processed by the hot standby to mitigate the workload of the
main service when it is recovered.

In the example of training a machine learning model, its
performance can be quantified by the accuracy of the trained
model. In many cases, the training process is iterative and
the more iterations that the training process undergoes, the
higher the accuracy of the trained model will be. Therefore,
the actual amount of resources that the user receives in the
infrastructure level can translate to the number of iterations
that the machine learning model will be trained with, and
finally be translated to the accuracy of the trained model. For
example, if a user receives 90% of his/her requested resources,
(s)he can complete 90% of the desired iterations and get within
less than 10% of the targeted training error.'”

We should acknowledge that in real-world systems, users’
applications may not tolerate partial execution (e.g., with the

10The marginal improvement in the model accuracy usually decreases with
the number of iterations increases [44], [45].

job completion time as the performance indicator). Therefore,
the QoS translation from the infrastructure level to the applica-
tion level may be more complicated than what we have stated
above.

APPENDIX B
PROOF OF PROPOSITION 1 IN SECTION II

Proof. The proposition defines the transition probability from
state d in the current time slot to state 4 in the next time slot
under the following three different scenarios, with the visual-
izations of their state transition probabilities P;_,; shown in
Figure 7.

(1) When r; < d < 8;4x — 1, we first examine the case
where the user has resource requests in the current time slot.
Depending on 6, the number of requests, there are two possible
sub-scenarios for the state transition:

« When 8 < d, the number of currently available tokens,
d, is sufficient to satisfy all the requests. Therefore, 6
tokens will be consumed in the current time slot, and
r; more tokens will be accumulated in the beginning of
the next time slot, so the Markov chain will transit to
state i = d — 6 +r;. We re-write the above equation with
regard to 6 as 6 = d +r; — h. Therefore, with probability
6-P(6 = d+r; —h), the Markov chain transits from state
d to state h, with the range of hasr; < h <d+r; —1.

« When 6 > d, d out of 6 requests will be fulfilled by the
currently available tokens, with the rest of the requests
being discarded. After accumulating r; new tokens in the
beginning of the next time slot, the Markov chain will
transit to state z = r;. The probability for such a transition
is 6 R0max P(O = k).

If the user does not have resource requests in the current
time slot with probability 1 — ¢, the Markov chain will transit
from state d to state i1 = d+r; in the next time slot, because no
tokens are consumed in the current time slot, and r; tokens are
accumulated in the beginning of the next time slot. Meanwhile,
the Markov chain cannot transit to states 4 > d+r; +1. To sum
up, the state transition probabilities when 7; < d < 645 — 1
are written as

§-2meP(@=k) h=r,

6~P(0d:d+rj—h) ri+1<h
Pyp = <d+r; -1,

1-6 h=d+r;,

0 otherwise.

(ii)) When 6,,,x < d < bj —r;, we always have sufficient
tokens to satisfy requests if there are such requests sent by the
user with probability ¢. In this case, The Markov chain will
transit from state d to state h = d — 0 + r; with probability
0-P(6 = d+r;—h). If there are no requests sent by the user in
the current time slot with probability 1 — J, the Markov chain
will transit from state d to state h = d +r;. The Markov chain
cannot transit to states A < d+r; —0qx or h > d+r;—1.In
summary, the state transition probabilities when ,,,x < d <
b; —rj are written as



§-P(0=d+rj—h) d+rj—Opnax <h

<d-+ rj — 1,
Pasp =
1-6 h=d+ rj,
0 otherwise.

(iii)) When b; —r; + 1 < d < bj, we examine the case
where the user has resource requests. Two sub-scenarios are
considered:

o When 6 > d+r;—bj, 0 tokens are consumed in the current
time slot, after which, r; tokens are newly accumulated
in the next time slot. Therefore, the Markov chain will
transit from state d to state & = d —6+r; with probability
6-PO=d+rj—h).

o When 6 < d + rj — b;, after consuming 6 tokens,
the number of remaining tokens in the token bucket is
larger than b; — r;. Note that we can only accumulate
up to b; tokens in the token bucket. Therefore, the
corresponding transition probability from state d to state
bjis 6- %07 PO = k).

