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1. Introduction
Optimization problems that are solved to decide when actions occur are often modeled using a

time-expanded network. This involves discretizing the time horizon and mapping any parameters

involving time to this discretization. Depending on the discretization scheme, the resulting model

can yield a continuous-time optimal or an approximate solution. Typically in practice, fine dis-

cretization schemes give good approximations at the expense of large, perhaps intractable, models,

whereas coarse discretization schemes are more computationally tractable, but generally yield poor

approximations. It is often difficult to choose a discretization scheme that balances computational

tractability with solution quality (Boland et al. 2018).

Service network design is a fundamental activity in the freight transportation industry and

focuses on tactical decisions that enhance profitability by increasing the utilization of transporta-

tion assets (Magnanti and Wong 1984, Crainic 2000, Wieberneit 2008). The variant we consider

is of particular interest to less-than-truckload (LTL) freight carriers, who rely on consolidation

to maintain their profitability, but who must meet service standards to remain competitive. Such

carriers typically operate a set of terminals, distributed across a region, which serve as points of

origin or destination for the goods they transport, and/or as breakbulks, forming intermediate

locations at which goods are transferred from one vehicle to another for the next leg of their jour-

ney. Breakbulk is a term generally used in freight operations; a breakbulk has a role similar to that

of a sorting center in mail and package operations.

In LTL planning, it is critical to decide not only the number of vehicles to dispatch between each

pair of terminals, but also the departure times of those vehicles. These times must be such that all

goods to be consolidated on a vehicle are available at the vehicle’s departure time. Furthermore,

goods must be transported on a sequence of vehicle movements that reaches their destination

within the due time dictated by their service standard. Thus, timing is central to service network

design.
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This context has motivated study of the Continuous-Time Service Network Design Problem
(CTSNDP), in which terminals are modeled as nodes in a network. Arcs in the network represent
pairs of terminals between which vehicles may operate. Vehicles may load goods at an arc’s start
terminal and unload them at its end terminal, after traveling from the arc’s start to its end terminal.
The time it takes a vehicle to travel from the start terminal of an arc to the end terminal of
the arc assumed known and fixed. Goods with a common origin and destination terminal and a
common available and due time are modeled as a commodity. For a given network with given arc
transit times and a set of commodities, the Continuous-Time Service Network Design Problem
(CTSNDP) seeks to determine a (single) route for each commodity so as to minimize the total cost
of transportation. A route for a commodity is a path through time and space, starting at its origin
after the time at which it becomes available and ending at its destination before the time it is due,
with an associated dispatch time at each intermediate location along the path, indicating the time
at which the commodity departs the location. Whenever multiple commodities are dispatched on
the same arc at the same time, they may be consolidated, thus reducing the cost of transportation.
CTSNDP is naturally modeled, and typically approximated, using a time-expanded network.

This paper introduces an Interval-based Dynamic Discretization Discovery algorithm (DDDI)
that iteratively refines a time-expanded network in order to solve CTSNDP to optimality, or to
within a specified tolerance. Importantly, the time-expanded networks generated in the course of the
algorithm are not based on a regular discretization of time, nor is the discretization of time uniform
across nodes; the network is generated dynamically, refined only at nodes and during periods of
time at which refinement is deemed necessary for the algorithm to make progress. While CTSNDP
has been solved using a similar approach (Boland et al. 2017), in the sense that both approaches
iteratively and dynamically refine a time-expanded network and solve an integer program defined
over that network at each iteration, the approach presented here is fundamentally different, with
different motivations. Iteratively refining a time-expanded network means making its underlying
time discretization finer, which results in a larger network; the new network has more nodes and
arcs. This has been found to quite rapidly increase the difficulty of solving the integer program
defined over that network. However, for the integer program to provide good quality solutions to
the continuous time problem, the time-expanded network must be sufficiently fine. This presents
a major challenge in the design of dynamic discretization discovery algorithms: the design of the
refinement strategy. An aggressive refinement strategy ensures a sufficiently fine discretization
is reached within a small number of iterations, meaning few integer programs must be solved.
However, an aggressive refinement strategy also means that the size of the time-expanded network
increases rapidly, making those same integer programs much harder to solve.

The driving motivation of our interval-based approach is to keep the time-expanded network
as small as possible while also converging to an optimal solution quickly, needing few refinement
iterations. The result is an algorithm that can solve larger instances, with faster solution times.
For example, the set of five instances derived from data from a large LTL carrier in the US, which
represented the frontier of what the method of Boland et al. (2017) could handle (for four out of
the five instances their method reached the run time limit of two hours), can be solved by DDDI
in an average time of under five minutes.

The remainder of the paper is organized as follows. We first give a brief overview of relevant
literature. Section 2 gives a formal description of the CTSNDP, and Section 3 introduces the
definition and construction of a time-expanded network. In Section 4, we investigate the structure of
solutions, which is exploited, as described in Section 5, to refine the discretization and to guarantee
convergence. Section 6 presents several variants of the DDDI algorithm. The results of an extensive
computational study are shown in Section 7. In Section 8, we compare DDDI to the method of
(Boland et al. 2017), both analytically and computationally. And, finally, in Section 9, we finish
with conclusions and a discussion of possible future work.
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1.1. Relevant Literature

The idea of iteratively refining a discretization is not new. For instance Wang and Regan (2002,

2009) give a discretization scheme and a MIP model defined over a time-expanded network for

the traveling salesman problem with time windows (TSPTW) and show that solutions to this

MIP are guaranteed to converge to a continuous-time optimal solution, as the partition size in

the discretization tends toward zero. However, unlike DDDI, their refinement strategy is based

on a predetermined series of uniform widths to use as the partition size, rather than a dynamic

non-uniform scheme. As a consequence, they were unable to perform more than a small number

of refinement iterations before the MIPs became unmanageably difficult to solve, and so could not

solve larger instances to optimality.

Also in the context of the TSPTW, Dash et al. (2012) iteratively solve linear programming prob-

lems to determine a partition of the time-windows (into what they call buckets), as a preprocessing

step in a branch-and-cut framework. They observe that how a bucket is discretized has a significant

effect on approximation quality and its balance with computational complexity. As highlighted by

Boland et al. (2017), there are critical differences between the approach of Dash et al. (2012) for

the TSPTW and dynamic discretization techniques for solving CTSDNP. In particular, Dash et al.

(2012) (i) only discretize at the preprocessing stage of a MIP solution process; and (ii) exploit the

property of the TSPTW that no unforced time spent waiting at a customer is needed. By contrast,

waiting is often essential in continuous-time service networks for achieving consolidations.

For an alternative approach, Hosseininasab (2015) solves a variant of CTSNDP using a Benders

decomposition method with a fixed fleet size (homogeneous capacity) by modeling the dispatch time

of each vehicle using continuous variables. However, their focus is on vehicle cycles over periods,

and while they allow freight to be split, it cannot be transferred from one vehicle to another at an

intermediate location. In this way, the problem is closer to the pickup and delivery problem with

time windows than it is to the CTSNDP. Their algorithm successfully solved smaller instances with

10 commodities over a network with 15 nodes.

Boland et al. (2017) introduce dynamic discretization discovery and demonstrate its use in the

context of the CTSNDP. The key to the approach is that it discovers exactly which times are

needed to obtain an optimal, continuous-time solution, in an efficient way, by solving a sequence of

(small) MIPs. The MIPs are constructed as a function of a subset of times, with variables indexed

by times in the subset. They are carefully designed to be tractable in practice, and to yield a

lower bound (it is a cost minimization problem) on the optimal continuous-time value. Once the

right (very small) subset of times is discovered, the resulting MIP model yields the continuous-time

optimal value. The research presented here complements and extends the research presented in

Boland et al. (2017).

2. An Overview of Key Concepts in the DDDI Algorithm
In this section, we first provide a formal definition of the CTSNDP, establishing our notation and

terminology. We then give a brief overview of two of the key components of the DDDI approach.

We first explain, in general terms, how interval-based time-expanded networks may be constructed

and state the integer program that DDDI solves at each iteration to yield a lower bound on the

value of the CTSNDP. Then, we give a brief summary of the central concept in our approach

to time discretization refinement, which we call the solution graph, and explain its role in the

overall algorithm. Next, we give an overview of the DDDI algorithm itself, showing how these key

components fit together. Finally, we provide a summary of the key contributions of this paper.
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2.1. The CTSNDP: Definition, Notation and Terminology

As the name suggests, CTSNDP is a continuous-time variant of a service network design problem.

It takes as input a set of commodities K and a network G = (N,A), with nodes, N , and arcs,

A⊆N ×N . To distinguish G from the time-expanded networks that we will construct later, we

refer to it as the flat network. Each commodity k ∈K has origin node ok ∈N , destination node

dk ∈ N , a time, ek, at which it is first available at its origin for transport, a time, lk, at which

it must reach its destination, and a quantity qk. We will refer to ek as the available time or

early time and to lk as the due time or late time of commodity k. Each arc a ∈ A has an

associated transit time, τa, a vehicle capacity, ua, which is an upper limit on the total quantity

of commodities that can be carried on the arc per vehicle operating on it, a fixed cost, fa, (cost

per vehicle operating on the arc) and a variable cost, va (cost per unit of commodity flow on the

arc).

A feasible solution to the problem specifies a (single) path in time through the network, for each

commodity. We define a flat-path to be a simple path in the flat network. Formally, we write a

flat-path, P , as set of arcs, so P ⊆A, but we will abuse notation to write, for example, i ∈ P , to

indicate that the node i is the head or tail node of some arc in P . The flat-path P is k-feasible

for commodity k ∈K if it is a flat-path from ok to dk that can be traversed so as to depart ok no

earlier than ek and arrive at dk no later than lk, i.e., for which ek +
∑

a∈P τa ≤ lk. The variable cost

of transport over a set of flat-paths, {P k}k∈K , is given by∑
k∈K

∑
a∈Pk

vaq
k.

In order to evaluate the fixed cost of a set of flat-paths, {P k}k∈K , where each flat-path P k is

k-feasible, the time, tka, that each commodity k is dispatched on each arc, a ∈ P k, in its path,

is needed. Thus a feasible solution must also specify a set of times tk = {tka}a∈Pk , with tka1
≥ ek,

tkai ≥ t
k
ai−1

+ τai−1
for each i= 2, . . . ,mk, and tk

mk
≤ lk, where P k = {a1, a2, . . . , amk} is a set of mk

arcs, indexed so that the head node of arc ai is the tail node of arc ai+1 for each i. In this case,

we refer to tk as P k-dispatch times. A feasible solution to the CTSNDP is set of k-feasible

flat-paths, {P k}k∈K , together with P k-dispatch times, {tk}k∈K . Commodities dispatched on an arc

at the same dispatch time may be consolidated, so, given such a solution, we define, for each arc

a∈A, and each dispatch time on that arc, t∈Θ(a) :=
⋃
k∈K,a∈Pk{tka}, the consolidating set

κ(a, t) = {k ∈K : a∈ P k and tka = t}.

Now the number of vehicles required to carry all commodities on arc a at time t is given by

d
∑
k∈κ(a,t) q

k/uae, so the fixed cost of this solution is

∑
a∈Pk

∑
t∈Θ(a)

fa

⌈∑
k∈κ(a,t) q

k

ua

⌉
.

The CTSNDP is the problem of finding a feasible solution that minimizes the sum of the variable

and fixed costs, as defined above.
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2.2. Constructing an Interval-Based Time-Expanded Network

A key element of the DDDI algorithm is the calculation of a lower bound on the value of an optimal

solution to an instance of the CTSNDP by solving an integer program defined over a time-expanded

network that is based on time intervals. Construction of the time-expanded network takes as input

a given discretization, T , defined as a finite set of node and time pairs: T ⊂N × [0,H], where

H = maxk∈K l
k + ε, for some small ε > 0, is a time “just after” the end of time horizon. (The use

of ε is purely for notational convenience in what follows; it avoids have to make a special case for

the last interval in the time horizon.) Note that we assume that mink∈K e
k = 0, since, if not, all

early and late times can simply be shifted by a constant to make it so.

