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Abstract—Machine Learning as a Service on cloud not only
provides a solution to scale demanding workloads, but also
allows broader accessibility for the utilization of trained deep
neural networks. For example, in the medical field, cloud-based
deep-learning assisted diagnoses can be life-saving, especially in
developing areas where experienced doctors and domain expertise
are lacking. However, preserving end-users’ data privacy while
using cloud service for deep learning is a challenge. Some recent
works based on fully homomorphic encryption have enabled
neural-network predictions on encrypted input data. In this
paper, we further extend the capability of privacy preserving
deep neural network inference, through a joint decision made
by multiple deep neural network models on encrypted data,
to address bias caused by unbalanced local training datasets.
In particular, we design and implement a privacy preserving
prediction method through an ensemble of convolutional neural
networks. The extensive experiment results show that our method
can achieve higher accuracy compared to individual models, and
preserve the user data privacy at the same level. We also verify
the time efficiency of our implementation.

Index Terms—Deep learning, Privacy, Convolutional Neural
Networks Ensemble, Fully Homomorphic Encryption

I. INTRODUCTION

Deep learning provides powerful data analysis that can
automatically extract representative features. It has the capac-
ity to transform many aspects of our lives, especially when
deep learning services from cloud can be accessible by end-
users world-wide. In the medical field, deep learning assisted
diagnoses can be life-saving, for example, in developing areas
where experienced doctors and domain expertise are lacking.
However, popular deep learning algorithms were typically
developed without a thorough consideration of data security
and privacy issues. For sensitive data such as medical records,
privacy issues have become a critical challenge in harvesting
the promising benefits of deep learning [1].

For deep learning data privacy issues, due to the complexity
of deep learning models and the high volume of training and
testing data, traditional data security solutions fall short in
efficiency, flexibility, and scalability [2], [3]. Recently, there
have been some emerging works in secure deep learning as a
service on the cloud, e.g., [4]-[6]. These works enable privacy
preserving deep model predictions based on encrypted input
data uploaded by user, which returns the same prediction result
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Fig. 1. Architecture of Privacy Preserving Deep Neural Network as a
Service on Cloud. The end-user encrypts their private data (such as medical
images) and uploads it to the cloud. Prediction based on the encrypted data
is performed on cloud using the deep learning model. Cloud only holds the
end-user’s public key, and thus cannot decrypt the input or any computation
result. The encrypted prediction result returned is decrypted by the end-user.

as with cleartext input. We follow the procedure framework
in previous works as shown in Figure 1. Fully homomorphic
encryption [7] is employed here to allow deep learning mod-
els to perform predictions based on encrypted data, without
knowledge of the raw input data and the prediction result.

In this paper, we advance the encrypted deep learning
inference technique one step further, by enabling encrypted
deep learning ensemble models. In the real world, when
creating artificial neural networks, multiple models are often
created for two reasons: 1) data is distributed at different
locations or owned by different parties; 2) even when the data
is owned by the same party, creating multiple models and
combining them often produces a desired output as opposed to
creating just one model, to achieve low-bias and low-variance
[8]. It is important to allow a deep network ensemble model
to perform predictions over encrypted data, which addresses
the realistic data distribution issue, enabling better prediction
results and preserving end-users’ data privacy.

A. Contributions

Our particular contributions in this paper are as listed below.

o We design a privacy preserving inference algorithm with
Convolutional Neural Network (CNN) Ensemble. To the
best of our knowledge, it is the first work that enables
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deep neural network ensemble prediction on encrypted
data.

« We conduct analysis on the accuracy, security and effi-
ciency of our algorithm.

o« We implement and test our encrypted CNN ensemble
model, and perform extensive experiments using MNIST
dataset [9]. Our evaluation results verify the correctness
of our algorithm in maintaining the test accuracy advan-
tage of ensemble compared to individual models. We also
demonstrate that our algorithm is time efficient.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III covers the preliminaries
of this research. Section IV introduces the system model and
security model of our privacy preserving inference with CNN
ensemble. Section V presents the detailed algorithm built
for this system, and the analysis of security, efficiency and
correctness of the algorithm. Lastly, in our Sections VI and
VII, we discuss the system implementation and experiment
results on accuracy and efficiency.

