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State Space Modeling of Viscous Unsteady Aerodynamic Loads

Haithem E. Taha* and Amir S. Rezaei’
University of California, Irvine, CA 92697

In this paper, we started by summarizing our recently developed viscous unsteady theory
based on coupling potential flow with the triple deck boundary layer theory. This approach
provides a viscous extension of potential flow unsteady aerodynamics. As such, a Reynolds-
number-dependence could be determined. We then developed a finite-state approximation of
such a theory, presenting it in a state space model. This novel nonlinear state space model of
the viscous unsteady aerodynamic loads is expected to serve aerodynamicists better than the
classical Theodorsen’s model, as it captures viscous effects (i.e., Reynolds number dependence)
as well as nonlinearity and additional lag in the lift dynamics; and allows simulation of arbitrary
time-varying airfoil motions (not necessarily harmonic). Moreover, being in a state space form
makes it quite convenient for simulation and coupling with structural dynamics to perform
aeroelasticity, flight dynamics analysis, and control design. We then proceeded to develop a
linearization of such a model, which enables analytical results. So, we derived an analytical
representation of the viscous lift frequency response function, which is an explicit function
of, not only frequency, but also Reynolds number. We also developed a state space model
of the linearized response. We finally simulated the nonlinear and linear models to a non-
harmonic, small-amplitude pitching maneuver at 100, 000 Reynolds number and compared the
resulting lift and pitching moment with potential flow, in reference to relatively higher fidelity
computations of the Unsteady Reynolds-Averaged Navier-Stokes equations.

I. Introduction

The theory of two-dimensional unsteady aerodynamics has a long history that extends for a century. Perhaps the
first formal efforts are those of Prandtl [1] and Birnbaum [2] in 1924, considering incompressible, slightly viscous
flows around thin airfoils with sharp trailing edges. The key concept is that the flow nonuniformity leads to vorticity
generation that emanate at the sharp trailing edge and freely shed behind the airfoil. In addition, the flow outside
these sheets can be considered inviscid. As such, for example, the law of zero total circulation (consequence of the
conservation of angular momentum in inviscid flows) can be used. These assumptions alone are not enough to determine
a unique solution for the wing and wake circulations. Then, the Kutta-Zhukovsky condition (smooth flow off the sharp
trailing edge) comes to play an essential role in the problem closure. That is, no flow around the sharp edge and hence,
even within the framework of potential flow, the velocity has to be finite at the edge. Finally, in order to obtain an
analytical explicit solution to the governing dynamics (the Laplace’s equation in the velocity potential in this case), one
more assumption is usually adopted. Assuming small disturbance to the mean flow so that the vorticity sheet would
shed by the mean flow velocity (flat wake assumption) completes the framework of the classical theory. In summary,
the classical theory of unsteady aerodynamics is based on replacing the airfoil and the wake by vorticity distributions
(singularities) that satisfy the Laplace’s equation everywhere in the flow field except at the surface of singularities.
Three main conditions are applied: (1) no-penetration boundary condition (fluid velocity is parallel to the wing surface),
(2) The Kutta condition (smooth flow off the sharp trailing edge), and (3) the conservation of total circulation (% =0).
This formulation along with the flat wake assumption constitute the classical theory of unsteady aerodynamics.

The above formulation of the classical theory of unsteady aerodynamics was extensively used throughout the years.
In 1925, Wagner [3] used this formulation to solve the indicial problem (lift response due to a step change in the angle
of attack). In 1935, Theodorsen [4] used the same formulation to solve the frequency response problem (steady state lift
response due to harmonic oscillation in the angle of attack). In 1938, Von Karman and Sears [5] provided a more general
and elaborate representation of the classical formulation, which is of hitherto importance in developing extensions of the
classical theory[6, 7]. Also, the efforts of Kussner [8] on the sharp edged gust problem, Schwarz [9] on the frequency
response problem, Sears [10] on the sinusoidal gust problem, and Lowey [11] on the returning wake problem worth
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mentioning. It should be noted that while the approaches within this framework may be different (i.e., different order of
application of the boundary conditions and assumptions and different means of calculating the loads), these results are
exactly equivalent. For example, Garrick [12] showed that the Theodorsen function and the Wagner function form a
Fourier transform pair.

It should be pointed out that even with the several simplifying assumptions mentioned above (potential flow, flat
wake, the Kutta assumption/condition, etc), the unsteady lift response of a two-dimensional airfoil is of an infinite
dimensional nature. That is, in a dynamical-systems narrative, the lift transfer function has infinitely many poles [13].
The need for calculating the aerodynamic loads due to arbitrary time variations of the wing motion along with the
need for structural and/or dynamic coupling to assess the aeroelastic and/or flight dynamic stability problems invoked
more compact representations for the lift dynamics than the infinite-dimensional Theodorsen’s and Wagner’s responses.
Consequently, a number of finite-state approximations to these response functions were developed. Jones [14] and
Jones [15] provided a two-state approximation to the Wagner function in the time-domain. Vepa [16] introduced the
method of Pade approximants to determine finite-state representations for the Theodorsen function in the frequency
domain. Of particular interest to the aeroelasticity and flight dynamics community is the state space representation
developed by Leishman and Nguyen [17] using the convolution integral with Jones approximation to the Wagner’s step
response function. Unlike these finite-state models that are based on approximating the Theodorsen function in the
frequency domain or the Wagner function in the time domain, Peters and his colleagues derived state space models from
the basic governing principles using Glauert expansion [18] or the expansion of potential functions [13, 19]. In this
formulation, the internal aerodynamic states are of physical meaning; they represent the inflow distributions. Although
the formulation of Peters is quite neat, it necessitates a relatively large number (eight) of inflow states to provide a good
accuracy, whereas two states were shown to be sufficient for this problem. Recent efforts in developing state space
models of unsteady aerodynamic loads include [20-23].