Here, we explain the concept of the interval-based time-expanded network in simple terms, as a

monolithic structure. In practice, it is much more effective to create a structure for each commodity;

we defer discussion of how that is done to Section 3.1.

The time-expanded network for given discretization T is defined as GT = (NT ,AT ), where the

elements ofNT are termed node-intervals and the elements ofAT are termed timed-arcs. The set

of node-intervals, NT , is defined as the set of triples (n, t, t′)∈N× [0,H]2 such that (n, t), (n, t′)∈ T
with t′ > t are consecutive in the discretization, in the sense that there is no (n, t′′)∈ T with t < t′′ <

t′. The node-interval (n, t, t′) can be thought of as representing the interval of time [t, t′) at the node

n. The set of timed-arcs is divided into two sets: dispatch-arcs, denoted by DT , and holding-arcs,

denoted by HT . The latter simply connect consecutive node-intervals at the same node: it is the set

of all node-interval pairs of the form ((n, t, t′), (n, t′, t′′)) with (n, t, t′), (n, t′, t′′)∈NT . The dispatch-

arcs are defined “optimistically” to be the set of all node-interval pairs ((n1, t1, t
′
1), (n2, t2, t

′
2)) with

(n1, t1, t
′
1), (n2, t2, t

′
2)∈NT having (n1, n2)∈A and so that it is possible to depart node n1 at some

time in the interval [t1, t
′
1) and arrive at n2 at some time in the interval [t2, t

′
2). In other words,

there must exist t ∈ [t1, t
′
1) such that t+ τ(n1,n2) ∈ [t2, t

′
2). It is optimistic in the sense that even

when t1 + τ(n1,n2) = t′2− ε, we assume that any commodity dispatched from node n1 at some time

during the interval [t1, t
′
1) can be next dispatched from node n2 at any time during the interval

[t2, t
′
2).

This time-expanded network is constructed with the intention that every feasible solution is

represented in it, meaning that if P k is a k-feasible flat-path for some commodity k and t is a

set of P k-dispatch times, then for all a = (n1, n2) ∈ P k, there exists ((n1, t1, t
′
1), (n2, t2, t

′
2)) ∈ AT

with ta ∈ [t1, t
′
1). This can be guaranteed by requiring that the discretization T contains node-

time pairs (n, t) for sufficiently early and sufficiently late t. For example, we could require that

(n,0), (n,H) ∈ T for all n ∈ N . Later in the paper, we give details of a more computationally

effective approach. Here, we simply assume that such representation is guaranteed.

We extend CTSNDP parameters to the time-expanded network in a natural way: for each a=

((n1, t1, t
′
1), (n2, t2, t

′
2)) ∈ DT , we define fa := f(n1,n2), va := v(n1,n2) and ua := u(n1,n2). Finally, we

define the net supply of commodity k required at each node-interval i= (n, t, t′)∈NT as

rki :=


1 if n= ok and t≤ ek < t′

−1 if n= dk and t≤ lk < t′

0 otherwise.

Due to the “optimistic” construction of the time-expanded network, the following integer pro-

gram yields a lower bound on the value of the CTSNDP. The integer program has decision variables

xka =

{
1, if commodity k uses timed-arc a

0, otherwise
∀k ∈K, a∈AT

za = number of vehicles dispatched on timed-arc a, ∀a∈DT .
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The integer programming model, which we refer to as CTSNDP(T ), is given by

min
∑
k∈K

∑
a∈AT

vaq
kxka +

∑
a∈DT

faza, (1a)

subject to ∑
a∈δ+i

xka−
∑
a∈δ−i

xka = rki , ∀k ∈K, i∈NT , (1b)∑
k∈K :a∈AT

qkxka ≤ zaua, ∀a∈DT , (1c)

xka ∈ {0,1}, ∀k ∈K,a∈AT , (1d)

za ∈ Z+, ∀a∈DT . (1e)

Here δ+
i and δ−i denote the set of timed-arcs leaving and entering node-interval i, respectively. The

objective (1a) minimizes the total cost (variable plus fixed costs). The flow constraints (1b) ensure
that each commodity leaves its origin node during some interval that contains ek and reaches its
destination node during some interval that contains lk. It is – again, “optimistically” – assumed that
all commodities traveling on the same timed-arc can be consolidated: the consolidation constraints
(1c) require that enough vehicles are assigned to each dispatch-arc to carry all commodities trans-
ported on the arc at some time during the time interval of the dispatch-arc’s first node-interval.
Lastly, (1d) and (1e) define the variable domains.

2.3. The Solution Graph
A feasible solution to CTSNDP(T ) does not necessarily, and certainly not immediately, provide
a feasible solution to the CTSNDP. Since time is only approximated in the former, the path in
the time-expanded network for a commodity k will consist of a sequence of timed-arcs, whose
corresponding arc sequence (flat-path) in the flat-network may not be k-feasible. Furthermore,
even if all such flat-paths are feasible, it may not be possible to coordinate their dispatch times to
achieve the consolidations suggested by the solution to CTSNDP(T ).

Such situations, however, can be recognized efficiently. Define a path in the time-expanded
network as a timed-path, and let {Pk}k∈K be a set of timed-paths, one for each commodity
k, where Pk is a path in the timed-network from (ok, t1, t

′
1) with ek ∈ [t1, t

′
1) to (dk, t2, t

′
2) with

lk ∈ [t2, t
′
2). We call such a collection of timed-paths a timed-path-solution. Given a timed-path-

solution, which corresponds to a feasible solution to CTSNDP(T ), we define, for each dispatch-arc,
a, the set of commodities whose path includes arc a, as

κa := {k ∈K : a∈Pk}.

Under the current discretization, T , the CTSNDP(T ) model evaluates the fixed cost associated
with transport of the commodities in κ((n1,t1,t

′
1),(n2,t2,t

′
2)) on arc (n1, n2) as if they were consolidated;

it assumes they can all be dispatched on arc (n1, n2) at a common time. A consolidation is defined
as an arc in the flat-network together with a commodity set: it is an element of A×P(K), where
P(K) denotes the power set of K. The timed-path-solution suggests a set of consolidations:

C =

{
((n1, n2) , κa) : a= ((n1, t1, t

′
1) , (n2, t2, t

′
2))∈

⋃
k∈K

Pk, n1 6= n2

}
.

For a given timed-path-solution, which induces a set of flat-paths, {P k}k∈K , we call the pair
({P k}k∈K ,C) a flat-solution.

A key component in DDDI is a procedure that, given a timed-path-solution for a given dis-
cretization and a corresponding flat-solution, ({P k}k∈K ,C), answers the following questions.
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1. Can the consolidations be realized? That is, does there exist a set of P k-dispatch times, tk,

(which implies that P k is k-feasible), for every k ∈K, such that, for every (a,κ) ∈C, tka = tk
′
a

for all k, k′ ∈ κ with k 6= k′?

2. If not, which (small set of) node and time point pairs should be added to discretization

T to give new discretization T ′ so that no timed-path-solution to CTSNDP(T ′) yields this

flat-solution?

At the heart of this procedure is the observation that the first question can be modeled as

one of deciding whether a graph, the so-called solution graph, has a positive length cycle or has

a positive length path from one of a set of origin nodes to one of a set of destination nodes.

The special structure of the solution graph allows this to be done very efficiently with a labeling

algorithm. Furthermore, and central to the success of DDDI, the labels generated in the course of

the algorithm point to answers to the second question. By analysis of the structure of the solution

graph and its labels, we are able to determine sets of node and time point pairs whose addition can

be proven to cut off the current flat-solution. In special cases, only a single node and time point

pair is needed, and in general, the sets of new pairs generated by this procedure are small. Details

of the procedure, the theory underlying it, and the solution graph itself, are given in Section 3.

2.4. An Overview of the DDDI Algorithm

The major steps of DDDI are shown in Algorithm 1.

Algorithm 1 DDDI Algorithm

Require: Flat network G = (N,A), commodities K, all instance parameters, and an optimality

tolerance, dddi tol.

1: T ←N ×{0,H}
2: model ← build time-expanded model(T )

3: lower bound←−∞, upper bound←+∞
4: while True do

5: (flat-solution, value) ← solve lowerbound ip(model)

6: lower bound←max{lower bound, value}
7: if for every k ∈K the path P k in flat-solution is k-feasible then

8: (solution, value) ← convert solution(flat-solution)

9: upper bound←min{upper bound, value}
10: if (upper bound− lower bound)<upper bound×dddi tol then

11: Stop: the solution corresponding to upper bound is within tolerance of the optimal

12: T ← refine discretization(flat-solution, T )

13: model ← update time-expanded model(model, T )

The function build time-expanded model creates the initial interval-based time-expanded

network and builds the IP model defined by (1). The resulting model is then solved using an

integer programming package in solve lowerbound ip, to yield a lower bound value and timed-

path-solution, from which a flat-solution is derived. If possible, the current best lower bound,

lower bound, is updated.

DDDI then seeks to update the current best feasible solution and its corresponding value,

upper bound, if possible. If the path P k in the flat-solution is k-feasible for every k ∈K, then there

must exist a set of P k-dispatch times, tk, that yield a feasible solution to the CTSNDP, which can
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be evaluated to yield an upper bound on its value. Testing the feasibility condition is easy: for each

commodity, check that its early time plus the sum of the travel times in its path does not exceed

its late time. However, starting each path at its early time is unlikely to provide the consolidation

needed for a low cost solution, so DDDI seeks better dispatch times: it solves an optimization

problem that determines tk, for all k ∈K, so as to minimize the fixed cost weighted sum of the

total difference in dispatch times between all distinct commodities that the flat-solution suggests

to consolidate: its objective is

min
∑

(a,κ)∈C

∑
k,k′∈C,k 6=k′

fa|tka− tk
′

a |,

where C is the set of consolidations in the current flat-solution. This objective is a heuristic

approximation of the true cost, chosen because it can modeled as an LP, while the true cost requires

integer variables to model. As this LP is similar to the one used in Boland et al. (2017), we omit

it here. The procedure convert solution solves this LP and evaluates the cost of the resulting

CTSNDP feasible solution, returning both.

If the current upper and lower bounds are not sufficiently close, then DDDI refines the discretiza-

tion, using the procedure refine discretization. This is where DDDI makes use of the solution

graph to obtain a small set of new node-time pairs to add to the discretization, guaranteeing that

the current flat-solution cannot recur. However, the theory given in Section 4 offers the possibility

of many alternative choices of refinement; there may be many structures in the solution graph that

yield a set of new node-time pairs satisfying the required conditions, any one of which would suffice.

As we will see, this choice can have a huge impact on the solve time for an iteration, and on the

number of iterations required for convergence. Thus it is important that refine discretization

embeds a clever refinement strategy. We present several alternative refinement strategies in

Section 5 and demonstrate their effect on computational performance in Section 6.

As its final step, DDDI uses the procedure update model to modify the IP model in accord

with the changes made in the discretization. Important implementation details of this procedure

are discussed in Section 5.6.

2.5. Key Contributions

A discretization of a planning period [0,H] can be viewed either as a set of time points

in the period, i.e., {0, t1, t2, . . . , tn,H}, or as a set of intervals partitioning the period, i.e.,

{[0, t1), [t1, t2), . . . , [tn,H)}. The chosen perspective impacts the interpretation of a (partially) time-

expanded network constructed using a discretization.

