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loading at the sharp trailing-edge, it is shown that the transition induces non-linearity in
the lift dynamics by creating a significant pressure variation across the boundary layer
in the vicinity of the trailing-edge, affecting the development of the bound circulation
around the airfoil. Moreover, the effects of reduced frequency, pitching amplitude and
Reynolds number on the circulation dynamics were studied in both frequency and time
domains. The results shed light on the further enhancement of potential flow-based
solutions to capture non-linearity in the lift dynamics due to transition.
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1. Introduction

There are many recent applications in aeronautical engineering that operate in the low-to-moderate Reynolds number
regime, such as high-altitude flying ships (Greer et al., 2000) or unmanned-aerial-vehicles and micro-air-vehicles (Mueller
and Delaurier, 2003; Elsadek et al., 2017). These vehicles typically operate at low speeds and possess short characteristic
length scales, necessitating more research to obtain a deeper understanding of the low-to-moderate Reynolds number
aerodynamics for various configurations. The corresponding Reynolds number for these applications ranges from 104—10°,
at which laminar-to-turbulent transition is prone to happen (Pelletier and Mueller, 2000; McMasters and Henderson,
1980).

In the literature, transition has been mostly studied in dynamic stall where the airfoil experiences large deflections (Lee
and Gerontakos, 2004; Gupta and Ansell, 2018; Benton and Visbal, 2019; Deparday and Mulleners, 2019). However,
the cases with small deflections drew less attention in the literature. The majority of the previous efforts in this
direction (McCroskey and Puccif, 1982; Dovgal et al., 1994; Kim and Chang, 2014; Raffel et al., 2015) have investigated
the temporal-spatial growth or decay of different types of instabilities and the mechanisms triggering the transition
onset, which are enhanced at lower Reynolds numbers. Most of these studies have been mainly concerned with how the
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Nomenclature

b Half chord (%)

o Geometric angle of attack

Uso Free stream velocity

U Local velocity

w Pitching motion angular velocity

T Pitching motion period (2% )

k Reduced frequency (%)

A Amplitude of pitching

I Rate of changing of the circulation

a Geometric angle of attack

ay Angle of attack during upstroke motion

o Angle of attack during downstroke motion

Yupper y-coordinate of the boundary layer on the top surface
Yiower y-coordinate of the boundary layer on the bottom surface
Ay Difference in the thickness of the top and bottom boundary layer
"w Dynamic viscosity

e Eddy viscosity

P Density

Re Chord based Reynolds number

Rey Momentum-thickness Reynolds number

RAeg[ Local transition onset momentum-thickness Reynolds number
0 Momentum thickness

y Intermittency

Ti Turbulent intensity

TE Trailing-edge

laminar separation bubble (LSB) is formed in transitional flows, which is typically accompanied by laminar-to-turbulent
transition (Smith, 1986). Nevertheless, few articles (Lorber and Carta, 1994; Poirel and Mendes, 2014 among others)
motivated by the flutter analysis, have studied the effect of transition on aerodynamic loads. The focus of this paper
is on the latter study from a new aerodynamics perspective by analyzing the circulation dynamics in transitional flow.

As discussed by Poirel and Mendes (2014) and Negi et al. (2018), transition significantly influences the aerodynamic
characteristics of the airfoil by introducing non-linearities in the response. This behavior is also seen in the experimental
effort of Kim and Chang (2014) who studied a pitching airfoil at transitional Reynolds numbers (2 x 10* — 5 x 10%). Raffel
et al. (2015) and Liu et al. (2018) who performed experimental and numerical analysis, respectively, concluded that the
transition location of a pitching airfoil possesses a non-trivial frequency response and non-linear behavior can be observed
in their results, even under small deflections.

In the past century, most of the efficient unsteady aerodynamics models (Wagner, 1925; Theodorsen and Mutchler,
1935; Darakananda and Eldredge, 2019 among others) were developed by adopting the potential flow setup. In these
approaches, the effect of viscosity is taken into account solely through the auxiliary condition at the sharp edges, which
determines the rate of vorticity shed from the boundary layer to the wake and dictates the amount of circulation (or lift)
on the airfoil (Taha and Rezaei, 2019). If the correct amount of circulation is supplied to the potential flow framework,
it is capable of providing reasonable results for the flow field and aerodynamic loads. The most utilized condition is the
well-known Kutta condition, which neglects non-linear effects from transition. As a result, the classical models based
on potential flow cannot predict transition effects on the resulting aerodynamic loads in the low-to-moderate range of
Reynolds numbers. While this fact is well-known to aerodynamicists, what these models exactly lack to better capture
transition effects is less known. In other words, how can one augment potential flow models with high-fidelity simulation
and/or experimental data to account for transition effects on the lift dynamics in a simple way? The current effort provides
an answer to this question.