Having summarized the main results of the classical theory of unsteady aerodynamics, we should emphasize the
following point: Insofar as Prandtl’s potential-flow formulation was quite useful serving the community and even
provides the basis for many recent developments [6, 7, 24—-32], it is mainly based on inviscid flow dynamics; no regard
can be given to a finite Reynolds number. More importantly, it is not complete and invokes a closure or auxiliary
condition (e.g., the Kutta condition). This potential-flow formulation cannot alone determine the amount of shed
vorticity at the trailing edge, which is a very crucial quantity as it determines the circulation bound the airfoil (via
conservation of circulation), which in turn dictates the generated lift force. The most common auxiliary condition used
in literature is the Kutta condition whose application to steady flows has been very successful. However, its application
to unsteady flows has been controversial (see Crighton [33] and the references therein).

The need for an auxiliary condition alternative to Kutta’s goes as early as the work of Howarth [34] with a research
flurry on the applicability of Kutta condition to unsteady flows in the 1970’s and 1980’s [33, 35-38]. This research
was mainly motivated by the failure to capture an accurate flutter boundary [39-41]. Since flutter simply lies in the
intersection between unsteady aerodynamics and structural dynamics, and because the structural dynamics theory is in a
much better status (vibration of slender beams can be accurately predicted using the exact beam theory for example), it
has been deemed that the flaw stems from the classical unsteady aerodynamic theory, particularly the Kutta condition, as
suggested by Chu [42] and Shen and Crimi [43] among others. Moreover, since these deviations occurred even at zero
angle of attack (or lift) [44, 45], it was inferred that there is a fundamental issue with such a theory that is not merely a
higher-order effect due to nonlinearities at high angles of attack [42]. Therefore, there was almost a consensus that the
Kutta condition has to be relaxed particularly at large frequencies, large angles of attack and/or low Reynolds numbers
[37, 46, 47]. In fact, Orszag and Crow [48] regarded the full-Kutta-condition solution as “indefensible". Interestingly,
this dissatisfaction of the Kutta condition and the need for its relaxation is recently rejuvenated with the increased
interests in the low Reynolds number, high frequency bio-inspired flight [6, 49—54]. For more recent discussion about
the unsteady Kutta condition, the reader is referred to the efforts of Xia and Mohseni [55], Taha and Rezaei [56], and
Zhu et al. [57].

We note that the whole issue about the Kutta condition stems from the fact that it provides a remedy for an inviscid
theory of unsteady lift whereas the vorticity generation and lift development are essentially viscous processes. To
relax the Kutta condition, we recently developed a viscous extension of the classical theory of unsteady aerodynamics
[56], equivalently, an unsteady extension of the viscous boundary layer theory. It is based on a special boundary layer
theory (the triple deck [58—60]) that pays close attention to the details in the vicinity of the trailing edge where the
Blasius boundary layer [61] interacts with the Goldstein near wake layer [62]. Our viscous extension resulted in a
Reynolds-number-dependent extension of Theodorsen’s lift frequency response. It was found that the viscous correction
induces a significant phase lag to the circulatory lift component, particularly at low Reynolds numbers and high
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Fig.1 Triple deck structure and various flow regimes. Adapted from Messiter [59].

frequencies, that matches high-fidelity simulations of Navier-Stokes and previous experimental results [38, 41, 45, 63].

In this paper, we summarize the developed viscous unsteady aerodynamic model. Based on which, we develop a
nonlinear state space model for the viscous unsteady loads. We then linearize such a theory to determine an analytical
representation, extending Theodorsen’s lift frequency response function to the viscous case. That is, we provide an
analytical lift frequency response function that explicitly depends, not only on the reduced frequency, but also on the
Reynolds number. Similar to Theodorsen’s, this viscous frequency response function is infinite-dimensional (i.e., has
infinitely many poles). We then develop a finite state approximation of this infinite-dimensional viscous frequency
response. That is, we provide a linearized state space model, extending that of Leishman and Nguyen [17] to the viscous
case; the Reynolds number appears as a parameter in such a state space model. These tools will be of paramount
importance in coupling viscous unsteady aerodynamics with structural dynamics for aeroelasticity and flight dynamics
analysis as well as control synthesis.

I1. A Viscous Theory of Unsteady Aerodynamics

A. Background: The Triple Deck Boundary Layer Theory

In the early 1900, Prandtl has formulated the well-known boundary layer equations [64]: the nonlinear partial
differential equations that approximate Navier-Stokes equations in the thin viscous layer around the airfoil. In 1908,
Blasius [61] solved this set of equations over a flat plate at zero angle of attack subject to the no-slip boundary condition
on the plate, which lead to the celebrated Blasius boundary layer solution. Later (in 1930), Goldstein [62] solved the
same boundary layer equations of Prandtl in the wake region behind the plate, replacing the no-slip condition with a
zero-stress condition on the wake center line. He found that the removal of the wall accelerates the flow leading to a
favorable pressure gradient. That is, near the trailing edge, there are two boundary layers interacting with each other,
as shown in Fig. 1: the Blasius boundary layer, whose thickness is of order R™1/2 and Goldstein near-wake, whose
thickness is scaled as R~!/2x!/3 where R is the Reynolds number and x is the distance downstream of the edge [33]. The
triple deck theory has been devised to model such local interactions near the trailing edge of a flat plate in steady flow.
In contrast to the classical boundary layer theory where only the normal coordinate is scaled, the tangential coordinate is
also scaled (zoomed) in the triple deck theory to resolve such interactions. Scaling dictates that the transition region
between the two layers takes place over a short length of order R~3/8 (as shown in Fig. 1), which is similar to Lighthill’s
supersonic shock-wave-boundary-layer interaction [65]. In conclusion, the triple deck theory represents a solution to the
discontinuity of the viscous boundary condition at the edge [66]: from a zero tangential velocity on the airfoil to a zero
pressure discontinuity on the wake center line.

