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ABSTRACT
Nowadays deep neural networks have been applied widely in many
applications of computer vision including medical diagnosis and
self-driving cars. However, deep neural networks are threatened by
adversarial examples usually in which image pixels were perturbed
unnoticeable to humans but enough to fool the deep networks.
Compared to 2D image adversarial examples, 3D adversarial mod-
els are less invasive in the process of attacks, and thus more realistic.
There have been many research works on generating 3D adversarial
examples. In this paper, we study the robustness of 3D adversarial
attacks when the victim camera is placed at different viewpoints.
In particular, we find a method to create 3D adversarial examples
that can achieve 100% attack success rate from all viewpoints with
any integer spherical coordinates. Our method is simple as we only
perturb the texture space. We create 3D models with realistic tex-
tures using 3D reconstruction from multiple uncalibrated images.
With the help of a differentiable renderer, we then apply gradient
based optimization to compute texture perturbations based on a
set of rendered images, i.e., training dataset. Our extensive experi-
ments show that even only including 1% of all possible rendered
images in training, we can still achieve 99.9% attack success rate
with the trained texture perturbations. Furthermore, our thorough
experiments show high transferability of the multiview robustness
of our 3D adversraial attacks across various state-of-the-art deep
neural network models.
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1 INTRODUCTION
As more applications become reliant on computer vision systems
in today’s world, robustness in machine learning algorithms is also
becoming more critical. For example, convolutional neural network
(CNN) based image recognition [15] is foretold to be used in life-
threatening contexts, ranging from self-driving cars [12] to disease
detection through X-rays [3, 5]. However, deep neural networks
are facing the threat by adversarial examples which have human-
vision-unnoticeable perturbations to original images, and lead to
incorrect predictions [31].

Adversarial examples are well explored in the 2D realm, but with
secured cameras, it is unrealistic for attackers to manipulate the
images before being sent to the deep neural network models locally.
On the other hand, realistic physical attacks with 3D adversarial
examples are posing a bigger challenge to the robustness of deep
neural network models. In general, a change in the physical param-
eters of an object does not necessarily correspond to a local change
in the rendered images. Consequently, it is difficult to calculate
the physical parameters that will achieve high attack success rate
especially when an adversarial object could be viewed by the victim
camera frommany different viewpoints. There are some prior works
on generating 3D adversarial examples and have made significant
progress in obtaining good attack success rates[2, 6, 34, 37].

A successful approach to perturb the physical parameters in
generating 3D adversarial examples is to use gradient based opti-
mization [2, 6, 34, 37]. It applies loss on the network output and
propagates the gradient from network prediction to the physical
properties, e.g., shape or texture of the mesh, with the help of a
differentiable renderer. It was found that the attack success rate
depends on the range of viewpoints where the victim camera can
be placed[34]. Given the same number of victim image instances
used in optimization (training), when the range of viewpoints in-
creases, the attack success rate of the adversarial 3D model drops.
However, it is not known yet whether a 3D adversarial model with
100% attack success rate from all possible viewpoints could ever be
generated against current popular deep neural network models. The
next question to ask is if such 3D adversarial models exist, how many
training images are at least needed in the process of optimization.
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In this paper, we investigate the above two questions and provide
insights into multiview attack robustness of 3D adversarial exam-
ples. In particular, we propose a method to create 3D adversarial
models that can achieve 100% attack success rate from viewpoints
with any integer spherical coordinates. Those integer spherical co-
ordinates constitute a dense sampling of the viewing sphere around
an object, which ensures a statistically high confidence level in
the success rate achieved by the proposed method. We apply the
method and generate 3D adversarial examples for 5 different realis-
tic 3D objects. One challenge is to ensure the victim camera can be
fooled from any viewpoint and at the same time make the 3D ad-
versarial example realistic. Realistic models are important because
their existence is less conspicuous, matching real-world objects and
the environment around them in detail and thus less noticeable
by humans. To tackle this challenge, our method only perturbs
the texture, and the original 3D models with realistic textures are
created using 3D reconstruction from multiple uncalibrated images.
Fast Gradient Sign Method based training is applied to compute the
texture perturbations that maximize the loss between the prediction
of the rendered images and the correct class.