If the user does not have resource requests in the current
time slot with probability 1 — §, the Markov chain will also
transit to state b;, observing the token bucket size. Meanwhile,
the Markov chain cannot transit to states # < d +7j —6pqx. In
summary, the state transition probabilities when b; —r; +1 <
d < bj are written as

5-P(0=d+r;—h) d+7j = Omax

<h< b]' -1,
d+rj-b;
Py, = 70
e Y P@=b+a-6 h=b;
k=1
0 otherwise.
m]
APPENDIX C

PROOFS IN SECTION III
A. Proof of Lemma 1
Proof. For any user i, we have w; j — w;ix = u; (qj - qk) -

(pj - pk) > 0, so all users will prefer service class j to service
class k at equilibrium, with nx = 0. O

B. Proof of Corollary 1

Proof. The proof is similar to that of Lemma 1. For any user i,
we have w; j—w; = u; (qj - qk)—(pj —pk) > 0, so all users
will prefer service class j to service class k at equilibrium,
with ng = 0. O

C. Proof of Lemma 2

Proof. We prove the lemma by contradiction. Suppose 7(k) <
n(i), which means wy ;x) = Wi, 5() according to the equilib-
rium definition in equation (9). Note that (k) < (i) leads to
Gyk)y < gy according to our non-decreasing sorting in the
indices of the service classes. However, if g,k) = g;(;), since

8L 5 P(0=K)

6P(O=ri+1

®) Oppax <d < bj —rj
85 {4 P(O=K) +{1- 6)

S5P(O=ri-1)

-

©bj—rj+1<d<bj

Fig. 7: Visualization of state transition probability Py_,;, from
a certain state d. (a), (b), and (c) correspond to the three
scenarios in Proposition 1.

ur > ui, n(k) > n(i) must hold. As a result, when n(k) < n(i),
we should have strictly g,k) < gp(i). Therefore,

Wk(i) = Whapk) = Uk Gy = Ppa)) — Uk gy — Py))
> (Uiqyi) — Pp)) — Wignk) — Pydc))
= Win@) = Wink)
> 0.

The above inference shows that wy ;i) > Wi k), which
contradicts our initial assumption that wi ;) = Wk ). O

D. Proof of Corollary 2

Proof. We prove the corollary by contradiction. Suppose
p1 = 0, and meanwhile, user i does not have an incentive
to subscribe to any of the service classes. In this case,
wij < 0, Vj € M according to equation (9). However,

wi 1 = u;q1—p1 = u;q1 = 0, which contradicts our assumption
that user i does not have an incentive to subscribe to any
service class. O

E. Proof of Proposition 2

Proof. Necessity: From Lemma 2, a necessary condition for a
Nash equilibrium, we learn the monotonicity in users’ service
class selections. Users with higher QoS valuations u; will
subscribe to service classes with higher QoS levels (i.e., higher
indices) at equilibrium. Specifically, for each service class
J € M\ {M}, v; is a turning point for user i’s service
class selection. If u; > v;, the user will subscribe to service



class j + 1, which means vjg;+1 — pj+1 = vjq; — p;. 1If
u; < vj, the user will subscribe to service class j, which means
limuﬁv; (uiqj —pj) > lim,,, - (uiqj+1 —pj+1). Therefore,
at the turning point v;, we should have

Viqj = Pj = Viqj+1 = pj+1, Vi € M\ {M}. (19)
The same notion holds for boundary point vy, so that
vogi — p1 = 0. (20)

We can thus recursively write equations (19) and (20) with
regard to p; from j =1to j = M — 1 as equation (12). As a
result, equation (12) holds at the Nash equilibrium.

Sufficiency: Consider a user i with his/her QoS valuation
as u;. If u; < vp, according to the definitions of n; and v; in
equation (12), this user will have no incentive to subscribe to
any service class because all the service classes will deliver
negative rewards to this user. As shown in equation (9), this is
by definition the Nash equilibrium and the sufficiency is thus
proved for this particular case.

We continue to focus on cases where u; > vy. According
to the definitions of n; and v; in equation (12), suppose this
user should subscribe to a particular service class j, where
u; € [vj_,v;lif j = M and u; € [vj_1,v;) otherwise. We
prove the sufficiency by contradiction. Suppose p;, g;, v;, and
nj, j € M, satisfy equation (12) but do not constitute a Nash
equilibrium. In other words, user i will subscribe to service
class j’, where j’ # j, at the Nash equilibrium. According to
the definition of a Nash equilibrium, as shown in equation (9),
we should have

wij = wi o = (uigj = p;) = (wqy = py) <0. 2h

In what follows, we respectively delve into the two cases
where j < j’ and j > j’.