Aerodynamicists modeled this transition through three decks (triple deck theory): (i) the upper deck which constitutes
of an irrotational flow outside of the main boundary layer, (ii) the main deck which constitutes the main boundary layer
(Blasius), and (iii) the lower deck, which is a sub-layer inside the main boundary layer, as shown in Fig. 1. Stewartson
[58] and Messiter [59] were the first to develop the triple deck theory for a flat plate in a steady flow at zero angle of
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attack. Their efforts resulted in the the following correction of the Blasius skin friction drag coefficient
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which is in an astonishingly good agreement with both Navier-Stokes simulations and experiments down to R = 10
and even lower. Brown and Stewartson [60] extended the work of Stewartson [58] and Messiter [59] to the case of
small but non-zero angle of attack a, in the order of R~'/16. This range is of interest because (i) if @ is much smaller,
then the flow can be considered as a perturbation to the case of @ = 0 and (ii) if it is much larger, then the flow would
separate well before the trailing edge. Over this range, the resulting adverse pressure gradient is of the same order as the
favorable pressure gradient in the triple deck, leading to separation in the immediate vicinity of the trailing edge, which
is called Trailing Edge stall. Brown and Stewartson [60] formulated such a problem and showed that the flow in the
lower deck is governed by partial differential equations that are solved numerically for each value of e, = R'/1917%/8q;,
where A = 0.332 is the Blasius skin-friction coefficient. Chow and Melnik [67] solved the triple deck boundary layer
equations in the case 0 < @, < 0.45 and concluded that the flow will separate from the suction side of the airfoil from
the trailing edge at @, = 0.47 (trailing edge stall angle). We remark that this a, value for trailing edge stall corresponds
to quite a small value for the actual angle of attack: & = 3.1° — 4.2° for R = 10* — 10°.

Setting the axes at the center of the plate (—1 < £ < 1 on the plate), Brown and Stewartson [60] wrote the steady
pressure distribution near the trailing edge (X = 1) as

“ [1-% B/2
Py(2 — 1)=pU2 —a T+SI—/ sgn(y), (1)
—X

where p is the fluid density, U is the free-stream, sgn(y) is positive on the upper surface, « is the angle of attack and By
is the trailing edge singularity term, which is supposed to be zero according to the Kutta condition. In contrast, it is
determined by matching the triple deck with the outer flow. The numerical solution by Chow and Melnik [67] provides
B, as a nonlinear function of a,., which is represented here in Fig. 2(a), where

e = age P27%® and B, = 2347 B, (a.)as, )

where @, @, are in radians, and € = R~'/® <« 1 [58]. In other words, Fig. 2(a) and Eq. (2) provide the trailing edge
singularity B as a nonlinear function of the angle of attack «; in a steady flow. Based on this theory, the Kutta steady
lift can be corrected as

Cp =2r (sinay — By), 3)

which results in the viscous lift shown in Fig. 2(b) at different Reynolds numbers.

B. Viscous Unsteady Lift Frequency Response Using Triple Deck Theory

Brown and Daniels [66] were the first to extend the steady triple deck theory to the case of an oscillatory pitching
flat plate. Unlike the steady case, there is a Stokes layer near the wall that is of order \/v/_w where the viscous
term is balanced by the time-derivative term in the equations. Brown and Daniels considered the impractical, yet
mathematically-appealing, case of very high-frequency k = O(R'/*) = L and very small-amplitude O (R~%/'°), where
k is the reduced frequency. Luckily, focusing on the more practical case of 0 < k << Re'/* and a = O(R™/19) results
in vanishing the time-derivative term in both the main deck and lower deck equations, as shown by Brown and Cheng
[68]. Therefore, the boundary layer equations look the same as those governing the steady case at a non-zero a
(studied by Brown and Stewartson [60]) with a proper definition for the equivalent steady angle of attack. However, we
emphasize that this approach is not a quasi-steady solution; although the time-derivative does not show up in the lower
deck equations, the correspondence with the steady equations implies an equivalent angle of attack that is dependent on
the oscillation frequency, as will be shown below. Therefore, the lower deck system is dynamical (i.e., possesses a
non-trivial frequency response).

In our recent efforts [56, 69], we have developed a viscous extension of the classical theory of unsteady aerodynamics
using the triple deck boundary layer theory discussed above. For an arbitrarily deforming thin airfoil in the presence of
a uniform stream U, the inviscid pressure distribution is typically written as [70-72]

1 0
P(6.1) = P = p | a0 (1) tan 5 + Z an(f)sinné| 4)

n=1
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Fig.2 Chow and Melnik numerical solution of the steady lower deck equations for O < @, < 0.45 [67] and the
corresponding nonlinear viscous steady C; -a curve at different Reynolds numbers.

where 6 is the tangential angular coordinate along the plate (O at trailing edge and 7 at the leading edge). Each term in
the series (4) automatically satisfies the Kutta condition (zero loading at the trailing edge). The pressure on the lower
side is given by the negative of Eq. (4). The no-penetration boundary condition provides a means to determine all the
coeflicients a,’s (except ap) in terms of the plate motion kinematics, as shown by Robinson and Laurmann [72], pp.
491. For example, for a pitching-plunging flat plate, as shown in Fig. 3, the normal velocity of the plate is written as

v(x,t) = h(t)cosa(t) — @(t)(x —ab) — Usina(t), —-b <x < b, (5)

where b is the half-chord length, 4 is the plunging displacement (positive upward), « is the pitching angle (angle of
attack, positive clockwise), and ab represents the chordwise distance from the mid point to the hinge point, as shown in
Fig. 3. This type of kinematics results in

b2a(r)
4

where v, is the normal velocity at the mid-chord point, which is given by

ai(t)y=»>b (vl/z(t) -Ua(1)), ax(t) =- , and a, =0Vn > 2, (6)

vip(t) = h(t) cos a() + aba(t) — Usina(r).

