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Abstract—Pattern reconfigurable antennas (PRAs) can dy-
namically change their radiation pattern and provide diversity
and directional gain. These properties allow them to adapt
to channel variations by steering directional beams toward
desired transmissions and away from interference sources, thus
enhancing the overall performance of a wireless communication
system. To fully exploit the benefits of a PRA, the key challenge
is being able to optimally select the antenna state in real time.
Current literature on this topic, to the best of our knowledge,
focuses on the design of algorithms to optimally select the best
antenna mode with evaluation performed in simulation or post-
processing. In this study, we have not only designed a real-time
online antenna state selection framework for SISO wireless links
but we have also implemented it in an experimental software
defined radio testbed. We benchmarked the multi-armed bandit
algorithm against other antenna state selection algorithms and
show how it can improve system performance by mitigating the
effects of interference taking advantage of the directionality PRAs
provide. We also show that when the optimal state changes over
time the bandit approach does not work very well. For such a
scenario, we show how the Adaptive Pursuit algorithm works
well and can be a great solution. We also discuss what changes
could be done to the bandit algorithm to work better in this case.

Index Terms—Machine Learning, Online Learning, Pattern
Reconfigurable Antennas, Multi-Armed Bandit, Adaptive Pur-
suit, ε−greedy, Wireless communications, Software Defined Ra-
dios

I. INTRODUCTION

Over the last few decades, there has been an exponential
growth in the number of connected wireless devices and the
amount of data sent and received. This increasing demand
is one of the main challenges in wireless communications,
motivating the development of simple techniques to better
utilize and share spectrum.

Traditionally, to mitigate adverse effects such as interfer-
ence, multi-path fading, shadowing, spectrum scarcity, solu-
tions like channel coding, power control, or MIMO commu-
nications were proposed. However, all these solutions come
with the price of added complexity, overhead and/or cost.
Recent studies have shown how Reconfigurable Antennas
(RA) can be used to enhance wireless communications by
altering the wireless channel that a radio perceives [1]. RA can
dynamically change their radiation characteristics, including
frequency, polarization and radiation pattern [2], [3]. This
work focuses particularly on pattern reconfigurable antennas
(PRA). This type of antenna provides pattern diversity gain
and directional gain that can be leveraged to enhance the
performance of a wireless communication system.

Multiple algorithms have been proposed but only tested
via either simulation or in post-processing, not being able
to run the algorithm in a real time experiment [4]–[6].
Some approaches were either based on channel estimation
and prediction [6] or complex online learning where the
search space needs to be pruned [4]. Specifically, Bahceci
et al. [6] proposed a block MMSE based channel estimation
scheme in which only a subset of patterns are trained and
then the correlation among different states is used to predict
the channels of the untrained states. The problem with this
method is that it incurs a large delay and overhead due to
the extensive channel estimation based training procedures. In
[4], Zhao et al. proposed to use a Thompson Sampling (TS)
framework as it converges faster when the number of states to
choose from is large and also helps prune the search space.
However, this technique is more complex than a simple Multi-
armed bandit approach and only justifiable when the search
space is large. Hasan et al. [7] used reconfigurable antennas
based on parasitic tuning. The challenge with this approach
is the large amount of possible states the RA can be set to,
requiring an offline Genetic algorithm (GA) based search to
determine which configurations generate optimal modes. Also,
they had to assume the channel was quasi-static and extensive
training is required, generating a lot of overhead and making
this approach not very useful for real-time applications. The
contribution of this paper is the demonstration of a low
complexity selection algorithm for RA that operates in real-
time.

The rest of this work is structured as follows: Section II
covers the system model and pattern reconfigurable antenna
used. Section III describes the selection algorithm used for
this work and what other algorithms will be used for bench-
marking. Section IV describes the experiments and evaluates
the results obtained. Section V summarizes the paper and gives
an overview of the results and future work that will follow up
from this study.

II. SYSTEM MODEL

This paper focuses on the downlink of a single cell single in-
put single output (SISO) OFDM system where the transmitter
is equipped with a conventional omnidirectional folded-dipole
antenna and the receiver is equipped with a reconfigurable
Alford loop antenna (RALA) [3]. Our work can easily be
generalized to the case of a RALA on the transmitter side
as well. The receiver node can be seen on Figure 2, where
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Fig. 1. System model - Unidirectional SISO link with a third node acting
as a source of interference.

three main components are highlighted: reconfigurable Alford
loop antenna, raspberry pi (RP) to physically switch the state
of the antenna and a software defined radio (SDR).