(i) When j < j° < M, we have u; < v;. We can then
get equations (22a) to (22k) shown on the next page, where
equation (22c) is obtained by substituting equation (12) into
equation (22b) and equations (22d), (22f), (22h), and (22k)
are obtained by u; < v; < v, Vk > j and g < qjr, Yk < j'.
From equations (22a) to (22k), we know that w; ; —w; j» > 0,
which contradicts our prior assumption in equation (21) that
Wi — Wi < 0.

(ii) When 1 < j’ < j, we have v;_; < u;. We can then
get equations (23a) to (23k) shown on the next page, where
equation (23c) is obtained by substituting equation (12) into
equation (23b) and equations (23d), (23f), (23h), and (23k)
are obtained by u; > v; > v, Vk < j and g > g1, Yk > j'.
From equations (23a) to (23k), we know that w; ; —w; j» > 0,
which contradicts our prior assumption in equation (21) that
Wi j — Wi < 0.

O

APPENDIX D
DETAILS OF STEPS 3 AND 4 IN ALGORITHM 1

A. Constructing a Semidefinite Relaxed Problem in Step 3
Let vector s = [p? q” n” v'']” be the concatenated vector
of the decision variables in the optimization problem. We can

write the optimization problem after the completion of Step 2
in Algorithm 1 in the following form:
(inhomogeneous QCQP)

maximize s/ G!¥s
S

subject to sTGj.l)s + Zsng.l) = ﬁj(.l), VjieM,

sTG;.w)s + ZSTg;.IO) = ﬁ}m), VjieM,
sTG;.ms + 2sTg;.12) =0, Vj e M,

sTG§l4)S + 2sTg;~14) <0, Vje M\ (M},
sTGMs + 2" g1 > 1,

sTG;ms + ZSTg;.”) >0, VjeM,

where G

;k) is the coefficient matrix of the quadratic term in

constraint (k) with index j, while g}k) is the coefficient vector

of the linear term and ﬁ(.k) is the constant term. Particularly, we
have no j index in the objective function and constraint (15),
so GU3 and GU directly represent the coefficient matrices
of the quadratic terms in the objective function (13) and
constraint (15), respectively. We refer to constraints (1) and
(10) in the above inhomogeneous QCQP formulation as their
convex forms after the approximations in Step 2 of Algorithm
1. To apply SDR to the inhomogeneous QCQP formulation,
we first need to transform it to a homogeneous QCQP.!! To
this end, we first introduce an additional decision variable
t that satisfies r2 = 1. Let vector z = [s! ¢]7 be the new
decision variable vector. To merge the linear term 2sng? into

the quadratic term STG;k)s, we introduce a new coefficient

matrix H®) for each constraint in the inhomogeneous QCQP
formulation so that

(k) (k)
o - (G 8
j “r o |
i

We can therefore re-write the optimization problem with z as
the decision variable vector:
(homogeneous QCQP)

maximize z! H!¥z
z

subject to zTH}Ds = ,8;”, VjieM,

HIO, = B10 ) e M
Z'HPz=0, VjeM,

Z'HY2 <0, Vje M\ (M),

ZH 9z > 1,

Z'H V220, Vje M

2THDz =1,

where H®) is a matrix with only one non-zero entry valued
1 at the bottom right. The constraint associated with H®
guarantees that > = 1. Denote Z = [§7 7]7 as the optimal

solution to the homogeneous QCQP formulation. If 7 = 1,
S is also an optimal solution to the inhomogeneous QCQP

“According to the definition in [24], a homogeneous QCQP is a QCQP
with solely quadratic terms in both its objective function and constraints.