We further investigate in the minimum number of training im-
ages required to obtain such a robust 3D adversarial example. We
find that for victim images uniformly distributed at different per-
spectives, our method only needs 1% of the total in the process of
optimization, to achieve 99.9% attack success rate. This result is
encouraging because it means with less computation resource and
time restrictions, robust 3D adversarial examples can be generated
and studied. We also perform black-box attacks on 12 popular deep
neural networks. Results show that there is a high transferability
of perturbations of our method.

Our contributions in this paper are summarized as follows. 1)
We generate 3D adversarial models that can achieve 100% attack
success rate from viewpoints all-around with any integer spherical
coordinates. We find that even when we only use 1% of all pos-
sible victim images from different viewpoints in training, we can
still achieve 99.9% attack success rate. 2) We create realistic high
definition adversarial models that can fool state-of-the-art deep
neural networks, by only manipulating the texture. 3) We perform
extensive tests on the robustness of our 3D adversarial attacks. We
render at all integer angles and our comprehensive test for each
model is comprised of 64800 images. It demonstrates that our attack
is robust and adversarial from most, if not all, viewpoints.

2 RELATEDWORK
There has been some significant research in adversarial machine
learning in the 2D realm [18, 22, 25, 28, 31]. Goodfellow et al. devel-
oped the popular Fast Gradient Sign Method (FGSM) attack, which
alters an image in a fixed step size towards the direction of most
likely misclassification [8]. Due to its speed and effectiveness, it is
now a popular choice in adversarial machine learning, and in our
research we bring its iterative version into the 3D realm. Kurakin
et al. [16] compared the FGSM attack against iterative and targeted
iterative variations. Xiao et al. developed adversarial examples us-
ing generative adversarial networks [33]. Black-box attacks are
more difficult to perform since they loosen the assumption that

adversaries have knowledge of the target neural network archi-
tecture. Our experiments investigate black-box attacks, agreeing
with other research which has shown that classification error due
to perturbations are transferable to other models separate from
those used in training [16, 21, 26]. Kurakin et al. [16] focused on the
transferability of noise resultant from the FGSM attack. Papernot
et al. [24] approached the black-box attack by learning an explicit
substitute of their target deep neural network.

Regarding the 3D realm, Eykholt et al. [6] and Brown et al. [4]
were able to develop robust physical attacks using stickers and
patches. They did not directly modify their subject’s texture, which
is the focus of our research. Athalye et al. [2] has 3D printed ad-
versarial models using a method called "Expectation Over Trans-
formation," which maximizes the likelihood of a target class for
the expectation of various transformations on an image. Zeng et
al. [37] has shown that 3D adversarial models can be constructed
using both differentiable and non-differentiable renderers. Their
method using the differentiable renderer alters multiple physical
parameters, thus requiring more degrees of freedom. Furthermore,
their objective function included only one rendering and hence
only one perspective which remained adversarial. Liu et al. [20]
has developed physical adversaries using differentiable renderers,
but their attack approach focuses on altering lighting. Xiao et al.
[34] were also able to develop adversarial examples using a differ-
entiable renderer and focused on altering the mesh. Their approach
was effective on models with "rich shape features but minimal
texture variation" [34]. Their novel approach encompasses a new
smoothing loss function, and showed promising results on black-
box attacks. Their untargeted attacks performed well on black-box
attacks under controlled rendering parameters.

Differentiable renderers are a critical component of our pipeline.
We use Neural Renderer by Kato et. al., who achieved differen-
tiability by developing an approximate gradient for the discrete
rasterization operation [14]. Other variations of developing differ-
entiable rasterization exist as well [7]. RenderNet is a deep neural
network which was trained using pixel-space loss for rendering
[23], and Li et al. developed a differentiable ray tracer [17].

3 APPROACH
3.1 Perturbation in Texture Space
The texture and mesh are the defining characteristics for 3D models.
Although there are other physical parameters like surface shading
and light scattering, our method focuses on perturbing the tex-
tures in order to show that adversaries need to control only this
one degree of freedom, to make the 3D adversarial examples less
noticeable by human eyes.