II. RELATED WORKS

In the context of sensitive data protection, such as mod-
ern medical data, different differential privacy techniques
for anonymization, such as k-anonymity, l-diversity, and t-
closeness, are employed to protect the socio-demographic and
private data supplied by patients. However, studies have shown
how machine learning techniques can be used to re-identify a
specific person with high accuracy even after de-identification
[3]. Thus, enhanced privacy-preserving techniques are neces-
sary.

Within the intersection of privacy and deep learning, the
existing work on privacy preserving deep neural network
prediction can be classified into two types: fully homomor-
phic evaluation of deep neural networks [5], [10]-[12], and
multi-party computation (MPC)-based approaches (utilizing
additively homomorphic encryptions) [13]-[16]. The first type
can be applied in the cloud setting while the MPC-based
approaches are usually for two-party scenarios. The goal of a
privacy-preserving model is to prevent any user from gaining
knowledge regarding the model (ie. training data used) and
the model from gaining knowledge of the test inputs. This
proposed work belongs to the first category, e.g., making
predictions on cloud-based encrypted neural network models
given an encrypted test data (image).

Other works have built on top of CryptoNets to implement
speedup by employing sparse representation and minimizing
overhead for encryption [6]. Other researchers have also
explored the limits of CryptoNets’ architecture, while still
enabling inference and improving the latency of the model
[17]. Lou et. al. use a Leveled-HE (LHE) approach over Torus
in conjunction with ReLU activations to avoid bootstrap over-
heads while minimizing multiplicative overhead [18]. While
previous works, including CryptoNets, use homomorphic en-
cryption to solve the issue of data privacy [5], the difference
between our proposed work and the existing work is that we
are using the homomorphic crypto-system BGN, which has not

been applied before, for its efficiency and capacity to integrate
GPU acceleration.

III. PRELIMINARIES
A. Fully Homomorphic Encryption

In cryptosystems, homomorphic schemes allow for arith-
metic operations (i.e., addition and/or multiplication) on en-
crypted data. A cryptosystem is deemed multiplicatively ho-
momorphic: if given two ciphertexts Encrypt(pk,a) and
Encrypt(pk,b), the product of the two ciphertexts equals
Encrypt(pk,a = b). Similarly, it is additively homomorphic
if there is a way to calculate Encrypt(pk,a-+b) based on the
ciphertexts of a and b, without decrypting any message [7]. A
cryptosystem is called Fully Homomorphic if it satisfies both
conditions.

B. Encryption Scheme

Since the first solution for Fully Homomorphic Encryption
(FHE) was proposed by Gentry [19], there have been many
other FHE schemes introduced in the field. In this paper, we
use the Brakerski/Fan-Vercauteren (BFV) scheme, a lattice-
based cryptographic scheme dependent on the Ring Learning
With Errors problem [20].

In the BFV scheme, plaintexts are elements of the ring Ry,
and ciphertexts are elements of the ring R, x R, where I?; =
Zy|z]/(z™ + 1), Ry = Zg[z]/ (2™ + 1), with positive integers
g > t and n a power of 2. Z, is the set of polynomials
with integer coefficient in range [0,¢ — 1). R, is the set of
all polynomials of degree at most is n — 1, with coefficients
integers modulo q. Z; and R; are defined in the similar way.

To generate public-private key pair (pk, sk) for the BFV
scheme, sample s < U3, a <« U;, e < X", where Uy
denotes a uniform distribution on ZN[—k/2, k/2), x denotes a
narrow discrete Gaussian error distribution, and from the given
distributions n coefficients are sampled. s, a, e are considered
as elements of R,. We let pk = ([—(as + €)]4,a), sk = s,
where [-], denotes coefficient-wise reduction modulo q.

To encrypt a plaintext m € R; with public key pk =
(po, p1), create

c = ([la/tIm + pou + e1]q, [pru + e2]q)

where u < U3, e1,e2 < x". The corresponding decryption
formula for ciphertext ¢ = (cp, ¢1) is

m = Lg(co +c19) )t

where |-] denotes rounding to the nearest integer.

For two ciphertexts ¢ = (cg,¢1) and ¢ = (¢, c}), c+ ¢ =
([eo + chlas le1 + 4a) = ([la/t](m + m") + polu + ') +
e1+e€l]q, [P (u+u') 4+ ea +eh),), which decrypts to m +m'.
For multiplicatively homomorphic property, we refer readers
to [21] for more details.