Wi j = Wij = <uiqj —Pj) - (“i‘Ij' —Pj') (22a)
= (wiq; —wiqy) + (pj — py) (22b)
7
=u; (6]]' - t]j') + (Vj (61j+1 - (Ij) + Z vi-1 (qx = Qk—l)) (22¢)
k=j+2
J’
ZVj (511' - qf’) + (Vj (‘Ij+1 - Qj) + Z vi-1 (qk — %—1)) (22d)
k=j+2
7
=V (4.i+1 - q.i') + (Vf+1 (flm - qf+1) + Z vie-1 (qk — Qk-l)) (22¢)
k=j+3
J'
2 Vil (61j+1 - 6]]'/) + (Vj+1 (Qj+2 - q]‘+1) + Z vie-1 (gk — Qk—l)) (22f)
k=j+3
7
=V (QJ+2 - f]j') + (Vj+2 (61j+3 - 61j+2) + Z vi-1 (gk — le)) (22g)
k=j+4
> :
> vy (g2 = qpr) + (viea (a1 = ap—2) + vy (a7 = g51)) (22h)
=Vjr_ (C]j’—l - 6]j') +Vvj-1 (6]]" - 6]j'—1) (221)
2 vy (qpo1 = qp) + v (a7 — g51) (22))
= (22k)
Wi — Wiy = (“i%’ - I’j) - (Mi%" - Pj’) (23a)
= (wiqj —wiqy) + (py - p)) (23b)
j-1
=u; (Clj - C]j/) + (Vj—l (Qj—l - q]') + Z Vie-1 (qr-1 = CIk)) (23¢)
k=j"+1
j-1
> v (q/' - ij') + (le (‘]j—l - ‘]j) + Z Vi-1 (qr-1 — Clk)) (23d)
k=1
j +j_2
=V (CIj—l - qj/) +|vj-2 (qj_z - qj_1) + Z V-1 (C]k—l - C]k) (23¢)
k=j7+1
o
> v (qj_1 - qu> +[ v (qj_z - qj_1) + Z V-1 (qr-1 = qk) (23D
k=)’
o
=via(gi2—aqr) +|via (g3 - gj2) + Vi1 (qk-1 = k) (23g)
k=j7+1
>
> Vjrsl (Clj’+2 - 61j') + (ij+1 (C]j’+1 - 6]j'+2) +vy (Clj' - 61j'+1)) (23h)
= Vit (qu+1 - 61j') + vy (‘]j’ - Qj’+1) (231)
2 vy (61j'+1 - 6]/*) +vj (Clj' - ‘]j’+1) (23)

=0.

(23k)



formulation. Otherwise, if 7 = —1, —§ is an optimal solution
to the inhomogeneous QCQP formulation.
Let Z = zz'. Observe that

where Tr(-) denotes the trace of a matrix. The above rela-
tionship allows us to equivalently transform the homogeneous
QCQP formulation to a rank-constrained semidefinite program
(SDP) as follows:

(rank-constrained SDP)

maximize Tr (H(13)Z)
7

subject to Tr

Rank(Z) = 1.

Note that the last constraint regulates the rank of the Z
matrix to be 1, so that we are able to recover the original
optimal z* vector from the optimal Z* matrix. Observe that
the only non-convex constraint in the rank-constrained SDP
formulation is the rank constraint. Therefore, the core idea
of SDR is to relax the rank constraint so that the remaining
convex optimization problem can be solved efficiently. In
other words, after removing the rank constraint, we have
successfully constructed the semidefinite relaxed formulation
to be solved in Step 3 of Algorithm 1.

The major drawback of removing the rank constraint is that
the rank of the obtained optimal solution Z* is no longer
guaranteed to be 1. Therefore, we may not be able to directly
recover a feasible z vector using the equation Z = zz” . We will
demonstrate in Appendix D-B the detailed recovery approach
for a feasible solution to the original revenue maximization
problem in Section V.

B. Recovering Feasible Solutions to the Original Problem in
Step 4

In this sub-section, we elaborate step 4 in Algorithm 1
on how to recover a feasible solution to the original rev-
enue maximization problem from the optimal solution to the
semidefinite relaxed problem. Our proposed recovery approach
is summarized as Algorithm 2.

The core idea of the recovery algorithm is the eigenvalue ap-
proximation approach [24]. In the beginning of the algorithm,
we construct an initial solution from the largest eigenvalue
and its corresponding eigenvector of matrix Z in step 1.
Afterwards, we construct feasible n, q, v, and p sequentially.