The determination of ag (leading edge singularity term) is more involved in the sense that it requires solving an integral
equation, which cannot be solved analytically for arbitrary time-varying wing motion. It has been solved for some
common inputs, e.g., step change in the angle of attack resulting in the Wagner’s response [3], simple harmonic motion
resulting in Theodorsen’s frequency response [4], sharp-edged gust resulting in Kussner’s function [8], and sinusoidal
gust resulting in Sears’ function [10]. For example, the harmonic solution of Theodorsen implies [72], pp. 496

ag = U [2v34C (k) + ba] , (7)

where v3/4 is the normal velocity at the three-quarter-chord point, and C(k) is the Theodorsen’s frequency response

function, which depends on the reduced frequency k = “’Tb as

H? (k)

C(k) = :
® HP (k) +iH (k)

®)

where H,(Lm> is the Hankel function of m™ kind of order . Finally, the potential-flow lift force and pitching moment
(positive pitching up) at the mid-chord point are written as

by
Lp =—-npb(ap+a;) and My, = zpbz(az —ap). ©)]
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Fig. 3 A schematic diagram for an oscillating flat plate.

In the common classification proposed by Theodorsen [4], the terms proportional to C(k) represent the circulatory
contribution, while the other algebraic terms (i.e., free of dynamic lag), which are proportional to acceleration, represent
the non-circulatory contribution [73, 74].

Relaxing the Kutta condition is equivalent to introducing an additional circulation I'y beyond Kutta’s at the center of
the cylinder, which induces singularities at the trailing and leading edges of the plate. Clearly, this circulation is of
unknown strength; there is no means within potential flow for its determination. The Kutta condition dictates that it
must vanish so as to remove the singularity at the trailing edge. However, we relax the Kutta condition and determine its
dynamics via matching with the triple deck boundary layer theory. This additional circulation modifies the inviscid
unsteady pressure distribution (4) as

1 0 1 60 0
P(0,t) — P =p an(t) tan 3 + Z a,(t) sinnd + EBV(Z) cot 2 + ap, (t) tan E)l s (10)

n=1

where the correction By is related to the additional circulation as By = %, and ay, is the leading edge singularity due
to I'y. This term has a non-trivial dynamics (there is a non-trivial transfer function from I'y to ag, ). It can be determined
from potential flow considerations: it is the ag term in the unsteady inviscid pressure distribution (4) over the plate due
to a bound circulation I'y, ignoring the quasi-steady contribution (i.e., the wake effects only). Therefore, similar to the
general aq term, it cannot be determined analytically for arbitrary kinematics; there is an analytical expression in the
special case of harmonic motion (ag, = 2C (k) — 1 [68]). In our recent effort [56], we used the unsteady triple deck
theory, exploiting the vanishing of the time-derivative term from the boundary layer equations, to determine By in terms
of k and R. Then, the viscous unsteady lift and pitching moment will be written as

L =-npb (ap+a) +By(1+ao,)) and Mo = gpbz (a2 —ao+By(1 - ag,)). (11)

To determine the viscous correction By, of the pressure distribution, consider approaching the trailing edge (6 — 0

or £ = 7 — 1), the pressure distribution (10) is then written as

PG = 10) = Pu=p (%ao(l) +2 nan(n + %Bv(t)aov(t)) 1E, 500
n=1 1;2)?

, (12)

which has the same form as the steady distribution given in Eq. (1) with

%ao(t) +2 Z nan (1)

n=1

l (o]
and By(t) = By = —2e3174 (zao(l) + ZZ nan(t)) Be.(a.), (13)

n=1

1
a'S([) = ﬁ

where @ and Bj; are the equivalent steady angle of attack and trailing edge singularity term, respectively. Note that
the negligence of the term B,aq, when performing such an equivalence was justified in our earlier effort [56]. This
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comparison along with the fact that the time-derivative term does not enter the triple deck equations is suggestive to
utilize the steady solution by Chow and Melnik [67] of the inner deck equations for the unsteady case with the equivalence
shown above, valid in the range 0 < k < O(R'/*). In the above equivalence, if the term %ao(t) +2 30 na,(t) is
negative, then the top of the oscillating thin airfoil will correspond to the top of the steady plate and if is positive, then
the top of the oscillating thin airfoil should correspond to the bottom of the steady plate. In either case, ay would be
positive.

For a harmonically oscillating flat plate at a given reduced frequency k and Reynolds number R, the coefficients a,
ay, and a; of the inviscid pressure distribution are given in Eqs. (6,7). Thus, @, can be obtained accordingly from Eq.
(13). Care should be taken when applying Eq. (13). It should be applied instantaneously: at each time instant, the
right hand side containing the a’s coefficients is complex because ag contains the complex-valued function C (k). The
instantaneous a;(¢) should be given by

as(t) = R %ao(t) +2a1(t) +4ay (1)

k)

[

where R (.) denotes the real part of its complex argument. As such, the equivalent angle of attack ., (¢) for the numerical
solution of Chow and Melnik [67] is obtained from Eq. (2) with € = R~'/8. Note that if e, (r) exceeds 0.47, then the
simulation should be terminated because such a value implies trailing edge stall beyond which the current analysis is
not valid. Using, Fig. 2(a), one can obtain B, (¢), which in turn is substituted in Eq. (13) to determine the viscous
correction By (¢). Finally, the unsteady viscous lift and moment are written as

L= —npb*v1jy —2npUbvs4C(k) — 2npbB,C(k), (14)
————
Non-—circulatory Circulatory Viscous Correction