The objective of this paper is to investigate the non-linear effects of transition on the lift and circulation dynamics of a
pitching airfoil at low-to-moderate Reynolds numbers. By deriving the exact version of the hypothesized Kutta condition,
we show the contribution of the pressure gradient across the boundary layer in the presence of transition (and LSB), which
is neglected in the classical Kutta condition. To this end, the unsteady incompressible Reynolds-averaged Navier-Stokes
equations have been numerically solved. The finite-volume computational fluid dynamics (CFD) solver ANSYS Fluent 18.2
has been employed using the y — Rey (or transition-SST) closure model by Langtry and Menter (2009), which showed
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satisfactory results in transition prediction for aerodynamic applications including complex cases involving dynamic
stall (Wang et al., 2010; Gharali and Johnson, 2013). In this study, the considered pitching amplitudes are far below the
dynamic stall, and the oscillation reduced frequencies are low. Therefore, the SST transition model is a good candidate
for this study. The numerical setup and validation against an experimental study by Kim and Chang (2014) on a pitching
airfoil at transitional Reynolds number are explained in Sections 2 and 3, which follows our conference paper (Rezaei
and Taha, 2019). Lastly, in Section 4, the effect of different parameters such as Reynolds number, pitching amplitude
and reduced frequency on circulation dynamics is studied, and a connection is drawn between transition and the rate of
circulation development (equivalently the rate of vorticity shed at the sharp edge). Based on this connection, extension of
the classical unsteady approaches can be performed to account for the non-linear lift dynamics in the transition regime
by modifying the edge condition (i.e., the Kutta condition).

2. Numerical setup

The farfield unstructured mesh and the conformal grid resolution near the airfoil is shown in Fig. 1. This hybrid mesh
comprises a very dense structured mesh near the airfoil, which contains the boundary layer in all the studied cases,
followed by an unstructured mesh, which facilitates the dynamic mesh approach. The O-type farfield has been used and
divided into three rings where the intermediate ring (red) accommodates the airfoil motion via a dynamic mesh, the
inner ring (blue) moves with the airfoil like a rigid body, and the outer ring (green) is fixed. This technique maintains
the generated high quality grid near the airfoil described below as no deformation or remeshing occurs in the inner
ring. The geometry and methodology are almost identical to that in Taha and Rezaei (2018) except for two changes. The
first alteration is adding more layers of grids inside the boundary layer to guarantee that the dimensionless distance

yt = % < 1(where u; = /-2 is the friction velocity, 1, = %’leW is the wall shear stress, and y is the distance from
0

the nearest wall) for all the case studies with 250 grid points on each side of the airfoil. Note that y* < 1 is required for
the grid resolution near the wall since the adopted turbulence model (k — w SST) does not utilize wall function, but is
valid all the way down to the near-wall region. Therefore, sufficient grid layers near the wall are needed to capture the
viscous sublayer, where y™ ~< 5. Also, a coarser mesh was generated for grid independence study and similar results
were observed. However, the denser mesh was chosen for the rest of the study since the computational time was not a
big concern and to be conservative. This high grid resolution helps to better capture the events inside the boundary layer
and the flow field near the trailing-edge which requires capturing the edge of the boundary layer and finding the vorticity
fluxes into the wake as proposed by Sears (1976) and demonstrated below. The high-performance computer (HPC) at the
university of California, Irvine, was utilized for all the simulations with 32 CPUs in parallel, where the clock speed of the
processors was 2.2 GHz. The total simulation time for running 4 complete pitching cycles of the airfoil was almost 15 h.
(For more details about the grid topology, dynamic mesh and solution setup in the solver, the reader is referred to Taha
and Rezaei (2018))

The second difference is employing the local correlation-based y — Rey transition model (Menter et al., 2006) which
is compatible with the unstructured mesh. Unlike typical transition models that suffer from non-local calculations, by

utilizing the vorticity Reynolds number (Re, = ’%2 | 8—y| where y is again the distance from the nearest wall), the y — Rey

transition model correlates the transition onset with the local boundary-layer quantities through empirical relations. Since
Re, can be calculated locally, this model has the advantage that can be easily implemented into RANS equations. It involves
two transport equations for the intermittency, y, and the transition onset momentum thickness Reynolds number, Rey;,
as follows:

d t
9oy =, 6, 7 (G 90 (1a)
of
MJFV-(R% U)="r +v-( ( V(R 1b
9t PRegt = Fot ope(1L + [t) (99[))a (1b)

where oy and oy, are the model constants that are set to 1 and 2, respectively. The two source terms, P, and E,, in the right
hand side of Eq. (1a) are responsible for the transition onset and destruction/relaminarization, respectively. The production
term Py, in Eq. (1b) adjusts the value of the transition onset momentum thickness Reynolds number to match the value
obtained from the empirical correlations (equations 35 and 36 in the paper by Langtry and Menter (2009)) outside the
boundary layer, and vanishes inside the boundary layer. These transport equations are discretized with second order
upwind method and calculated at each cell. The intermittency equation initiates the transition by affecting the turbulent
kinetic energy (TKE) production downstream of the transition point. Aside from all the local calculations and correlations
in the y-equation to treat transition, the non-local events outside the boundary layer, such as free stream TKE decay
and pressure gradient, impact the transition process by altering the turbulent intensity. In fact, these non-local effects
form the basis of the empirical-based models of transition (Abu-Ghannam and Shaw, 1980). The momentum thickness
Reynolds number, which is an important part of this model, is devised to handle these non-local effects on the transition
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Fig. 1. Mesh topology in the farfield (top picture) and near the leading edge and trailing-edge (bottom pictures) of the airfoil. The blue region near
the airfoil constitutes of high resolution structured grids that contains the boundary layer and the gray region is made of unstructured triangular
elements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