IV. SYSTEM OVERVIEW

In this section, we describe the overall structure of our work
and the security model that our security analysis is based on.
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Fig. 2. System Model of Inference based on Encrypted CNN ensemble

A. System Model

In the system, we have three types of entities, i.e., 1)
End-users who holds the raw input data and would like to
make predictions using the cloud ensemble service; 2) Cloud
Service Platform (CSP) who owns multiple trained neural
networks built based on different cleartext local datasets; 3)
Certificate Authority who manages the key pairs for the fully
homomorphic encryption scheme. It is assumed that the cloud
platform has the end-user’s public key, and only the end-user
has their own private key.

Figure 2 shows the overall structure of our privacy pre-
serving inference based on encrypted CNN ensemble. End-
users first encrypt their data using the fully homomorphic
encryption public key and send the ciphertext to the cloud.
Then at the CSP, our privacy preserving CNN ensemble will
take the ciphertext as input and return the prediction result in
the ciphertext space to the end-user. Finally, end-user decrypts
it and obtains the clear-text inference result based on the
ensemble network. In Figure 2, we illustrate an example of
a CNN ensemble with three models on encrypted input.

B. Security Model

In our system, we assume that all parties, i.e., the cloud
service platform, certificate authority, and end-users are all
honest but curious; who will honestly follow the protocol but
will try to discover others’ private data as much as possible.
The parties do not fully trust each other. End-users do not
disclose private data or private key to the CSP. The data that
CSP receives and operates on are all encrypted. We will show
that they can not learn the private data from the procedure
of executing the privacy preserving neural network ensemble
inference and from the encrypted intermediate results. The
deep neural network model owned by CSP are not known
by end-users.

V. PRIVACY PRESERVING INFERENCE USING
CONVOLUTIONAL NEURAL NETWORK ENSEMBLE

Among different deep neural network models, we choose
to focus on solving the user privacy issues when using the
inference service based on Convolutional Neural Networks

Algorithm 1 Inference with Encrypted CNN Ensemble

INPUT: Client holds cleartext data z, and a pair of keys
(pk, sk) for the fully homomorphic encryption scheme.
Cloud Service Provider owns multiple pre-trained models
My, Ms, ..., M,,. CSP holds client’s public key pk.

OUTPUT: Client obtains clear-text prediction result based on
the CNN ensemble on CSP.

1: Client encrypts = with a public key pk to get Enc(pk, z).

2: Enc(pk,x) is uploaded to the cloud service provider.

3. Enc(pk, x) propagrates through the distinct CNN models.
Our privacy preserving models produces a set of predic-
tions in ciphertext space P; = M;.predict(Enc(pk, x)),
forl1 <i<n.

4: CSP consolidates the predictions in the ciphertext space
Ensemble(Py, Ps, ..., Py).

5. Ensemble(Py, Py, ..., P,,) is returned back to the client.

6: The client decrypts Ensemble(P) with a private
key sk to obtain the clear-text ensemble prediction
Dec(sk, Ensemble(Py, Py, ..., Py)).

due to its popularity and wide application in classifying
images. In this section, we present the details of our privacy
preserving inference algorithm based on CNN ensemble. In
addition, we provide some theoretical analysis on security and
communication overhead.

A. Algorithm Design

The inference procedure with our CNN ensemble based
on encrypted input is summarized in Algorithm 1. The main
idea of this algorithm is to utilize the fully homomoprhic
encryption scheme, e.g., BFV, to allow users to encrypt their
image before sending it to the cloud. On the cloud, there are
multiple existing pre-trained models based on different training
datasets.