The received signal yt at time t is represented as follows:

yt = hT
t,nxn,t + nt for n = 1, ...,K (1)

Where hT
t,n ∈ C represents the transposed channel response

at time t for transmit antenna configuration n, xt ∈ C is the
transmitted data at time t. The noise nt is modeled as a zero-
mean complex white Gaussian random variable.

The RALA has a total of K = 5 modes, 4 of which are
directional and range 360o in azimuth. The other mode is
omnidirectional. The measured far field radiation patterns can
be seen in Figure 3.

Fig. 2. Receiver node - A USRP N210 was used for both receiver and
transmitter, the receiver can be seen in the figure with a Reconfigurable Alford
Loop Antenna and its custom controller (Raspberry Pi).

III. METHODOLOGY

A. Multi-armed bandit theory

The Multi-Armed Bandit (MAB) problem is a fundamental
mathematical framework for learning unknown variables. The
classic formulation [9]–[11] states that there are N inde-
pendent arms and a single player choosing arm i, where
i ∈ [1, 2, ...K]. There is always a trade-off between exploiting

Fig. 3. RALA radiation patterns - Reconfigurable Alford Loop Antenna
with 4 directional modes and an omnidirectional one [3], [8].

the arm with the highest expected payoff or exploring other
arms to acquire more knowledge about their rewards. On each
play of a single arm, the player receives a random reward and
updates the expected payoff for that arm with the objective of
maximizing the long term reward.

The formulation for this problem considers a transmitter
with a conventional omnidirectional antenna and a receiver
equipped with a RALA. In this context, “arm” and the
“antenna state” refer to the selected radiation pattern for the
PRA on the receiver side and are interchangeable. Every time
period T , an arm is selected. If the transmission is successful,
an instantaneous random reward Ri(n) associated with that
arm is achieved. The reward is assumed to be an i.i.d. random
process with unknown mean that we are trying to learn. Since,
at each time slot, only the selected arm generates a reward,
this method does not require instantaneous information for
each state, making it a practical real-time approach.

B. State selection strategies

We base our selection technique on two different policies
given in [5], [12] and benchmarked them against other ref-
erence algorithms. A description of all selection strategies is
given next.

1) Random selection: This strategy was used as a perfor-
mance lower bound. Every time a state needs to be selected,
one of the K antenna states is selected uniformly at random.

2) ε-greedy: When having to choose an arm, this policy
will either select the arm with current highest mean reward
with a probability of 1 − ε or any of the K arms with
probability ε.

3) Multi-armed bandit: The two algorithms used are de-
scribed in detail in Algorithm 1 and Algorithm 2. For clarity,
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a description along with a definition of all variables used by
the algorithms is given below:

• UCB1 - this algorithm needs to keep track of two vectors
containing mean rewards (Ri) and how many times (ni)
any arm i has been visited, where i ∈ [1, 2, ...K], being
K the total number of possible states and n the time
step being considered. The first step is to select each
arm at least once and populate these variables. Once
this initialization step is done, the algorithm enters an
infinite loop where it selects the arm with higher upper
confidence index, which in this case is a combination of
the mean reward for the arm and the one sided confidence
interval of the estimated mean reward: Ri+

√
2ln(n)/ni.

This index allows arms with smaller mean reward to be
selected after a certain amount of trials where the best
arm has been exploited so we have a balance between
exploitation and exploration.

• UCB1 Tuned policy - this algorithm keeps track of the
same variables as the previous one, the main difference
being that it accounts for the variance in reward, making
a better state selection in the majority of cases. The tuned
index is defined as: Ri +

√
ln(n)/nimin {1/4, Vi(ni)},

where Vi(x) = (1/x
∑
R2

i,x)−R
2

i,x+
√
2ln(t)/x, where

state i has been selected x times during the first t time
slots. This algorithm is expected to perform better in
scenarios where the rewards have high variance due to
dynamic channel variations.

4) Adaptive Pursuit (AP): The main advantage of this
algorithm is that it doesn’t assume the problem to be time
invariant, hence its ability to adapt to dynamic scenarios. To
do so, instead of keeping track of a mean reward per state,
adaptive pursuit will store a vector of expected rewards Q
and a vector with the probability of choosing each state P.
Each element of the probability vector is bounded by Pmin

and Pmax = 1− (K− 1)Pmin and must add to
∑K

i=1 Pi = 1.
Each one of these vectors will be updated with a learning
rate, β, α ∈ (0, 1] respectively, using a low pass filter after
every iteration. A more detailed explanation can be seen on
Algorithm 3.