The main contribution of this research is a demonstration of the advantages of using an interval-

based view of discretization when developing a dynamic discretization discovery algorithm for the

CTSNDP. This manifests itself primarily in the solution graph, which facilitates the analysis of a

solution to the optimization model defined on a partially time-expanded network. By exploiting

the special structure of the solution graph, it is possible to meticulously control the refinement

of the discretization, which leads to more effective and efficient dynamic discretization discovery

algorithms.

Other contributions include structuring the partially time-expanded network as a collection of

smaller partially time-expanded networks, one for each commodity, which results in noticeably

smaller optimization models, and showing how algorithm engineering, i.e., carefully designing and

implementing an algorithm, can result in significant performance improvements.



9

3. Time-Expanded Commodity Networks and the Solution Graph
In this section, we describe how we create the time-expanded network for each commodity, and
establish our notation for these networks and for the solutions to the CTSNDP(T ) formulation
that is based on them. We then define the solution graph and establish its basic properties. For
ease of presentation, proofs of Theorems and Lemmas are given in the appendix rather than in the
text.

3.1. Time-Expanded Commodity Networks
In what follows, we describe how, for a given CTSNDP instance, we construct a time-expanded
network GkT = (NT ,AkT ), for each commodity k. To keep these networks as small as possible, we
make extensive use of shortest path calculations in the flat-network, where arc lengths are taken
to be the arc transit times. Let γk (n1, n2) denote time of the shortest flat-path (least transit time)
from n1 to n2, with n1, n2 ∈N . This time depends on k, since shortest paths for commodity k can
be tightened by not allowing arcs that enter ok or leave dk to appear in the path.

The conditions that determine whether or not a timed-arc appears in AkT , for commodity k ∈K,
are summarized in the box below, where we take τ(n,n) := 0 for all n∈N . The set AkT is the set of
all timed-node pairs, ((n1, t1, t

′
1), (n2, t2, t

′
2)), for which all of the conditions below hold:

J1K (n1, n2)∈A or n1 = n2 and t′1 = t2.

J2K There exists a path in A from ok to dk that uses (n1, n2).

J3K ek + γk (ok, n1)<min
{
t′1, t

′
2− τ(n1,n2)

}
.

J4K max
{
ek + γk (ok, n1) + τ(n1,n2), t1 + τ(n1,n2), t2

}
+ γk (n2, d

k)≤ lk.
J5K τ(n1,n2) < t

′
2− t1 and, if n1 6= n2, then t2− t′1 < τ(n1,n2).

As before, the timed-arcs are partitioned into dispatch-arcs, DkT , and holding arcs, Hk
T . The

former set is defined as the set of all timed-arcs satisfying the first part of condition J1K; the latter
is the set of all timed-arcs satisfying the second part of condition J1K. The utility for condition
J2K is obvious. Condition J3K ensures that a path starting at ok can reach node n1 before the end
of the interval [t1, t

′
1), and use arc (n1, n2) to reach node n2 before the end of the interval [t2, t

′
2).

Condition J4K ensures that there exists a path using arc (n1, n2) that starts at ok no earlier than the
early time of commodity k, departs n1 no earlier than t1, departs n2 no earlier than t2, and reaches
dk before the late time for commodity k. Condition J5K ensures that there must exist t ∈ [t1, t

′
1)

such that t+ τ(n1,n2) ∈ [t2, t
′
2).

Together, conditions J2K-J5K ensure that there exists a path for commodity k that uses arc
(n1, n2), (or is held at n1 if n2 = n1), departing from n1 in the interval [t1, t

′
1) and arriving at n2 in

the interval [t2, t
′
2), while starting at the origin of k and ending at its destination within its required

early-late time window.
To use the time-expanded commodity networks in CTSNDP(T ), simply replace AT by AkT , δ+

i

by δ+
i,k and δ−i by δ−i,k, where δ+

i,k and δ−i,k denote the set of timed-arcs in AkT entering and leaving
node-interval i, respectively. Also, replace DT by DKT :=

⋃
k∈KDkT .

3.2. Solutions
We now give notation and terminology that will be helpful in developing the theory underlying our
discretization refinement approach.

First, we note that it is helpful to define T n := {t ∈ [0,H] : (n, t) ∈ T }, so T n is the set of time
points that appear at node n∈N in the discretization, T .
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Let W k be the set of all flat-paths, and Wk
T the set of all timed-paths, for commodity k ∈K, so

W k =
{
P ∈P(A) : P is a flat-path from ok to dk

}
,

Wk
T =

{
P ∈P(AkT ) : P is a timed-path from

(
ok, to, t

′
o

)
to
(
dk, td, t

′
d

)}
,

where to ∈ T o
k

is the unique time point such that to ≤ ek < t′o, and td ∈ T d
k

is the unique time

point such that td ≤ lk < t′d. A path-solution, QK ∈
∏
k∈KW

k, is a set of flat-paths, one for each

commodity. Let Qk denote the flat-path in QK for commodity k ∈K. So QK = {Qk}k∈K where

Qk ∈W k for each k. A timed-path-solution, QKT ∈
∏
k∈KWk

T , is a set of timed-paths, one for

each commodity. Let QkT denote the timed-path in QKT for each commodity k ∈K.

The set of commodities that use timed-arc a∈DKT in the timed-path-solution QKT is denoted by
κa(QKT ) = {k ∈K : a∈QkT }.

Given a timed-path-solution, QKT , we use the notation C(QKT ) to denote the set of consolidations

it suggests.

Solutions to CTSNDP(T ) are known as timed-solutions, and, if feasible, have a corresponding

timed-path-solution QKT . A flat-solution, S, may now be defined as a pair of a path-solution and a

set of consolidations, i.e. S = (QK ,C). Observe that there is only a finite number of flat-solutions,

but that for each flat-solution there are possibly infinitely many corresponding timed-solutions.

A flat-solution S = (QK ,C), is called representable in GKT if there exists a feasible solution

to CTSNDP(T ), i.e. QKT , that can be mapped to S. Similarly, a flat-solution S is called imple-

mentable if there exists a feasible solution to CTSNDP that can be mapped to S. Note that

implementability implies representability, but not the converse.

Therefore, a flat-solution S is implementable if and only if there exist departure times tkn (or

arrival time if n= dk), for every commodity k ∈K, and each n ∈Qk, such that (2), below, holds.

In order to achieve consolidation ((n1, n2), κ) ∈ C, we require tk1
n1

= tk2
n1

for all k1, k2 ∈ κ; this can

be modeled with the introduction of an auxiliary variable, sκn1,n2
, which represents the departure

time of the consolidating commodities κ along arc (n1, n2), as follows:

tk
ok
≥ ek, ∀k ∈K,

tkn2
≥ tkn1

+ τ(n1,n2), ∀k ∈K, (n1, n2)∈Qk,

tk
dk
≤ lk, ∀k ∈K, and

tkn1
= sκn1,n2

, ∀ ((n1, n2), κ)∈C, k ∈ κ.

(2)

A set of times, (tkn)k∈Kn∈N , or (tkn) for short, satisfying (2) is referred to as a corresponding timing.

3.3. Solution Graph

Visualizing a flat-solution as a graph is an intuitive way to see the interactions and flow of com-

modities in the form of consolidations. Furthermore, as will be shown later, it is also instrumental

in the check for implementability, and the choice for refining the discretization. Let GS(S) = (V,E)

be a directed graph constructed from the flat-solution S = (QK ,C), where the nodes V are the

union of commodity dispatch nodes, V t = {tkn : k ∈ K, n ∈ Qk}, and consolidation nodes, Vs =

{sκn1,n2
}((n1,n2),κ)∈C ; and edges E are defined by:

E = {(tkn1
, sκn1,n2

) : sκn1,n2
∈ Vs, k ∈ κ}

∪ {(sκn1,n2
, tkn2

) : sκn1,n2
∈ Vs, k ∈ κ}

∪ {(tkn1
, tkn2

) : k ∈K, (n1, n2)∈Qk, @sκn1,n2
∈ Vs with k ∈ κ}.
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The edge lengths, referred to as transit times, are defined by ρ(v1,v2) for all (v1, v2)∈ E , where

ρ(v1,v2) =


τ(n1,n2) if (v1, v2) = (tkn1

, tkn2
) for some k ∈K, (n1, n2)∈Qk

τ(n1,n2) if (v1, v2) = (sκn1,n2
, tkn2

) for some ((n1, n2), κ)∈C,k ∈ κ
0 o/w

Observe that these nodes, edges, and edge lengths are a partial representation of the inequalities

defining implementability in (2). To illustrate these definitions, consider the following example:

0 1

2

3

4 5

Figure 1 Network

0 1

2

3

4 5

k1 k2 k3 k4

Figure 2 Commodities

k Qk (n1, n2) κ

k1 0,2,3,4 0,2 {k1, k2}
k2 0,2,3,4 2,3 {k1, k4}
k3 1,2,3,4 2,3 {k2, k3}
k4 1,2,3,5 3,4 {k1, k2, k3}

Figure 3 Example S = (QK ,C)

Which gives the solution graph:

tk1
0 tk2

0tk4
1 tk3

1

s
{k1,k2}
(0,2)

tk1
2 tk2

2 tk3
2tk4

2

s
{k1,k4}
(2,3) s

{k2,k3}
(2,3)

tk2
3 tk3

3tk1
3tk4

3

s
{k1,k2,k3}
(3,4)

tk4
5 tk1

4 tk3
4tk2

4

τ(3,4) τ(3,4)τ(3,4)

0 0

τ(2,3)

0

τ(3,5)

τ(2,3) τ(2,3) τ(2,3)

000 0

τ(0,2) τ(0,2)

τ(1,2) τ(1,2)

00

Figure 4 Solution Graph GS(S) Example
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3.3.1. Implementability To see how the solution graph can be used to check for imple-

mentability, first consider that the system of inequalities in (2) can be rearranged to give

−tk
ok
≤ −ek, ∀k ∈K,

tkn1
− tkn2

≤ −τ(n1,n2), ∀k ∈K, (n1, n2)∈Qk,

tk
dk
≤ lk, ∀k ∈K,

tkn1
− sκ(n1,n2) ≤ 0, ∀ ((n1, n2), κ)∈C, k ∈ κ, and

sκ(n1,n2)− tkn1
≤ 0, ∀ ((n1, n2), κ)∈C, k ∈ κ.

(3)

Which can be written as a system of difference constraints by adding dummy variables D,D′:

D′−D ≤ 0,

D− tk
ok
≤ −ek, ∀k ∈K,

tkn1
− tkn2

≤ −τ(n1,n2), ∀k ∈K, (n1, n2)∈Qk,

tk
dk
−D′ ≤ lk, ∀k ∈K,

tkn1
− sκ(n1,n2) ≤ 0, ∀ ((n1, n2), κ)∈C, k ∈ κ, and

sκ(n1,n2)− tkn1
≤ 0, ∀ ((n1, n2), κ)∈C, k ∈ κ.

(4)

Thus, by extending the solution graph GS(S) = (V,E) to include dummy nodes D,D′ and arcs

corresponding to (4), the constraint graph ĜS(S) = (V̂, Ê) is defined such that:

V̂ = V ∪{D,D′},
Ê = E ∪ {(D,D′)}

∪ {(D, tkok) : k ∈K}

∪ {(tkdk ,D
′) : k ∈K}

∪ {(sκn1,n2
, tkn1

) : (tkn1
, sκn1,n2

)∈ E},

and edge length (as transit time), for all (v1, v2)∈ Ê having

ρ̂(v1,v2) =


ek if (v1, v2) = (D, tk

ok
) for some k ∈K

−lk if (v1, v2) = (tk
dk
,D′) for some k ∈K

0 if (v1, v2) = (D,D′)

ρ(v1,v2) o/w

Observe that ĜS(S) is the graph representation of the inequalities in (4), and that GS(S) is a

subgraph of ĜS(S). To illustrate these extensions, Figure 5 shows the constraint graph correspond-

ing to the example solution graph in Figure 4, with the additional nodes and edges highlighted for

comparison.
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D

D′
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0 tk2

0tk4
1 tk3
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s
{k1,k2}
(0,2)

tk1
2 tk2

2 tk3
2tk4
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s
{k1,k4}
(2,3) s

{k2,k3}
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3tk1
3tk4
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{k1,k2,k3}
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tk4
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4tk2

4
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−l4 −l1 −l2 −l3

0
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0 0
0

0

τ(2,3)

0

0

τ(3,5)
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0
00

0
0

0 0
0

τ(0,2) τ(0,2)

τ(1,2) τ(1,2)

0
00

0

Figure 5 Constraint Graph ĜS(S) Example

Proposition 1 The flat-solution S = (QK ,C), is implementable if and only if there does not exist

a positive length cycle in the constraint graph ĜS(S).