The goal of our algorithm is to design an evaluation function
in the ciphertext domain for CNN ensemble, which takes in
the encrypted image as input test data for each pretrained
model. The ciphertext ensemble output can be decrypted
by the user into the correct cleartext inference result. The
challenge is to preserve the same properties in the ciphertext
domain as in the cleartext domain for both the feed-forward
inference process of individual models and the ensemble stage.
Individual CNN feed-forward process can be viewed as a
sequence of linear and nonlinear operations. Based on Cryp-
toNet [5], we are able to find appropriate linear or low-degree
polynomial functions to replace some nonlinear operations, so
that it is easy to implement in the ciphertext domain with
additive and multiplicative homomorphic properties. Then for
each model M; in our algorithm, we can guarantee that
M;.predict(Enc(pk,x)) = Enc(M;.predict(pk,z)). More
details for individual models can be found in Section VI. The
ensemble method we introduce in this Section is based on
the simple idea of average ensemble in order to demonstrate
the viability of the structure of our work. This work can be

Authorized licensed use limited to: CAL POLY POMONA. Downloaded on May 07,2021 at 06:30:11 UTC from IEEE Xplore. Restrictions apply.



extended with other linear or low degree polynomial ensemble
models [22].

B. Correctness Analysis

The correctness of our algorithm is guaranteed by homo-
morphic properties of the encryption scheme. As mentioned
above, each model preserves the correctness of prediction
results in the ciphertext space, i.e., equal to cleartext predic-
tion result after decryption. Furthermore, since our ensemble
method is linear, the correctness of ensemble step can also be
guaranteed. The formal proof sketch is shown as below.

Dec(sk, Ensemble(Py, Py, ..., Py))
=Dec(sk, Z P;/n)
i=1

S Mi.predict(Enc(pk, x)))
n

S, Enc(pk, M;.predict(z)) )

=Dec (sk,

n

=Dec (sk, Enc (pk, Z AWM(@))
n

i=1

=Dec (Sk‘,

B i M;.predict(x)
N i=1 "

C. Security Analysis

Here we provide a brief security analysis of our privacy
preserving CNN ensemble against semi-honest CSP. In Algo-
rithm 1, the message that CSP receives is the encrypted image
data. CSP cannot learn the plaintext z, i.e., the pixel values of
original image, due to the security of BFV which is based on
the difficulty of solving the Ring Learning with Error (RLWE)
problem [23].

D. Efficiency Analysis

The messages transmitted between the user and CSP are
Enc(pk,z) and Ensemble(Py, Py, ..., P,). If the dimension
of single grayscale image x is m X m, the size of Enc(pk, x)
is m? x n bytes, where n is determined by the key setup
parameters in BFV, and in our implementation, n = 65544 x 8.
The size of Ensemble(Py, Ps, ..., P,) is K x n, where K is
the number of potential classes in the prediction results, and
in our implementation, K = 10. We will evaluate the time
efficiency of our work in Section VIIL.

VI. IMPLEMENTATION

In our implementation, we use C#, Python, and Keras to
create our neural network which similarly follows the design
set forth in CryptoNet. With Python and Keras, we reconstruct
the Keras equivalent of the CryptoNet neural network. In doing
so, we are able to train our model in Keras and transfer
our weights and biases into the CryptoNet. We also use C#
to integrate the logic to produce the ensemble prediction in
CryptoNet and use its integration of Microsoft SEAL for
homomorphic encryption functionalities.

More specifically, the CNN Ensemble consists of 3 models
each of which has the architecture defined in Table I and is
trained with 3 distinct distributions of Keras’s MNIST dataset
and validated with a testing MNIST dataset as described in
Section VII. However, before we can train the dataset with
the architecture, the input shape must be padded with zeros at
the bottom row and right column to transform the original 28
x 28 shape to 29 x 29.

TABLE I
KERAS MODEL ARCHITECTURE

# Layer Parameters Output Shape
1 Convolution (5x95) size, (2,2) strides, 5 maps 13x13x5
2 Square Activation - 13x13x5
3 Flatten - 845
4 Dense 100 outputs 100
5 Square Activation - 100
6 Dense 10 outputs 10
7 | Softmax Activation 10 outputs 10

After training, the weights and biases are broken down into
the 3 corresponding blocks defined in the CryptoNet design
as shown in Table II. Additionally, we can add the activation
function between each block without affecting the weights and
biases.

TABLE 11
FEEDFORWARD BLOCKS

Block
Convolution Block
Square Activation

Dense Block
Square Activation
Dense Block

W N = H

After the segmentation, we append the weights and biases
back together and repeat this process 3 times, one for each of
the 3 models in our CNN Ensemble. We integrate these 3 sets
of weight and bias .csv files into CryptoNet’s input weights
and biases such that the input dataset can propagate through
3 different models and produce an average of the 3 resulting
predictions.