onset by manipulating the source term in the intermittency equation. These equations interact with the k — @ SST model
by modifying some of the source terms in the k— equation (Fluent, 2009), while the w—equation remains intact.

The added transport equations require boundary conditions on the airfoil surface, inlet and outlet. On the no-slip wall
(aifoil) and constant pressure outlet, zero normal flux condition is prescribed for y and Rey. At the inlet station, y is set to
1 and Rey is to be found from empirical correlations in the model based on the inlet turbulent intensity. These correlations
are provided in equations 35 to 38 in Langtry and Menter (2009).

3. Validation

In order to validate the numerical setup, the experimental study by Kim and Chang (2014) for a pitching NACA 0012
at a transitional Reynolds number is selected. They provide experimental measurements for the lift history during the
maneuver along with the pressure distribution and flow visualization at a few important instances. In particular, we
select the experimental case of the Reynolds number Re = 48 x 10% where transition occurs. In this case, the airfoil is
hinged at the quarter-chord point with 6° pitching amplitude and reduced frequency of k = 0.1. The same geometry and
conditions are used for the CFD validation. The free stream turbulent intensity is selected to be TI = 0.35% since TI is
reported to be less than 0.4% in the experimental study.

Fig. 2 shows a good agreement between the lift history measurements of Kim and Chang (2014) and our computational
simulation. The CFD results are provided at two different Reynolds numbers of Re = 48 x 10° and Re = 75 x 10°. The
reason for choosing the higher Reynolds number (Re = 75 x 10%) is that the SST transition model shows a dissipative
behavior for Re < 70 x 10> based on our numerical results. The ripples seen in Fig. 2 for the curve of Re = 48 x 10 occur
near the instants of maximum pitching velocity where the flow is more prone to separation (Taha and Rezaei, 2019).
At these instants, the interaction between the laminar separation bubble and downstream adverse pressure gradient is
significant, and the model is unable to find the correct transition point.

The discrepancy in the maximum lift coefficient may actually be attributed to the experimental results per se.
The maximum lift coefficient in the experimental data is almost equal to the one obtained from thin airfoil theory:
27(6° x 1g5) = 0.66, which is not expected because (i) an actual airfoil has a lift curve slope that is smaller than the
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Fig. 2. Validation of the computational setup adopted from Rezaei and Taha (2019). Comparison between the lift history from CFD and the
experimental study (Kim and Chang, 2014) for a pitching NACA 0012 with «(t) = 6° sin(wt) and k = 0.1 undergoing transition.
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Fig. 3. Comparison of the pressure coefficient on the suction side of the pitching airfoil between the CFD and the experimental (exp) results (Kim and
Chang, 2014) at one instance during upstroke («, = 6°) and one instance during downstroke(«y = 3°) for a pitching NACA 0012 with «(t) = 6° sin(wt)
and k = 0.1 at Re = 75 x 10°.

theoretical value of 27, and (ii) the amplitude of the unsteady lift must be attenuated due to wake effects: Theodorsen
lift deficiency (Theodorsen and Mutchler, 1935).

To validate the local flow details and the transition point dynamics, we consider the pressure coefficient C, at two
important instances, i.e. one instance (@, = 6°) in the upstroke near stroke reversal (highest pitching angle) and one
instance (g = 3°) in the downstroke, as shown in Fig. 3. As described by Arena and Mueller (1980) and recently
by Boutilier and Yarusevych (2012), the start of the short plateau in the mid-chord region corresponds to the laminar
separation, followed by a sudden drop indicating the transition point. Then the pressure recovery region is attributed to
turbulent reattachment. A good agreement is observed in terms of the magnitude of the pressure coefficient and transition
point. The reason for slightly higher values of G, in the experimental results compared to CFD is the same as the above
explanation for C; difference near the stroke reversal. The oy = 3° case corresponds to the instant where the airfoil is
at the three-quarter of the downstroke motion where more complicated flow events are expected due to the interaction
with the vortical region formed in the upstroke near the trailing-edge. Under this condition, the transition point obtained
from the CFD results is delayed roughly 10 percent.