Since the solution and constraint graphs have a significant role in the DDDI algorithm, the

following definitions are used to simplify the notation.

Let P̃ = (ñ1, ñ2, . . . , ñr) be a simple path on the network G̃= (Ñ , Ã). For node n ∈ P̃ we write

P̃�n to denote the subpath of P̃ given by (ñ1, . . . , ñi), where i is the unique index, i ∈ {1, . . . , r},
such that ñi = n. Now, extend this notation to handle simple cycles: let the simple cycle P̊ be

specified as P̊ = (n1, n2, . . . , nr, n1), we define P̊�n1 to be (n1), that is, the first occurrence of n1.

Since the remaining nodes n∈ P̊ \{n1} are uniquely indexed, the function is (already) well defined.

For any function of the form ψ : Ã→R, we write

ψ(P̃ ) =
∑
a∈P̃

ψ(a),

or similarly, for any vector ψ ∈R|Ã|, we write

ψ(P̃ ) =
∑
a∈P̃

ψa.
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As an example, given flat-solution S, let P be a simple path in the solution graph GS(S). Then,
the total transit time for that path is given by ρ(P ), and for node tkn ∈ P , ρ(P�tkn) gives the total
transit time of the path up to and including node tkn.

3.4. Implementability
Based on Proposition 1, a check for implementability for the flat-solution S is reduced to a check
for a positive length cycle in the corresponding constraint graph, which can be done efficiently,
in principle, by applying a label-correcting shortest path algorithm (with cycle detection) to the
network. In practice, it is possible to exploit special structure in the network, allowing the positive
length cycles to be detected more efficiently via a two-step process, in which the second step is a
shortest path algorithm in an acyclic graph. In addition the information calculated in the second
step can be used to determine how to refine the discretization. The special structure is as follows.

Observe that, from the construction of the constraint graph, it is clear that a cycle in the
constraint graph must take one of three forms:

(i) it consists of the pair of zero-length arcs corresponding to solution graph arcs of the form
(tkn, s

κ
n,n′),

(ii) it corresponds to a cycle in the solution graph, or
(iii) the cycle uses (D′,D).

The first form cannot have positive length. Any cycle in the constraint graph that corresponds
to a cycle in the solution graph is of the second form and must have positive cost. This gives the
first main result.

Lemma 1. If there is a cycle in the solution graph GS(S), then (2) has no solution, and hence
S is non-implementable.

Finally then, consider the case when the solution graph is acyclic, and any cycle in the constraint
graph must have the form (D,P,D′), where P is a path (possibly including zero-length loops
around pairs of the form (tkn, s

κ
n,n′) in the constraint graph from node tk

ok
to node tk

′

dk
′ for k and k′

two (possibly identical) commodities.
Since a positive length cycle exists in a graph if and only if there exists a simple positive length

cycle, the flat-solution S is implementable if and only if there is no simple positive length cycle in
the constraint graph, which (in this case) holds if and only if there is no positive length cycle in
the constraint graph of the form (D,P,D′), where P is a simple path in the constraint graph from
tk
ok

to tk
′

dk
′ for some k, k′. This holds if and only if there is no path P ′ in the solution graph from

tk
ok

to tk
′

dk
′ with ek + ρ(P ′)− lk′ > 0. This gives the second main result.

Lemma 2. If the solution graph is acyclic, then (2) has no solution, and hence S is non-
implementable, if and only if there exists commodities k, k′ ∈K, (possibly identical), and a simple
path P , from tk

ok
to tk

′

dk
′ , in the solution graph with ek + ρ(P )> lk

′
.

3.5. Earliest Departure Time
Given the solution S = (QK ,C), with acyclic solution graph GS(S) = (V,E), let the earliest depar-
ture time Ev be defined for a node v ∈ V such that:

Ev =


ek if v= tk

ok
for some k ∈K

max
k∈κ

(Etkn1
) if v= sκn1,n2

for some ((n1, n2), κ)∈C

Ev1
+ ρ(v1, v) if v= tkn, n 6= ok,and (v1, v)∈ E for some k ∈K

Note that Ev is well defined due to the implicit structure of the solution graph, that is, if v ∈ V
has v = tkn, n 6= ok, for some k and n, then there must exist a unique arc of the form (v1, v) ∈ E .
Thus we have:
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Lemma 3. For the solution S = (QK ,C) with acyclic solution graph, the length of the shortest
path from D to v in the constraint graph is Ev.

4. Refining the Discretization
Consider all the feasible solutions to CTSNDP(T ), with discretization T . Recall that there are
only a finite number of flat-solutions corresponding to all these feasible solutions, and at least
one of these is implementable (assuming that a feasible continuous-time solution exists, i.e. ek +
γk(o

k, dk)≤ lk for all k ∈K). A discretization is refined by splitting intervals, i.e., by adding time
points to the discretization, that is, T ′ is a refinement of T if T ⊂ T ′. Suppose that the flat-solution
S, corresponding to a feasible solution of CTSNDP(T ), is not implementable. Then, the goal of
refining the discretization is to “remove” S, i.e., to choose a refinement T ′ such that S no longer
corresponds to a feasible solution to CTSNDP(T ′). Intuitively, since there are only finitely many
non-implementable flat-solutions, repeating this process finitely many times will guarantee that an
optimal solution of CTSNDP(T ′) will be implementable, and hence continuous-time optimal (since
its value provides a lower bound on the value of an optimal solution to CTSNDP).

Suitable time points can be determined by exploiting the structure of S. Specifically, they cor-
respond to particular paths and cycles in the solution graph GS(S). The following lemma and
theorems cover these concepts in detail, but first it is important to establish the connection between
the solution graph and the time-expanded network induced by the discretization T .

Observation 1 The solution graph is the network equivalent of a flat-solution, so, if the flat-
solution S = (QK ,C) is representable in GKT , then every path in GS(S), has a corresponding path
in GKT . Furthermore, any cycle in GS(S) must also have a corresponding cycle in GKT – to see this,
consider that cycles in the solution graph correspond to consolidations in the timed-solution that
include at least one commodity that travels back in time (see Section 4.1.3).

Observation 2 Consider the discretization T ′ ⊃T , that is, T ′ is a refinement of T , and assume
the flat-solution S = (QK ,C) is representable in GKT ; if there exists a path in GS(S), that does not
have a corresponding path in GKT ′, then S is not representable in GKT ′ – that is, no feasible solutions
to CTSNDP(T ′) can correspond to S. This holds similarly for cycles.

These two observations are essential to the theorems below. In addition to these, Lemma 4 gives
a lower bound on the dispatch times of commodities along a simple path through the GKT , when T
contains time points of a particular form.

Lemma 4. Let P̂ = ((n1, t1, t
′
1), (n2, t2, t

′
2), . . . , (nr, tr, t

′
r)) be a simple path in (NT ,AKT ) starting

at n1 = ok with t1 ≥ ek, for some k ∈K, and suppose(
ni, e

k + τ
(
P̂�(ni,ti,t′i)

))
∈ T , for all i= 1, . . . , r,

then
ti ≥ ek + τ

(
P̂�(ni,ti,t

′
i)
)
, for all i= 1, . . . , r.

Theorem 1. Let S be a non-implementable flat-solution that is representable in GKT and has an
acyclic solution graph GS(S). Furthermore, let P be a simple path in GS(S) from tk1

ok1
to tk2

dk2
for

some k1, k2 ∈K with ek1 + ρ(P )> lk2, and ek1 + ρ(P�tkn) =Etkn, where Etkn is the earliest departure
time from node tkn ∈ P . Then S is not representable in GKT ′ with discretization refinement

T ′ = T ∪
{(
n,Etkn

)
| tkn ∈ P ∩V t

}
.
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Suppose that the solution to CTSNDP(T ) yields the non-implementable flat-solution S. The-

orem 1 shows that there is a path in the solution graph GS(S) (which can be easily found by a

depth-first search on an acyclic graph), such that adding the time points along this path sufficiently

refines the discretization to “remove” S.

Note that the time points used in Theorem 1 are not unique, nor minimal. To see this, consider

the example below in which a single commodity, k, travels from 0 to 4 with ek = 0, lk = 17. Travel

times and costs (in brackets when different to travel time) are listed on the arcs. Let the initial

discretization be T =N ×{0,20}.

0 1 2 3 45

5 (100)

5 (100)

5 5

5 (100)

5

The path (0,1,2,3,4) is an optimal solution to CTSNDP(T ), but it is not k-feasible. Using

Theorem 1,

T ′1 = T ∪ {(1,5), (2,10), (3,15), (4,20)},

however it can be shown that

T ′2 = T ∪ {(2, t)}, for any t∈ (7,10],

is also a suitable refinement. To see that this single time point is sufficient, consider the time-arcs

((1, t1, t
′
1), (2, t, t′)), and ((2, t, t′), (3, t3, t

′
3)). Notice that they share the same node-interval (2, t, t′).

From the conditions for time-arcs, observe that t is valid for J3K and J4K on AkT when:

ek + γk(o
k, n1) < t′2− τ(n1,n2), t1 + τ(n1,n2) + γk(n2, d

k) ≤ lk,

0 + γk(0,2) < t′− τ(2,3), t+ τ(2,3) + γk(3,4) ≤ 17,

t′ > 10, t ≤ 7.

Adding the time point (2, t) creates the node-intervals (2,0, t), and (2, t,20). If t is chosen to be

within (7,10], this ensures that neither node-interval is valid for both inequalities above, and thus

at least one of the timed-arcs cannot exist. Hence the timed-path cannot exist, and by Observation

2 the discretization has been sufficiently refined.

With this in mind, there can be many alternate discretization refinement approaches, and the

choice can have a significant impact on the size of the discretization and speed of convergence. The

next section considers a few approaches for special case scenarios.

4.1. Special Cases

4.1.1. Path Suppose that for commodity k, the length of its path in the flat-solution is too

long. Then, under certain circumstances (Theorem 2), it is possible to refine the discretization

using a single unary time point. Unary time points are almost always preferred, as they effec-

tively refine the discretization, without dramatically increasing the corresponding time-expanded

network.
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Theorem 2. If the non-implementable flat-solution S = (QK ,C), is representable in GKT and

there exists (n1, n2), (n2, n3)∈Qk such that

ek + γk(o
k, n1) + τ(n1,n2) + τ(n2,n3) + γk(n3, d

k)> lk,

for some k ∈K, then S is not representable in GKT ′, where

T ′ = T ∪ {(n2, e
k + γk(o

k, n1) + τ(n1,n2))}.

4.1.2. Disjoint Time-Window A time-window for node n and commodity k, defines the ear-

liest and latest times that k could visit n. Suppose that in a flat-solution, at least two commodities

k1, and k2 consolidate over (n1, n2), such that in reality the earliest time k1 can reach n2 (traveling

via n1) is after the latest time that k2 can leave and still reach its destination in time. In this

scenario, commodities k1, k2 have disjoint time-windows, and under certain conditions (Theorem

3) it is possible to refine the discretization with a unary time point.