Specifically, in steps 2 to 8, we first construct a feasible n
vector by proportionally rounding the f vector with regard to
N so that constraint (10) can be satisfied. Since we use ceiling
functions during the proportional rounding process in step 4,
if vector f after proportional rounding is still not feasible,
the only possibility is that the summation of all its entries
exceeds N —ng. (Note that the decision variable vector n does
not include ng, which is a provider-specified input argument
to the optimization algorithm. Thus, if we recursively write
constraint (10), the relationship that Z?’i ;=N —ng can be
derived.) We thus deduct the values of some entries in n to
construct a feasible fi vector in step 7. In steps 9 to 13, we
check whether the derived n;, j € M\ {M} can satisfy the
minimum QoS requirement 7 by comparing n; with n?" per,
If nj > n"P°", we need to equally assign the difference
PPET — n; to the service classes k : j < k < M that have
richer resources, and then truncate n; down to n’/"”“". With
such operations, we can guarantee that n;, j € \ {M} are
feasible. Note that ny, < nj;”¢" is also guaranteed as the
parameters that we select for simulations ensures that feasible
solutions exist for the revenue maximization problem. Now we
have obtained a feasible n vector. We further construct q, v,
and p sequentially according to their dependency constraints
in step 14.

n

Algorithm 2 Feasible Solution Recovery in Step 4 of Algo-
rithm 1.

Input: Optimal solution Z to the semidefinite relaxed for-
mulation in Step 3 of Algorithm 1 and all the inputs to
Algorithm 1.

Output: Feasible solution p, q, n, and v to the original
revenue maximization problem in Section IV.

1: Construct vector Z = VAj, where A is the largest eigen-
value of Z, while f is its corresponding eigenvector.

2: Extract the fi vector from the Z vector, and ceil the fi
vector: i = [fi].

3: if the summation of all the entries in vector i does not
equal N — nop, i.e., sum(fi)) # N — ng, then

4: Proportionally scale vector fi as i; = [(N —nop) -
fi;/sum (n)] for all the entries in vector M, where #;
denotes the ith entry in vector fi.

5: end if

6: if sum(n) # N — ng then

Deduct the last sum (i) — (N — ng) entries in fi whose

values are larger than 1 by 1.

8: end if

9: for j=1,2,...M -1 do

10: if nj > n;"P" then

11: Amortize the difference (n‘.‘ pper _p j) equally to
ng, j < k < M. Then let n; = n?p er

12: end if

13: end for

14: Let n = fi. Construct q from n according to equation (1).
Construct v from n according to equation (10). Construct
p from q and v according to equation (12).

15: return vectors p, ¢, n, and v.




APPENDIX E
SUPPLEMENTAL CONTENT TO SECTION V

A. Supplemental Figure to Section V
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Fig. 8: The empirical cumulative distribution of 6 derived from
the traces.

The cumulative distribution of # that we derive from the
Microsoft Azure traces [5] is shown in Figure 8. It can be
observed that 6 has a long-tail distribution. Most of the time,
the amount of resources that a user requests is small, but
occasionally, (s)he may request a large amount of resources
(i.e., having a bursty workload). Meanwhile, we confirm from
the traces that P(6 = x) for random variable 6 is positive at all
integral points x € [1,99]NZ*, meaning our prior assumption
in Section II-B that P(§ = x) > 0, x € [1,8max] N Z" holds.

B. Formal Presentation of the Uniform and Gaussian Bench-
marks in Section V

In this sub-section, we formally present the uniform bench-
mark in Section V as Algorithm 3, and the Gaussian bench-
mark as Algorithm 4.

Algorithm 3 The Uniform Benchmark in Section V.

Input: The same as the input to Algorithm 1.
Output: Feasible solution n.
I: for j=1,2,...,M -1 do

. N—Zi;]o n upper
2: if LM——]-HJ Sl }’l] then
N-Y17_ 0 nk
3 nj = L=
4 else
. . _ upper
5: nj = nj .
6 end if
7: end for

M-1
8 npy = N_Zk:O ng.
9: return vector n = [ny, 1y, ..., npr )7 .

Algorithm 4 The Gaussian Benchmark in Section V.

Input: The same as the input to Algorithm 1.
Qutput: Feasible solution n.
1: for j=1,2,...M -1 do
2: Draw a random numpqr vy from a Gaussian distri-
. . N—Z'k_:onk
butlon' lw1th mean LM——j+1
LN_Z:::D "kJ
3(M—j+1) "
if v < n;pper then
nj =Y.
else
nj = ntPpPer.
J
end if
end for
ny =N — ZkM=61 ng.
10: return vector n = [ny, ny, ..., npr]” .

| and standard deviation
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