VII. EXPERIMENTS

In this section, our experiment demonstrates the accuracy
and efficiency of our encrypted CNN ensemble algorithm. We
use an 64 bit Intel Core 19-9900k @ 3.6 GHz with 32 GB of
RAM and Nividia GeForce RTx 2080 Ti as the base conditions
to run our experiments.

A. Experiment Setup

To cover different data distribution scenarios, we use 3
different training data split methods to build individual CNN
models in Keras, i.e., regular data split, likewise data split
and random data split. Using the regular data split method,
majority of digit "0","1","2" images are grouped to train
individual Model 1, most "3","4","5" images for Model 2,
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Fig. 4. Test Accuracy of Encrypted CNN Ensemble Compared with Individual Models Trained Based on 3 Data Split Methods.

and majority of "6","7","8","9" images for Model 3. In the
second method, we group most of images for digits which look
similar together to train one individual model. The particular
partition is ({"0","6","8"},{"2","3","5","7"},{"1","4","9"}). In
random data split method, we randomly group images with
different labels to train individual CNN models. For each data
split method, we have 6 different settings which vary in the
range of percentage for each label. The detailed compositions
of 6 different settings for each training data split method are
illustrated in Figure 3. To measure the accuracy of our trained
models, we use 10k images.

B. Evaluation of Accuracy

We evaluate the test accuracy of our encrypted CNN en-
semble using different pre-trained models as described in the
experiment setup. In this subsection, we focus on comparing
the accuracy of encrypted ensemble to those of the individual
models in order to show the advantage our work over existing
secure CNN models. See Figure 4(a), 4(b), and 4(c) for a
summary of results.

In Figure 4, we observe that the test accuracy levels of our
encrypted CNN ensemble models across different settings are
consistently high, in the range of 96%-97%. In addition, except
one setting using regular data split method, the ensemble
produces a higher test accuracy than individual CNN models.
This implies that building ensembles based on multiple net-

works has its strengths in achieving lower bias and thus higher
test accuracy. Our algorithm enables end-users to utilize more
powerful deep learning models in a privacy preserving manner.

C. Evaluation of Efficiency

As the computing time and resources are an important factor
in deep learning, we evaluate the efficiency of our algorithm.
First we breakdown the run-time for the individual CNN model
and measure the time it takes to complete each layer for
each batch in the model. The result is shown in Table III.
It can be noted that we took out the StartTimingLayer and
StopTimingLayer as both times are essentially zero and have
minimal impact to our evaluation of time. Based on our differ-
ent test settings as described in Section VII A, we average our
overall runtime per layer per batch and conclude that the most
time consuming layers in the encrypted CNN model are the
Activation Layer, the Dense Layer and Convolutional Layer,
which contain a significant number of ciphertext addition and
multiplication operations.

In addition, we investigate how increasing the input size
would affect the total run-time of predicting the labels for the
data in the experiment. By controlling the input size on the
data that we use for the experiment, our aim is to see if there
is a linear relationship between elapsed time and input size.

From Figure 5 we can see that the total elapsed time
increases roughly as expected, i.e., linearly to input size.
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TABLE III
AVERAGE TIME ELAPSED IN SECONDS PER LAYER

Layer | Seconds
EncryptedLayer 1.126
ConverLayerl 2.930
ActivationLayer2 6.308
DenseLayer3 6.853
ActivationLayer4 0.741
DenseLayer5 0.117

Elapsed Time of Privacy Perserving
Ensemblevs Input Size
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Fig. 5. Elapsed Time with Different Input Sizes

Overall, our algorithm can efficiently make inferences for
50,000 images in less than 7 minutes.

VIII. CONCLUSION

This work advances the fully homomorphic encryption
based secure deep learning technique by enabling encrypted
CNN ensembles. In particular, we present a privacy preserving
CNN ensemble algorithm which takes encrypted images as in-
put and produces encrypted prediction results based on average
ensemble of multiple pre-trained CNN models. Our encrypted
CNN ensemble model preserves inference correctness (i.e.,
same prediction result as using cleartext input) and user data
privacy. Our experiments on MNIST have verified the accuracy
and efficiency of our algorithm.
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