Theorem 3. If the non-implementable flat-solution S = (QK ,C), is representable in GKT and

there exists ((n1, n2), κ)∈C, such that

ek1 + γk1
(ok1 , n1) + τ(n1,n2) + γk2

(n2, d
k2)> lk2 ,

for some k1, k2 ∈ κ, then S is not representable in GKT ′, where

T ′ = T ∪ {(n2, e
k1 + γk1

(ok1 , n1) + τ(n1,n2))}.

4.1.3. Cycle Theorem 1 assumes that the solution graph is acyclic, however this is not always

the case. If there exists a cycle, then Theorem 4 shows how to sufficiently refine the discretization.

The structure of the time points chosen in Theorem 4 is similar to those in chosen in Theorem 1,

however handling cycles typically requires significantly more time points. Observe that Theorem

2 and 3 do not make the acyclic assumption, and so even if a cycle is detected it may be possible

(and preferable) to use those unary time point theorems. To see how a cycle could arise, consider

the following example:

0

1 2

3

5

5

5

5

Figure 6 Network

0

1 2

3k1

k2

Figure 7 Commodities

k Qk (n1, n2) κ

k1 0,1,2,3 0,1 {k1, k2}
k2 2,3,0,1 2,3 {k1, k2}

Figure 8 Cycle S = (QK ,C)

Which gives the solution graph:
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Figure 9 Example Cycle Instance

Theorem 4. Let S be a non-implementable flat-solution that is representable in GKT , with solu-

tion graph GS(S) containing the simple cycle P̊ . Furthermore, let P be a shortest path in GS(S)

from tk1

ok1
to P̊ for some k1 ∈K, let {v}= P ∩ P̊ , define the cycle such that P̊ = (v, P̊(2), . . . , P̊(|P̊ |), v),

and let m̊= min{m : ek1 +ρ(P )+mρ(P̊ )> lk1}. Then S is not representable in GKT ′ with refinement:

T ′ = T ∪
{(
n, ek1 + ρ

(
P�tkn

))
| tkn ∈ P ∩V t

}
∪
{(
n, ek1 + ρ (P ) +mρ(P̊ ) + ρ

(
P̊�tkn

))
| tkn ∈ P̊ ∩V t, m= 0, . . . , m̊

}
.

5. Refinement Strategies and DDDI Implementation
As already previewed in Section 2.3, for the non-implementable flat-solution S = (QK ,C), there may

be many possible choices of paths, cycles, or arcs to apply Theorem 1, 2, 3, and 4. Thus an effective

refinement strategy is needed when implementing these theorems. The following subsections present

three strategies, each of which addresses a different issue: Default, Reduced Iterations and Fewer

Time Points. This section concludes with some useful ideas for implementation of the lower bound

IP, including additional constraints and a preprocessing technique to tighten the IP model, and an

adaptive approach to setting the optimality tolerance used in the IP solver.

5.1. Default Refinement Strategy

The Default implementation is a direct translation of the main theorems. Here, the solution graph

is first checked for cycles (Theorem 4), and if acyclic, it is checked for violated paths (Theorem

1), in either case adding time points as prescribed. Only one violation is fixed per iteration, chosen

in order of the commodity index.

Algorithm 2 Default refinement strategy

1: procedure refine discretization(GS(S),T )

2: if a cycle exists in GS(S) then

3: return T ′ as per Theorem 4

4: else if a failed path exists in GS(S) then

5: return T ′ for a single path as per Theorem 1

6: return T
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5.2. Reduced Iterations

One way to view the algorithm is that non-implementable flat-solutions are induced by issues in the

time-expanded network, which are fixed by refining the discretization. Since there are many reasons

why a flat-solution is non-implementable, it stands to reason that there are many corresponding

issues in the time-expanded network that can be fixed. A natural extension to the Default algorithm

fixes multiple issues in each iteration, which intuitively reduces the total number of iterations

required for convergence.

If the solution graph is composed of disconnected subgraphs, then the commodities in different

components do not interact, and so, adding time points to fix an issue in one component is unlikely

to fix issues in other components. With this in mind, adding the set of fixes, one from each

component (if applicable), should reduce the number of required iterations without unnecessarily

increasing the associated time-expanded network.

Extending this idea further, it can also be beneficial to add several fixes from within a component,

assuming the component is acyclic. We say that the consolidation (a2, κ2) is downstream from the

consolidation (a1, κ1) if there exists a directed path in the solution graph connecting sκ1
a1

to sκ2
a2

.

Similarly, (a1, κ1) is said to be upstream from (a2, κ2). Furthermore, we say that the commodity k

has failed if its solution path Qk is not k-feasible; and say that the consolidation (a,κ) has failed if

the last commodity to arrive at the consolidation is later than the earliest time another commodity

must to leave (to reach its destination in time). We refer to these failed commodities and failed

consolidations as failures.

A failure, and its corresponding fix, is considered independent if there exists no other failures

upstream. Thus for an acyclic component, it is suitable to add all the independent fixes, without

having too much concern for redundancy.

The last improvement focuses on the path used in Theorem 1. This path is chosen by traversing

the solution graph from tk2

dk2
, for some commodity, k2, that arrives late in the given solution, and

follows the arg maxk∈κEtkn commodity at each consolidation. Observe that there may be multiple

paths that match this definition, and while each of these paths are suitable, there may be one that

is better than the others. A reasonable strategy is to simply use all paths. While this adds some

redundancy, empirical evidence suggests that the benefits typically outweigh any overheads.

Algorithm 3 DDDI with Reduced Iterations

1: procedure refine discretization(GS(S),T )

2: T ′←T
3: for all CS ∈ connected component subgraphs(GS(S)) do

4: if a cycle exists in CS then

5: Add time points to T ′ as per Theorem 4

6: else

7: for all independent failures in CS do

8: Add time points to T ′ as per Theorem 1 (all suitable paths)

return T ′

5.3. Fewer Time Points

In DDDI, the majority of the computational effort is spent solving the lower bound IP. Since this

solve time is strongly correlated with the size of the model, it is preferable to keep the discretization

as small as possible. By a careful application of Theorem 2 and 3, it becomes possible to fix more
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issues in each iteration using far fewer time points – and hence directly reducing the total, and per

iteration, solve times. Since both these theorems use a single time point to fix a failure, we will

refer to these as unary time points, and unary failures (respectively).

By including these unary time points, the number of options for fixing failures increases dra-

matically. Building upon the Reduced Iterations strategy, we again prefer fixes that are upstream.

Intuitively, any failures that occur earlier in the discretization (i.e. furtherest upstream) have more

significance, due to the flow-on effects for paths and consolidations downstream. Since Theorem

2 and 3 do not assume an acyclic solution graph, our algorithm prioritizes fixing unary failures,

preferring those as upstream as possible, before checking for cycles or adding time points from The-

orem 1. Note that this preference for unary fixes means that unary failures that are downstream

from non-unary failures can still be chosen.

For the failed consolidation (a,κ), observe that there are potentially
(|κ|

2

)
ways to apply Theorem

3. We attempt to chose the corresponding unary time point in a clever way. We choose the pair of

commodities with the smallest time-window gap. The time-window for commodity k ∈K at node

n∈Qk is defined as:

[ekn, l
k
n] =

[
ek + τ

(
(Qk)�n) , lk− τ

(
Qk
)

+ τ
(
(Qk)�n)]

that is, ekn is the earliest time to reach node n along path Qk, and similarly lkn is the latest time

to leave node n and still reach the destination in time. This interval is well defined when Qk is a

k-feasible path. Thus the time-window gap for a pair of commodities k1, k2 ∈ κ on consolidation

((n1, n2), κ)∈C is given by ∣∣ek2
n1
− lk1

n1

∣∣ .
Consider the example consolidation in Figure 10 where each commodity’s time-window is shown.

There are up to four ways to apply Theorem 3, using commodity pairs (k1, k3), (k1, k4), (k2, k3), or

(k2, k4). Our heuristic will choose (k2, k3), and hence partitions the consolidation evenly, preserving

the clusters of overlapping commodities.

k1

k2 k3

k4

k5

Figure 10 Disjoint Time-Windows for a Consolidation

The intuition behind Theorem 3 is that the consolidation ((n1, n2), κ) has disjoint time-windows,

that is, ∩k∈κ[ekn1
, lkn1

] = ∅. Moreover, it may be possible that κ has many clusters of commodities

with non-overlapping time-windows, thus there are potentially many commodity pairs, k1, k2 ∈ κ,

with disjoint time-windows, i.e. ek2
n1
> lk1

n1
. We choose the commodity pair that satisfies Theorem

3 with the smallest time-window gap, as this is likely to preserve many clusters either side of the

partition.

Note that it may be possible to fix a cycle using unary time points from Theorem 3. This is

preferred, since Theorem 4 requires potentially very many time points, due to the recursive nature

of cycles. Although only a single unary time point may be sufficient to change a cycle, we have

found that fixing every unary failure (around the cycle) is more effective at breaking it completely

in one step, while still using far fewer time points than Theorem 4.

For cycles without unary failures, the number of time points can still be reduced by simply

checking at each node whether any commodity (i.e. not only the one mentioned in Theorem 4)
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participating in the cycle, has a shortest path to its destination that exceeds its late time; when

this is found, no further time points are required. A similar idea can be applied to Theorem 1,

that is, by using shortest paths it is possible to skip a number of nodes at the start and end of a

violated path.

Algorithm 4 DDDI with Fewer Time Points

1: procedure refine discretization(GS(S),T )

2: T ′←T
3: for all k ∈K do

4: Check Theorem 2 along path, add first time point (if exists) to T ′

5: for all unary failed consolidations do

6: if consolidation is not downstream from another unary failure then

7: Check Theorem 3 (add to T ′ using prescribed heuristic)

8: for all CS ∈ connected component subgraphs(GS(S)) do

9: if cycle exists in CS that is not downstream a failure then

10: if cycle can be broken using unary time points then

11: Add time points to T ′ as per Theorem 3

12: else

13: Add time points to T ′ as per reduced Theorem 4

14: else

15: for all independent failures in CS not downstream from any fixes do

16: Add time points to T ′ as per reduced Theorem 1 (all suitable paths)

return T ′

5.4. Strengthening the IP Model

We include an additional valid inequality in the IP model that is used tighten the formulation:⌈
qk

ua

⌉
xka ≤ za, ∀k ∈K,a∈DkT . (5)

The benefits of including this inequality, computationally, are quite substantial: see Section 6.

We also observe that some timed-arcs can safely be removed, as there will always exist an

alternative feasible solution with the same cost. We can then remove these, reducing the time-

expanded network. Our reasoning is as follows.

The fixed and variable costs in our definition of CTSNDP are constant over time. Thus the cost

of an implementable solution does not depend on the time at which commodities are dispatched

on an arc; all that matters is that commodities to be consolidated on an arc are dispatched on

that arc at the same time. It suffices, then, to only consider dispatch times that occur as early

as possible. We may, as a consequence, deduce that some arcs in the time-expanded network are

redundant, in the sense that some optimal solution that does not use them must exist.

To be specific, we first define Ka as the set of commodities that can use timed-arc a, so

Ka := {k ∈K : a∈DkT },

for each timed-arc a. Note that we only need this notation for a a dispatch-arc. Now, if, for

any dispatch-arc a= ((n, s, s′), (n′, t1, t
′
1)) ∈

⋃
k∈KDkT , there exists another, earlier, timed-arc a′ =
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((n, s, s′), (n′, t2, t
′
2)) ∈

⋃
k∈KDkT , with t2 < t1, and with the property that Ka ⊆ Ka′ , then a may

safely be removed. It is important to note that here a and a′ have the same node-interval as their

tail and have a common node in the flat-network, n′, in their head node-interval.