Potential Flow Solution Lp

This equation implies that the viscous contribution to the lift appears as a correction to the angle of attack @34 = —v3/4/U
at the three-quarter-chord point by an amount of B, = %. That is, the viscous unsteady circulatory lift coefficient can
be written as Cr. = 27 (a3/4 — By) C(k). Also, the pitching moment at the mid-chord point can also be written as

b* b
My = —npb® 5 @+ FUG+UvsuCk) = B(1-C(k) |, (15)
N————

Viscous Correction
Potential Flow Solution M(Jp

The viscous correction ByC (k) to the unsteady circulatory lift is inherited in the pitching moment as well. However,
there is an additional viscous correction to the pitching moment. As can be inferred from Eq. (11), the viscous lift
contribution has two components: Byag, acting at the quarter-chord point, similar to the inviscid circulatory lift; and By
acting at the three-quarter-chord point. Hence, viscosity, not only induces lag to the circulatory lift [56], but also shifts
the center of pressure; both effects are expected to impact the flutter boundary [75, 76].

III. Nonlinear State Space Model of Viscous Unsteady Loads

The above viscous unsteady model can be described by the block diagram shown in Fig. 4. Realizing that the two
dynamic blocks represent potential-flow lift dynamics, we can construct a state space model for the viscous unsteady
loads (i.e., for this block diagram) utilizing a proper finite state approximation of potential flow (e.g., Leishman and
Nguyen [17] or Peters [13]).

Let the quadruple (Ap, Bp, Cp, D p) represent a state space model of potential-flow lift dynamics (i.e., a state space
representation of C(k)). Then, the corresponding transfer function must have a high-frequency gain of 1, which implies
that D), = % [74]. Also, the corresponding transfer function must have a unity dc gain. That is, if it is fed by say v3/4,
the output would be v3,4C (k) in the time domain (i.e., the unsteady version of v3,4). Therefore, we can write

[Aplx1 + [Bp]v3/a,
[Crlx1 + [Dp]vsys,

X1
yp

(16)
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Fig. 4 A block diagram describing the dynamics of the viscous unsteady circulatory lift.

where y; € R" is the vector of internal aerodynamic states constituting the adopted potential-flow finite-state model
of order n. The subscript 1 is used since another set of potential-flow states will be needed, as shown below. In this
formulation, the output y,, represents v3,4C (k) in the time domain. As such, the potential-flow circulatory aerodynamic
loads can be determined directly from yp according to Eqgs. (6-9) as

L
P =-npUb
My, c

2 A
p |7P U[Flyp, a7
where F is the matrix (column) defining such a linear algebraic relation. In addition, the non-circulatory loads can be

written in an abstract way as
I .. .
g =[MJ(?‘)+[C] “ (18)
M, h
P JNC

h
where the matrices M and C represent added mass and damping (actually the negative of mass and damping) induced by
the non-circulatory loads, which are given by

M = —npb? c2lb cos a . C=npb? Ucosa dasina (19)
b-/8 0 -Ub/2 0
As such, the potential flow loads can be written in an abstract form as
b e © |stal © |sue 20)
Mo, |~ h h .

The block diagram shown in Fig. 4 implies that the sought state space model would include at least double the
number 7 of the states constituting the adopted potential-flow finite-state model because it includes the potential-flow
dynamics twice. In addition, to have a proper representation, we consider ¢, & to be the inputs to the aero dynamical
system, hence, «, &, and A will be states. That is, the sought state space model would be of order 2n + 3 whose
state vector is y = [x1, x2, @, @, iz]T and input vector is u = [&, ii]T. As can be concluded from Egs. (14,15), the
potential-flow lift given above need to be corrected by adding terms proportional to By and ByC (k). The latter can be
determined by passing the former to the potential flow state space representation (16).

To develop a state space representation for the viscous correction terms By and ByC(k), which is the main
contribution of this work, we recall Eq. (13) and define the effective angle of attack

eff = 75
U2

%ao(t) + zZ nan(t)l .
n=1

Note that this a.g is different from the common notion of the effective angle of attack in potential flow. The former
is a term special to the developed viscous theory, while the latter is simply given by the angle of attack a3/4 at the
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three-quarter-chord point [70], pp. 80. Based on this definition, the equivalent steady angle of attack is simply given by
a5 = |ae|. Then, we use Egs. (6,7) to write a.g as

V3/4 3ba 2bV|/2 — bl
=—C(k) - = + ———. 21
Realizing that v3,4C (k) is simply yp, and substituting for v/, we write ac in terms of the states and inputs:
X1
aei(xsu) = _Ul [ Cp b (% +2cosa +Dp(% - a)) ”’T” sina — Dp cosa ] & |- Dpsina+
i (22)

+ %[ (2a - )b ZCosa]

)

As can be seen from Eq. (22), the effective angle of attack in the viscous theory depends on the accelerations. So, for
relatively fast motion, aeq reaches significant values, which trigger the nonlinearity of the B, (a.) curve (Fig. 2(a)),
even with small amplitudes.

Having developed a state space representation of aeg (and consequently ay), Eq. (13) implies that the viscous
correction By can be written in terms of the states and inputs as

B w) = 267 0 (s ) B, (27 Flaer (s ) 23)

where B, (.) is a nonlinear function coming from the numerical solution of Chow and Melnik [67] to the triple deck
problem, specifically from Fig. 2(a). Finally, the unsteady version of By (i.e., ByC(k)) can be written with the aid of the
potential-flow finite-state model (16) as

X2 = [Aplx2+[Bp]By,

24
v = [Cply2+[DplBy. 24)

where y, simply represents B, C (k) in the time domain. The total viscous unsteady loads can then be written according
to Egs. (14,15) as