3.2 3D Model Multiview Description
In a differentiable renderer, virtual cameras can be placed from
multiple angles to render pictures of 3D objects. To describe the
multiview of 3D models, we use spherical coordinates (ρ,θ ,ϕ). The
altitude θ ranges from −90◦ to 90◦, and the azimuth ϕ ranges from
1◦ to 360◦; hence all faces of the target model are visible to the deep
learning classifier. The distance ρ from the renderer’s viewpoint to
the object is fixed such that no area is truncated for all rendered
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orientations for every rendered model. In our approach of 3D ad-
versarial attack, we measure the multiview robustness by rendering
2D images from the 3D adversarial example at all possible integer θ
and ϕ, and calculate the misclassification rate as the attack success
rate.

3.3 Gradient Based Optimization
To achieve the multiview robustness of 3D adversarial examples,
we propose to use gradient based optimization to obtain effective
texture perturbations and include rendered images at a uniformly
distributed array of angles in the training dataset. In particular,
we collect a set of rendered images from the original 3D model by
varying the altitude and azimuth with different integer values in the
defined range. We call this set of images the training dataset. This
set of images is used to calculate the gradients for the perturbation.
The testing dataset is the set of images rendered on the adversarial
model used to evaluate attack efficacy.

Given a 3D textured model X (T ) with a texture T and a differen-
tiable renderer r(•), a 2D image Y rendered from the camera ( ρ, θ ,
ϕ) can be expressed as

Y = r(X (T ), ρ,θ ,ϕ,ψ ),

where ψ denotes other rendering parameters such as light and
shading.

Denoting the output classification Z of a deep neural network
f (•) such that Z = f (Y ), for the rendered 2D image Y . If the
image was misclassified, then we disregard this rendering location
and proceed to the next coordinate location. To formalize this, let
ZCorrect be the actual ImageNet label for the 3D model that we
are using, and create this indicator function:

I(Y ) =

{
1, If f (Y ) = ZCorrect

0, Otherwise

Optimization Objective. For correctly classified images, we com-
pute the loss between the image’s output classification and 3D
object’s correct class. We use the cross entropy loss function, de-
fined as − logpY ,c , where pY ,c is the predicted probability that the
input Y is of the correct class. The loss is accumulated across the
entire training dataset, becoming

L(T ) = −
∑
Y ∈R
I(Y ) × logpY ,c (1)

whereT represents the texture of the 3Dmodel andR the training
dataset. By applying the FGSM-based attack, the texture is updated
in the direction of the gradient ∇T L(T ) such that

T = T + ϵ × siдn(∇T L(T )). (2)
The noise magnitude ϵ is assigned a small value like 0.001 each

iteration in order to find aminimumperturbation required.With the
proposed optimization, we can obtain the trained textureTper turbed
such that all rendered 2D images in the training dataset are mis-
classfied by the target deep learning model.

3.4 Training Image Dataset Size
In our approach the training dataset size is one of the most im-
portant factors because it directly affects the training time, and

may effect the attack success rate of 3D adversarial examples. Our
goal is a 100% attack success percentage from any viewpoints with
integer altitude and azimuths coordinates. In order to determine
the minimum number of training images needed to achieve our
goal, we conduct a search for this training dataset size by starting
with the largest training dataset possible and then shrinking it at a
quadratic rate.

To succinctly describe how many images and which images
are included in a dataset, we define a sampling step size p which
represents the number of integer degrees in both the azimuth and
altitude direction per image sample. For example, whenptrain = 10,
for every 10 degree change in the azimuth and for every 10 degree
change in the altitude, one rendered image is included into this
training dataset, totaling 18 × 36 = 648 images. Likewise, when
ptrain = 1, a total of 180 × 360 = 64800 images are included in the
training dataset.

We first include 64800 images in the training dataset, then 16200
images, then 7200 images, etc. and we find a tight range in which
the model remains completely adversarial from any viewpoint, as
shown in Section 4.3. The images in our datasets are all evenly
spaced, but this is not restricted by our method. If appropriate,
one can also choose to include more rendered images from some
particular angles of a 3D model than others.