Figure 11 provides an illustration of this concept. It shows three dispatch-arcs from node-interval

(0,0,48), to three distinct node-intervals at node 1 in the flat-network: (1,0,42), (1,42,60) and

(1,60,82), respectively. Here

Ka1
= {k1, k2, k3}, Ka2

= {k1, k2} and Ka3
= {k2, k4},

where a1 = ((0,0,48), (1,0,42)), a2 = ((0,0,48), (1,42,60)) and a3 = ((0,0,48), (1,60,82)). Since

Ka2
⊆Ka1

, and a2 is a later arc, any solution using a2 for commodities in Ka2
could instead use a1

and then use holding arc ((1,0,42), (1,42,60)), giving an equivalent solution with no greater cost.

Thus a2 may safely be removed. Note that a3 cannot be removed, as k4 ∈Ka3
\Ka1

.

0

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

{k1, k2, k3} {k1, k2} {k2, k4}

Figure 11 Redundant Consolidation Arc

In general, if a meets the above condition for removal, then it is removed from DkT for all k ∈Ka.
This means that the corresponding variables in the lower bound IP model – xka for all k ∈Ka and

za – are never created.

We call the procedure for removing arcs in this fashion remove redundant arcs, and note

that it can be implemented quite efficiently by exploiting the observation that if k ∈ Ka1
∩ Ka3

where a1 = ((n, s, s′), (n′, t1, t
′
1) and a3 = ((n, s, s′), (n′, t3, t

′
3) with t′1 < t3, then for any node-interval

(n′, t2, t
′
2) with t′1 ≤ t2 < t′2 ≤ t3, it must be that k ∈ Ka2

, where a2 = ((n, s, s′), (n′, t2, t
′
2). Thus to

decide whether or not a dispatch-arc can be removed, only the dispatch-arc from the same tail

node-interval to the immediately preceding head node-interval need be inspected.

5.5. Adaptive IP Optimality Tolerance

In practice, we observe that for the first several iterations of the DDDI algorithm, there is a large

gap between its upper and lower bounds. Thus there is very little benefit in using a small optimality

tolerance in the IP solver used to find the next lower bound. Instead of having a fixed tolerance

across all iterations, we instead adapt the tolerance as the DDDI algorithm progresses.

To avoid confusion, we define the following terms: mip gap, mip tol, dddi gap, and dddi -

tol. Every iteration of the DDDI algorithm solves an IP with a target mip tol; we refer to the

IPs optimality gap (after terminating the solve) as the mip gap. Each iteration in Algorithm 1

has dddi gap = upper bound−lower bound
upper bound

, which is the continuous-time optimality gap. The algorithm

terminates when dddi gap< dddi tol.

Our implementation starts with mip tol = 0.04, and then for each iteration:

mip tol = max{dddi gap ∗ 0.25, dddi tol ∗ 0.98}.

These values have been chosen based on empirical experimentation. In particular notice that mip -

tol can be set to a value strictly less than dddi tol. This is not required but has been found

(empirically) to improve convergence in some cases.
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5.6. Updating the IP Model

In our implementation, updates to the IP model (update model) are performed in place, not

regenerated each iteration, and are made so that variables and constraints are reused as much

as possible. That is, variables are relabeled instead of added or deleted. This reduces time spent

generating the model and provides the opportunity for the IP solver to perform a warm start at

the next iteration.

6. Computational Study
In our computational study, we solve the 558 CTSNDP instances used in Boland et al. (2018)

to a 0.001% optimality gap with a computational time limit of 1 hour. Memory is limited to the

available system memory (256 Gb), and processing is restricted to a single core. CPLEX 12.6 is

used as the MIP solver. Note that the instances range in size, with the smallest having 20 nodes,

228 arcs, and 39 commodities, and the largest having 30 nodes, 685 arcs, and 400 commodities.

Transit times as well as available and due times are expressed as integers, representing times in

minutes, which implies that the full discretization has a time point at every integer in the time

horizon.

Each instance was solved using the full discretization, as well as with four different variants

of the interval-based dynamic discretization discovery (DDDI) algorithm. The Default, Reduced

Iterations and Fewer Time Points variants of DDDI use the discretization refinement strategies of

the same name, given in Algorithm 2, Algorithm 3 and Algorithm 4, respectively. The Adaptive

variant uses the refinement strategy from Fewer Time Points (Algorithm 4) on the reduced time-

expanded network (Section 5.4), as well as incorporating the adaptive tolerance when solving the

lower bound IP (Section 5.5). All variants include the additional constraints, (5), in the IP model,

and use the warm starting described in Section 5.6. For all variants, CPLEX was used with its

default MIP settings, other than setting the parameter “Symmetry” to its most aggressive level,

5. This duplicates the settings used to produce the DDD results given in Boland et al. (2017), and

which our experiments confirmed as being the most effective.

The results are grouped by the flexibility and the cost ratio of the instances. Boland et al. (2018)

show that these metrics are reasonable indicators of the tractability of an instance, and so grouping

by this scheme can highlight performance characteristics that might otherwise be lost by taking

the average across all instances. In what follows, an instance is said to have low flexibility (LF) if

min
k∈K
{lk− (ek + γk(o

k, dk))}< 227,

and low cost ratio (LC) if
1

|A|
∑
a∈A

fa
vaua

< 0.175.

The choice of the threshold values, 227 and 0.175, has been influenced by the results in Boland

et al. (2018) as well as by the desire to spread instances across the groups equally. The resulting

group sizes can be seen in Table 3.

LF HF

HC 183 177

LC 94 104
Table 3 Group allocation of the 558 instances



24

The summary of results, averaged for each of the groups, can be found in Table 4. Note that

the time required to build the model was not counted towards the computation time limit; some

instances require over 30 minutes to build the full discretization model, whereas DDDI barely takes

seconds. Also note that due to the computation time limit, the full discretization IP (after building

the model), did not produce a feasible solution for 28 instances (all in the HC/HF group). For

these instances a gap of 100% was used to produce the summary of the results; this choice seems

reasonable, since many similar instances from this group had a gap of over 100%, and so the results

should not be skewed in favor of DDDI.

As can be seen from the results, all variants of DDDI clearly outperform solving the full dis-

cretization model. Also, there are significant differences between the refinement strategies, in terms

of number of iterations and average gap %. As expected, instances with high cost and high flexibil-

ity are the most difficult to solve. Nevertheless, the DDDI variants all do a remarkable job finding

high-quality solutions for these instances within the time limit.

Algorithm Gap % Time (s) # Iterations % Optimal

HC/LF

Full Discretization 18.28 2,595.03 32.8

Default 3.53 1,751.68 92.6 60.1

Reduced Iterations 1.70 1,386.03 11.2 70.5

Fewer Time Points 1.34 1,258.35 11.2 74.3

Adaptive 0.12 677.76 14.8 85.8

HC/HF

Full Discretization 49.69 3,290.23 12.4

Default 13.12 2,224.00 53.6 45.2

Reduced Iterations 8.94 2,021.67 10.5 51.4

Fewer Time Points 8.53 1,991.27 11.9 48.6

Adaptive 0.84 1,693.76 17.5 56.5

LC/LF

Full Discretization 0.00 270.24 95.7

Default 0.00 3.85 28.0 100.0

Reduced Iterations 0.00 1.01 6.0 100.0

Fewer Time Points 0.00 0.67 6.1 100.0

Adaptive 0.00 0.59 6.5 100.0

LC/HF

Full Discretization 0.00 715.94 93.3

Default 0.00 0.39 7.8 100.0

Reduced Iterations 0.00 0.18 3.4 100.0

Fewer Time Points 0.00 0.12 3.0 100.0

Adaptive 0.00 0.13 3.2 100.0
Table 4 Computational Results for DDDI Variants vs Full Discretization (1hr solve time limit)

It is interesting to notice that for HC/HF, the Fewer Time Points strategy solves fewer instances

to optimality than Reduced Iterations, however the average gap of Fewer Time Points is less. This

highlights the delicate balance between convergence and model size, and the difficulty of choosing a

suitable refinement strategy. That is, in some instances the extra time points (of Reduced Iterations)
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help prove optimality in less time, however, on average, the smaller model size of Fewer Time

Points produces solutions with tighter optimality gaps.

To further compare the DDDI variants, Figures 12 and 13 show the convergence and model

growth of the different approaches as a function of run time, where the latest time is either the

time limit of one hour, or the time when all approaches have reached an optimality gap of 0.001%

or less (i.e., the upper bound−lower bound
lower bound

≤ 0.0001). The data for Figure 12 is produced by recording,

for each instance, at each DDDI iteration, the time at which this iteration starts, the current

lower bound, and the current upper bound. Each bound reported at each iteration of each instance

is then recalculated as a gap relative to the optimal value1 of the instance: bound−optimal value
optimal value

is

the relative gap, reported as a percentage. For bound taken to be the upper bound, we call this

the upper gap; it will be non-negative. Conversely, when bound is the lower bound, the result is

the lower gap, which will be non-positive. The plots in Figure 12 show, for each instance group

and each DDDI variant, the average of these values over all instances in the group. The data for

Figure 13 is produced by a similar process, recording, for each instance, at each DDDI iteration,

the number of variables and the number of constraints in the IP model at this iteration. For

every iteration of each DDDI variant running on each instance, the model size is calculated as the

sum of the number of variables and the number of constraints, taken as a percentage of that in

the full discretization model for the instance. For all models, both from DDDI and from the full

discretization, the numbers of variables and constraints are reported before presolve, i.e., before

CPLEX has performed its presolve routines, which identify and remove variables and constraints.
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Figure 12 DDDI Convergence (1hr solve time limit)

1 The optimal value of each instance is obtained by running DDDI for a very long time. For the few instances (40
of the HC/HF and 12 of the HC/LF instance) that could not be solved to optimality, the best upper bound found
was used in place of optimal value. Of the 62 instances for which this was done, the best upper bound was never
more than 1.00% away from optimal and was, on average, 0.66% away; the average final DDDI gap for these long
run times was 0.06% for HC/LF instances and 0.17% for HC/HF instances.
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Figure 13 DDDI Model Growth (1hr solve time limit)

The Adaptive variant has a remarkably quick initial convergence, even on the HC/HF instances.
Most of the time is spent proving optimality. Since it typically produces feasible solutions at every
iteration, it is obvious that DDDI is an excellent heuristic; it reliably finds good solutions quickly.

As expected, Figure 13 shows that, on average, the Reduced Iterations and Fewer Time Points
variants induce the largest and smallest (resp.) model sizes. In all cases, most growth occurs near
the start of the algorithm. Note that the average full discretization model size for each group is
different, and so the groups cannot be directly compared to each other. However, even if these
results are relatively weighted, we notice a similar pattern. In all DDDI variants, the IP models are
very small relative to the full discretization. Note that the full discretization model has also been
constructed using the conditions in Section 3.1; if the full discretization model was constructed
naively, the relative size of the DDDI variant models would be even smaller.

Lastly, Figure 14 shows, for each instance group and each DDDI variant, the number of variables
and the number of constraints in the IP model, each reported as a percentage of those in the
full discretization model for the respective instance, at the final iteration of DDDI, both before
and after the model is presolved, averaged over the instances in each group. Note that the values
reported after presolve, Presolve Variables and Presolve Constraints, use the number of variables
and constraints in the full discretization model after presolve, too, so that the comparison is fair.
Thus we can see that, in all cases, DDDI produces models that are significantly smaller – typically
over 100 times smaller – than that of the full discretization. This makes DDDI a more attractive
approach for solving large scale instances.