Algorithm 1: UCB1 Policy, Auer et al. [12]

1 initialization;
2 ni, Ri ← 0;
3 Select each antenna state at least once and update

ni, Ri;
4 while True do
5 Select antenna state i that maximizes upper

confidence index Ri +
√
2ln(n)/ni;

6 Update ni, Ri for antenna state i;
7 end

IV. PERFORMANCE EVALUATION

In this section we describe the experiments ran to bench-
mark in real-time the two different UCB policies against the
other algorithms previously described on Section III. The

Algorithm 2: UCB1 Tuned Policy, Auer et al. [12]

1 initialization;
2 ni, Ri ← 0;
3 Select each antenna state at least once and update

ni, Ri;
4 while True do
5 Select antenna state i that maximizes upper

confidence index
Ri +

√
ln(n)/ni ·min {1/4, Vi(ni)};

6 Update ni, Ri for antenna state i;
7 end

Algorithm 3: Adaptive Pursuit, based of Wolfe et al.
[13]

1 initialization;
2 P← 1/K
3 Q← 0
4 while True do
5 Select state with probability distribution P
6 Update expected reward for selected state i∗:
7 Qi∗ = (1− α)Qi∗ + αRi∗

8 Update probability vector P:
9 Pi = Pi + β(Pmax − Pi), i = i∗

10 Pi = Pi + β(Pmin − Pi), else
11 end

hardware, software and test procedure are analyzed along with
a discussion of results.

Each node uses an in-house full-stack SDR implementation
called “Dragon Radio” [14] which leverages Liquid DSP for
its OFDM Physical layer with Media Access Control (MAC)
and options of Time Division Multiple Access (TDMA) and
Frequency Division Duplexing along with a very flexible link
layer [15]. This implementation is equipped with a high level
python interface in which an antenna state selection controller
was developed. The controller was programmed in a way such
that, based on user defined policies, it will select the antenna
state using any of the policies previously defined in Section
III. The switch for the reconfigurable antenna was coded in C
and it ran on a raspberry pi model 3 (RP) [16], controlled via
socket commands. The general-purpose input/output (GPIO)
pins of the RP selected between different arms of the PRA
by connecting them to either ground or 3.3 V (off and on
respectively).

The experiment consisted of two Dragon Radio nodes:
a transmitter and a receiver. Depending on the scenario, a
third node acts as a source of interference. All nodes used
were Ettus USRP N210 [17] software defined radios (SDR),
equipped with a SBXv3 daughterboard that allows them to
work at frequencies of up to 4.4 GHz.

The receiving node was equipped with a RALA and the
transmitter was equipped with a commercial omni-directional
folded-dipole antenna. Dragon Radio was configured to use a
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TDMA protocol and its throughput performance was tested for
120 seconds and 5 identical trials that were averaged for each
one of the algorithms. All algorithms chose antenna modes
using Received Signal Strength Indicator (RSSI) as a reward,
except for random selection which used none. The center
frequency was 2.485 GHz, bandwidth was 4 MHz and the
modulation scheme was QPSK. Traffic was generated using
iperf2 network test software, allowing us to record Packet
Error Rate (PER). For every experiment the receiver logged
RSSI.

Fig. 4. Histogram of state selection for UCB1 tuned. This policy, after a
initial exploration, exploits the omnidirectional mode 0 with no interference
(top), and with static interference it selects directional mode 3 (bottom).

A. Over the air SISO experiment without interference
Figure 5 shows the over the air (OTA) frequency versus

time waterfall plot captured by a third node while the two
Dragon Radio nodes communicated under no interference.
Since there was no interference, all antenna modes allowed
the radios to have a successful communication. All algorithms
chose the omnidirectional mode and had less than 1 % PER.
The reason for this is that due to the placement of the nodes,
none of the directional antenna modes pointed directly to the
transmitter, therefore making the omnidirectional mode the
most successful one. Figure 4 (top) shows how the UCB1
Tuned policy selected the nodes and mainly exploiting mode
0.