L L 2 0
= =" |-npb B,C(k) + npb? By, (25)
My Mo, b 1
. Lp . . 2 .
where the potential flow loads M are given by Eq. (20). Realizing that F = —npb b and that B,C (k) is yv,
Op
which is given by Eq. (24), we finalize the state space model as follows. The state equation is written as
X1 [ A O Oux -Bpb(3 —a) Bpcosa X1 -BpUsina
X2 Onsn Ap Onxa Onx1 Onx1 X2 BpBy(x;u)
Ll a | = | Oixn O O 1 0 a |+ 0 +
@ Oixn Oixn O 0 0 a 0
h i Oixn Oixn O 0 0 h 0 26)
0n><1 0n><1
0n><1 0n><1 ..
a
+ 0 0 ( . )
h
1 0
0 1

where B, (y;u) is given in Eq. (23) in terms of the states y = [x1, x2, @, &, h]T and the inputs u = [¢&, 7]7. The output
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equation for the total viscous unsteady loads is then written as

X1
L X2
(MO) - [U]FCP FCp Opq —UDpb(} —a)F +C(1) UDpIFcosoz+C(2)] o |+
& 27)
h

+ BV(X;M)F’—Uszsina'F+M( Z )

0
npb?
The state space model presented in Eqs. (26,27) is simulated for the case of a pitching around the mid-chord point at
R = 10°, k = 1. The following non-harmonic waveform is used to demonstrate the power of the developed state space
model in simulating arbitrary time-varying airfoil motion, in contrast to the frequency response model developed in our
earlier effort [56]

where M and C are defined in Eq. (19), C(j) is the j® column of C, and F’ = D,F+

a(f) = A (esm wr _ 1) , (28)

where A is set to ensure that the maximum « throughout the cycle is 1°. Figure 5 shows the lift and pitching moment
(at the mid-chord point) coefficients resulting from the state space model (26,27) in comparison to the potential flow
simulation (i.e., By = 0). Both results are compared in reference to the relatively higher fidelity simulations of the
Unsteady Reynolds-Averaged Navier Stokes (URANS) equations, described in our earlier efforts [56, 77]. In simulating
the viscous state space model (26,27), the following potential-flow finite-state model is adopted, which is similar to that
of Leishman and Nguyen [78]:

by O U
) B = -
0 -b l Py

b1A

U
Ap = —
P=% byAs

where the constants Ay, Ay, by, by are those defining Jones’ two-state approximation [14]
d(s)=1—A1e™5 — Aye P28

of the Wagner function, where s = % Their values are: A; = 0.165, A, = 0.335, b1 = 0.0445, and b, = 0.3.

Inspecting the results shown in Fig. 5, it is interesting to observe significant deviation from the classical potential-flow
theory at this very small amplitude oscillations (maximum « is 1°). It is also interesting to report a very good matching
between the computational results and the developed state space model. Indeed, it should serve aerodynamicists better
than the classical Theodorsen’s model, as it transcends the latter in the following aspects: (i) it provides viscous effects
(i-e., Reynolds number dependence); (ii) it captures nonlinearity and additional lag in the lift dynamics due to viscosity,
which will affect instability boundaries; (iii) it allows simulation of arbitrary time-varying airfoil motions (i.e., not
confined to harmonic motions); (iv) being in a state space form makes it much more convenient than a frequency
response function for simulation and coupling with structural dynamics to perform aeroelasticity, flight dynamics
analysis, and control design; and (v) it is simply more accurate.

IV. Linearization of the Nonlinear Viscous Unsteady Theory

While the state space model (26,27) is indeed useful in simulation and analysis, it is always encouraging to seek
analytical results. This goal is typically hard to achieve with a nonlinear theory, which invokes linearization of the
nonlinear viscous unsteady theory developed above. Moreover, one drawback in the developed theory is its inability to
tackle larger angles of attack; if @, exceeds 0.47 (which corresponds to @ ~ 3°), the simulation must be terminated,
which poses a good research problem on how to extend such a model, specifically Fig. (2(a)), to at least relatively larger
angles of attack below stall (up to @ ~ 10°), perhaps by matching a given steady Cr.-« curve [20, 79]. It should be noted
that the classical inviscid theory (e.g., Theodrosen’s model) suffers from the same issue of validity over a small @-range.
Yet, it does not stipulate terminating the simulation if the angle of attack exceeds a certain value. Therefore, insofar as

10
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Fig.5 Response of the nonlinear state space model (26,27) of the viscous lift and pitching moment (at the mid-
chord) to the non-harmonic pitching maneuver (28), in comparison to potential flow and URANS computations.

the inability to continue simulation of the developed theory is a limiting factor, it is an advantage beyond the classical
theory in the sense that it precisely defines a region of applicability. Having said that, this issue will be circumvented
any way in the linearized model below, realizing that linearization is typically valid for sufficiently small disturbances.

A. Analytical Representation of the Viscous Lift Frequency Response
It is indeed intriguing to develop an analytical representation of the viscous unsteady lift frequency response, similar
to Theodorsen’s, that depends not only on the frequency, but also on the Reynolds number. This goal is pursued below
by simply linearizing the nonlinear viscous unsteady theory developed above.
Equation (25), or Eq. (14), implies
L= LP - 27prBV

The potential-flow lift Lp only possesses geometric nonlinearities, hence, it can be easily linearized, resulting in
Theodrsen’s transfer function of the circulatory lift. Therefore, the main nonlinearity in the developed theory of the
viscous unsteady lift resides in By, which stems from the viscous triple deck boundary layer theory, as shown in the
block diagram in Fig. 4. The B,-contribution possesses two nonlinearities: the nonlinearity of the relation B, (a.)
shown in Fig. 2(a); and a multiplicative nonlinearity represented by the term @.g X B, in Eq. (23). Expanding B, in a
Taylor series around the origin (y = 0, u = 0) and retaining only linear terms, we write

By(x;u) = By(0;0) — 263474 U? [aer (0; 0)A B, (0 (0;0)) + B, (@0 (0;0)) Acerr (0;0)]

where A represents first-order variations. Equation (22) implies that a.g(0; 0) = 0, which results in zero a, and a, as
well. This zero ., when plugged in the relation B, (. ) of Fig. 2(a), results in B, (2. (0;0)) = B,, = 0.53. Moreover,
the first-order variation of B, at zero is almost zero; B, (a,) has an almost-zero slope at @, = 0. Hence, we have

By(x:u) = =23 175U B A (0; 0).