3.5 Multiview Robust 3D Adversarial Example
Training

Our pseudocode summarizing the entire procedure is shown in
Algorithm 1. For an original 3D model X , our algorithm generates
an adversarial 3D example based on a deep learning model f . The
other two inputs to the function are object class ZCorrect as the
ground truth, and the sampling step sizep. Based onp we select a set
of uniformly distributed integer θ and ρ, and render the 2D images
at corresponding viewpoints. We apply FGSM-based attacks on the
textures of these 2D images until all images in the training dataset
become adversarial. After the perturbed textureT is returned in the
last step, the 3D adversarial model could be generated by mapping
perturbed texture directly to themesh faces originally frommultiple
uncalibrated images.

4 EXPERIMENTS
In this section, our experiments first demonstrate the efficacy of
only attacking in texture space to achieve the multiview robustness
of 3D adversrial models. We then investigate how many images are
needed in the training dataset to achieve 100% attack success rate,
by sweeping across different ptrain values. We show that even with
larger ptrain values (i.e. smaller training dataset) the constructed
3D adversarial model can still be robust. We extend our experiments
on multiple realistic 3D models, and finally we perform black-box
attacks and examine the transferability of noise generated by our
method among various deep learning models.

4.1 Experiment Setup
In our experiments, from multiple photographs of physical objects,
we create realistic original 3D models using photogrammetry soft-
ware such as Agisoft PhotoScan[1]. Fig. 1 shows an example of the
reconstruction process to obtain the 3D model of a running shoe.
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Algorithm 1Multiview Robust 3D Adversarial Example Training

procedure AdvTrain(X (T ), f ,ZCorrect ,p):
ϵ = 0.001
altitude_range = range(−90, 90,p)
azimuth_range = range(0, 360,p)
ρ = 2.732
while true do

for θ in altitude_range do
for ϕ in azimuth_range do

Y = r (X (T ), ρ, θ , ϕ)
Z = f (Y )
if Z == ZCorrect then

T = T + ϵ × siдn(∇T L(T ))
end

end
end
if all Z ! = Zcorrect then

Break
end

end
return the perturbed texture T ;

end

Figure 1: A couple of images taken from various viewpoints
are used to reconstruct the 3D model.

We used a differentiable Neural Renderer [14] on the 3D models
to obtain 2D victim images and form the training dataset. The
testing dataset’s sampling step is fixed at ptest = 1. It means that
we test the 3D adversarial model from all viewpoints with integer
coordinates. To reduce the number of hyperparameters, we fixed
the perturbation per iteration in Algorithm 1, ϵ , at 10−3 for all
experiments. This proves to be a sensible choice because within
certain number of iterations for all of our models, all images in all
training datasets become adversarial.

4.2 Results on Attacking in Texture Space
In this experiment, we test the efficacy of only attacking the texture
space of a 3D model of a grey running shoe. For the experiments
in this subsection we set our sampling step ptrain at 3, and we
use the Inception v3 model. Before any texture perturbation is
produced, the Inception v3 model classifies 65.06% of the testing
dataset correctly, i.e. there is a 34.94% false negative rate for the
64800 rendered images. Fig. 2 shows a map where the blue areas

indicate coordinates of correctly classified images in the testing
dataset.

Figure 2: The blue areas cover coordinates of viewpoints
from which the rendered images are classified correctly by
Inception v3.

As the computing time and resources are an important factor
of attack feasibility, we investigate how increasing the number of
iterations of Algorithm 1 on rendered 2D images in the training
dataset will affect the false negative rate on the training dataset.
The false negative rate of the 2D image classifier on the training
images reflects how many percent of the training images can fool
the classifier. Fig. 3 shows how the false negative rate on training
dataset grows with the increasing number of iterations. After only
6 iterations, more than 90% of our training images are misclassified,
and after 15 iterations all training images become adversarial. 100%
of the testing dataset becomes false negatives once the perturbations
are finished training.

Figure 3: The effect on the number of iterations of the I-
FGSM on the percentage of false negatives for the training
dataset

After we finish training, i.e., all 2D images in the training dataset
are misclassified, we reconstruct the 3D adversarial model using the
perturbed images. Fig. 4 shows renderings of the model without the
texture perturbations, with the perturbations, and the perturbations
themselves once noise training is finished. As we can see in the
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figure, the difference between (c) Model with perturbation and (a)
Model without perturbations is not noticeable by humans’ eyes.