Furthermore, validation of the flow field near the trailing-edge of the foil at six different instances during the pitching
cycle for the same case was done in our recent work (Rezaei and Taha, 2019), which showed a good agreement with
the flow visualization from the experiment (Kim and Chang, 2014). In this manuscript, the streamlines for two of those
instances are provided for completeness. As described by Kim and Chang (2014), a mushroom structure is observed near
the trailing-edge when «, = 3° as shown in Fig. 4a. This structure is mitigated (i.e. the two vortices are separated) when
a new vortex starts to form at the trailing edge when «, = 3.9°(Fig. 4b).
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Fig. 4. Streamlines near the trailing-edge at two different instances during upstroke.
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Fig. 5. Lift history of a pitching NACA 0012 with «(t) = 3°sin(wt) and k = 0.1 undergoing transition: (a) Comparison of the lift history between
Theodorsen model and CFD results at Re = 75 x 10° using transition and fully turbulent models and (b) Effect of Reynolds number on the lift history
utilizing transition model in CFD.

4. Results
4.1. Effect of transition on the lift dynamics

CFD simulations have been carried out in the range of moderate Reynolds number, Re = 75 x 10> — 400 x 10° and
motion reduced frequency k = 0.1 to investigate the effect of transition on the lift dynamics of a pitching airfoil at
zero mean angle of attack with 3 degrees pitching amplitude. As shown in our preliminary analysis (Rezaei and Taha,
2019), it should be emphasized that in this regime, the effect of transition on the lift dynamics is significant. That is, if
transition is not taken into account or properly modeled, the computed aerodynamic loads will be noticeably different.
Based on Fig. 5a, assuming a fully turbulent flow without modeling the transition, using a simple harmonic motion as
an input for the pitching airfoil (time-varying angle of attack) results in a harmonic lift response at the same frequency
(i.e., linear dynamics). However, at the same Reynolds number, the same input results in a different lift dynamics when
transition is considered. In fact, in the presence of transition, the dynamics of the flow is no longer linear as the output
(lift) possesses higher harmonics compared to the single-harmonic input (angle of attack), which will be the focus of
the coming sections. For better comparison, the Theodorsen results at k = 0.1 is also plotted, which matches the linear
results of the fully turbulent case. To put in a nutshell, a fully turbulent flow results in a linear lift dynamics whereas
laminar-to-turbulent transition induces non-linearity in the lift dynamics.

This criterion can be used as an indicator for transition. To further investigate this point, the effect of Reynolds number
on the lift history is shown in Fig. 5b. It can be seen that increasing the Reynolds number makes the output signal (lift) to
resemble more a pure sinusoid. It is found that, under the conditions used in this study, the lift dynamics becomes very
close to the fully turbulent case for Re > 400 x 103, and below this value, careful consideration is required to capture the
transition, specifically when Re < 200 x 10° where transition effects are significant.
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Fig. 6. A zoom at the trailing-edge and its boundary layer. The blue lines represent the edge of the boundary layers and the red dots (points 1 and
2) represent the edge of the boundary layers at the trailing-edge station.

4.2. Flow near the trailing-edge and the kutta condition

Potential flow theory is indeed a milestone in the history of aerodynamics, forming the basis of almost all the analytical
theories in steady and unsteady aerodynamics. It states that for a thin airfoil subjected to small deflections at high
Reynolds numbers, the flow can be assumed everywhere irrotational except for a thin layer around the airfoil (boundary
layer) and in the wake (only appears in the unsteady theories). These regions are modeled with sheets of (or point)
vortices whose strength is determined from the kinematic boundary condition on the airfoil (no-penetration). Laboring
this algorithm, a unique solution cannot be determined unless the value of the circulation is known. Therewith the Kutta
condition comes to play, which dictates vanishing circulation distribution at the trailing-edge (zero loading at the trailing-
edge) based on physical observations from the flow field around the airfoil trailing-edge. This condition forms the bridge
that connects potential flow to viscous flow and essentially relates the amount of generated vorticity flux in the boundary
layer to the vorticity in the wake (Sears, 1976). In the potential flow framework, there are many representations of the
Kutta condition; one dictates zero loading at the trailing-edge, which is stated as

lim P(TE,y) = lim P(TE,y), (2)
y—0t y—0~

where P(TE, y) represents the pressure at the trailing-edge (TE) station at a distance y above the trailing-edge point;
that is the trailing-edge is approached from the top by taking the limits as y — 0" and from the bottom as y — 0.
In the corresponding viscous flow accompanied by the boundary layer development on the top and bottom surfaces,
this condition means equal pressure at the edges of the boundary layers on each side, which is indeed generally true.
Nevertheless, under certain conditions such as low Reynolds number flows, high frequency motion of the airfoil and
laminar-to-turbulent transition, deviation is observed from the classical Kutta condition (Taha and Rezaei, 2019). To
elaborate more, consider the viscous flow around an airfoil and regard the flow near the trailing-edge, shown in Fig. 6.
Since the potential flow pressure distribution over the thin airfoil represents the pressure distribution at the edge of the
boundary layer in the viscous flow, Eq. (2) applied within the potential flow solver, yields P; = P, in the presence of
boundary layers, where the points 1 and 2 lie on the edge of the boundary layer at the trailing-edge station (Fig. 6).