Substituting the first variations of a.g from Eq. (21), we obtain the following linearization of By
) 3,-5/4 3 . 2.
By(x;u) = =2’ 17" B, |U(Av34)C(k) - Eonz +2bAVy )y - b7d |, (29)

where |
AV3/4=h—b(§—a)c'y—Ua, and Avy = h+abd —Ud. (30)
Recalling the classification of lift in Eq. (14) and interpreting the viscous contribution as circulatory (since it is

associated with an additional circulation); i.e., assuming the non-circulatory loads remain intact, the linearized viscous

11
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circulatory lift is then written as
3
Lc = =2rpb |Uvsjq — 234754 B, [Uvs 1 C (k) - SbUG +2bv1) = bzii)] C (k). (31)

Unlike the inviscid theory, there is no special point (e.g., the three-quarter-chord point) over the airfoil whose angle
of attack solely dictates the circulatory lift. The lift response depends on the motion in a complicated way; it would
not be possible to obtain a lift transfer function independent of kinematics. Nevertheless, we can derive analytical
representations of the lift transfer function for harmonic pitching and plunging separately. In both cases, we define the
viscous lift frequency response function Cy, similar to Theodorsen, as

Lc(k; R)

Cy(k;R) = m,

where Lgg is the quasi-steady lift given by Los = —2mpbUv3/4.

1. Frequency Response due to Plunging
For a harmonic plunging motion h(t) = He'“?, v; /4= h, and v, /2= h. As such, we obtain the viscous lift frequency
response function

Cy plunging (k3 R) = [1 = 2R84, (C (k) + 2ik)] C(k). (32)

2. Frequency Response due to Pitching
For a harmonic pitching motion a(f) = A,e®?, v34 =-Usina - d/b(% —a),and vy, = abd — U cos ad, resulting
in

Avyja(k) = -UA,

1 U?
1+ik(§ —a)}, and Avyj(k) = —7Aa [ak? +ik]

As such, we obtain the viscous lift frequency response function

Cv,Pitching(k;R) = 1+ik(1/2 -a)

Tir — (1 — 2
1 - 2R85B, (C(k) + M)l c(k). (33)

Equations (32,32) represent, for the first time, analytical representations of the viscous lift frequency response. That
is, one can account for the Reynolds-number-dependence in an explicit way. Clearly, as R — co, both C, — C(k); one
recovers the inviscid behavior as Reynolds number approaches infinity. Therefore, these two functions may replace the
Theodorsen function in the future analysis. Figure 6 shows the variations of these two viscous lift frequency response
functions with reduced frequency at different Reynolds numbers, in comparison to the inviscid response of Theodorsen.
While the theory does not predict a considerable change in the magnitude of the transfer function from the inviscid
response, it predicts a significant deviation in phase; the larger the frequency and the lower the Reynolds number, the
larger the deviation in phase from Theodorsen’s phase. These results were observed in our earlier effort [56] using a
describing function analysis of the nonlinear theory. They are also captured here by the simple analytical relations
(32,32). For a discussion about the physical reason behind this viscosity-induced lag and its relation to the Kutta
condition, the reader is referred to our earlier effort [56].

The obtained phase results are also in accordance with the experimental results of Chu and Abramson [45], Henry
[41], Abramson and Ransleben [63], and Bass et al. [38]. In these experimental efforts, the authors reconciled the
deviation between Theodorsen’s prediction of the unsteady aerodynamic loads and their measurements by adding
some suggested phase lag to Theodorsen function, which is naturally captured in the developed viscous theory. For
example, Chu and Abramson [45] suggested adding a phase lag of —10° to Theodorsen function for a better estimate
of the unsteady lift and flutter boundary when k =~ 0.5. Bass et al. [38] conducted a water tunnel experiment for
a NACA 16-012 undergoing pitching oscillations around its quarter-chord point in the range of 0.5 < k& < 10 and
R =6,500 - 26,500. They compared their force measurements to Theodorsen’s potential flow frequency response.
They found bad agreement in the range 0.5 < k < 2 where the most pronounced boundary layer activity is observed and
the flow near the trailing edge is separating and alternating around the trailing edge. They concluded that adding a phase
lag of —30° to the Theodorsen’s C (k) would make the predicted lift from the classical theory of unsteady aerodynamics

12
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Fig. 6 Variation of the viscous lift frequency response with Reynolds number in the case of plunging and
pitching (around the mid-chord) in comparison to the inviscid response of Theodorsen.

match their experimental measurements over this range. Similarly, there are several efforts in literature that suggest
adding phase lag to Theodorsen’s inviscid frequency response. However, there was no theoretical model that could
predict the appropriate phase lag at a given combination of frequency and Reynolds number. The developed viscous
unsteady theory fills this gap by providing a reasonable estimate of such a phase lag. This result is particularly important
for flutter calculation. Note that the flutter instability, similar to any typical hopf bifurcation, is mainly dictated by when
energy is added/subtracted during the cycle. That is, the phase difference between the applied loads (aerodynamic
loads) and the system motion (e.g., angle of attack) plays a crucial role in dictating the stability boundary. Therefore, if
Theodorsen’s model does not capture such a phase lag accurately, it may lead to a deviation in the flutter boundary. As
such, it is expected that the developed viscous frequency response will result in a more accurate, yet efficient, estimate
of the flutter boundary.