B. Over the air SISO experiment with a static source of
interference

This experiment tests if any of the RALA patterns can
spatially suppress the interference generated from a fixed
location and nearby RF continuous wave (CW) jamming node
while steering away from it and towards the transmitter.
The experimental setup of transmitter and receiver was the
same and a third node acting as a jammer was added. The
physical placement can be seen on Figure 6. The jammer is
equipped with the same conventional omnidirectional folded-
dipole antenna as the transmitter and has an equivalent gain.

The performance results of this experiment, captured with
the PER that each algorithm provided, are shown in Table
I. In this case, both UCB and ε−greedy policies selected a

Fig. 5. OTA experiment. This waterfall plot shows the transmitted signal
frequency vs time waterfall plot when the UCB1 Tuned policy was used in
real time and no interference.

Fig. 6. Physical Layout. The three interference nodes shown represent the
location at which the interfering node was located.

directional mode, particularly mode 3, as it steered away from
the jammer and pointed towards the transmitter. This can be
seen in Figure 4 (bottom) for the UCB1 Tuned policy. The
differences in performance between algorithms comes from
the fact that each policy exploits and explores the antenna
arms differently, with UCB1 Tuned policy being the best one.

TABLE I
PER UNDER STATIC SOURCE OF INTERFERENCE

Algorithm UCB1
Tuned

AP UCB1 Random ε−greedy
(ε =
0.2)

PER [%] 1.20 2.82 2.97 8.88 3.76

Figure 7 shows the empirical cumulative distribution func-
tion (CDF) of RSSI for all algorithms. These results further
confirm the differences seen in Table I, as the UCB policies
have the least amount of errors and also have the highest RSSI
values. Random selection acts as a lower bound and ε−greedy
is in between the random policy and MAB. Adaptive Pursuit
performs similar to the MAB, which makes sense as in this
case the interferer is always on the same location therefore
AP has no advantage over MAB.

C. Over the air SISO experiment with a dynamic source of
interference

This experiment tests how the algorithms perform when the
source of interference changes locations halfway during the
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Fig. 7. Empirical CDF - this figure shows the empirical CDF of RSSI for
all algorithms, further confirming the results shown on Table I.

experiment and therefore the optimal state for the PRA does
as well. We can see from figure 8 how the MAB approach
performs well once it converges to an optimal solution (4) but
the moment the source of interference changes locations, it is
unable to converge to a new optimal state, a total of 24.41%
of packets were lost in the experiment. On the other hand,
the Adaptive Pursuit starts on the optimal state (4) and once
the source of interference changes locations, it converges over
time to a new optimal state (2), allowing the radio to perform
better overall and only lose a total of 4.94% of the packets
sent.

Fig. 8. State and RSSI - this figure shows how the states are selected and
the effect this has on RSSI in the dynamic noise scenario for both AP and
MAB algorithms. The interferer’s location was changed halfway through the
experiment, around iteration 150 of the algorithm.

The reason why AP is able to converge to a new optimal
solution is that it selects the mode with the highest expected
reward instead of the highest UCB, highly dependant on mean
reward over time. In this case the MAB algorithm, after
running for a while, in order for the mean reward of each

state to decrease, it needs a large amount of time, whereas AP
does not have that problem.

A possible way of avoiding this would be for the MAB
approach to reset its parameters if the current rewards drop
below a certain threshold or to use a moving average instead
of an overall mean for the rewards.

V. CONCLUSION & FUTURE WORK

In this paper we demonstrated a software framework to
test different algorithms for real-time pattern reconfigurable
antenna state selection and showed the difference that it makes
when there is interference. Particularly, we compared the
cases where the source of interference is static and when it
changes over time. We performed the experiments using USRP
N210 SDRs with identical daughtercards and implemented our
algorithms in python within the radio framework in order to
run it in real-time.

First, we demonstrated that both the MAB and the AP algo-
rithms can effectively be run in real-time to improve a SISO
link by selecting the optimal PRA state while outperforming
algorithms such as Random selection and ε−greedy. Secondly,
we showed how the bandit approached is not efficient when
the sources of interference change locations over time, as it
will exploit the first optimal state, even if it changes, once it
has converged to a solution. On such a scenario we showed
how the Adaptive Pursuit algorithm can be used and we also
discussed how with some modifications, the MAB approach
can be adjusted to achieve better results.

Now that the software framework is validated, we plan on
expanding this work to multiple nodes and a higher number
of antenna modes to select from by using a new model of the
RALA.
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