In our recent effort (Taha and Rezaei, 2019), we have shown while the main assumption underpinning Prandtl’s
boundary layer theory (pressure is constant along a direction perpendicular to the surface inside the boundary layer
thickness) is valid over the majority of the airfoil length, it may not be valid in the immediate vicinity of the trailing-edge.
The situation is exacerbated when laminar-to-turbulent transition occurs. That is, there may be a considerable pressure
rise AP across the boundary layer. In this case, the physical condition (2) results implies

Py — APy = P, — AP, (3)

In addition, the unsteady Bernoulli’s equation provides a relation between P; and P, (note that point 1 and 2 lie on the

edge of the boundary layer) as:
P 1 9 P 1 d
J_i_,vlz ﬂz 2 ,sz ﬁ7 (4)
p 2 at p 2 at

where V is the potential flow velocity at the edge of the boundary layer and ¢ is the corresponding velocity potential.

Recalling that the velocity potential ¢ due to a vortex I is given by ¢ = %9 and calculating the jump in ¢ along a closed
contour (from & = 0 to & = 27r), one obtains ¢; — ¢, = I'. Combining the later with Egs. (3) and (4), we obtain

1 AP, — AP,

(V- — 0
To recover the common form of the Kutta condition typically applied in the classical theory of unsteady aerodynamics,
we set APy = AP, =0and Vi, =U =% %yTE. In this case, Eq. (5) results in

ﬁ(utta(t) = _UOCVTE(t)v (6)

where yprg is the circulation distribution at the trailing-edge (instantaneous strength of the shed vortex sheet per unit
length at the shedding time) calculated as

vie(t) = Vo =V, (7)

1.—‘ =
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Fig. 7. Vorticity contours around a pitching NACA 0012 with «(t) = 6°sin(wt) and k = 0.1 and zoom-in near the trailing-edge at (a)
a=2%d=LAw and (b) ame = A & = 0.

Thus, the exact circulation dynamics governed by Eq. (5) reduces to the classical Kutta’s circulation governed by Eq. (6)
using two assumptions: Linearization of the first term (velocity-term) and neglecting the second term due to pressure
differences across the boundary layers. The former assumption is quite accurate for small deflections (small «). In this
work, we show that the transition effects on the lift dynamics are related to (can be captured by) the pressure term in
the circulation dynamics Eq. (5).

Transition induces non-linearity in the lift dynamics. Since lift is ultimately dictated by the Kutta condition, one can
legitimately deduce that the classical Kutta condition is violated, and special care is required to study the flow near the
trailing-edge. It is worth noting that unlike the steady boundary layer where the flow reversal corresponds to zero shear
stress at the wall (defining the separation phenomenon), in the unsteady case, zero shear stress (or flow reversal) is not
an indication of boundary layer separation. In other words, the boundary layer assumptions may remain correct while
flow reversal is observed inside it. In fact, separation might happen far downstream of the point of zero shear stress in
unsteady flows (Sears and Telionis, 1975).

4.3. Persistence of the boundary layer in transition

Fig. 7 shows the vorticity contours and streamlines around the pitching NACA 0012 with 6 degrees pitching amplitude
and motion reduced frequency of 0.1 (A = 6° and k = 0.1) at the highest geometric incident angle of the airfoil, o, = 6,
and at a position where both « and & are significant. Note that in unsteady aerodynamics, ¢ affects the effective angle
of attack defined as aef = 34 = o + &c/2U in this case of pitching around the quarter-chord point. It can be seen
that the LSB is initially formed close to the trailing-edge (Fig. 7a) and is observed on the mid-upper surface at the highest
geometric angle of attack (Fig. 7b). If the airfoil reaches higher angles of attack, the leading-edge separation comes to play.
In these cases, the mid-chord LSB is affected by the massive separation and forms a significantly larger vortical region
(see figure 7 in Lee and Gerontakos (2004)).

In contrast to the dynamic stall cases where a massive separation is observed on the airfoil, all the studied cases lie
within pre-dynamic-stall conditions. As a results, the boundary layer behaves similar to that of attached flow in the sense
that its edge is detectable all the way to the trailing-edge where the wake begins (Fig. 7). Furthermore, the zoom-in on
the flow in the vicinity of the trailing-edge in both cases does not indicate any noticeable separation upstream of the
trailing-edge. These findings are in accordance with the pressure coefficient results (Fig. 3); if significant separation had
happened in the flow, the pressure distribution would have shown a flat trend in the separated region while Fig. 3 shows
a monotonically decreasing pressure. Moreover, the pitching amplitude in the upcoming results is at most 3 degrees,
which helps the flow even more to remain attached. Consequently, by using the vanishing vorticity criteria, the edge of
the boundary layer can be determined at all the sections of the airfoil. To do this, the magnitude of the vorticity normalized
by its maximum inside the boundary layer (which happens near the airfoil surface) is tracked normal to the surface. The
edge of the boundary layer is detected when the normalized vorticity reaches 1 percent. Since the focus of this study is
to investigate the Kutta condition, the edge of the boundary layers on the top and bottom surfaces at the trailing-edge
station have been found. Then, the values of pressure and velocity at those locations have been extracted from the CFD
results for further investigations provided in the coming sections.