For the LC/LF and LC/HF groups, the (post-)presolve variables and constraints in the models
are practically at 0%. In many instances, CPLEX could remove all the variables and constraints for
the final DDDI model, whereas the presolved full discretization model often remained large. (There
were a few instances for which the full discretization model also had all variables and constraints
removed in presolve; these instances were removed from the data used to produce the corresponding
column in Figure 14, to avoid division by zero.) This shows that DDDI does exceptionally well for
instances with low cost ratios.
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Figure 14 DDDI Model Size (1hr solve time limit)

To see the effect of the extra IP tightening constraints, (5), we performed the above calculations

without them, using the Adaptive algorithm variant. The comparative results can be seen in

Table 5. Clearly, these constraints have a significant effect on convergence. When using these

constraints, the average gap is nearly halved, and around 10% additional HC instances can be

solved to optimality. Although the total number of constraints in the IP is roughly doubled by the

addition of the constraints, this number relative to the full discretization is still very small.

Algorithm Gap % Time (s) Constraints % # Iterations % Optimal

HC/LF

Adaptive (w/o cuts) 0.21 1,209.76 1.35 14.1 73.2

Adaptive 0.12 677.76 3.34 14.8 85.8

HC/HF

Adaptive (w/o cuts) 1.61 2,005.20 0.50 15.7 46.9

Adaptive 0.84 1,693.76 1.38 17.5 56.5

LC/LF

Adaptive (w/o cuts) 0.00 0.84 1.15 6.8 100.0

Adaptive 0.00 0.59 2.39 6.5 100.0

LC/HF

Adaptive (w/o cuts) 0.00 0.14 0.11 3.3 100.0

Adaptive 0.00 0.13 0.21 3.2 100.0
Table 5 Results with/without cuts (1hr solve time limit)
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7. Comparison with DDD
The approach of Boland et al. (2017), which we refer to as DDD, and that of DDDI have similarities.

Both algorithms iteratively build and refine a time-expanded network, and solve an associated

integer program to obtain a lower bound. Both relax transit time in order to guarantee the lower

bound. However, each algorithm recovers true transit times in quite different ways, via markedly

different discretization refinement processes. For the following discussion, unless otherwise specified,

we adopt the notation from DDDI. When referring to properties or propositions of Boland et al.

(2017), we follow the reference by “(DDD)”. The major differences between DDD and DDDI are

summarize below:

� During preprocessing, DDD only removes (does not create) variable xka if it is impossible for

commodity k to be dispatched on arc (n,n′) at any time without violating its early or late

times, whereas DDDI removes it (does not create it) if k cannot travel on (n,n′) so as to be

dispatched from n at some time in the interval [s, s′) and be dispatched from n′ at some time

in the interval [t, t′), where a= ((n, s, s′), (n′, t, t′)).

� For each node-time pair in the discretization, (n, t), each arc (n,n′) in the flat-network, and

each commodity, k, DDD will create at most one commodity flow variable. By contrast DDDI

may create multiple such variables, to model arrival within different time intervals. For exam-

ple, DDD creates xk((n,s),(n′,t)) if there is some time at which k can depart n in the interval

[s, s′) and arrive at n′ in the interval [t, t′). It may also be possible that there is some time

at which k can depart n in the interval [s, s′) and arrive at n′ in the interval [t′, t′′), but this

is captured by the holding variable xk((n′,t),(n′,t′)). DDDI, on the other hand, will create both

xk((n,s,s′),(n′,t,t′)) and xk((n,s,s′),(n′,t′,t′′)).

� Because of the previous point, DDDI may create more commodity flow and vehicle vari-

ables than DDD, even when taking into account its the stronger preprocessing (first point)

and the removal of redundant arcs (as described in Section 5.4). However, the additional

arcs (variables) can serve to produce a tighter lower bound. To illustrate this, consider three

commodities, k1, k2 and k3, timed points (n, s), (n, s′), (n′, t), (n′, t′) and (n′, t′′), with (n,n′)

an arc in the flat-network that may be used by any of these three commodities, and with

t ≤ s+ τ(n,n′) < t′ and s ≤ t′′ − τ(n,n′) < s′. Then DDD will have an IP model with variables

xk((n,s),(n′,t)) for each of k= k1, k2, k3, and if all of these are set to one, will allow all three com-

modities to consolidate on the timed-arc when calculating the fixed cost. However, in the case

that timed-arc ((n, s, s′), (n′, t, t′)) cannot be used by k3, because the earliest this commodity

can arrive at n′ via (n,n′) is at or after t′, and the timed-arc ((n, s, s′), (n′, t′, t′′)) cannot be

used by k2, because the latest this commodity can depart n′ is before t′, (and both timed-arcs

can be used by k1), then the DDDI model forces a choice between consolidating k1 with k2 for

travel on the earlier timed-arc and consolidating k1 with k3 for travel on the later timed-arc;

all three cannot be consolidated on (n,n′) if dispatched in the interval [s, s′); see Figure 15.

n

n′

s s′

t t′ t′′{k1, k3}

{k1, k2, k3} {k1, k2} {k1, k3}

Figure 15 Modeling difference between DDD and DDDI
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� DDDI does not add transit-time knapsack constraints
∑

a τax
k
a ≤ lk − ek to the IP model.

Although these constraints ensure that all commodity paths used in the lower bound IP

solution are feasible with respect to transit time (and are necessary for the refinement step

in DDD), they were found, in our experience, to lead to noticeably slower IP solution times.

DDDI, instead, adds strengthening constraints, dqk/uaexka ≤ za to the IP model (which are not

used in DDD).

� The convergence of DDD relies on the fact that there are only finitely many arc-length exten-

sions, whereas the convergence DDDI relies on the fact that there are only finitely many

flat-solutions. Consequently, it is possible for DDD to return the same flat-solution for multiple

iterations, unlike DDDI.

� DDD and DDDI use the same upper bound LP, except that DDDI weights terms in the

objective by the fixed cost of their associated arc, whereas DDD does not. These weights favor

preservation of consolidations on arcs with higher fixed cost, which often yields a better upper

bound.

� DDD solves a MIP to suggest how to refine the discretization: it keeps the flat-paths used in

the lower bound solution and decides dispatch times for each commodity on each arc in its

flat-path so that the resulting timed-path is feasible for the commodity, forces all consolidating

commodities from the lower bound solution to be dispatched at the same time, but permits

some dispatch arcs to have less than their true travel time. The number of such dispatch arcs

is minimized by the MIP; any remaining in its optimal solution suggest when and where the

discretization can be refined. DDDI exploits the structure of the solution graph to efficiently

identify refinements (involving mostly shortest path calculations on an acyclic graph).

7.1. Empirical Results

Each instance was solved by DDD, using the same computing platform and limits, except for the

optimality tolerance, which was set to 1% for these experiments. A summary of the results is

shown alongside those from the Adaptive variant of DDDI (also solved to within 1%) in Table 6.

Again, average over the instance groups defined by the flexibility and cost ratio are reported. The

model size information (variables, constraints) reported is that of the lower bound IP at the final

iteration. As expected, the HC instances are more difficult to solve, where the HC/HF group is

the most difficult. DDDI solves more instances to optimality, with a much smaller model size: the

final model of DDD has, on average, more than 12 times the number of variables and over 5 times

the number of constraints in that of DDDI. That said, on average, DDD has a lower final gap,

meaning that on the instances that did not solve to optimality, DDD produced a notably smaller

gap. To visualize this aspect of the results, in Figure 18, the difference between DDD and DDDI in

both gap % and time to solve (limited to 1 hour) are plotted for all of the 558 instances. Negative

values on the left are instances where DDDI outperformed DDD. For example, a time of -2000 is

interpreted as DDDI solving 2000 seconds quicker than DDD. Positive values on the right indicate

instances where DDD outperforms DDDI. This figure shows clearly that for instances not solved

to optimality, DDD tends to yield smaller gaps within the time limit than DDDI does, with the

DDD gap % up to 3 percentage points lower than that of DDDI. However, DDDI tends to solve

more instances in much less computational time.

To investigate the source of smaller DDD gaps on instances not solved to optimality, we obtained

continuous-time optimal values by allowing the DDDI algorithm to run for longer on the instances

not solved within the 1 hour run time limit. Comparing the upper and lower bounds produced by

DDDI and DDD to optimal values, we found that DDD usually produced better upper bounds,
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Figure 16 DDD vs DDDI Gap and Solve Time (1hr solve time)

Algorithm Gap % Time (s) Variables Constraints # Iterations % Optimal

HC/LF

DDD 0.08 1,391.1 205,540.2 177,149.5 5.3 77.1

DDDI 0.12 677.8 14,013.6 25,757.0 14.8 85.8

HC/HF

DDD 0.56 1,966.7 161,097.2 128,888.2 6.0 53.7

DDDI 0.84 1,693.8 13,044.6 23,496.2 17.5 56.5

LC/LF

DDD 0.00 28.6 20,633.5 27,177.9 3.7 100.0

DDDI 0.00 0.6 1,382.4 2,535.4 6.5 100.0

LC/HF

DDD 0.00 1.5 4,500.3 6,917.1 2.5 100.0

DDDI 0.00 0.1 376.7 639.0 3.2 100.0
Table 6 Computational Results DDD vs DDDI (1hr solve time limit)

while DDDI produced better lower bounds, but these were not better to a degree sufficient to

compensate for DDD’s better upper bounds.

The difference in the gaps on both the lower and upper bound sides are shown in Figure 17, which

gives convergence profiles over time. DDDI converges rapidly for all groups, but in the HC/HF

instances it struggles to improve the solution after a certain point, whereas DDD (on average)

continues to find better solutions. In Figure 17 the growth, over time, of the lower bound IP model

size (the number of variables plus the number of constraints) is shown as a percentage of the size

of the full discretization model. It is clear that DDDI produces significantly smaller model sizes

than DDD does, and the size of model in DDDI appears to stabilize relatively quickly. Both DDDI

and DDD generate noticeably smaller models than the full discretization does on the HF group of
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instances compared to the LF. The effect is particularly marked in the case of DDD. In the case

of the HC/HF group of instances, it appears that the careful discretization refinement approach

of DDDI is paying off in terms of model size, but not in terms of finding upper bounds to close

the final gap; the refinement strategy of DDD is more effective in this respect for this group of

instances.
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Figure 17 DDD vs DDDI Convergence (1hr solve time limit)

Table 7 shows results for DDD and DDDI on five instances that were created using data from

a large LTL carrier in the United States, restricted to the states listed. These were the most

challenging instances presented in Boland et al. (2017). Note that computation was limited to 2

hours. The results clearly show that DDDI outperforms DDD and the full discretization (FD) for

these instances. Not only does DDDI find high quality solutions quickly, it is also able to prove

that these solution are of high quality quickly. Even though DDD is also able to find high-quality

solutions, it is unable to prove that they are of high-quality.

FD DDD DDDI

States |N| |A| |K| Time (s) Value Gap (%) Time (s) Value Gap (%) Time (s) Value Gap (%)

ID,MT,OR,WA 10 54 224 213 1,503,240 0.94 30 1,507,222 0.92 5 1,510,629 0.93

CO,ID,MT,OR,WA 14 81 341 7,200 1,780,041 3.63 7,200 1,757,287 1.68 78 1,757,395 0.69

CO,ID,MT,OR,WA,NV 16 109 469 7,200 2,939,430 25.28 7,200 2,291,691 2.74 803 2,273,707 0.65

CO,ID,MT,OR,WA,UT 15 104 458 7,200 2,805,518 19.71 7,200 2,325,602 1.45 223 2,320,710 0.78

ID,MT,OR,WA,NV,UT 13 97 429 7,200 3,130,964 23.78 7,200 2,501,827 3.00 137 2,493,752 0.89

Table 7 Performance on instances derived from U.S. LTL carrier
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Figure 18 DDD vs DDDI Model Growth (1hr solve time limit)

8. Conclusions and Future Work
We have presented an effective and efficient dynamic discretization discovery algorithm for solving

the continuous-time service network design problem. The algorithm can handle larger instances

and can generate high-quality solutions more quickly than the current state-of-the-art approach of

Boland et al. (2017).