Figure 4: Renderings of a running shoe at (ϕ,θ ) = (30◦, 270◦)

4.3 Results on Different Sampling Ratios
Continuing with the grey running shoe and Inception v3 model,
in this subsection, we investigate the effect of different sampling
ratios in training dataset on themultiview attack success rate. In this
experiment, we render 2D images from the 3D adversarial model at
all viewpoints with integer altitude and azimuth coordinates, and
calculate the percentage of rendered images that are mis-classified
by the classifier. This percentage is denoted as the attack success
rate. The attack success rates reported in Section 4.4 and 4.5 are
calculated in the same way.

Figure 5: Plot of attack success rate versus ptrain . The num-
ber of images used for adversarial training is completely de-
termined by ptrain but is also shown for convenience.

As shown in Fig. 5, setting the sampling step size ptrain = 1
results in a 100% attack success rate, which is expected because the

Figure 6: Four models are listed with their ImageNet labels.
The right of each model lists the testing results on training
with p = 3 and p = 10 respectively. The Sampling Step Size
Ptest = 1, and the data unit is %.

training dataset is iteratively trained until reaching a 100% false
negative rate and all 64800 images in the testing dataset are included
in the training dataset. More interestingly, setting ptrain = 2 or 3
preserves a 100% attack success rate. In other words, even if the
training procedure only utilizes a small subset of all possible ren-
dered images, the entire testing dataset can still be misclassified
on Inception v3. This result loosens the amount of computational
power required to develop robust 3D adversarial examples. Fur-
thermore, if a 100% multiview attack success rate is not needed, we
can greatly reduce the amount of computation time by choosing a
very small training dataset, e.g. setting ptrain = 10. This implies a

Table 1: Initial false negative rates of 12 deep classifiers on
the gray running shoe model. Each false negative rate
equals the misclassification rate of the deep model on

64800 rendered images from all viewpoints. The Sampling
Step Size p = 1, and the data unit is %.

Target Deep Models Initial False Negative Rates
Inception 34.94
AlexNet 35.69
VGG 30.20
ResNet 47.33

SqueezeNet 46.11
DenseNet 25.20
GoogLeNet 46.90
ShuffleNet 38.31
MobileNet 39.98
ResNeXt 34.16

Wide ResNet 23.37
MNASNet 55.62
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Table 2: Attack success rates of multi-view robust 3D adversarial examples on different deep learning models. Each row
indicates the deep model based on which the 3D adversarial example is generated. The column names indicate different

target deep learning models. The data unit is %.

No. of Iter Inception AlexNet VGG ResNet SqueezeNet DenseNet GoogLeNet ShuffleNet MobileNet RetNeXt Wide_ResNet MNASNet

Inception [30] 19 100 93.1481 99.9429 99.8349 99.8194 98.7145 97.7485 99.3148 99.983 99.9012 98.4614 100
AlexNet [15] 15 92.4352 99.9738 94.7083 96.1821 97.821 78.9907 91.3536 97.8565 96.6821 87.966 84.3241 99.2901
VGG [27] 8 83.3951 50.8272 99.9923 83.1235 82.5525 68.4784 79.0864 69.6265 95.0818 81.0031 63.8735 96.2716
ResNet [9] 10 92.6373 70.091 97.9429 99.9969 98.7515 94.1034 91.216 96.321 98.7392 97.213 90.7886 99.9506
SqueezeNet [13] 9 78.1651 60.9244 88.8426 87.6281 99.9969 63.179 80.8194 83.2901 88.1836 76.8812 57.1059 93.0864
DenseNet [11] 11 94.8287 66.1728 97.3951 98.3704 93.3843 99.9923 90.5694 95.2793 98.179 98.8843 94.608 99.9151
GoogLeNet [29] 8 98 85.8071 99.6806 99.2284 98.9522 98.3796 99.9969 98.8735 99.6852 99.3843 97.6003 99.9985
ShuffleNet [38] 10 87.1559 66.5633 87.6744 93.9336 93.2623 78.9954 86.3009 99.9923 95.4892 90.1204 78.5123 99.4182
MobileNet [10] 10 91.6698 62.7438 98.7454 94.0972 91.5802 84.6636 89.0664 89.6358 99.9985 93.1852 86.8333 99.9846
ResNeXt [35] 11 95.2901 66.608 98.4321 95.6713 93.3225 92.9043 90.5216 93.3287 98.0633 99.9815 96.0849 99.983
Wide ResNet [36] 14 98.1543 79.3858 98.6713 99.517 97.1698 97.9444 95.5617 97.8071 99.3395 99.3596 99.9691 99.9907
MNASNet [32] 6 74.9429 46.1358 84.125 79.6512 70.5787 62.9599 77.625 68.6682 92.3904 71.966 52.3997 99.9738