4.4, Effect of transition on circulation dynamics

In the current study, the circulation dynamics is investigated at two different Reynolds numbers: Re = 75 x 10° and
Re = 200 x 103; four different reduced frequencies: k = 0.05,0.1, 0.2, 0.3; and three different pitching amplitudes:
A =0.5,1.5 and 3 degrees. All the studied cases (9 in total) are shown in Table 1.

Before discussing the effect of each parameter on the circulation dynamics, let us point out some noteworthy findings.
For simplicity purposes, let, Iy = 1 (V3 — V}), I’} = (AP,— APy)/p, ol = I+ 1. It is also interesting to compare with
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Table 1

The pitching amplitudes, motion reduced frequencies and Reynolds numbers of all the
studied cases.

A k
0.05 0.1 0.2 0.3
0.5°
Re =75 x 103 1.5° *
30 * * * *
o *
Re =200 x 103 3;5 * *

""FP FU - Ff,otal _FKutm : 1—‘Thw

Normalized I
Normalized I
Normalized I

Fig. 8. I history at Re = 7.5 x 104, k = 0.1, and three different pitching amplitudes A: (a) A = 0.5°, (b) A = 1.5°, and (c) A = 3°.

Theodorsen’s rate of change of circulation /7. For a pitching airfoil hinged at the quarter-chord point, the potential-flow
frequency response of the bound circulation is given by I'rreo = 27w pbCr(k)[Uso +bct], where Cr(k) = %ﬁk@ is
jko (H (k)-+HS (k))

the circulation transfer function in the frequency domain (Taha and Rezaei, 2020). Note that H,(,m) is the Hankel function of
mth kind of order n. As discussed above, in potential flow theory, I'> should be zero assuming zero pressure rise across the
boundary layer at the trailing-edge station (zero loading). This assumption is accurate for high Reynolds number steady
flows or unsteady flows at low reduced frequencies (quasi-steady conditions). Nevertheless, under unsteady conditions
undergoing transition, this assumption might not be accurate and needs further investigation. Figs. 8, 11 and 14 show the
time-history of all the defined I"’s for all the studied cases. Note that all the results come from a pure sinusoidal pitching
input, i.e. simple harmonic motion, and have been normalized by the maximum value of the Tutta- Interestingly, Figs. 8,
11 and 14 indicate that Ik and Iy coincide in all the cases reflecting the fact that the linearization is fairly accurate,
which is expected because of the considered small amplitudes. Therefore, any non-linearity in the flow dynamics should
not be attributed to geometric non-linearities due to large angles. Moreover, since Iy & Iuta, We have

. . 1
I'y = T'kuta — 5(V2+V1)(V2—V1)=Uoo(Vz—Vl) (8)

resulting in V, 4+ V; = 2U. So, the non-linear trend of the Iy must be attributed to the V, — V; term as V5 + V; is shown
to be equal to a constant (twice the free stream velocity). .

In the upcoming sections, the results are provided in terms of rate of change of the circulation I" coming from different
sources and the Fast Fourier Transform (FFT) results of I'y and I'p to show both their linear-nonlinear behavior and
their relative contribution to the total circulation. If the flow dynamics is purely linear, only the first harmonic would
be expected; the emergence of a higher harmonic peak would certainly imply a nonlinear behavior. For example, a peak
at the second (third) harmonic implies a quadratic (cubic) nonlinearity, and so on (Nayfeh and Mook, 2008; Nayfeh and
Balachandran, 2008). Furthermore, the larger the higher-harmonic peak is relative to the first-harmonic one, the more
significant the nonlinear contribution is. In order to elaborate more on the flow events near the TE, the history of the
boundary layer thickness on the top and bottom of the airfoil have been plotted. All the figures were normalized by the
maximum thickness of the boundary layer. Since the airfoil is symmetric and the motion is also symmetric, the top and
bottom boundary layers at the trailing-edge reach to the same maximum thickness over the cycle. Therefore, both are
normalized by the same value. The behavior of the boundary layer edge at the trailing-edge is an interesting result and
can be correlated to the formation and movement of the LSB inside the boundary layer in the mid-chord region, which
is not discussed in this paper and is provided for completeness.