Finally, it may be interesting to discuss the following point. Unlike the pitching case, where it is hard to interpret the
a@-terms in the viscous correction as circulatory or non-circulatory (since both contributions in potential flow include
@-terms), such a classification is straight forward in the plunging case. In this case, the total viscous unsteady lift can be
written as

L= —npb*1/ —2mpbUvssC(k) —2R/847514B,, (—27prUV3/4C2(k) _ 4rnpb®h, /2),
———— —,——
Non~circulatory Circulatory

Viscous

Inviscid

which suggests classifying the v3/4-term in the viscous contribution as circulatory and the v{/-term as non-
circulatory (added-mass). Doing so, we obtain a viscous frequency response of the circulatory lift as Cy(k; R) =
[1 —2R73/8A75/4B,,C (k)| C(k), simultaneously with a viscous (i.e., Reynolds-number-dependent) added-mass that is
also frequency-dependent:

my(k; R) = npb* |1 = 8R™3B175/4B, C(k)|. (34)

Following this classification, the resulting viscous frequency response C, of the circulatory lift is quite close to
Theodorsen’s. That is, the main viscous contribution actually resides in the acceleration term, which explains why the
viscous response deviates from Theodorsen’s response at higher frequencies. Therefore, this discussion suggests that,
for pure plunging, one can model the viscous effects by just considering the modified (decreased) frequency-dependent
added mass m, given in Eq. (34).

B. Analytical Linear State Space Representation of Viscous Unsteady Loads
Since the nonlinear state space model (26,27) is valid only for small angles, it may be prudent to develop a linearized
version of it. Having linearized the viscous frequency response theory, developed earlier [56], to obtain the analytical

13
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frequency response functions (32,32), it should be straight forward to linearize the nonlinear state space model (26,27).
The geometric nonlinearities in the model (26,27) can be easily linearized; the main non-trivial nonlinear term is By,
which has been already linearized above, as given in Eq. (29) in the frequency domain. Therefore, it can be written in
the time domain as

BV(X; u) = _263/1_5/4Be0

7 .
Uyp = 5bUd +2bh - (1- 2a)b2c'i] ,
where yp is the output from the potential-flow state space model (16); i.e., the time-domain version of v3,,C (k).

Substituting y p from Eq. (16), and the linearized v3,4 from Eq. (30), then By can be written linearly in the states in the
time-domain as

7 ..
BV(X;M) ~ —Ry [U (CPXI + DPH3/4)(3) - sz(I +2bh — (1 - 2a)b2(§2} , 35)
where Ry, = 2R3/8175/4B,, is a constant (related to the effect of the Reynolds number R on lift), y3 is the third set of
states: y3 = [, &, A", and Hs /4 defines the linear dependence of v3/4 on x3:

a
Mvya=| -U -bh-a) 1 || & | Hyaxs (36)

As such, the nonlinear state space model (26,27) can then be linearized into the following form

X1 [ Ap 0nxcn BpH3)y X1
% X2 = —URLBpCp Ap —URLDPBPH3/4 X2 |t
03xn 035n 0
X3 | 3% 3% 3%3 X3 ’ 37)
Onxl Onxl On><1 (0%
+ IUbR.Bp (1-2a)b°R.Bp -2bR.Bp @
I3x3 h
and the output equation can be written in the linear form
L X1
( " ) _ [ U(F-R.D,F)Cp FCp UDp(F—R.D,F)Hys ] v |+
0
X3 (38)
—2(1=7R.D 9
- ZpUb? (1=TRDp) i, | ¢,
b[1-TR.(1 - Dp)] h
where M, represents the viscous version of the mass matrix M, and is given by
bla+2R.D,(1-2 1-4R;D
M, = —mpp? | Ple¥2RLDp(1=20)] L (39)
b*[g - RL(1-2a)(1-Dp)] 2R.b(1-Dp)

Figure 7 shows the simulation of the linearized viscous state space model (37,38) subject to the non-harmonic,
small-amplitude maneuver defined in Eq. (28). As expected, for small-amplitude maneuvers such as the one considered
here, the response of the linearized viscous system matches well that of the nonlinear system (26,27); both match the
higher-fidelity URANS simulations. As such, the simple four-state (2rn) system (37,38) is expected to be of a significant
benefit to aeroelasticians and flight dynamicists, as it captures viscous unsteady effects in a convenient dynamical system
form (state space form), allowing efficient simulation and coupling with structural dynamics for linear stability analysis
(e.g., flutter analysis) and control design.

V. Conclusion
In this paper, we developed a nonlinear state space model of the viscous unsteady aerpdynamic loads. The model
presents a finite-state approximation of the recently developed viscous unsteady aerodynamic theory that couples
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Fig. 7 Response of the linear state space model (37,38) of the viscous lift and pitching moment (at the mid-
chord) to the non-harmonic pitching maneuver (28), in comparison to the nonlinear model (26,27) and URANS
computations.

potential flow with the triple deck boundary layer theory. The model consists of four internal aerodynamic states. It is
validated against relatively higher-fidelity computations of the Unsteady Reynolds-Averaged Navier Stokes (URANS)
equations. Comparisons show that the potential-flow results could deviate significantly from the viscous theory even
for a very small-amplitude oscillation (down to 1°). Moreover, the developed nonlinear state space model is in a very
good agreement with the URANS predictions of lift and moment over a specified range of angle of attack. Therefore,
this model will be of paramount importance to aeroelasticians and flight dynamicists since (i) it captures viscous
Reynolds number effects including nonlinearity and additional lag in the lift dynamics; (ii) it allows simulation of
arbitrary time-varying maneuvers (not necessarily harmonic); and (iii) being in a state-space form, it allows straight
forward coupling with structural dynamics for aeroelasticity and flight dynamics analysis and control design. Moreover,
linearizing such a theory, we derived a linear state space model and an analytical representation of the viscous lift
frequency response function, which is an explicit function of, not only the frequency, but also the Reynolds number.
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