training dataset of only 648 images (only 1% of rendered images are
used in training), but it still yields an extremely high attack success
rate of more than 99%, allowing users to quickly generate the 3D
adversarial examples. Note that we still ensure the training dataset
is fully adversarial in training.

4.4 Results on Other Models
Our approach is generalizable to a diverse set of 3D models. In our
experiments, in total we have five lifelike models, corresponding
to the following 4 ImageNet labels: running shoes (grey and black
respectively), a pineapple, a power drill, and a teddy bear (Fig. 4
and 6.)

We perform the same experiments in Section 4.3 on the other
four models, and results are shown in Fig. 6. With a smallptrain = 3
corresponding to a larger training dataset, all four models reach an
attack success rate greater than 99%, and with a smaller training
dataset ptrain = 10, three models (black running shoe, pineapple,
power drill) retain a false negative rate of more than 99%. The
adversarial Teddy Bear model obtains 81.90% attack success rate.

4.5 Results on Black-Box Attacks
All the experiments so far are conducted against the Inception v3
model. In this section, we perform a set of black-box attacks on
various deep learning models, in order to test the transferability of
the perturbation effectiveness of our 3D adversarial attacks.

We select 12 popular deep learning models with dissimilar archi-
tectures, and conduct experiments on the gray running shoe model.
We first collect the false negative rates (misclassification rates) of
different classifiers on the original gray running shoe model. As
shown in Table 1, the initial false negative rates range between 20%
to 60%, depending on the models used.

Then for every deep learningmodel, we generate a 3D adversarial
example and found that no model requires more than 19 iterations
in Algorithm 1 to obtain a fully adversarial training dataset when
ptrain = 3. Using each 3D adversarial example created based on one
particular learningmodel, we launch attacks on the other remaining
11 models, and measure the attack success rates. Table 2 shows
that there is a high transferability of perturbations, agreeing with
previous research [20]. Specifically, our multiview robust 3D model
created based on Inception v3 preserves attack success rate at above

93% on all the other deep learning models. The attack success
rates on the other models show similar results. For example, noise
developed from GoogLeNet provoked more than 98% attack success
rates on most of the other models, except for AlexNet which retains
a false negative rate of 85.8%. Therefore, our 3D adversarial attacks
remains effective in the black-box setting.

5 DISCUSSION
In our proposed method, we do not change the radius of the view-
point due to the increase in computational complexity. Conse-
quently, our adversarial noise is not completely scale invariant. For
one of our models, we find that much of it does remain adversarial
for a reasonable range, with a proportion of viewpoints reverting to
a correct classification beyond that limit. We surmise that this issue
can be resolved using an alternative attack method which learns
scale invariant noise. One specific method is described by Lin et al.
[19], which can be investigated in a future work. Also, although it
seems unlikely that there will be significant classification difference
in the non-integer angles and the rendered integer set, an addi-
tional future work should investigate random sampling of testing
dataset viewpoints to ensure complete adversarial robustness with
a determined p-value.

Additionally, our experiments have confirmed that the I-FGSM
performs better than the single iteration FGSM at creating deceiv-
ing models. Kurakin et al. [16] showed evidence that the I-FGSM
performs poorer than the FGSM on developing transferable noise.
Our work on black-boxes shows that, despite their results, we can
still achieve very high transferability across a wide variety of deep
neural networks.

6 CONCLUSION
In this paper we study the multiview robustness of 3D adversarial
examples. We propose an approach to generate 3D adversarial mod-
els that can achieve 100% attack success rate from any viewpoints
with integer spherical coordinates. Our approach is simple and re-
alistic, as we perturb only the texture space, and we find that even
with only a small portion of 2D images in the training process, we
can still achieve close to 100% attack success rates. Our extensive
experiments including black-box tests have shown the effectiveness
of our approach and the perturbation has very good transferability.
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