4.4.1. Effect of pitching amplitude (A) on circulation dynamics
In this section, the effect of pitching amplitude (A) on the I"’s is investigated while the two other parameters are kept
constant at Re = 7.5 x 10* and k = 0.1. Since the objective of this article is to focus on transition-induced non-linearity on
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Fig. 9. FFT of Iy and I at Re = 7.5 x 104, k = 0.1, three different pitching amplitudes A: (a) A = 0.5°, (b) A= 1.5°, and (c) A = 3°.
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Fig. 10. Variation of the y-coordinate of the boundary layer at the top and bottom of the trailing-edge and the difference between them (in purple)
at Re = 7.5 x 104, k = 0.1, and three different pitching amplitudes A: (a) A = 0.5°, (b) A = 1.5°, and (c) A = 3°. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

the lift dynamics in the pre-stall regime, the selected pitching amplitudes are fairly low. At lower amplitudes of pitching
(Fig. 8a), Iy behaves more linear compared to higher pitching amplitudes (Fig. 8b, c) where the non-linear trend is more
apparent. This result can be confirmed by inspecting the FFT figures of I, and I (Fig. 9). Interestingly, both I, and I
possess cubic non-linearities in their response even at the considered small amplitudes and low frequency; the strength
of this cubic non-linearity (i.e. third harmonic) relative to the linear response (first harmonic) increases as A increases. Of
particular importance is the remarkable contribution of the I to I in all the cases in this section (ranging between
15% to 35%).

Fig. 8 shows that I is out of phase with respect to I7;, which upon addition, would decrease the rate of circulation
development (i.e. Fotal), causing a lag in circulation dynamics and consequently in lift dynamics too. The significant
deviation of I from the classical linear theory of Theodorsen at a very small amplitude (0.5°) and low frequency
(k = 0.1), shown in Fig. 8a, is remarkable, and may be solely attributed to transition effects. However, increasing A,
decreases the contribution of I and brings the Tt closer to Iy which is also reflected in the magnitude of the FFT
results in Fig. 9 showing diminution of | /7| when A increases. Nevertheless, we must point out that even in these cases
of relatively larger amplitudes (Fig. 8c), the effect of I is not negligible and the rate of circulation development is quite
far from the linear theory of Theodorsen.

It must be noted that since the dynamics of I is non-linear, the superposition principle is not applicable and there
must be coupling between the dynamics of the two-subsystems representing I, and Ip. For instance, assume the total
circulation development is written as Iy = a I' + f(y) where the first linear term represents the Kutta circulation
(Ikuta = T), and the second non-linear term represents the I'p. If this latter contribution is neglected, the circulation
dynamics would be purely linear resulting in the classical theory of unsteady aerodynamics. However, when the second
term does not vanish, the superposition principle cannot be applied; the total circulation cannot be decomposed into two
contributions, one coming from each sub-system. Moreover, since I induces non-linearity in the total circulation, the
non-linearity will also be inherited in the linear term (a I"). That is, I is the main source of non-linearity in the response
of Iy which explains why the CFD prediction of Tkutta deviates from Theodorsen’s.

In order to elaborate more on the flow events near the TE, the history of the boundary layer thickness on the top
and bottom of the airfoil have been plotted in Fig. 10. All the figures were normalized by the maximum thickness of the
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Fig. 11. I history at Re = 7.5 x 10%, A = 3° and three different motion reduced frequencies k: (a) k = 0.05, (b) k = 0.2, and (c) k = 0.3.
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Fig. 12. FFT of Iy and I at Re = 7.5 x 10%, A = 3° and three different motion reduced frequencies k: (a) k = 0.05, (b) k = 0.2, and (c) k = 0.3.

boundary layer. Results reveal that the thickness of the boundary layer is not symmetric between the top and bottom
surfaces of the airfoil otherwise, the Ay-plot would be flat zero. At lower A (Fig. 10a), the yypper and yiouer are more
sinusoidal while increasing the pitching amplitude excites more non-linearity in the system. (Fig. 10b,c)

4.4.2. Effect of reduced frequency (k) on circulation dynamics

The reduced frequency effect is analyzed by varying the pitching frequency and retaining the pitching amplitude and
Reynolds number fixed at A = 3° and Re = 7.5 x 10*. Note that Figs. 8c, 9¢, and 10c can also be considered in this section
for comparison. Increasing k leads to an increase in the effective angle of attack causing the adverse pressure gradient
effects to dominate the transition effects. Hence, Iy becomes more linear (Fig. 11), which can also be observed in the FFT
results (Fig. 12). Because of the relatively large A, the I'p-contribution induces a small phase shift to I as discussed
above. Even though there is a big difference between 7o coming from CFD and Iiheodorsen; cOmparing the peaks imply
that at low k values, Theodorsen phase matches with the numerical results, whereas at higher k values, a significant phase
difference exists, which is similar to the viscous effects discussed by Taha and Rezaei (2019). The boundary layer thickness
(Fig. 13) exhibits more sinusoidal trend as k increases which is in accordance with the circulation dynamics behavior.

4.4.3. Effect of Reynolds number (Re) on circulation dynamics

It is expected that increasing the Reynolds number will undermine the laminar-to-turbulent transition, therefore less
non-linear behavior in the I"-response. For this part, the numerical simulations were carried out at two different reduced
frequencies and pitching amplitudes (refer to Table 1 for details). Considering Fig. 14a,b for the I’-response when A = 3°
and comparing them with the ones for Re = 7.5 x 10* (Figs. 8c, 11a), a more linear trend in Iy is observed (can also
be confirmed with the FFT results). Unlike the lower Reynolds number case where I'p shifted the I, to the right
(i.e. induced a phase lag), at higher Reynolds number, this effect is not observed; Tota follows Iy in phase. However, at
both Reynolds numbers, /' leads to an attenuation of the amplitude of Iq;. The boundary layer thickness plots (Fig. 16a,
b) also indicate smoother (akin to pure sinusoidal) trend of the flow.