The algorithm can be easily modified to support extensions to CTSNDP, for example allowing

freight splitting and in-tree loading. Freight splitting allows for increased utilization by breaking

commodities into smaller pieces (it can also be used as a modeling technique to reduce the problem

size – by aggregating commodities with common origin/destination). In-tree loading simplifies

operational processes at a terminal, by requiring freight with common ultimate destination cross-

docked at a terminal to travel along the same path; in this way terminal operators need only look

at the ultimate destination in order to decide which next destination a shipment is loaded to.

Other extensions appear to be more challenging. In particular how to accommodate holding

costs, i.e., it is no longer free to hold freight at a terminal to consolidate it on a later dispatch,

and terminal capacities, i.e., the number of dispatches that can occur per hour is limited. These

extensions are of interest for future research.
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Appendix. Proofs

Proof of Proposition 1. From known results (Ahuja, Magnanti, and Orlin 1993, 103-104) the inequalities

(4) are feasible, if and only if the constraint graph ĜS(S) does not have a positive length cycle. By definition,

the flat-solution S is implementable if and only if (3) is feasible. Hence it is sufficient to show that the

inequalities (3) are equivalent to (4).

Observe that (4) is simply (3) shifted by D: for (3) ⇒ (4) simply take D = D′ = 0. For (3) ⇐ (4), let

{(t̂kn),D,D′} be a solution of (4), and let tkn = t̂kn−D. Then clearly (tkn) satisfies (3), and the only constraint

that does not follow immediately is given by

t̂k
dk
−D′ ≤ lk

tk
dk

+D−D′ ≤ lk
tk
dk
≤ lk +D′−D,

and D′−D≤ 0 implies tk
dk
≤ lk. �

We next prove the following useful lemma:

Lemma 5. For any α∈ T n and (n, t, t′)∈NT , if α< t′ then α≤ t.

Proof. Let i, j ∈ Z be such that α is the ith time point in T n and t′ is the jth, where T n is ordered from

smallest to largest time. Then t is the (j− 1)th time point in T n by construction of NT . Thus α< t′ implies

i < j, and thus i≤ j− 1. Hence α≤ t. �

Proof of Lemma 4. Consider the induction hypothesis

H(i) : ti ≥ ek + τ
(
P̂�(ni,ti,t

′
i)
)
, for some i= 1, . . . , r− 1.

It is true by assumption for i = 1, and since τ(P̂�(n1,t1,t
′
1)) = 0. Suppose that H(i) is true for

some i ∈ {1, . . . , r − 1}. Recall that AKT =
⋃
k∈KAkT , then observe that there exists k′ ∈ K such that

((ni, ti, t
′
i), (ni+1, ti+1, t

′
i+1))∈Ak′T , so by J5K on Ak′T

t′i+1 > ti + τ(ni,ni+1)

≥ ek + τ(P̂�(ni,ti,t
′
i)) + τ(ni,ni+1)

= ek + τ(P̂�(ni+1,ti+1,t
′
i+1))

By the above lemma, and since (ni+1, e
k + τ(P̂�(ni+1,ti+1,t

′
i+1)))∈ T it follows that

ti+1 ≥ ek + τ(P̂�(ni+1,ti+1,t
′
i+1)),

and H(i) holds. �
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Proof of Theorem 1. First observe that since the flat-solution S is non-implementable and the solution

graph GS(S) is acyclic, the path P , defined in the theorem, exists. Specifically, from Lemma 2 there exists

a simple path, P , in GS(S), from tk1

ok1
to tk2

dk2
for some k1, k2 ∈K, such that ek1 + ρ(P )> lk2 . Moreover, this

path can always be chosen without any holding time, that is, for all tkn in P : Etkn = ek1 + ρ(P�tkn). To see

this, walk up the graph from tk2

dk2
following the arg maxk∈κEtkn commodity at each consolidation.

Suppose that S is representable in GKT ′ , then from Observation 1 there exists the simple path P̂ in (NT ′ ,AKT ′)

that corresponds to P , in particular having

a= ((n|P̂ |−1, t|P̂ |−1, t
′
|P̂ |−1

), (dk2 , t|P̂ |, t
′
|P̂ |))∈A

k2
T ′ ,

and with

τ(P̂�i) = ρ(P�tkn),

for all i= (n, t, t′), the node-interval corresponding with a visit to tkn. Observe that the path P may visit the

node n∈N with multiple commodities at different times, but a single commodity will visit n at most once.

Clearly then i has a unique correspondence to tkn, and hence

Etkn = ek1 + τ(P�i).

Thus by Lemma 4 on P̂ ,

t|P̂ | ≥ ek1 + τ(P̂ ) = ek1 + ρ(P )> lk2 ,

but this violates J4K on Ak2
T ′ . Thus a /∈Ak2

T ′ , and there does not exist path P̂ corresponding to P , hence by

Observation 2, S is not representable in GKT ′ . �

Proof of Theorem 2. Suppose that S is representable in GKT ′ , then by Observation 1 there exists a timed-path

in GkT ′ corresponding to the flat-path Qk; more specifically, there exist timed-arcs

((n1, t1, t
′
1), (n2, t2, t

′
2)), ((n2, t̂2, t̂

′
2), (n3, t3, t

′
3))∈AkT ′ ,

with t2 ≤ t̂2. Then using Lemma 5, with (n2, e
k + γ(ok, n1) + τ(n1,n2))∈ T ′, and J3K on AkT ′ implies

ek + γ(ok, n1) + τ(n1,n2) ≤ t2,

and J4K on AkT ′ requires

t̂2 + τ(n2,n3) + γ(n3, d
k)≤ lk,

but this implies

ek + γ(ok, n1) + τ(n1,n2) + τ(n2,n3) + γ(n3, d
k)≤ lk.

This contradicts the assumption, so at least one of the above timed-arcs cannot exist. Thus the timed-path

cannot exist, and by Observation 2, S is not representable in GKT ′ . �
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Proof of Theorem 3. Suppose that S is representable in GKT ′ , then by Observation 1 there exists timed-paths
in GKT ′ corresponding to Qk1 , and Qk2 ; more specifically, there exist timed-arc a = ((n1, t1, t

′
1), (n2, t2, t

′
2)),

such that a∈Ak1
T ′ , and a∈Ak2

T ′ . Observe that J4K on Ak2
T ′ requires

t2 + γ(n2, d
k2)≤ lk2 ,

and J3K on Ak1
T ′ requires

ek1 + γ(ok1 , n1) + τ(n1,n2) < t
′
2.

By assumption (n2, e
k1 + γ(ok1 , n1) + τ(n1,n2))∈ T ′, so Lemma 5 gives

ek1 + γ(ok1 , n1) + τ(n1,n2) ≤ t2,
but this implies that

ek1 + γ(ok1 , n1) + τ(n1,n2) + γ(n2, d
k2)≤ lk2 .

Since this contradicts assumptions, then a /∈Ak1
T ′ , or a /∈Ak2

T ′ , and hence the timed-path cannot exist, and
by Observation 2, S is not a representable solution in GKT ′ . �

Proof of Theorem 4. Suppose S is representable in GKT ′ , then from Observation 1 there exists the simple

path P̂ and simple cycle
˚̂
P in (NT ′ ,AKT ′) that corresponds to P and P̊ respectively. Specifically, there exists

arcs
((nj−1, tj−1, t

′
j−1), (n′j , tj , t

′
j)) = P̂(j) ∈Ak1

T ′ , for j = 1, . . . , |P̂ |, and

((n|P̂ |+j′ , t|P̂ |+j′ , t
′
|P̂ |+j′), (n

′
|P̂ |+j′+1

, t|P̂ |+j′+1, t
′
|P̂ |+j′+1

)) =
˚̂
P (j′+1) ∈AKT ′ for j′ = 0, . . . , |˚̂P |,

such that (n|P̂ |, t|P̂ |, t
′
|P̂ |) = (n′

|P̂ |+|˚̂P |+1
, t
|P̂ |+|˚̂P |+1

, t′
|P̂ |+|˚̂P |+1

), and
˚̂
P (1) ∈Ak1

T ′ .

Observe that τ(P̂�i) = ρ(P�tkn) for all i = (n, t, t′), that is, the node-interval in P̂ uniquely corresponding
with a visit to tkn, so by Lemma 4 on P̂ :

t|P̂ | ≥ ek1 + τ(P̂ ) = ek1 + ρ(P ).

Assume for a moment that
˚̂
P travels around the corresponding cycle P̊ as early as possible, that is, without

waiting at a node longer than necessary. Let r = |P̊ |, let η1, ηr ∈ N be the nodes visited by P̊(1) and P̊(r)

respectively, and let i0r , i
1
1 ∈ NT ′ be the node-interval corresponding to the first visit to ηr, and the first

return to η1 in
˚̂
P respectively. Observe that joining P and P̊�P̊(r) yields a simple path, and so by Lemma 4

on P̂ ∪ ˚̂
P�i0r :

t
|P̂ |+|˚̂P�i0r |

≥ ek1 + τ(P̂ ) + τ(
˚̂
P�i0r )

= ek1 + ρ(P ) + ρ(P̊�P̊(r)).

Following from the proof in Lemma 4, there exists k′ ∈K such that

((ηr, ts1−1, t
′
s1−1), (η1, ts1 , t

′
s1))∈Ak′T ′ ∩ ˚̂

P ,

with s1 = |P̂ |+ |˚̂P�i11 |. By J5K on Ak′T ′

t′s1 > ts1−1 + τ(ηr,η1)

≥ ek1 + ρ(P ) + ρ(P̊�P̊(r)) + τ(ηr,η1)

= ek1 + ρ(P ) + ρ(P̊ ).

By Lemma 5, and since (η1, e
k1 + ρ(P ) + ρ(P̊ ))∈ T ′ it follows that

ts1 ≥ ek1 + ρ(P ) + ρ(P̊ ).

Thus the first return to η1, P̂ ∪ ˚̂
P�i11 , is a simple path in (NT ′ ,AKT ′), i.e., not a cycle. Intuitively then, for

m≤ m̊ walks around the P̊ cycle, the corresponding P̂ ∪ ˚̂
P�im1 is also a simple path in (NT ′ ,AKT ′) with

tsm ≥ ek1 + τ(P̂ ) + τ(
˚̂
P�im1 )

= ek1 + ρ(P ) +mρ(P̊ ),
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and sm = |P̂ |+ |˚̂P�im1 |. Consider now that
˚̂
P can delay its walk around the corresponding P̊ cycle by waiting,

say, at time point (η, t)∈ T ′ with t≥ t|P̂ |. By definition of T ′, each delay is in increments of at most length

ρ(P̊ ) when t≤ ek1 +ρ(P )+(m̊−1)ρ(P̊ ), and a dispatch from η at time t+ρ(P̊ ), will arrive to the subsequent
node η′ at time t+ ρ(P̊ ) + τ(η,η′), i.e., this time spent waiting is not lost. Delays of a size smaller than ρ(P̊ )
indicate a more refined discretization and can be ignored. Thus we can interpret the m≤ m̊ above as either

walks around the P̊ cycle, or delays at a node. In either case, the choice of m̊ means that P̂ ∪ ˚̂
P�im̊1 is a simple

path in (NT ′ ,AKT ′), and, for
˚̂
P to complete its cycle, it first requires a dispatch from n|P̂ | after tsm̊ . It should

be clear from J5K and Lemma 5 that t
|P̂ |+|˚̂P |+1

≥ tsm̊ . But tsm̊ > lk1 violates J4K on Ak1
T ′ , thus

˚̂
P (1) /∈ Ak1

T ′ ,

and so there exists no cycle
˚̂
P corresponding to P̊ . Hence by Observation 2, S is not representable in GKT ′ . �
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