Analogous to the influence of the pitching amplitude at the lower Reynolds number case (Fig. 8), it can be seen that
at lower pitching amplitudes (Fig. 14c), Ip plays a considerable role in the dynamics of circulation. Nevertheless, it is
interesting to point out that I possesses a linear behavior at small amplitude (A = 0.5°), low frequency (k = 0.1), and
high Reynolds number (Re = 20 x 10%), as shown in Fig. 14c which are the main assumptions underpinning the classical
linear theory (see Fig. 15).
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Fig. 13. Variation of the y-coordinate of the boundary layer at the top and bottom of the trailing-edge and the difference between them (in purple)
at Re = 7.5 x 10%, k = 0.1, and three different pitching amplitudes A: (a) A = 0.5°, (b) A = 1.5°, and (c) A = 3°. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. FFT of I, and I} at Re = 20 x 10* when (a) k = 0.05 and A = 3°, (b) k= 0.1 and A= 3°, and (c) k = 0.1 and A = 0.5°.

5. Conclusion

CFD simulations (Reynolds-Averaged Navier-Stokes) are implemented to study the effects of the Laminar-to-Turbulent
transition on the unsteady aerodynamic response of a pitching NACA 0012 airfoil. The y — Rey transition model is coupled
with k — w SST turbulence model to account for transition effects. The numerical model (flow solver, closure model,
dynamic mesh, etc.) is validated against an experimental study at a moderate Reynolds number of Re = 48 x 103, which
shows the satisfactory accuracy of the numerical model. It has been shown that under the studied conditions (the airfoil,
free stream turbulent intensity and reduced frequency), below Re & 200 x 103, transition has a significant effect on the

lift response. It induces non-linearities in the lift and circulation dynamics, which diminish as Reynolds number increases
toward the fully turbulent flow.
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Fig. 16. Variation of the y-coordinate of the boundary layer at the top and bottom of the trailing-edge and the difference between them (in purple)
at Re = 7.5 x 10%, k = 0.1, and three different pitching amplitudes A: (a) A = 0.5°, (b) A = 1.5°, and (c) A = 3°. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Dissecting the flow field near the trailing-edge, we show that the Kutta condition is violated when transition occurs
even at small pitching amplitudes (A = 0.5°) and low reduced frequencies (k = 0.1); the rate of vorticity pumped into the
wake from the boundary layer is quite different from the linear potential flow theory (e.g., Theodorsen). Consequently,
the development of the bound circulation over the airfoil is quite different from the linear theory, and in fact possesses a
non-linear behavior even at very small angles of attack and oscillation frequencies. We show that this deviation is due to
a pressure jump across the boundary layer, which is caused by transition effects. Such a pressure jump is typically ignored
in potential flow analysis. It leads to an additional contribution to the rate of change of bound circulation, which is found
to be out of phase with respect to the main linear component. Hence, upon addition, it decreases the rate of change of
bound circulation, causing a lag in circulation development and consequently in lift dynamics.

The effect of three parameters (pitching amplitude, frequency and Reynolds number) on the circulation dynamics is
investigated. As pitching amplitude or frequency increases, the effects due to adverse pressure gradient dominate over the
transition effects, diminishing the contribution of the pressure jump, leading to a more linear response. Also, increasing
the Reynolds number, the flow becomes closer to a fully turbulent one where the linear response is dominant.

It is important to note that the above results can be exploited to extend the potential flow models to account for
transition effects. This extension can be achieved by constructing a neural network model (or other approaches) of the
static nonlinear function I” = f(I"; Re). The premise is that this functional dependence is independent of the motion
kinematics. Thus, performing numerous high-fidelity (e.g., LES or DES) simulations at different amplitudes, frequencies,
and Reynolds numbers, one can construct a static nonlinear map between the inputs (the total circulation I" over the
airfoil and the Reynolds number) and the output I". Then, there may be several ways to extend potential-flow models
to account for transition effects. For example, one may add a time-varying vortex I", coming from the neural network
model, at the center of the cylinder domain, similar to Von Karman and Sears Kutta’s vortex (von Karman and Sears,
1938). Alternatively, following Hemati et al. (2014), one may work in the cylinder domain and instead of applying the
Kutta condition (F me) at the trailing edge, a modified Kutta condition in the form (Fmodtfed = Nawa+ I ) is utilized,
where the additional term I” comes from the neural network model. Also, a third (perhaps simpler) approach is conceived
by realizing that the quasi-steady circulation is the main input to potential-flow lift dynamics (Taha et al., 2014). Then,
one may solve the lift dynamics (e.g., Theodorsen) due to a modified quasi-steady circulation Igs — I
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